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Abstract. Atmospheric levels of ammonia (NH3) have substantially increased during the last century, posing a hazard to both
human health and environmental quality. The atmospheric budget of NH3, however, is still highly uncertain due to an overall
lack of observations. Satellite observations of atmospheric NHz may help us in the current observational and knowledge gaps.
Recent observations of the Cross-track Infrared Sounder (CrlIS) provide us with daily, global distributions of NHs. In this
study, the CrlS-NHs; product is assimilated into the LOTOS-EURQOS chemistry transport model using two different methods
aimed at improving the modelled spatio-temporal NHs distributions. In the first method NHj3 surface concentrations from CrlS
are used to fit spatially varying NH3 emission time factors to redistribute model input NH3 emissions over the year. The second
method uses the CrlS-NH; eelumn-data to adjust the NH3 emissions using a Local Ensemble Transform Kalman Filter
(LETKF) in a top-down approach. The two methods are tested separately and combined, focusing on a region in western
Europe (Germany, Belgium, and the Netherlands). In this region, the mean CrlS-NHjs total columns were up to a factor 2
higher than the simulated NH3 columns between 2014 and 2018, which, after assimilating the CrlIS-NH3 columns using the
LETKF algorithm, led to an increase of the total NH3 emissions of up to approximately 30%. Our results illustrate that CrlS-
NH; observations can be used successfully to estimate spatially variable NH3 time factors, and improve NHs emission
distributions temporally, especially in spring (March to May). Moreover, the use of the CrlS-based NHs time factors resulted
in an improved comparison with the onset and duration of the NH; spring peak observed at observation sites at hourly
resolution in the Netherlands. Assimilation of the CrIS-NHz; columns with the LETKF algorithm is mainly advantageous for
improving the spatial concentration distribution of the modelled NHjs fields. Compared to in-situ observations, a combination
of both methods led to the most significant improvements in modelled monthly NH3 surface concentration and NH4* wet
deposition fields, illustrating the usefulness of the CrIS-NH3 products to improve the temporal representativity of the model

and better constrain the budget in agricultural areas.
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1. Introduction

Ammonia (NHs) is an alkaline gas in the Earth’s atmosphere. NH3 is highly reactive and readily reacts with available acids,
forming aerosol components harmful to human health (Pope et al., 2009, Lelieveld et al., 2015, Giannakis et al., 2019) and,
directly and indirectly, impacting global climate change (Erisman et al, 2011, Myhre et al., 2013). NH3 is emitted from a large
number of sources, including agriculture, natural nitrogen fixation in oceans and plants, volcanic eruptions, and biomass-,
industrial- and fossil fuel burning (Erisman et al., 2015). Globally, agriculture is the largest source of NHs. Agricultural
emissions of NH3 consist of, among others, volatilized NH3 after manure and chemical fertilizer application, livestock housing
and grazing and harvesting of crops. About 40% of the total global NH3 emissions follow directly from volatilization of animal
manure and chemical fertilizer, a spatially variable process highly controlled by the temperature and acidity of soils (Sutton et
al., 2013). In western Europe, for instance, agriculture is an even more dominant source of NHs and contributes to 85-100%
of all NH3; emissions (Hertel et al., 2011). After the emitted NHj3 is transported through the atmosphere, it is deposited back to
the Earth’s surface through the processes of wet and dry deposition. Excess amounts of reactive nitrogen deposition can cause
several adverse effects, such as eutrophication in aquatic ecosystems and soil acidification (Erisman et al., 2007) and

biodiversity loss in terrestrial ecosystems (Bobbink et al., 2010).

Even though NH3 at its current levels is an important threat to human health and environmental quality, its atmospheric budget
is still very uncertain. NHs concentrations are highly variable in space and time and are difficult to be reliably measured in-
situ due to the sticky nature of NH3 leading to potential adsorption to parts of the measurement devices (von Bobrutzki et al,
2010). Globally, only a few NHs; measurement networks exist, most of which contain only a small number of locations.
Moreover, most measurements are performed at a coarse temporal resolution (weeks to months), while most atmospheric
processes occur on much shorter time scales. Due to the lack of dense and precise measurement networks, measures for NH3
emission controls currently rely mostly on estimates from models, for instance from chemical transport models (CTMs). CTMs
simulate atmospheric processes such as emissions, transport, deposition and chemical conversion to estimate the spatial and
temporal distribution of atmospheric NHs. However, these models involve large uncertainties. On the one hand, model
assumptions and parameterizations are uncertain due to insufficient or lack of knowledge of some of the processes, for instance,
the limited understanding of bi-directional fluxes of NH3 (Schrader and Brimmer, 2014, Schrader et al., 2018) or the direct
effect of meteorology on NH3 emissions (Sutton et al., 2013). On the other hand, uncertainties stem from the underlying input
data and the spatial and temporal variation in emissions. Compared to other air pollutants, NHz emission inputs are especially
uncertain due to their large spatiotemporal variability resulting from the diverse nature of agricultural sources (Behera et al.,
2013). In Europe, the uncertainty of the total annual reported NH3 emissions on a country level is for instance already estimated
to be at least round ~30% (EEA, 2019). Naturally, NH3; emissions from individual sources have a much higher uncertainty due
to errors related to spatial and temporal redistribution. So as to reduce the uncertainty in modelled NH3 fields from CTMs, it

is vital to better understand both the spatiotemporal distribution of NH3 emissions.
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With the scarceness of in-situ measurements and uncertainties in existing models, the atmospheric NH3 budget remains among
the least known parts of the nitrogen cycle (Erisman et al., 2007). Recent satellite observations of NHz in the lower troposphere
can help us to fill in both observational and knowledge gaps. Satellite instruments, such as the NASA Tropospheric Emission
Spectrometer (TES) (Beer et al., 2008), ESA’s Infrared Atmospheric Sounder Interferometers (IASI) (Clarisse et al., 2009),
the NASA Atmospheric Infrared Sounder (AIRS) (Warner et al., 2016), the Thermal And Near-infrared Spectrometer for
Observation-Fourier Transform Spectrometer (TANSO-FTS) (Someya et al., 2020) and the NASA/NOAA Cross-track
Infrared Sounder (CrIS) (Shephard and Cady-Pereira, 2015) provide global observations of atmospheric NHs. Out of the
operational satellites that observe NHs with twice daily global coverage, CrlIS is the newest instrument and has the lowest
radiometric noise in the spectral region used for NH3 (Zavyalov et al., 2013). Moreover, CrlS has-inereased vertical

sensitivity for {0 near-surface NHs, and provides retrievals of the vertical distribution of NHz (Shephard et al., 2020).

Measurements—of atmospheric trace gases with satellites have opened up new ways to study the
atmospheric budget. Recently, satellite observations have successfully been used for direct estimates of emissions and lifetimes
of various other atmospheric species (e.g., SO2, NO,, CO,) of single anthropogenic or natural point sources (e.g., Fioletov et
al., 2015, Nassar et al., 2017) or even multiple sources at a time (Fioletov et al.,2017, Beirle et al., 2019). For NH3 specifically,
multiple studies have reported emissions and atmospheric lifetime estimates either based on satellite data (e.g., Zhu et al.,
2013, Whitburn et al., 2015, Van Damme et al., 2018, Zhang et al., 2018, Cao et al., 2020, Evangeliou et al., 2021) or directly
estimated from satellite data (e.g., Van Damme et al., 2018, Adams et al., 2019, Dammers et al., 2019). Here, also different
forms of model inversions have been used. Overall, these studies indicate an underestimation of both anthropogenic and natural
NHs emissions in the current emission inventories. In addition to estimating NH3; emissions, various studies used satellite
observations to estimate dry deposition fluxes of NHs; (Kharol et al., 2018, Van der Graaf et al., 2018, Lui et al., 2020).

In this manuscript, we describe two methods to improve both the temporal and spatial variation of NH3 emissions in the
LOTOS-EUROS chemistry transport model with CrlS-NH3 observations. The first method aims at deriving an improved set
of a-priori, observation-based NH3 time factors to be used for the temporal distribution of agricultural emission sources within
LOTOS-EUROS. In this method, the temperal-variation-of NH; surface concentrations from CrlS is are used
. The second method is used to assimilate the CrIS-NH3 observations into the LOTOS-EUROS model-—Forthis2a
Local Ensemble Transform Kalman Filter (LETKF) approach is used as data-assimilation system. which strength-lies
in-enhaneing existing spatial patterns. The impact of the two methods, both individually and combined, on the simulated NH3
emissions, concentration and deposition fields is then evaluated. The focus region of the study is a low-to-high NH3 emission
area within western Europe (The Netherlands, Germany, Belgium), which is representative for other intense agricultural
regions in the world. Moreover, the NH3 emissions within this region are relatively well known and in-situ observations are

sufficiently available.
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2. Methodology
2.1. LOTOS EUROS

LOTOS-EUROS is an Eulerian chemistry transport model (Manders et al., 2017) that could be used to simulate trace gas and
aerosol concentrations in the lower troposphere. The model has an intermediate complexity with limited run time, allowing
ensemble-based simulations and assimilation studies. LOTOS-EUROS uses meteorological data as input, which in this study
is taken from the using European Centre for Medium-Range Weather Forecasts (ECMWF). The gas-phase chemistry follows
a carbon-bond mechanism (Schaap et al., 2008). The dry deposition fluxes are calculated with the Deposition of Acidifying
Compounds (DEPAC) 3.11 module, following the resistance approach and it includes a calculation of bi-directional NH3 fluxes
(Van Zanten et al., 2010, Wichink Kruit et al., 2012). The wet deposition fluxes are computed using the CAMx (Comprehensive
Air quality Model with Xtensions) approach, which includes both in-cloud and below-cloud scavenging (Banzhaf et al., 2012).
The anthropogenic emissions are taken from CAMS-REG-AP (Copernicus Atmospheric Monitoring Services Regional Air
Pollutants) emissions dataset v2.2 (Granier et al., 2019). For Germany, high resolution gridded NH3 emission inputs (GRETA)
are used (Schaap et al., 2018). In this study, a region in Western Europe (47°N-56°N, 2°E-16°E) is modelled, which includes
all of Germany, the Netherlands and Belgium (Fig. 2). A spatial resolution of 0.20° longitude by 0.10° latitude is used,
corresponding to approximately 12 by 12 square kilometers, which is also roughly the footprint size of CrlS (14 by 14 km? at
nadir). The vertical grid extends up to 200 hPa and is split up into 13 vertical layers. This captures the largest part of
atmospheric NHs, as it is a relatively short-lived species mainly located in the boundary layer. The interfaces of the vertical
layers are based on the pressure layers used in the ECMWF meteorological input data. LOTOS-EUROS is part of the
operational Copernicus Atmosphere Monitoring Service (CAMS) ensemble forecasts and analysis for Europe (Marécal et al.,
2015). The model has participated in multiple model intercomparison studies (e.g., Bessagnet et al., 2016, Colette et al., 2017,

Vivanco et al., 2018), showing overall good performance.

2.2. Datasets
2.2.1. CrIS NH3

The Cross-Track Infrared Sounder (CrlS) is an instrument aboard NASA’s sun-synchronous, Earth orbiting Suomi NPP
satellite with an equatorial overpass at 13:30 and 1:30 LST. The CrIS sensor has a spectral resolution of 0.625 cm* (Shephard
et al., 2015) and a detection limit of 0.3-0.5 ppbv under favorable conditions (Shephard et al., 2020). The instrument has a
wide swath of up to 2200 km with pixels of approximately 14 km in size at nadir. Compared to other NH3 satellite sounders
(e.g., AIRS, 1ASI), CrlIS has an-improved vertical sensitivity of NHs close to the surface due to its low spectral noise
of approximately 0.04K at 280K in the NH3 spectral region (Zavyalov et al., 2013). Moreover, CrIS has a relatively high near-
surface sensitivity

The peak sensitivity of the instrument is typically between 900 and 700 hPa, which corresponds to approximately 1

to 3 km (Shephard et al., 2020). The CrIS NHjs total columns have an estimated total random measurement error of around 10-

4
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15%, and an estimated random total error of ~30%. Due to the limited vertical resolution, the NH3 concentrations at individual
retrieval levels have a higher random measurement error of about 10-30% and a total error of ~60-100% (Shephard et al.,
2020). Version 1.3 of the CrIS-NHs; product has been evaluated against in-situ Fourier Transform Infrared (FTIR)
measurements (Dammers et al., 2017) showing an overall good performance and high correlations of r~0.8. In this study, we
used version 1.5 of the CrIS fast physical retrieval (FPR)-NH3 product, which is based on the optimal estimation method
(Rodgers, 2000). More details about the CrIS FPR-NH5 product can be found in (Shephard et al., 2020). Here, we used daytime
observations of NH3 (partial) column concentrations and surface concentrations made between January 2014 and December
2018 from the first CrIS sensor, which has the longest observing period. During this 5-year period, a virtually continuous
timeseries of CrlS observations was available. More recent observations were not used due to the technical issues of the CrIS
instrument during the summertime in 2019, and the potentially anomalous situation resulting from the COVID-19 outbreak in
2020.

2.2.2. In-situ observations

Several measurement networks were used to evaluate the simulated concentration and deposition fields. The NH3; surface
concentrations are evaluated against observations from the Dutch Meetnet Ammoniak in Natuurgebieden (MAN) network
(Lolkema et al., 2015), the Dutch Landelijk Meetnet Luchtkwaliteit (LML) network (van Zanten et al., 2017), the Belgium
Flanders Environment Agency (VMM) network (den Bril et al., 2011) and the German Environment Agency (UBA) network
(Schaap et al., 2018). The locations of these sites are shown in Fig. 1. The MAN network provides monthly mean NH3; surface
concentrations since 2005, spread over 80 mostly low NH3z emission nature areas in the Netherlands. The measurements are
performed with low-cost passive samplers from Gradko and have an estimated uncertainty of ~20% for high concentrations
and ~41% for low concentrations (Lolkema et al., 2015). The NH3 concentrations in Flanders are measured with passive
samplers from Radiéllo and I\VVL samplers (den Bril et al., 2011). The LML network observes hourly NH3 concentrations at
six different locations in the Netherlands with different emission regimes (high, moderate, low). Initially, continuous flow
denuders from AMOR were used, which have a reported uncertainty of at least 9% for hourly concentrations (Blank et al.,
2001). Around 2016, the AMOR instruments were replaced by miniDOAS instruments (Berkhout et al., 2017), which are
active differential optical absorption spectroscopes. For evaluation of the wet deposition fields, observations from wet-only
samplers from the Dutch Landelijk Meetnet Regenwatersamenstelling (LMRe) network (van Zanten et al., 2017), whose
locations largely overlap with the LML network, and the UBA network (Schaap et al., 2018) are used. The locations of the

wet-only samplers are shown in Fig. S1.
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Figure 1: Locations of stations that measure NHz surface concentrations. The circles depict passive samplers and the diamonds
hourly observations stations.

2.3. Fitting method for deriving CrlS-based NHs time factors

A non-linear least squares method is used to fit a trimodal gaussian curve to
) from CrIS
165

scaled

NHjs surface concentrations
. The Trust Region Reflective algorithm is used to perform the minimization (Conn
et al., 2000). The minimalization algorithm is restrained with initial parameter guesses and bounds for three fitted gaussians.

emissions, respectively. The initial parameter guesses are based on the standard MACC-I11 (Kuenen et al., 2014) NH3 emission
time profiles. The bounds are defined as follows:

The three gaussians represent the spring (u1, 61, and Ap), autumn (o, o2, and Ay) and summer peak (us, o3, and Asz) in NH3
170

* the mean values (u1,2,3) are permitted to shift by one month (30 days) to cover the most probable emission peaks
« the standard deviations (c123) are permitted to vary by half their initial value guess (i.e., £0.5c)

« the fitted amplitude of the spring peak (A1) is allowed to be between 0.1 and 1.0 and amplitudes of the autumn and summer
gaussians (Az3) between 0.1 and 0.8
175

simultaneously (e.g., flatter peaks for emissions that

An overview of the permitted parameter bounds is given in Table 1. The range in permitted A 3 values is quite large, allowing
the minimization algorithm to fit meaningful trimodal curves for different types of time variant NH3 emission sources

mainly dependent of temperature and specific periods, such as open
stables, a sharper more distinct spring and autumn peaks for emissions following fertilizer or manure application).
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Spring peak Autumn peak Summer peak
C1 H2 G2 M3 G3
wi(doty) | (days) | Au(-) | (doty) | (days) | Aa(-) | (doty) | (days) | As(-)
Lower bound 47.4 13.1 0.1 222.8 11.6 0.1 1489 | 26.9 0.1
First guess (MACC-I111) 77.4 26.1 0.96 252.8 23.2 0.26 1789 | 53.7 0.21
Upper bound 107.4 39.1 1.0 282.8 34.8 0.8 208.9 107.4 0.8

Table 1: Initial parameter guesses and parameter bounds used in the trimodal fit algorithm.

After the daily NH3; time factors are fitted, the diurnal variation from the MACC-111 NH3 time factors is added to obtain hourly
time factors. The resulting hourly CrlS-based time factors are used as input for all time-variant NHs sources from agriculture

subcategories in LOTOS-EURQOS, i.e., continuous NHs3 point sources emissions remain time-invariant.

2.3.2. Data selection

The CrIS NHjs concentrations in the lowest retrieval level, i.e., closest to the surface, are used to adjust the
time profiles spatially on a regular 0.1° by 0.05° grid. First, to-cellect-enough-ebservations;

the CrlS NH3; surface concentrations with a quality flag of at least 3 and
within a selection radius of 1° around the center points of each grid cell are selected. The daily average NH3 concentrations
throughout the year are computed after application of a simple outlier filter (>99™ percentile excluded given more than 3
observations). Due to the lower number of observations during winter, and to avoid a bias towards higher values due to lower
thermal contrast, observations in January, November and December are ignored. During these months it is anyway prohibited
to apply fertilizer or spread manure in parts of the regions (for the Netherlands, see RVO, 2021), and in combination with the

colder temperatures, NH3 concentrations are expected to be low due to low volatilization rates (e.g., Sggaard et al., 2002).

2.3.3. Correction for local emission to concentration ratio

The relationship between NH3 emissions and surface concentrations differs per by region and changes throughout the year due
to changes in the meteorological and chemical eireumstanees . To correct for this, the following adjustment factor
is applied to the daily CrIS NHj3 surface concentrations. The factor is-based-en the NHz emission and simulated
surface concentration fields from LOTOS-EURQS, which are used to compute the local ratio of the smoothed daily total NH3
emissions to the NHs surface concentrations at the CrlS overpass time per grid cell. These are used as a first order
approximation for the relation between the emission and concentration. The ratios are rescaled by the mean annual values for
each grid cell to obtain a unitless daily scaling factor (Fig. S2). After multiplying the daily averaged CrlS NH; surface

concentrations with this scaling factor, a =10 filter is used to smoothen out the daily time series.
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Finally, the scaled NHj3 surface concentrations are normalized for each grid cell.

2.4. Data assimilation system
2.4.1. Local Ensemble Transform Kalman Filter

The Ensemble Kalman Filter (Evensen, 2003) is a sequential data assimilation method that could be used to combine model
simulations with observation. In this study, the Local Ensemble Transform Kalman Filter (LETKF) formulation is used (Hunt
et al, 2007) following the implementation by (Shin et al., 2016). The LETKF performs an analysis per grid cell based on nearby
observations only and it therefore computationally advantageous compared to the regular implementation of the Ensemble
Transform Kalman Filter. The basic idea behind an Ensemble Kalman Filter is to express the probability function of the state
in terms of an ensemble with N possible states x;, x,, ... x, each considered to be a possible sample out of the distribution of
the true state. In this study, the state contains the NH3 concentrations in a three-dimensional grid and two-dimensional NH3
emission perturbation factors 8. The perturbation factors describe the uncertainty in the emissions, and are modelled as samples
out of normal distribution with zero mean and standard deviation c. Spatial variations are initially not defined, but are
introduced by a localization length scale that is described below. The temporal variation in the emission factors is described
by temporal correlation coefficient a, that depends on temporal length scale t (Lopez-Restrepo et al., 2020, Barbu et al., 2009):
ay = e lte—tk-1l/7 (Eq. 1)

An initial ensemble is created by generating random samples of the perturbation factors. The ensemble is then propagated in
time in what is called the forecast step between consecutive analysis times for which observations are available. In the forecast

step, the model propagates the analysed ensemble members from time ¢, _; to time ¢, following:
x;(k) = My_4 (x{'(k — 1)) (Eq. 2)

where operator M,,_; describes the model simulation, including application of the perturbation factors that are present in x.

The ensemble mean x and forecast error covariance P at time k are expressed as:
1N
X = L2z X (Eda. 3)

P= = N (=00 —%)T (Eq. 4)

When CrlS observations (y°S) are available (at time t;), the LETKF algorithm analyses the ensemble by incorporating the
observations to reduce the ensemble spread. The analysed ensemble members are computed from:
x? = x; + PAHTR™1 (y“"S — h(x;) + v)) (Eq. 5)
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In here, h(x;) represents the simulated retrieval from the state x;, or in particular from the concentration array in x;. Operator
H is a linearization of h(x) to x . The matrix R is the observation representation error covariance, which
describes the difference between the simulation and the observation due to measurement and representation errors:

y"® —h(x)) ~N(O,R) (Eq. 6)

The actual implementation of h, H, and R are described below. The analysis covariance P? is computed from:
P =[PH"R'H+I]"'P (Eq.7)

2.4.2. Observation simulation

The simulated observation vector h(x;) represents the simulated retrieval,
is computed from:
h(x;) = y, — Ay, + AGx; (Eq. 8)

Here, matrix G is applied to horizontally and vertically match the simulated partial NH3 columns in
LOTOS-EUROS with the retrieval CrlS pressure levels.

The relationship between the true and the retrieved atmospheric NHs profiles, i.e., the vertical sensitivity
of the CrIS measurements, is described by averaging kernel A. The full relationship between the true and the observed state is
given by , Which can be rewritten to ( ) (Rodgers and Connor, 2003):
yre =y 4 A (GXTUE —y )y (Eq. 9)

with y, the a-priori profile that is part of the CrlIS retrieval product. The error v is a sample of the observation representation
error that describes the possible differences between simulation and retrieval:
v~ N(O,R) (Eq. 10)

In this study, R is set to the retrieval error covariance that is part of the CrIS product. The linearized observation operator
becomes:
H=AG (Eq. 11)

2.4.3. Analysis per grid cell

The analysis described above is applied per model grid cell; for the exact implementation we refer to Shin et al. (2016). First,
the simulated observation vectors h(x;) are computed for all ensemble members. For the grid cell to be analyzed, all

simulations are collected that are within 3.5p distance, where p is called the localization length scale as well as the matching
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actual observations y'S. The state elements corresponding to the grid cell are then analyzed using the collected observations
and simulations, where the weight of observations further away is limited using Gaussian correlation that decays with distance

and that uses the same correlation length scale p that is used for collection.

2.4.4. Observation selection

CrIS observations with the highest quality flag, QF =5, were used.

As the assumed vertical NH3 profile shape in background areas used in the CrIS retrieval and in
LOTOS-EUROS differ, CrlS retrievals with “unpolluted” a-priori profiles were filtered out. The original CrIS retrieval is
performed in the log domain and therefore either the averaging kernels A from CrlS need to be linearized or the LOTOS-
EUROS profiles transformed to the log-domain. Linearization of the kernel is only accurate for higher concentrations, and

since this is the case for the selected “polluted” retrievals, this option was found to be suitable.

2.4.5. Parameter calibration

In this study, we used a localization radius of p = 15 km, a standard deviation of ¢ = 0.5 and a temporal correlation length of
T =3 days. Two experiments were performed to study the effect of p, 6 and t in more detail. A description of the experiments
can be found in section S1 of the supplementary materials. A limited ensemble size of N=12 was found to be sufficient to
describe the imposed model uncertainty, which is not too complicated due to short life-time of NH3 and therefore strong

relation between concentrations and nearby emissions.

3. Results
3.1. Direct comparison of NHs concentrations from CrlS and LOTOS-EUROS

Before looking at the effects of assimilating the CrlS observations, a direct comparison of the modelled and observed NH3
column densities was made. The simulated NHz concentrations from the default run in LOTOS-EUROS were sampled at the
locations of the CrIS observations, and after application of the averaging kernels compared with the retrievals. The observed
and simulated NHj3 total columns averaged over all years are shown in Fig. 2. Similar maps per year are available in Fig. S3
of the supplementary materials. The general pattern of the NH3 total column densities matches quite well. For instance, the
observed and simulated NH3 columns are very similar in southwestern Germany, and close to the Dutch border. The CrIS NH3
total columns are generally higher than the simulated NHj3 total columns. This is for instance found in large parts of northeastern
Germany, along the Belgium coast and in the south of the Netherlands. Here, the observed NH3z columns were on average
approximately a factor 2 higher than the simulated NH3 columns. Moreover, the observed NHj; total columns are consistently
higher than the simulated NH3 columns in background areas, with a bias between the observed and modelled concentrations

of approximately ~0.5x10% molecules/cm?.
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Figure 2: Mean retrieved (left) and simulated (middle) NHs total column from 2014-2018, and their absolute difference (right).

3.2. CrlS-based NH3 time factors
3.2.1. Effect on NHs3 emissions in LOTOS-EUROS

Following the method described in section 2.3, temporal profiles for the NH3 have been obtained per grid cell. Compared to
the original model, the new time profiles vary spatially. Fig. 3 shows a comparison of the daily grid-averaged NHz emissions
between the default background model run () and the background run with the CriS-based NHs time factors (Xp,cris), Using a
different color for each month. The default NH3 time factors from MACC-III provide more intra-annual variation than the
CrlS-based NH; time factors. The default time factors include a very high peak in spring and much lower peaks during summer
and autumn (i.e., Ai/Az = 4.57, A1/A,= 3.70). Fig. S4 shows the fitted spring parameters (u1, o1 and A1). The NH3z spring peak
present in the CrlS-NHj; surface concentrations is generally lower than the default NH; spring peak. In large parts of the model
region, the CrlS-observed NHs; spring peak is subsequently lower and less sharp. Compared to the default NH3 time factors,
the amplitude of the spring peak in the CrlS-based NHs time factors is now generally much lower. The amplitude of the spring
peak differs almost by a factor 2 on average. As a result, there is a decrease in springtime NHsz emissions, especially in March
and April. The CrlS-based NHs; time factors, and consequently the NHs emissions, are, on the other hand, generally higher
later in the year. The NH; emissions are on average approximately 50% higher in summer and the beginning of autumn (June

to September), and approximately twice as high in October.
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Figure 3: Daily grid-average NHs emission, colored per month. Here, x» represents the default background run and xb.cris the
background run with CrlS-based NHs time factors.

3.2.2. Effect on NHs concentrations and deposition fields in LOTOS-EUROS

The changes in modelled NH3 surface concentration, total column concentrations and NHy total deposition from 2014 to 2018
related to the use of the CriS-based NH3 time factors are shown in Fig. 4, Fig. S5 in the supplementary materials and
Fig. 5. Here, X, represents the default background run and Xy cns the background run with the CrlS-based NH3 time factors.
The use of the CrlS-based emission time profiles led to an overall increase in mean NH3 surface concentrations. The absolute
change is largest in areas with already relatively high NHs surface concentrations, for instance in northwestern Germany,
where the mean NHj; surface concentrations increased with up to 2 pg/m®. The mean NHs surface concentrations increased
with up to ~25% due to the change in NH3; time factors. The effect of the CrlS-based NH3 time factors on the NHs total column
concentrations is smaller, with minor changes from minus ~5% up to 5%. The mean NHj; total column concentrations generally
increase in areas with already high NH3 concentrations, such as large parts of the Netherlands, and decrease in background
areas with little NHz emissions, for instance in central Germany. The use of the CrlS-based NH3; time factors led to ~10% less
total NHx deposition along the northwestern coast, including agricultural hotspots such as the Netherlands and northwestern

Germany, and an increase of up to ~10% in background areas.

Fig. S6 compares the daily, grid averaged, NH3 surface concentrations, total column concentrations and NHy wet and dry
deposition, with different colors per month. Here, a similar redistribution is observed for the NHs concentration and deposition
fields as seen earlier for the NH3 emission fields. Compared to the default background run (xy), the NH3 concentration fields
were up to a factor 2 lower during March and April. The NHs total columns decreased in spring, the largest decrease occurring
in April (up to ~60%). The NHjs surface concentrations increased during the summer and the beginning of autumn, up to ~50%

in September. During these months, a similar but slightly lower increase in the NHj3 total column concentrations is observed.
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Because the CrlS-based NHj3 time factors vary per year, the interannual variation in the modelled NH; fields is much larger.
Fig. S7 shows the relative changes in NH; surface concentration, total column concentration and NHy deposition fields per
year. Overall, the mean NHs surface concentration increases by up to ~30% per year. The largest increases occurred in 2016
and 2018, years with relatively high summer temperatures (Copernicus Climate Change Service, 2021). The variation in the
annual mean NHs total column concentrations is much smaller (-15 to +15%). The relative change in NHx budget shows much

more variation, with the most prominent increase occurring in 2014 (+25%) and decreases occurring in 2018 (-25%).

The temporal redistribution of the NH3 emissions thus significantly impacts the modelled NH; concentration and deposition
fields, too. Generally, a part of the initial spring NHz emissions is now attributed to the summer and autumn months. Depending
on the degree of redistribution, there are distinct changes in the NHy budget. Looking at the fitted spring peak parameters (Fig.
S4) and the matching CrlS-based NHs factors at hourly measurement sites (Fig. S8), clear interannual differences are observed.
For instance, a relatively sharp spring peak was observed over the Netherlands in 2014. In 2018, on the other hand, the fitted
spring peak had a distinctly lower amplitude and started later in the year. Moreover, a relatively large rise in NH3 time factors
was observed again in late summer and autumn (July to September). Compared to 2014, this resulted in a relatively larger
redistribution of the NHs; emissions towards warmer months. The higher temperatures resulted in lower dry deposition
velocities and more vertical mixing and transport of NHs, leading to an overall decrease in NHx deposition over the
Netherlands. Moreover, the summer of 2018 was relatively dry, also leading to higher NH3 total column concentrations and a
decrease in wet NHy deposition.
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Figure 4: The mean NHzs surface concentration over 2014 to 2018 from the (top left) default background run (xs) and the (top right)

background run with CrlS-based NHs time factors (xb.cris) and their (bottom left) absolute and (bottom right) relative difference.
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Figure 5: The total NHx deposition from 2014 to 2018 from the (top left) default background run (xp) and the (top right) background
run with CrlS-based NHs time factors (xb.cris) and their (bottom left) absolute and (bottom right) relative difference.

3.3. Local Ensemble Transform Kalman Filter
3.3.1. Effect on NH3 emissions and concentrations in LOTOS-EUROS

The CrlS-NH; columns were assimilated using the Local Ensemble Transform Kalman Filter (LETKF) described in section
2.4. Assimilations were performed using either the default emission time profiles (xa), or using the CrlS-based profiles (Xacris).
The total NH3 emissions from 2014 to 2018 and the relative and absolute changes compared to background simulations x, and
Xb.cris are shown in Fig. 6. The corresponding mean NHjs surface and total column concentrations are shown in Fig. S9 and Fig.
S10 of the supplementary materials. The absolute NH3; emission updates by the LETKF are, as expected, largest in regions
with already high NH3 emissions. There is a maximum increase of ~30% in total NH3; emission by the LETKF over the entire
period for some grid cells. Relatively, the largest changes are found in the southern parts of the Netherlands (province of
Noord-Brabant), the west coast of Belgium (province of West-Vlaanderen), the northeastern parts of Germany and France.
Compared to the analysis run using default emission time profiles (xa), the analysis runs with the CrlS-based NHj3 profiles
(Xacnis) generally have more NH3 emission and consequently higher NH3 surface and total column concentrations. The long-

term spatial patterns of the emission updates by the LETKF, however, remained very similar.
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Figure 6: The total NHs emissions in 2014-2018 in the background runs xs and X, cris and in analysis runs xa and Xacris (top panels),
as well as their absolute and relative difference (bottom panels).

375 To study the effect of the LETKF in more detail, the daily grid average NH3 emissions of the background runs (X, and Xp.cris)
are plotted against analysis runs (Xa and Xa,cns) in Fig. 7. SkmHar for the NH; surface and total column concentrations
are plotted in Fig. S11 of the supplement. In the runs with the default NH3 time factors (x» and x,), data assimilation of the
CrlS-NHs; columns led to both positive and negative emission updates in spring. In the summer, on the contrary, it mostly
resulted in an increase in NHs emissions. In the runs with the CrlS-based NH3; time factors (Xpcns and Xacns), the pattern is

380 distinctly different. Compared to the default runs, the NH; emission updates in spring are now smaller and largely positive,
with the largest updates occurring in April. Moreover, the NH3z emission updates were generally smaller during summer, too.
This is related to the fact that the CrlS-NHs surface concentrations were used to fit the NH; time factors, which resulted in the
model being closer to the CrIS observations already.
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385 Figure 7: Daily grid average NHs emissions in 2014-2018 from the (left) default background run (x») versus analysis run (xa), and

from the (right) background run with the CrlS-based NHs time factors (xb, cris) versus analysis run Xacris, colored per month.
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Perturbation factor § is the computed multiplication factor by which the initial input NHs emissions are updated in the LETKF.
The mean perturbation factors B per year are shown in Fig. S12 of the supplementary materials. The pattern of the NHz emission
updates does not change drastically between years, which points to a consistent, spatial misdistribution of the emissions in the
current inventory. By far the largest mean NH3 emission updates took place in 2018, followed by 2015.

Fig. 8 shows timeseries of the daily grid average NH3 emissions in both background runs x, and Xy cris and analysis runs X, and
Xacns. Fig. 9 and S13 show the corresponding timeseries and changes in NH3 surface and total column concentrations. The
NHj3 emissions in the default background run (xp) have a strong, annually reoccurring spring peak. After this peak, the NH3
emissions decrease steeply and then slightly increase again in late summer and autumn (August and September). In analysis
run Xxa, the spring NH3z emissions are both positively and negatively adjusted. Later in the year, almost only positive emission
updates are found. The largest positive NH3; emission updates occurred around August and September, which suggests an
underestimation of the autumn NHj3 peak in the default runs.

In the background runs with the CrlS-based NHs time factors (Xp,cns), the NH3 emissions are much more evenly distributed
over the year. In contrast to the default runs, practically only positive NH3 emission updates occurred in the analysis run
(Xacns). The largest NH3; updates took place during spring (March to May). The flattening of the NH3 emissions led to a
flattening in NH3 concentration fields, too. Compared to default runs (X, and X,), there is much less interannual variation in the
NHs; surface and total column concentrations. As a result, the NH3 concentrations during summer and autumn could be at the
same level or even higher than the springtime concentrations. During the warm summer of 2018 (Copernicus Climate Change

Service, 2021), for instance, the NH3 concentrations in August even clearly exceed the spring NHs concentrations.
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Figure 8: Timeseries of the daily grid-averaged NHs emissions in the background and analysis runs, and their absolute difference.
The top figure (blue) represents the default background (x») and analysis run (xa). The bottom figure (green) the background (Xb.cris)

and analysis run (xacris) with the CriS-based NHs time factors.
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Mean NH3 surface concentration (2014-2018)
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Figure 9: Timeseries of the daily grid-averaged NHs surface concentrations in the background and analysis runs, and their absolute
difference. The top figure (blue) represents the default background (x») and analysis run (xa). The bottom figure (green) the

background (xb,cris) and analysis run (Xacris) with the CriS-based NHs time factors.

3.3.2. Effect on NHx deposition in LOTOS-EUROS

The modelled total NHy budgets from 2014 to 2018 from the two background runs (x, and Xpcrs) and analysis runs (x. and
Xacns) are shown in Fig. 10. Overall, the modelled NHx budget shows the same spatial pattern as the NH; emissions. Like the
NHs emissions, the relatively largest spatial differences between the background and analysis runs took place in the south of
the Netherlands, the west of Belgium and northeast Germany. Compared to the default runs, the relative changes in total NHy

budget were slightly larger in the runs with the CrIS-based NH3 time factors (Xo,cris and Xacris).
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Figure 10: The total NHx budget from 2014-2018 in the background (xo and X, cris) and analysis (xa and Xacris) model runs in
LOTOS-EUROQOS, and their absolute and relative difference.
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The modelled NH, deposition follows the temporal distribution of the NHz emissions, too. Timeseries of the daily wet and dry
425 deposition amounts in the domain are shown in Fig. 11. The wet and dry deposition in the default runs (x, and Xp cris) versus
the analysis runs (Xa and Xacns) per month is shown in Fig. S14 in the supplement. In the default background run (xs), the total
NHx deposition peaks in March and April. In the analysis run (xa.), the dry and wet deposition both increased and decreased
during spring (March to May). Later in the year, the wet and dry NHyx deposition mostly increased in the analysis run,
particularly in August and September. In the background runs with the CrIS-based NHj3 time factors (Xb,cns and Xacris), the
430 modelled dry and wet deposition fields are much less variable. Following the NH3; emission updates, both the dry and wet
deposition mostly increased in the analysis run, especially in March and April. Moreover, the use of the CrlS-based NH3 time
factors resulted in a redistribution of the ratio of wet and dry deposition over the year. As a result of the relatively lower spring
NH3; surface concentrations, there is a reduction of the dry deposition during spring. The relatively higher summer NHj total

column concentrations led to a shift in wet deposition, too, from spring to summer.

Daily mean NH, budget (2014-2018)

X
0.15 b
L e dry NHy,
S 010 B wet NHy
-
=
< 0054
o
Y
0.00
2014-07 2015-01 2015-07 2016-01 2016-07 2017-01 2017-07 2018-01 2018-07
X,
0.15 2
-
L e dry NHy
< 010 Em wet NHx
=
< 0051
o
vy
0.00
2014-07 2015-01 2015-07 2016-01 2016-07 2017-01 2017-07 2018-01 2018-07
X
015 b, Cris
[ I dry NH,
3 0101 B wet NH
T
Enos_ .Illl A Ly g,y , v bl s co
o
o
vy
0.00
2014-07 2015-01 2015-07 2016-01 2016-07 2017-01 2017-07 2018-01 2018-07
X
0.15 a, Cris
~
L B dry NHy
S 010 B wet NH,
=
= 0051
o
Y
0.00

2014-07 2015-01 2015-07 2016-01 2016-07 2017-01 2017-07 2018-01 2018-07

435
Figure 11: Timeseries of the average amounts of dry (green) and wet (blue) NHx deposition in the different model runs. The top two

figures represent the default background (x») and analysis (xa) run and the bottom two figures the background (xb,cris) and analysis
(Xacris) run with the CrlS-based NHs time factors.
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3.4. Comparison to in-situ observations

The modelled NH3 surface concentration and NH4* wet deposition fields are compared with in-situ observations. First, the
spatial distribution is evaluated by comparing the modelled NH3 surface concentration and NH4* wet deposition fields to the
observed annual averages per measurement site. Second, the temporal distribution is evaluated by comparing the modelled
NHs; surface concentration and NH.* wet deposition fields to the same set of observations, but on a monthly basis. The
comparisons are done per type of observation, e.g., all available wet-only measurements simultaneously. To differentiate
between different NH3; emission regimes, the results are plotted separately for either all hourly observations or for the passive
samplers. The results are shown in Fig. 12 and 13. The Dutch site with the highest NH3 surface concentrations, Vredepeel, is
excluded from this comparison because of the large model-observation discrepancies here (see Fig. S18). This site is located
near agricultural emission sources and therefore less representative of a larger region. In these figures, the first column shows
the comparison for the default background run (xs), the second column shows the background run with CriS-based NH3 time
factors (Xb,cns), the third column shows the analysis run with the default NH3 time factors (x,) and, finally, the fourth column

shows the analysis run with CrlS-based NHs time factors (Xacris).

3.4.1. Spatial distribution

Fig. 12 shows the scatterplots of the annual averages per site per year. The annual average NHs surface concentrations (top
row) in the default run x, show a strong correlation (r = 0.88) with the observed concentrations at the hourly observation sites
(LML and UBA). Here, the NH3 surface concentrations are generally underestimated (slope = 0.61). The annual average NH3
surface concentrations (middle row) at the passive sampler sites (MAN, VVM and UBA) are generally overestimated (slope
= 1.17), with a lower, but still relatively strong correlation is observed (r = 0.69). The modelled annual average NH4* wet
deposition budgets (bottom row) are moderately correlated with the observations from wet-only samplers (r = 0.45), and are
generally lower than the observed wet deposition (slope = 0.81). When using the CriS-based NH; time factors, the annual
average NHs; surface concentrations and NH4" wet deposition budgets are slightly increased. This led to a slight, overall
increase in slope between all observations and the background run with the CrlS-based NH3 time factors (Xp,cnis). As the annual
totals, and herewith the spatial distribution of the NH3 emissions, remained the same in this run, the other measures (r, RMSE,
MAD, MRD, NMB) didn’t change drastically on a yearly basis.

The comparison with annual average NHs surface concentrations from the passive sampler networks from both analysis runs
(Xa and Xacns) slightly worsened compared to the background runs (X, and Xp,cns). The comparison at the hourly observation
and wet-only sampler sites, on the other hand, showed clear improvements. Here, virtually all statistical measures improved,
illustrating an overall improvement in modelled NH3 surface concentration and NH4* wet deposition field spatially. Of all runs,
the analysis run with the CrlS-based NHj3 time factors (Xacns) compared the best with the hourly observation and wet-only

sampler network. The differences between the modelled and observed NH3 surface concentrations at the hourly observation
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were distinctly smaller, compared to the default background run (x»: {RMSE = 2.79, MAD = 1.96, MRD = -0.15, NMB = -

0.28} versus Xacns: {RMSE = 2.2, MAD = 1.69, MRD = -0.11, NMB = -0.08}). Here, also the slope largely improved (Xp:

slope = 0.61 versus Xacris: slope = 0.76). The same is observed for the modelled NH4 wet deposition fields, where the slope

improved particularly (xp: {RMSE = 0.95, MAD = 0.63, MRD = -0.13, NMB = -0.22, slope = 0.81} versus Xacris: {RMSE =
475 0.92, MAD =0.61, MRD =-0.02, NMB = -0.11, slope = 0.95}).
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Figure 12: Comparison of the modelled annual average NHs surface concentrations and NH4* wet deposition fields to

in-situ observations.

20



480

485

490

495

500

505

510

3.4.2. Temporal distribution

Fig. 13 shows the scatterplots of the monthly means per site. The modelled monthly NHz surface concentrations from the
default background run (x) are strongly correlated with the hourly observation network (r =0.73), and with the passive sampler
network (r = 0.63). Both comparisons show a distinct overestimation of the NH3 surface concentration in March and April.
The observed NHj3 surface concentrations at the hourly observation sites are higher than the modelled ones during the rest of
the year. At the passive sampler sites, the observed versus modelled monthly NH; surface concentrations during the rest of the
year lie more around the one-on-one line. Here, too, the modelled NH3 surface concentrations are slightly underestimated at
the beginning of summer (June and July). The NH4* wet deposition is moderately correlated with monthly observations from
wet-only samplers (r = 0.44). At these sites, a similar pattern is observed. The modelled NH4* wet deposition is overestimated
in spring (especially March and April), and underestimated during the rest of the year. In general, this comparison indicates
an overestimation of the NHs spring peak emissions in the default model runs, particularly in March and April, and an

underestimation of the NH3 emission during the rest of the year, mainly during summer (June, July, August).

The use of the CrlS-based NH; time factors (Xpcns) led to an overall improvement at the hourly observation and wet-only
sampler sites. Compared to the default background run (xp), higher correlations and lower differences (RMSE, MAD, MRD,
NMB) are observed. At the hourly observation sites, the comparison improved the most (xp: {r = 0.73, RMSE = 3.67, MAD =
2.67, MRD =-0.22, NMB = -0.27, slope = 0.84} versus Xpcrs:{r = 0.82, RMSE = 2.98, MAD = 2.24, MRD = -0.12, NMB =
-0.20, slope = 0.88}). Compared to observations from the passive sampler and wet-only sampler networks, the modelled
monthly NHs surface concentration and NH4* wet deposition fields now generally lie around the one-on-one line during spring
(March, April, May). There is, on the other hand, an overestimation in July and August now. Moreover, as a result of the
decrease in CrlS-based NHjs time factors to zero during winter, the NHs surface concentration and NH.* wet deposition in

December is underestimated in the Xp crs run.

Compared to the background runs (X, and Xs.cnis), the two analysis runs (Xa and Xacns) show higher correlations with all types
of measurements. The differences (RMSE, MAD, MRD, NMB) between the observed and modelled monthly NH3 surface
concentrations at the passive sampler sites are now, on the other hand, larger in the two analysis runs (xa and Xacns), illustrating
an overall overestimation of the NH3 concentrations in background regions. Although a large shift in the temporal distribution
of the monthly NH4" wet deposition is observed, the differences between the observed and modelled values remained similar.
At the hourly observation sites, the comparison improved the most in the analysis run with the CrlS-based NH3 time factors
(Xacns). Here, compared to the default background run (xy), higher correlations and smaller differences were found (Xp: {r =
0.73, RMSE = 3.67, MAD = 2.67, MRD = -0.22, NMB = -0.27, slope = 0.84} versus Xacns:{r = 0.83, RMSE = 2.83, MAD =
2.21, MRD = 0.03, NMB = -0.07, slope = 1.0}).
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Figure 13: Comparison of the modelled monthly mean NHs surface concentrations and NH4* wet deposition fields to

in-situ observations. The colors indicate the month.

3.4.3. Regional patterns

The modelled NH;3 surface concentrations were compared to observations from each passive sampler network separately. Fig.
S15, S16 and S17 show comparison with the MAN network in the Netherlands, the UBA network in Germany and the VMM
network in Belgium, respectively. In the default background run (xp), the Dutch sites with relatively higher NH; surface
concentrations are overestimated, most of which are located along the eastern border of the Netherlands. The highest

correlation coefficients and lowest differences (RMSE, MAD) are found at the VMM network in Belgium. Here, the lower
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NH3; surface concentration sites are overestimated and the higher NH3 concentrations sites are underestimated in the default
background run (xp). At the German UBA stations, the comparison lies more around the one-on-one line. The mean NH3
surface concentrations at the sites close to the western border of Germany are generally overestimated in the default

background run (Xp).

The use of the CrIS-based NHj3 time factors (Xo.cris) led to an overall increase in modelled mean NH3; surface concentrations
compared to the default background run (xp). This led to a slight, overall increase in differences (RMSE and MAD) at all
networks. Furthermore, steeper slopes were found at all three networks, i.e., the modelled NHz surface concentrations increased
relatively more at sites with already higher concentrations. The same is observed in the two analysis runs (xa and Xacns), but
to a greater extend. Compared to background runs (Xp and Xp.cns), the differences (RMSE, MAD) between the modelled and
observed concentrations were relatively higher at all networks. At the Dutch MAN network, a slightly higher correlation
coefficient is observed.

Fig. S18 of the supplementary materials shows another comparison of the modelled and observed NH3 surface concentrations
at the hourly observation stations at daily resolution. Here, the correlation coefficient, root-mean-squared error RMSE, the
mean difference MD and the slope are shown per site. The stations are located in different NH3 emission regimes and are
sorted by increasing NHs surface concentrations. The modelled NH3 surface concentrations in the default background run (xp)
are generally overestimated at stations with low NH3 emission regimes and underestimated at stations with medium to high
NH; emission regimes. The use of the CrlS-based NHs time factors (Xp,cns) led to an improved comparison (higher correlation
coefficient and lower RMSE) at the Dutch stations, but a worse comparison at the German stations. On a monthly basis, the
comparison to the German UBA sites slightly worsened after the use of the CriS-based NH3 time factors (Xp,cns) (Fig. S19).
The modelled NH3 surface concentrations in the background run with the CrlS-based NHs time factors (xb,cns) were, on the
other hand, closer to the observations of the Dutch LML network in most months, with a lower differences (RMSE, MD) and
slopes closer to 1. Here, the largest increase in correlation coefficients were found in March and April. In both analysis runs
(Xa and Xacnis), the correlation coefficient improved and lower model-observation differences were found at all sites. Here, no

clear distinction between sites located in different NH3; emission regimes can be seen.

Compared to the default background run (xv), the modelled NH3 surface concentrations in the background run with the CrlS-
based NHs time factors (x»,cnis) thus improved the most at Dutch stations located in medium to high NH3 emission regimes.
Most of the Dutch stations are located in the proximity of agricultural hotspots. The German stations, on the other hand, are
located in background areas in central Germany, further away from major agricultural hotspots for NH3. Fig. S8 of the
supplementary materials shows the fitted CrIS-based NH3 time factors at each site. The fitted NH3 time factors at the majority
of the Dutch stations show clear, identifiable peaks, in particular the spring peak. Moreover, most Dutch sites show clear year-

to-year variations. For the German stations, on the other hand, the fitted NH3 time factors are much flatter and show much less
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interannual variation. This indicates that the observed CrlS-NHj3 surface concentrations at these locations remained around the

same level, and thus that no clear (inter)annual patterns were present in the CrlS data.

In the Netherlands, the CriS-based NH3 time factors led to an improvement in the representation of the NH3 spring peak. A
time-series of the observed daily NH3 surface concentrations at LML sites Valthermond and Zegveld are plotted in Fig. S20
of the supplementary materials. The modelled NH3 surface concentrations in the default background run (x;) start to rise too
early in the year, particularly in 2014. In the background run with the CrIS-based NHj; time factors (X.cris), both the start and
the duration of the spring peak in NH3z concentration improve. Here, the onset of the spring peak is delayed, better matching

the observed NHj3 timeseries.

4.1. Summary

In this study, the CrIS-NHs product is integrated into the LOTOS-EUROS chemical transport model using two different
methods. In the first method, the CrIS-NHs; surface concentrations were used to fit spatially varying NH3 time factors to
redistribute the NH3 emission inputs in LOTOS-EUROS over the year. In the second method, the CrIS-NH3; columns were

assimilated to adjust NH3 emissions through local Ensemble Transform Kalman filtering in a top-down approach.

The fitted NH3 time factors based on the CrlS-NHs surface concentrations led to a major temporal redistribution of the NH3
emissions. In most regions, the updated NHj3 time profiles became flatter, with an overall decrease in spring (March to May)
NH3 emissions and an increase in NH3z emissions in June to October. As a result, the mean modelled NH3 fields between 2014
and 2018 spatially changed by up to +25% in NH3 surface concentrations, -5 to +5% in NH3 total column concentrations and
-5 to +5% in NHy budget. The CrlS-based NHj3 time factors added an extra interannual variation of up to £25% in the annual
mean NHs; concentrations and deposition fields. Data assimilation of the CrIS-NHs; columns with the LETKF led to a
unanimous increase in total NH3; emissions. The modelled NHs fields between 2014 and 2018 changed with up to +30% in
NHs; surface concentrations, up to +20% in NH3 total column concentrations and +10 to +25% in NHx budget. The largest
increases in NH3; emissions (+30%) were found over the south of the Netherlands (Brabant), the west of Belgium (West-
Vlaanderen) and a large region in northeastern Germany. The temporal distribution of the NH3 emissions wasn’t largely
adjusted by the LETKF. The largest positive NH3 emission updates took place in late summer and the beginning of autumn

(July to September) and both increases and decreases in NHz emissions were observed in spring (March to May).

The modelled NH3 surface concentration and NH4* deposition fields were compared to in-situ observations.

Our results illustrate that the strength of the first method, i.e., CrlS-based NHs time factors, primarily
lies in improving the temporal distribution of the NH3; emissions. Compared to in-situ networks, an overall increase in
correlation coefficient and clear decrease in differences (RMSE, MAD, MRD, NMB) at the hourly observation and the wet-

only sampler sites was observed. Moreover, time-series of observed daily NH; surface concentrations illustrate that using the
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CrlS-based NHj3 time factors resulted in a better representation of both the onset and duration of the spring NH3 peak in the
Netherlands. The second method, data assimilation of the CrlS-NHz columns with the LETKF, improved the comparability to
590 in-situ observation both spatially and temporally. Here, higher correlations with both annual and monthly observed mean NHs;
surface concentrations and NH4* wet deposition were observed. This method also led to a decrease in differences (RMSE,
MAD, MRD, NMB) at the hourly observation and the wet-only sampler sites. The mean NHj; surface concentrations at the
passive sampler sites, on the other hand, were more strongly overestimated in both methods. The comparison to in-situ
observations improved the most, both spatially and temporally, in the run where both methods are combined (Xacns). This
595 illustrates that an initial, observation-based, rescaling of the NHz emissions enhances the adaptability of the LETKF, herewith

thus improving the modelled NH3 surface concentration and NH4* wet deposition fields.

600

4.2. Discussion
4.2.1. CriS-based NH3 time factors

The temporal redistribution of the NH3 emissions after using the fitted CrlS-based NH3 time factors led to a significantly better
representation of the temporal variation in NH3 emissions, especially the spring peak. Compared to in-situ observations,
605 however, the NH3 surface concentrations were overestimated in late summer and autumn (August to October). Further fine-

tuning of the fitting algorithm could help to reduce the current overestimation and potentially improve the fitted NH3 time
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factors. For example, data filtering and selection criteria could be adapted. Narrowing the selection radius used for selecting
the CrlS-NHs observations could for instance lead to a better representation of the NH3 concentrations locally. This, however,
may not always be possible, as a minimum number of observations is needed for a converging fit. Furthermore, the fitting
algorithm currently doesn’t allow for NH3 area emissions during winter, because of the limited number of available CrIS
observations at this time. As a result, the fitted NH3 time factors show a relatively steep increase at the beginning of spring and
a decrease at the beginning of winter. This could lead to step-like functions in areas where clear NH; peaks in the CrIS-NHs
data are absent. However, as this mainly occurs in areas with little to no NH3 emissions, this shouldn’t severely impact the
modelled NH3 concentrations in this study.

4.2.2. Local Ensemble Transform Kalman Filter

The NHs emission updates computed by the Local Ensemble Transform Kalman Filter (LETKF) always remain tied to the
initial model fields by a certain uncertainty range. As such, data assimilation of the CrIS-NHs; columns with the LETKF is
mainly suitable for fine-tuning NH3; emissions in regions where the NH3 emissions are already relatively well known. The
chosen LETKF configuration is for instance not able to correct for missing NH3 emissions in areas where little or no initial
NH3 emissions are present. Furthermore, the LETKF is unable to resolve temporal patterns well without sensible input, as was

illustrated in an experiment with homogeneous NH3; emission fields (supplement section S1).

The LETKEF filter settings used in this modelling setup (p = 15 km, 6 = 0.5, t = 3 days) led to a maximum emission increase
of roughly ~30% on the initial NH3z emissions for long-term simulations. The choice of these filter settings affects the
adaptability of the LETKF, i.e., the achievable emission adjustments by correction factors. In this study, a temporal length
scale T of 3 days was chosen as a compromise between short time scales needed for irregular emissions (e.g., fertilizer
application) and longer time scales needed for regular emissions (e.g., stables and other point sources). Moreover, it matches
the average satellite revisiting time per grid cell given the number of CrIS-NH; observations left after data selection (Fig. S21).
A spatial correlation of p =15 km was chosen because it matches the footprint size of the satellite. Furthermore, as shown in
section S1 in the supplement, increasing standard deviation ¢ leads to larger, positive B factors. To prevent further

overestimations in background regions, a ¢ of 0.5 was used for this region.

The current LETKF settings could for instance be improved by using spatially varying t values. The choice of T could be
optimized for each emission category in the model. Locations with fertilizer application as dominant NHz emission source
could for instance be set to lower t values than locations with predominantly regular NHs sources. Another way to optimize
the filter settings would be to study timeseries of the model-satellite discrepancies in more detail and base the choice of T on
this. A more apparent memory effect (i.e., higher 1) would be useful in areas with consistent model-satellite discrepancies,
whereas in areas with incidental differences a lower T would be more appropriate. Similarly, statistical analysis of the already

computed emission perturbation factors B could be performed. In this study, the model uncertainty follows a normal
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distribution in the current model setup. The distribution of the NH3 concentrations, however, is, in reality, better approximated
by a log-normal distribution. It would therefore be more realistic to use a log-normal distribution for the model uncertainty as
well. This would incidentally allow for larger correction factors when high NH3 peaks are observed, for instance after fertilizer

application.

In the current LETKF model setup, only the NH3 emissions are perturbed. Thus, the discrepancies between the observed and
modelled NH3 concentrations are currently thus fully assigned to errors in the underlying model NH3; emissions. However,
other model uncertainties could also cause these discrepancies, for instance uncertainties in other model inputs (e.g., other
trace gas emissions) or parameterizations (e.g., deposition routines). In a follow-up study, it would be interesting to further
investigate to the effect of an inverted LETKF setup, where model sink terms are perturbed instead of the source terms.
However, the current setup is the most obvious as the NH3z emissions are likely the largest source of model uncertainty in this
area. It would also be interesting to assimilate in-situ observations and/or other satellite products (for instance IASI-NHs)

simultaneously in a follow-up study.

4.2.3. Data products

Direct comparison of the observed and simulated NH3 columns showed distinctly lower NH3 total column concentrations in
LOTOS-EUROQS. This discrepancy could be the result of a systematic underestimation of the input NHz emission in LOTOS-
EUROS, or other model uncertainties. It could, on the other hand, also be partially related to the CrlS observations themselves.
Here, only CrlS observations with the highest quality flag (QF=5) were used, which for instance could have resulted in a bias
towards observations with higher NH3 concentrations or during good weather (e.g., no clouds), as these observations usually
have a lower uncertainty. Moreover, an offset of approximately ~0.5x10® molecules/cm? is observed. This seems to be the
effect of the detection limit of the CrlS instrument, which is unable to detect very low NH3 concentrations. Furthermore, this,
too, could be enhanced by the relatively strict data selection criteria used in this study, which favors higher NH3 concentrations
that usually have a lower uncertainty. In the next version of the CrIS-NH; product, which was not yet available for this study,
these non-detects are addressed. This might lead to lower NH3 concentrations in background regions and partially solve this

discrepancy. Moreover, this could also result in a better comparison with observations of the passive sampler networks.

The differences between the modelled and observed NH3; concentrations and NH4* wet deposition fields are partially related
to limitations in the spatial representativeness of the in-situ observations. The comparison of the different model runs to in-
situ observations showed an overall overestimation at the passive sampler sites. These sites are mainly located in nature areas
and therefore assumed to be representative of background regions with little to no NH; emissions. However, especially in the
Netherlands, the landscape layout is very heterogenous and the nature areas are relatively small. As a result, at the current
model grid size, each model pixel is likely to include other landscape elements than nature alone. The larger model scale

averages out the small-scale effects, thus leading to an overestimation. The opposite is true for the hourly observation sites
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located in medium to high NH3 emission regimes. Especially at sites close to NHs; emission sources, an underestimation is

expected.

4.2.4. Conclusions

To conclude, satellite observed CrlS-NHs timeseries are helpful in improving NHs emissions, both spatially and temporally.
Our results illustrated that CrlS-NHs; surface concentrations can be successfully used to fit spatially variable NH3 time factors,
which allows us to improve temporal NH3 emission distributions relatively easy in a forward modelling setup. Comparison
with in-situ NH3; surface concentrations and NH4* wet deposition observations showed that the fitted CriS-based NH3 time
factors were particularly useful for adjusting the timing and duration of the NH3 spring peak in medium to high NH3; regimes.
Moreover, the comparison showed that the CrIS-based NHs; time factors improve the temporal distribution of the modelled
NHs; surface concentrations and NH.* wet deposition fields. Our results show that data assimilation of the CrIS-NHs columns
data with the Local Ensemble Transform Kalman Filter (LETKF) improves the comparability with in-situ observations both
spatially and, to a lesser extent, temporally, too. As the adaptability of the LETKEF is limited by the uncertainty in the modelled
fields, the strength of this method primarily lies in fine-tuning pre-existing NHs emission patterns. As a result, this method
proved particularly useful for improving spatial NHs distributions in long-term simulations. Moreover, our results illustrated
that combining both methods enhanced the adaptability of the LETKF, and led to the largest improvements in modelled NH3

surface concentration and NH.* wet deposition fields compared to in-situ observations.
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