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Abstract. Atmospheric levels of ammonia (NH3) have substantially increased during the last century, posing a hazard to both 

human health and environmental quality. The atmospheric budget of NH3, however, is still highly uncertain due to an overall 

lack of observations. Satellite observations of atmospheric NH3 may help us in the current observational and knowledge gaps. 

Recent observations of the Cross-track Infrared Sounder (CrIS) provide us with daily, global distributions of NH3. In this 

study, the CrIS-NH3 product is assimilated into the LOTOS-EUROS chemistry transport model using two different methods 15 

aimed at improving the modelled spatio-temporal NH3 distributions. In the first method NH3 surface concentrations from CrIS 

are used to fit spatially varying NH3 emission time factors to redistribute model input NH3 emissions over the year. The second 

method uses the CrIS-NH3 column data profile to adjust the NH3 emissions using a Local Ensemble Transform Kalman Filter 

(LETKF) in a top-down approach.  The two methods are tested separately and combined, focusing on a region in western 

Europe (Germany, Belgium, and the Netherlands). In this region, the mean CrIS-NH3 total columns were up to a factor 2 20 

higher than the simulated NH3 columns between 2014 and 2018, which, after assimilating the CrIS-NH3 columns using the 

LETKF algorithm, led to an increase of the total NH3 emissions of up to approximately 30%. Our results illustrate that CrIS-

NH3 observations can be used successfully to estimate spatially variable NH3 time factors, and improve NH3 emission 

distributions temporally, especially in spring (March to May). Moreover, the use of the CrIS-based NH3 time factors resulted 

in an improved comparison with the onset and duration of the NH3 spring peak observed at observation sites at hourly 25 

resolution in the Netherlands. Assimilation of the CrIS-NH3 columns with the LETKF algorithm is mainly advantageous for 

improving the spatial concentration distribution of the modelled NH3 fields. Compared to in-situ observations, a combination 

of both methods led to the most significant improvements in modelled monthly NH3 surface concentration and NH4
+ wet 

deposition fields, illustrating the usefulness of the CrIS-NH3 products to improve the temporal representativity of the model 

and better constrain the budget in agricultural areas. 30 
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1. Introduction  

Ammonia (NH3) is an alkaline gas in the Earth’s atmosphere. NH3 is highly reactive and readily reacts with available acids, 

forming aerosol components harmful to human health (Pope et al., 2009, Lelieveld et al., 2015, Giannakis et al., 2019) and, 

directly and indirectly, impacting global climate change (Erisman et al, 2011, Myhre et al., 2013). NH3 is emitted from a large 

number of sources, including agriculture, natural nitrogen fixation in oceans and plants, volcanic eruptions, and biomass-, 35 

industrial- and fossil fuel burning (Erisman et al., 2015). Globally, agriculture is the largest source of NH3. Agricultural 

emissions of NH3 consist of, among others, volatilized NH3 after manure and chemical fertilizer application, livestock housing 

and grazing and harvesting of crops. About 40% of the total global NH3 emissions follow directly from volatilization of animal 

manure and chemical fertilizer, a spatially variable process highly controlled by the temperature and acidity of soils (Sutton et 

al., 2013). In western Europe, for instance, agriculture is an even more dominant source of NH3 and contributes to 85-100% 40 

of all NH3 emissions (Hertel et al., 2011). After the emitted NH3 is transported through the atmosphere, it is deposited back to 

the Earth’s surface through the processes of wet and dry deposition. Excess amounts of reactive nitrogen deposition can cause 

several adverse effects, such as eutrophication in aquatic ecosystems and soil acidification (Erisman et al., 2007) and 

biodiversity loss in terrestrial ecosystems (Bobbink et al., 2010).   

 45 

Even though NH3 at its current levels is an important threat to human health and environmental quality, its atmospheric budget 

is still very uncertain. NH3 concentrations are highly variable in space and time and are difficult to be reliably measured in-

situ due to the sticky nature of NH3 leading to potential adsorption to parts of the measurement devices (von Bobrutzki et al, 

2010). Globally, only a few NH3 measurement networks exist, most of which contain only a small number of locations. 

Moreover, most measurements are performed at a coarse temporal resolution (weeks to months), while most atmospheric 50 

processes occur on much shorter time scales. Due to the lack of dense and precise measurement networks, measures for NH3 

emission controls currently rely mostly on estimates from models, for instance from chemical transport models (CTMs). CTMs 

simulate atmospheric processes such as emissions, transport, deposition and chemical conversion to estimate the spatial and 

temporal distribution of atmospheric NH3. However, these models involve large uncertainties. On the one hand, model 

assumptions and parameterizations are uncertain due to insufficient or lack of knowledge of some of the processes, for instance, 55 

the limited understanding of bi-directional fluxes of NH3 (Schrader and Brümmer, 2014, Schrader et al., 2018) or the direct 

effect of meteorology on NH3 emissions (Sutton et al., 2013). On the other hand, uncertainties stem from the underlying input 

data and the spatial and temporal variation in emissions. Compared to other air pollutants, NH3 emission inputs are especially 

uncertain due to their large spatiotemporal variability resulting from the diverse nature of agricultural sources (Behera et al., 

2013). In Europe, the uncertainty of the total annual reported NH3 emissions on a country level is for instance already estimated 60 

to be at least round ~30% (EEA, 2019). Naturally, NH3 emissions from individual sources have a much higher uncertainty due 

to errors related to spatial and temporal redistribution. So as to reduce the uncertainty in modelled NH3 fields from CTMs, it 

is vital to better understand both the spatiotemporal distribution of NH3 emissions.  
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With the scarceness of in-situ measurements and uncertainties in existing models, the atmospheric NH3 budget remains among 65 

the least known parts of the nitrogen cycle (Erisman et al., 2007). Recent satellite observations of NH3 in the lower troposphere 

can help us to fill in both observational and knowledge gaps. Satellite instruments, such as the NASA Tropospheric Emission 

Spectrometer (TES) (Beer et al., 2008), ESA’s Infrared Atmospheric Sounder Interferometers (IASI) (Clarisse et al., 2009), 

the NASA Atmospheric Infrared Sounder (AIRS) (Warner et al., 2016), the Thermal And Near-infrared Spectrometer for 

Observation-Fourier Transform Spectrometer (TANSO-FTS) (Someya et al., 2020) and the NASA/NOAA Cross-track 70 

Infrared Sounder (CrIS) (Shephard and Cady-Pereira, 2015) provide global observations of atmospheric NH3. Out of the 

operational satellites that observe NH3 with twice daily global coverage, CrIS is the newest instrument and has the lowest 

radiometric noise in the spectral region used for NH3 (Zavyalov et al., 2013). Moreover, CrIS has increased greater vertical 

sensitivity for to near-surface NH3, and provides retrievals of the vertical distribution of NH3 (Shephard et al., 2020). 

 75 

Measurements of These atmospheric trace gases measurements with satellites have opened up new ways to study the 

atmospheric budget. Recently, satellite observations have successfully been used for direct estimates of emissions and lifetimes 

of various other atmospheric species (e.g., SO2, NO2, CO2) of single anthropogenic or natural point sources (e.g., Fioletov et 

al., 2015, Nassar et al., 2017) or even multiple sources at a time (Fioletov et al.,2017, Beirle et al., 2019). For NH3 specifically, 

multiple studies have reported emissions and atmospheric lifetime estimates either based on satellite data (e.g., Zhu et al., 80 

2013, Whitburn et al., 2015, Van Damme et al., 2018, Zhang et al., 2018, Cao et al., 2020, Evangeliou et al., 2021) or directly 

estimated from satellite data (e.g., Van Damme et al., 2018, Adams et al., 2019, Dammers et al., 2019). Here, also different 

forms of model inversions have been used. Overall, these studies indicate an underestimation of both anthropogenic and natural 

NH3 emissions in the current emission inventories. In addition to estimating NH3 emissions, various studies used satellite 

observations to estimate dry deposition fluxes of NH3 (Kharol et al., 2018, Van der Graaf et al., 2018, Lui et al., 2020).  85 

 

In this manuscript, we describe two methods to improve both the temporal and spatial variation of NH3 emissions in the 

LOTOS-EUROS chemistry transport model with CrIS-NH3 observations. The first method aims at deriving an improved set 

of a-priori, observation-based NH3 time factors to be used for the temporal daily distribution of agricultural emission sources 

within LOTOS-EUROS. In this method, the temporal variation of NH3 surface concentrations from CrIS is used. The second 90 

method is used to assimilate the CrIS-NH3 observations into the LOTOS-EUROS model. For this, a using a Local Ensemble 

Transform Kalman Filter (LETKF) approach is used as data-assimilation system. which strength lies in enhancing existing 

spatial patterns. The impact of the two methods, both individually and combined, on the simulated NH3 emissions, 

concentration and deposition fields is then evaluated. The focus region of the study is a low-to-high NH3 emission area within 

western Europe (The Netherlands, Germany, Belgium), which is representative for other intense agricultural regions in the 95 

world. Moreover, the NH3 emissions within this region are relatively well known and in-situ observations are sufficiently 

available.  
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2. Methodology 

2.1. LOTOS EUROS  

LOTOS-EUROS is an Eulerian chemistry transport model (Manders et al., 2017) that could be used to simulate trace gas and 100 

aerosol concentrations in the lower troposphere. The model has an intermediate complexity with limited run time, allowing 

ensemble-based simulations and assimilation studies. LOTOS-EUROS uses meteorological data as input, which in this study 

is taken from the using European Centre for Medium-Range Weather Forecasts (ECMWF). The gas-phase chemistry follows 

a carbon-bond mechanism (Schaap et al., 2008). The dry deposition fluxes are calculated with the Deposition of Acidifying 

Compounds (DEPAC) 3.11 module, following the resistance approach and it includes a calculation of bi-directional NH3 fluxes 105 

(Van Zanten et al., 2010, Wichink Kruit et al., 2012). The wet deposition fluxes are computed using the CAMx (Comprehensive 

Air quality Model with Xtensions) approach, which includes both in-cloud and below-cloud scavenging (Banzhaf et al., 2012). 

The anthropogenic emissions are taken from CAMS-REG-AP (Copernicus Atmospheric Monitoring Services Regional Air 

Pollutants) emissions dataset v2.2 (Granier et al., 2019). For Germany, high resolution gridded NH3 emission inputs (GRETA) 

are used (Schaap et al., 2018). In this study, a region in Western Europe (47°N-56°N, 2°E-16°E) is modelled, which includes 110 

all of Germany, the Netherlands and Belgium (Fig. 2). A spatial resolution of 0.20° longitude by 0.10° latitude is used, 

corresponding to approximately 12 by 12 square kilometers, which is also roughly the footprint size of CrIS (14 by 14 km2 at 

nadir). The vertical grid extends up to   200 hPa and is split up into 13 vertical layers. This captures the largest part of 

atmospheric NH3, as it is a relatively short-lived species mainly located in the boundary layer. The interfaces of the vertical 

layers are based on the pressure layers used in the ECMWF meteorological input data. LOTOS-EUROS is part of the 115 

operational Copernicus Atmosphere Monitoring Service (CAMS) ensemble forecasts and analysis for Europe (Marécal et al., 

2015). The model has participated in multiple model intercomparison studies (e.g., Bessagnet et al., 2016, Colette et al., 2017, 

Vivanco et al., 2018), showing overall good performance. 

2.2. Datasets 

2.2.1. CrIS NH3 120 

The Cross-Track Infrared Sounder (CrIS) is an instrument aboard NASA’s sun-synchronous, Earth orbiting Suomi NPP 

satellite with an equatorial overpass at 13:30 and 1:30 LST. The CrIS sensor has a spectral resolution of 0.625 cm-1 (Shephard 

et al., 2015) and a detection limit of 0.3-0.5 ppbv under favorable conditions (Shephard et al., 2020). The instrument has a 

wide swath of up to 2200 km with pixels of approximately 14 km in size at nadir. Compared to other NH3 satellite sounders 

(e.g., AIRS, IASI), CrIS has an improved greater vertical sensitivity of NH3 close to the surface due to its low spectral noise 125 

of approximately 0.04K at 280K in the NH3 spectral region (Zavyalov et al., 2013). Moreover, CrIS has a relatively high near-

surface sensitivity and an overpass time around 1:30 LST, which coincides with the time of the day with the highest thermal 

contrast. The peak sensitivity of the instrument is typically between 900 and 700 hPa, which corresponds to approximately 1 

to 3 km (Shephard et al., 2020). The CrIS NH3 total columns have an estimated total random measurement error of around 10-



5 

 

15%, and an estimated random total error of ~30%. Due to the limited vertical resolution, the NH3 concentrations at individual 130 

retrieval levels have a higher random measurement error of about 10-30% and a total error of ~60-100% (Shephard et al., 

2020). Version 1.3 of the CrIS-NH3 product has been evaluated against in-situ Fourier Transform Infrared (FTIR) 

measurements (Dammers et al., 2017) showing an overall good performance and high correlations of r~0.8. In this study, we 

used version 1.5 of the CrIS fast physical retrieval (FPR)-NH3 product, which is based on the optimal estimation method 

(Rodgers, 2000). More details about the CrIS FPR-NH3 product can be found in (Shephard et al., 2020). Here, we used daytime 135 

observations of NH3 (partial) column concentrations and surface concentrations made between January 2014 and December 

2018 from the first CrIS sensor, which has the longest observing period. During this 5-year period, a virtually continuous 

timeseries of CrIS observations was available. More recent observations were not used due to the technical issues of the CrIS 

instrument during the summertime in 2019, and the potentially anomalous situation resulting from the COVID-19 outbreak in 

2020.  140 

2.2.2. In-situ observations 

Several measurement networks were used to evaluate the simulated concentration and deposition fields. The NH3 surface 

concentrations are evaluated against observations from the Dutch Meetnet Ammoniak in Natuurgebieden (MAN) network 

(Lolkema et al., 2015), the Dutch Landelijk Meetnet Luchtkwaliteit (LML) network (van Zanten et al., 2017), the Belgium 

Flanders Environment Agency (VMM) network (den Bril et al., 2011) and the German Environment Agency (UBA) network 145 

(Schaap et al., 2018). The locations of these sites are shown in Fig. 1. The MAN network provides monthly mean NH3 surface 

concentrations since 2005, spread over 80 mostly low NH3 emission nature areas in the Netherlands. The measurements are 

performed with low-cost passive samplers from Gradko and have an estimated uncertainty of ~20% for high concentrations 

and ~41% for low concentrations (Lolkema et al., 2015). The NH3 concentrations in Flanders are measured with passive 

samplers from Radiëllo and IVL samplers (den Bril et al., 2011). The LML network observes hourly NH3 concentrations at 150 

six different locations in the Netherlands with different emission regimes (high, moderate, low). Initially, continuous flow 

denuders from AMOR were used, which have a reported uncertainty of at least 9% for hourly concentrations (Blank et al., 

2001). Around 2016, the AMOR instruments were replaced by miniDOAS instruments (Berkhout et al., 2017), which are 

active differential optical absorption spectroscopes. For evaluation of the wet deposition fields, observations from wet-only 

samplers from the Dutch Landelijk Meetnet Regenwatersamenstelling (LMRe) network (van Zanten et al., 2017), whose 155 

locations largely overlap with the LML network, and the UBA network (Schaap et al., 2018) are used. The locations of the 

wet-only samplers are shown in Fig. S1.  
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Figure 1: Locations of stations that measure NH3 surface concentrations. The circles depict passive samplers and the diamonds 160 

hourly observations stations.  

2.3. Fitting method for deriving CrIS-based NH3 time factors  

A non-linear least squares method is used to fit a trimodal gaussian curve to the scaled NH3 surface concentrations (see section 

2.3.3) from CrIS in each grid cell. The Trust Region Reflective algorithm is used to perform the minimization (Conn et al., 

2000). The minimalization algorithm is restrained with initial parameter guesses and bounds for three fitted gaussians. The 165 

three gaussians represent the spring (μ1, σ1, and A1), autumn (μ2, σ2, and A2) and summer peak (μ3, σ3, and A3) in NH3 

emissions, respectively. The initial parameter guesses are based on the standard MACC-III (Kuenen et al., 2014) NH3 emission 

time profiles. The bounds are defined as follows:   

 

• the mean values (μ1,2,3) are permitted to shift by one month (30 days) to cover the most probable emission peaks  170 

• the standard deviations (σ1,2,3) are permitted to vary by half their initial value guess (i.e., ±0.5σ)   

• the fitted amplitude of the spring peak (A1) is allowed to be between 0.1 and 1.0 and amplitudes of the autumn and summer 

gaussians (A2,3) between 0.1 and 0.8  

 

An overview of the permitted parameter bounds is given in Table 1. The range in permitted A1,2,3 values is quite large, allowing 175 

the minimization algorithm to fit meaningful trimodal curves for different types of time variant NH3 emission sources 

simultaneously (e.g., flatter peaks for emissions that are mainly dependent of temperature and specific periods, such as open 

stables, a sharper more distinct spring and autumn peaks for emissions following fertilizer or manure application).  
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 Spring peak Autumn peak Summer peak 

 μ1 (doty) 

σ1 

(days) A1 (-) 

μ2 

(doty) 

σ2 

(days) A2 (-) 

μ3 

(doty) 

σ3 

(days) A3 (-) 

Lower bound 47.4 13.1 0.1 222.8 11.6 0.1 148.9 26.9 0.1 

First guess (MACC-III) 77.4 26.1 0.96 252.8 23.2 0.26 178.9 53.7 0.21 

Upper bound 107.4 39.1 1.0 282.8 34.8 0.8 208.9 107.4 0.8 

Table 1: Initial parameter guesses and parameter bounds used in the trimodal fit algorithm.  180 

 

After the daily NH3 time factors are fitted, the diurnal variation from the MACC-III NH3 time factors is added to obtain hourly 

time factors. The resulting hourly CrIS-based time factors are used as input for all time-variant NH3 sources from agriculture 

subcategories in LOTOS-EUROS, i.e., continuous NH3 point sources emissions remain time-invariant.  

2.3.2. Data selection  185 

The CrIS NH3 concentrations in the lowest retrieval level, i.e., closest to the surface, are used to adjust the daily variability in 

the hourly time profiles spatially on a regular 0.1° by 0.05° grid. First, to collect enough observations, to collect a sufficient 

number of observations for the fitting algorithm, the CrIS NH3 surface concentrations with a quality flag of at least 3 and 

within a selection radius of 1° around the center points of each grid cell are selected. The daily average NH3 concentrations 

throughout the year are computed after application of a simple outlier filter (>99th percentile excluded given more than 3 190 

observations). Due to the lower number of observations during winter, and to avoid a bias towards higher values due to lower 

thermal contrast, observations in January, November and December are ignored. During these months it is anyway prohibited 

to apply fertilizer or spread manure in parts of the regions (for the Netherlands, see RVO, 2021), and in combination with the 

colder temperatures, NH3 concentrations are expected to be low due to low volatilization rates (e.g., Søgaard et al., 2002).  

2.3.3. Correction for local emission to concentration ratio  195 

The relationship between NH3 emissions and surface concentrations differs per by region and changes throughout the year due 

to changes in the meteorological and chemical circumstances conditions. To correct for this, the following adjustment factor 

is applied to the daily CrIS NH3 surface concentrations. The factor is based on is derived from the NH3 emission and simulated 

surface concentration fields from LOTOS-EUROS, which are used to compute the local ratio of the smoothed daily total NH3 

emissions to the NH3 surface concentrations at the CrIS overpass time per grid cell. These are used as a first order 200 

approximation for the relation between the emission and concentration. The ratios are rescaled by the mean annual values for 

each grid cell to obtain a unitless daily scaling factor (Fig. S2). After multiplying the daily averaged CrIS NH3 surface 

concentrations with this scaling factor, a ±1σ filter is used to smoothen out the daily time series. To avoid too much flattening 

of the spring emission peak, a separate filter is applied for the spring period. NH3 emissions originating from the application 



8 

 

of synthetic or manure fertilizers are mainly found during this period, at the beginning of the growing season. This may lead 205 

to an increase in observed NH3 concentrations, that would be filtered out when the same filter is applied for the entire year. 

Finally, the scaled NH3 surface concentrations are normalized for each grid cell. 

2.4. Data assimilation system  

2.4.1. Local Ensemble Transform Kalman Filter  

The Ensemble Kalman Filter (Evensen, 2003) is a sequential data assimilation method that could be used to combine model 210 

simulations with observation.  In this study, the Local Ensemble Transform Kalman Filter (LETKF) formulation is used (Hunt 

et al, 2007) following the implementation by (Shin et al., 2016). The LETKF performs an analysis per grid cell based on nearby 

observations only and it therefore computationally advantageous compared to the regular implementation of the Ensemble 

Transform Kalman Filter. The basic idea behind an Ensemble Kalman Filter is to express the probability function of the state 

in terms of an ensemble with N possible states 𝑥1, 𝑥2, … 𝑥𝑁, each considered to be a possible sample out of the distribution of 215 

the true state.  In this study, the state contains the NH3 concentrations in a three-dimensional grid and two-dimensional NH3 

emission perturbation factors β. The perturbation factors describe the uncertainty in the emissions, and are modelled as samples 

out of normal distribution with zero mean and standard deviation σ. Spatial variations are initially not defined, but are 

introduced by a localization length scale that is described below. The temporal variation in the emission factors is described 

by temporal correlation coefficient α, that depends on temporal length scale τ (Lopez-Restrepo et al., 2020, Barbu et al., 2009): 220 

𝛼𝑘 = 𝑒−|𝑡𝑘−𝑡𝑘−1|/𝜏           (Eq. 1) 

 

An initial ensemble is created by generating random samples of the perturbation factors. The ensemble is then propagated in 

time in what is called the forecast step between consecutive analysis times for which observations are available. In the forecast 

step, the model propagates the analysed ensemble members from time 𝑡𝑘−1 to time 𝑡𝑘 following: 225 

𝐱𝐢(k) = 𝐌𝐤−𝟏(𝐱𝐢
𝐚(k − 1))           (Eq. 2) 

 

where operator 𝐌𝐤−𝟏 describes the model simulation, including application of the perturbation factors that are present in 𝐱. 

The ensemble mean 𝑥 and forecast error covariance 𝐏 at time 𝑘 are expressed as: 

x =  
1

N
∑ xi

N
i=1             (Eq. 3)  230 

𝐏 =  
1

N−1
 ∑ (xi − x)(xi − x)TN

i=1            (Eq. 4) 

 

When CrIS observations (𝐲𝐂𝐫𝐈𝐒) are available (at time 𝑡𝑘), the LETKF algorithm analyses the ensemble by incorporating the 

observations to reduce the ensemble spread. The analysed ensemble members are computed from:  

𝐱𝐢
𝐚 = 𝐱𝐢 + 𝐏𝐚𝐇𝐓𝐑−𝟏 (𝐲𝐂𝐫𝐈𝐒 − 𝐡(xi) + 𝐯𝐢)         (Eq. 5) 235 
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In here, 𝐡(xi) represents the simulated retrieval from the state 𝐱𝐢, or in particular from the concentration array in 𝐱𝐢. Operator 

𝐇 is a linearization of 𝐡(x) to 𝑥 (see section 2.4.4). The matrix 𝐑 is the observation representation error covariance, which 

describes the difference between the simulation and the observation due to measurement and representation errors:  

𝐲𝐂𝐫𝐈𝐒 − 𝐡(xi)   ~ N(0, 𝐑)           (Eq. 6) 240 

 

The actual implementation of 𝐡, 𝐇, and 𝐑 are described below. The analysis covariance 𝐏𝐚 is computed from:  

𝐏𝐚 = [𝐏𝐇𝐓𝐑−𝟏𝐇 + 𝐈]−𝟏 𝐏           (Eq. 7) 

2.4.2. Observation simulation  

The simulated observation vector 𝐡(xi)  represents the simulated retrieval, which is what the satellite observes from 245 

concentrations described in 3-dimensional grid cell xi, and is computed from:   

𝐡(xi) =  𝐲𝐚 − 𝐀𝐲𝐚 + 𝐀𝐆xi           (Eq. 8) 

 

Here, matrix 𝐆, the gridding operator, is applied to horizontally and vertically match the simulated partial NH3 columns in 

LOTOS-EUROS with the retrieval CrIS pressure levels. Here, air-mass weighted averaging is used to average the model layers 250 

to the retrieval levels. The relationship between the true and the retrieved atmospheric NH3 profiles, i.e., the vertical sensitivity 

of the CrIS measurements, is described by averaging kernel 𝐀. The full relationship between the true and the observed state is 

given by ytrue = h(xtrue) +  v , which can be rewritten to (Eq. 9) (Rodgers and Connor, 2003): 

𝐲𝐭𝐫𝐮𝐞 =  𝐲𝐚 + 𝐀 (𝐆 𝐱𝐭𝐫𝐮𝐞 − 𝐲𝐚) + 𝐯           (Eq. 9) 

 255 

with 𝐲𝐚 the a-priori profile that is part of the CrIS retrieval product. The error v is a sample of the observation representation 

error taken from a normal distribution that describes the possible differences between simulation and retrieval: 

v ~ N(0,R)             (Eq. 10) 

 

In this study, R is set to the retrieval error covariance that is part of the CrIS product. The linearized observation operator 260 

becomes: 

H = A G             (Eq. 11) 

2.4.3. Analysis per grid cell  

The analysis described above is applied per model grid cell; for the exact implementation we refer to Shin et al. (2016). First, 

the simulated observation vectors 𝐡(xi)  are computed for all ensemble members. For the grid cell to be analyzed, all 265 

simulations are collected that are within 3.5ρ distance, where ρ is called the localization length scale as well as the matching 
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actual observations 𝐲𝐂𝐫𝐈𝐒. The state elements corresponding to the grid cell are then analyzed using the collected observations 

and simulations, where the weight of observations further away is limited using Gaussian correlation that decays with distance 

and that uses the same correlation length scale ρ that is used for collection. 

2.4.4. Observation selection 270 

CrIS observations with the highest quality flag, QF = 5, were used. These observations have a relatively higher impact because 

of their low uncertainty. As the assumed vertical NH3 profile shape in background areas used in the CrIS retrieval and in 

LOTOS-EUROS differ, CrIS retrievals with “unpolluted” a-priori profiles were filtered out. The original CrIS retrieval is 

performed in the log domain and therefore either the averaging kernels A from CrIS need to be linearized or the LOTOS-

EUROS profiles transformed to the log-domain. Linearization of the kernel is only accurate for higher concentrations, and 275 

since this is the case for the selected “polluted” retrievals, this option was found to be suitable. 

2.4.5. Parameter calibration 

In this study, we used a localization radius of ρ = 15 km, a standard deviation of σ = 0.5 and a temporal correlation length of 

τ = 3 days. Two experiments were performed to study the effect of ρ, σ and τ in more detail. A description of the experiments 

can be found in section S1 of the supplementary materials. A limited ensemble size of N=12 was found to be sufficient to 280 

describe the imposed model uncertainty, which is not too complicated due to short life-time of NH3 and therefore strong 

relation between concentrations and nearby emissions. 

3. Results  

3.1. Direct comparison of NH3 concentrations from CrIS and LOTOS-EUROS 

Before looking at the effects of assimilating the CrIS observations, a direct comparison of the modelled and observed NH3 285 

column densities was made. The simulated NH3 concentrations from the default run in LOTOS-EUROS were sampled at the 

locations of the CrIS observations, and after application of the averaging kernels compared with the retrievals. The observed 

and simulated NH3 total columns averaged over all years are shown in Fig. 2. Similar maps per year are available in Fig. S3 

of the supplementary materials. The general pattern of the NH3 total column densities matches quite well. For instance, the 

observed and simulated NH3 columns are very similar in southwestern Germany, and close to the Dutch border. The CrIS NH3 290 

total columns are generally higher than the simulated NH3 total columns. This is for instance found in large parts of northeastern 

Germany, along the Belgium coast and in the south of the Netherlands. Here, the observed NH3 columns were on average 

approximately a factor 2 higher than the simulated NH3 columns. Moreover, the observed NH3 total columns are consistently 

higher than the simulated NH3 columns in background areas, with a bias between the observed and modelled concentrations 

of approximately ~0.5x1016 molecules/cm2.  295 
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Figure 2: Mean retrieved (left) and simulated (middle) NH3 total column from 2014-2018, and their absolute difference (right).  

3.2. CrIS-based NH3 time factors  

3.2.1. Effect on NH3 emissions in LOTOS-EUROS 

Following the method described in section 2.3, temporal profiles for the NH3 have been obtained per grid cell. Compared to 300 

the original model, the new time profiles vary spatially. Fig. 3 shows a comparison of the daily grid-averaged NH3 emissions 

between the default background model run (xb) and the background run with the CrIS-based NH3 time factors (xb,CrIS), using a 

different color for each month. The default NH3 time factors from MACC-III provide more intra-annual variation than the 

CrIS-based NH3 time factors. The default time factors include a very high peak in spring and much lower peaks during summer 

and autumn (i.e., A1/A3 = 4.57, A1/A2= 3.70). Fig. S4 shows the fitted spring parameters (μ1, σ1 and A1). The NH3 spring peak 305 

present in the CrIS-NH3 surface concentrations is generally lower than the default NH3 spring peak. In large parts of the model 

region, the CrIS-observed NH3 spring peak is subsequently lower and less sharp. Compared to the default NH3 time factors, 

the amplitude of the spring peak in the CrIS-based NH3 time factors is now generally much lower. The amplitude of the spring 

peak differs almost by a factor 2 on average. As a result, there is a decrease in springtime NH3 emissions, especially in March 

and April. The CrIS-based NH3 time factors, and consequently the NH3 emissions, are, on the other hand, generally higher 310 

later in the year. The NH3 emissions are on average approximately 50% higher in summer and the beginning of autumn (June 

to September), and approximately twice as high in October. 
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Figure 3: Daily grid-average NH3 emission, colored per month. Here, xb represents the default background run and xb,CrIS the 

background run with CrIS-based NH3 time factors. 315 

3.2.2. Effect on NH3 concentrations and deposition fields in LOTOS-EUROS 

The changes in modelled NH3 surface concentration, total column concentrations and NHx total deposition from 2014 to 2018 

related to the use of the CrIS-based NH3 time factors alone are shown in Fig. 4, Fig. S5 in the supplementary materials and 

Fig. 5. Here, xb represents the default background run and xb,CrIS the background run with the CrIS-based NH3 time factors. 

The use of the CrIS-based emission time profiles led to an overall increase in mean NH3 surface concentrations. The absolute 320 

change is largest in areas with already relatively high NH3 surface concentrations, for instance in northwestern Germany, 

where the mean NH3 surface concentrations increased with up to 2 μg/m3. The mean NH3 surface concentrations increased 

with up to ~25% due to the change in NH3 time factors. The effect of the CrIS-based NH3 time factors on the NH3 total column 

concentrations is smaller, with minor changes from minus ~5% up to 5%. The mean NH3 total column concentrations generally 

increase in areas with already high NH3 concentrations, such as large parts of the Netherlands, and decrease in background 325 

areas with little NH3 emissions, for instance in central Germany. The use of the CrIS-based NH3 time factors led to ~10% less 

total NHX deposition along the northwestern coast, including agricultural hotspots such as the Netherlands and northwestern 

Germany, and an increase of up to ~10% in background areas.  

Fig. S6 compares the daily, grid averaged, NH3 surface concentrations, total column concentrations and NHx wet and dry 

deposition, with different colors per month. Here, a similar redistribution is observed for the NH3 concentration and deposition 330 

fields as seen earlier for the NH3 emission fields. Compared to the default background run (xb), the NH3 concentration fields 

were up to a factor 2 lower during March and April. The NH3 total columns decreased in spring, the largest decrease occurring 

in April (up to ~60%). The NH3 surface concentrations increased during the summer and the beginning of autumn, up to ~50% 

in September. During these months, a similar but slightly lower increase in the NH3 total column concentrations is observed.   
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Because the CrIS-based NH3 time factors vary per year, the interannual variation in the modelled NH3 fields is much larger. 335 

Fig. S7 shows the relative changes in NH3 surface concentration, total column concentration and NHx deposition fields per 

year. Overall, the mean NH3 surface concentration increases by up to ~30% per year.  The largest increases occurred in 2016 

and 2018, years with relatively high summer temperatures (Copernicus Climate Change Service, 2021). The variation in the 

annual mean NH3 total column concentrations is much smaller (-15 to +15%). The relative change in NHx budget shows much 

more variation, with the most prominent increase occurring in 2014 (+25%) and decreases occurring in 2018 (-25%).  340 

The temporal redistribution of the NH3 emissions thus significantly impacts the modelled NH3 concentration and deposition 

fields, too. Generally, a part of the initial spring NH3 emissions is now attributed to the summer and autumn months. Depending 

on the degree of redistribution, there are distinct changes in the NHx budget. Looking at the fitted spring peak parameters (Fig. 

S4) and the matching CrIS-based NH3 factors at hourly measurement sites (Fig. S8), clear interannual differences are observed. 

For instance, a relatively sharp spring peak was observed over the Netherlands in 2014. In 2018, on the other hand, the fitted 345 

spring peak had a distinctly lower amplitude and started later in the year. Moreover, a relatively large rise in NH3 time factors 

was observed again in late summer and autumn (July to September). Compared to 2014, this resulted in a relatively larger 

redistribution of the NH3 emissions towards warmer months. The higher temperatures resulted in lower dry deposition 

velocities and more vertical mixing and transport of NH3, leading to an overall decrease in NHX deposition over the 

Netherlands. Moreover, the summer of 2018 was relatively dry, also leading to higher NH3 total column concentrations and a 350 

decrease in wet NHx deposition.  

 

Figure 4: The mean NH3 surface concentration over 2014 to 2018 from the (top left) default background run (xb) and the (top right) 

background run with CrIS-based NH3 time factors (xb,CrIS) and their (bottom left) absolute and (bottom right) relative difference.  
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 355 

Figure 5: The total NHx deposition from 2014 to 2018 from the (top left) default background run (xb) and the (top right) background 

run with CrIS-based NH3 time factors (xb,CrIS) and their (bottom left) absolute and (bottom right) relative difference. 

3.3. Local Ensemble Transform Kalman Filter 

3.3.1. Effect on NH3 emissions and concentrations in LOTOS-EUROS 

The CrIS-NH3 columns were assimilated using the Local Ensemble Transform Kalman Filter (LETKF) described in section 360 

2.4. Assimilations were performed using either the default emission time profiles (xa), or using the CrIS-based profiles (xa,CrIS). 

The total NH3 emissions from 2014 to 2018 and the relative and absolute changes compared to background simulations xb and 

xb,CrIS are shown in Fig. 6. The corresponding mean NH3 surface and total column concentrations are shown in Fig. S9 and Fig. 

S10 of the supplementary materials. The absolute NH3 emission updates by the LETKF are, as expected, largest in regions 

with already high NH3 emissions. There is a maximum increase of ~30% in total NH3 emission by the LETKF over the entire 365 

period for some grid cells. Relatively, the largest changes are found in the southern parts of the Netherlands (province of 

Noord-Brabant), the west coast of Belgium (province of West-Vlaanderen), the northeastern parts of Germany and France. 

Compared to the analysis run using default emission time profiles (xa), the analysis runs with the CrIS-based NH3 profiles 

(xa,CrIS) generally have more NH3 emission and consequently higher NH3 surface and total column concentrations. The long-

term spatial patterns of the emission updates by the LETKF, however, remained very similar.  370 
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Figure 6: The total NH3 emissions in 2014-2018 in the background runs xb and xb, CrIS and in analysis runs xa and xa,CrIS (top panels), 

as well as their absolute and relative difference (bottom panels).     

 

To study the effect of the LETKF in more detail, the daily grid average NH3 emissions of the background runs (xb and xb,CrIS) 375 

are plotted against analysis runs (xa and xa,CrIS) in Fig. 7. Similar Similarly, for the NH3 surface and total column concentrations 

are plotted in Fig. S11 of the supplement. In the runs with the default NH3 time factors (xb and xa), data assimilation of the 

CrIS-NH3 columns led to both positive and negative emission updates in spring. In the summer, on the contrary, it mostly 

resulted in an increase in NH3 emissions. In the runs with the CrIS-based NH3 time factors (xb,CrIS and xa,CrIS), the pattern is 

distinctly different. Compared to the default runs, the NH3 emission updates in spring are now smaller and largely positive, 380 

with the largest updates occurring in April. Moreover, the NH3 emission updates were generally smaller during summer, too. 

This is related to the fact that the CrIS-NH3 surface concentrations were used to fit the NH3 time factors, which resulted in the 

model being closer to the CrIS observations already.   

 

Figure 7: Daily grid average NH3 emissions in 2014-2018 from the (left) default background run (xb) versus analysis run (xa), and 385 

from the (right) background run with the CrIS-based NH3 time factors (xb, CrIS) versus analysis run xa,CrIS, colored per month. 
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Perturbation factor β is the computed multiplication factor by which the initial input NH3 emissions are updated in the LETKF. 

The mean perturbation factors β per year are shown in Fig. S12 of the supplementary materials. The pattern of the NH3 emission 

updates does not change drastically between years, which points to a consistent, spatial misdistribution of the emissions in the 

current inventory. By far the largest mean NH3 emission updates took place in 2018, followed by 2015.  390 

Fig. 8 shows timeseries of the daily grid average NH3 emissions in both background runs xb and xb,CrIS and analysis runs xa and 

xa,CrIS. Fig. 9 and S13 show the corresponding timeseries and changes in NH3 surface and total column concentrations. The 

NH3 emissions in the default background run (xb) have a strong, annually reoccurring spring peak. After this peak, the NH3 

emissions decrease steeply and then slightly increase again in late summer and autumn (August and September). In analysis 

run xa, the spring NH3 emissions are both positively and negatively adjusted. Later in the year, almost only positive emission 395 

updates are found. The largest positive NH3 emission updates occurred around August and September, which suggests an 

underestimation of the autumn NH3 peak in the default runs.  

In the background runs with the CrIS-based NH3 time factors (xb,CrIS), the NH3 emissions are much more evenly distributed 

over the year. In contrast to the default runs, practically only positive NH3 emission updates occurred in the analysis run 

(xa,CrIS). The largest NH3 updates took place during spring (March to May). The flattening of the NH3 emissions led to a 400 

flattening in NH3 concentration fields, too. Compared to default runs (xb and xa), there is much less interannual variation in the 

NH3 surface and total column concentrations. As a result, the NH3 concentrations during summer and autumn could be at the 

same level or even higher than the springtime concentrations. During the warm summer of 2018 (Copernicus Climate Change 

Service, 2021), for instance, the NH3 concentrations in August even clearly exceed the spring NH3 concentrations.    

 405 

   

Figure 8: Timeseries of the daily grid-averaged NH3 emissions in the background and analysis runs, and their absolute difference. 

The top figure (blue) represents the default background (xb) and analysis run (xa). The bottom figure (green) the background (xb,CrIS) 

and analysis run (xa,CrIS) with the CrIS-based NH3 time factors.  
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 410 

 

Figure 9: Timeseries of the daily grid-averaged NH3 surface concentrations in the background and analysis runs, and their absolute 

difference. The top figure (blue) represents the default background (xb) and analysis run (xa). The bottom figure (green) the 

background (xb,CrIS) and analysis run (xa,CrIS) with the CrIS-based NH3 time factors.  

3.3.2. Effect on NHx deposition in LOTOS-EUROS 415 

The modelled total NHx budgets from 2014 to 2018 from the two background runs (xb and xb,CrIS) and analysis runs (xa and 

xa,CrIS) are shown in Fig. 10. Overall, the modelled NHX budget shows the same spatial pattern as the NH3 emissions. Like the 

NH3 emissions, the relatively largest spatial differences between the background and analysis runs took place in the south of 

the Netherlands, the west of Belgium and northeast Germany. Compared to the default runs, the relative changes in total NHx 

budget were slightly larger in the runs with the CrIS-based NH3 time factors (xb,CrIS and xa,CrIS).  420 

 

Figure 10: The total NHx budget from 2014-2018 in the background (xb and xb, CrIS) and analysis (xa and xa,CrIS) model runs in 

LOTOS-EUROS, and their absolute and relative difference.  
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The modelled NHx deposition follows the temporal distribution of the NH3 emissions, too. Timeseries of the daily wet and dry 

deposition amounts in the domain are shown in Fig. 11. The wet and dry deposition in the default runs (xb and xb,CrIS) versus 425 

the analysis runs (xa and xa,CrIS) per month is shown in Fig. S14 in the supplement. In the default background run (xb), the total 

NHx deposition peaks in March and April. In the analysis run (xa), the dry and wet deposition both increased and decreased 

during spring (March to May). Later in the year, the wet and dry NHx deposition mostly increased in the analysis run, 

particularly in August and September. In the background runs with the CrIS-based NH3 time factors (xb,CrIS and xa,CrIS),  the 

modelled dry and wet deposition fields are much less variable. Following the NH3 emission updates, both the dry and wet 430 

deposition mostly increased in the analysis run, especially in March and April. Moreover, the use of the CrIS-based NH3 time 

factors resulted in a redistribution of the ratio of wet and dry deposition over the year. As a result of the relatively lower spring 

NH3 surface concentrations, there is a reduction of the dry deposition during spring. The relatively higher summer NH3 total 

column concentrations led to a shift in wet deposition, too, from spring to summer.  

435 

Figure 11: Timeseries of the average amounts of dry (green) and wet (blue) NHx deposition in the different model runs. The top two 

figures represent the default background (xb) and analysis (xa) run and the bottom two figures the background (xb,CrIS) and analysis 

(xa,CrIS) run with the CrIS-based NH3 time factors.   
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3.4. Comparison to in-situ observations  

The modelled NH3 surface concentration and NH4
+ wet deposition fields are compared with in-situ observations. First, the 440 

spatial distribution is evaluated by comparing the modelled NH3 surface concentration and NH4
+ wet deposition fields to the 

observed annual averages per measurement site. Second, the temporal distribution is evaluated by comparing the modelled 

NH3 surface concentration and NH4
+ wet deposition fields to the same set of observations, but on a monthly basis. The 

comparisons are done per type of observation, e.g., all available wet-only measurements simultaneously. To differentiate 

between different NH3 emission regimes, the results are plotted separately for either all hourly observations or for the passive 445 

samplers. The results are shown in Fig. 12 and 13. The Dutch site with the highest NH3 surface concentrations, Vredepeel, is 

excluded from this comparison because of the large model-observation discrepancies here (see Fig. S18). This site is located 

near agricultural emission sources and therefore less representative of a larger region. In these figures, the first column shows 

the comparison for the default background run (xb), the second column shows the background run with CrIS-based NH3 time 

factors (xb,CrIS), the third column shows the analysis run with the default NH3 time factors (xa) and, finally, the fourth column 450 

shows the analysis run with CrIS-based NH3 time factors (xa,CrIS).  

3.4.1. Spatial distribution  

Fig. 12 shows the scatterplots of the annual averages per site per year. The annual average NH3 surface concentrations (top 

row) in the default run xb show a strong correlation (r = 0.88) with the observed concentrations at the hourly observation sites 

(LML and UBA). Here, the NH3 surface concentrations are generally underestimated (slope = 0.61). The annual average NH3 455 

surface concentrations (middle row) at the passive sampler sites (MAN, VVM and UBA) are generally overestimated (slope 

= 1.17), with a lower, but still relatively strong correlation is observed (r = 0.69). The modelled annual average NH4
+ wet 

deposition budgets (bottom row) are moderately correlated with the observations from wet-only samplers (r = 0.45), and are 

generally lower than the observed wet deposition (slope = 0.81). When using the CrIS-based NH3 time factors, the annual 

average NH3 surface concentrations and NH4
+ wet deposition budgets are slightly increased. This led to a slight, overall 460 

increase in slope between all observations and the background run with the CrIS-based NH3 time factors (xb,CrIS). As the annual 

totals, and herewith the spatial distribution of the NH3 emissions, remained the same in this run, the other measures (r, RMSE, 

MAD, MRD, NMB) didn’t change drastically on a yearly basis.  

 

The comparison with annual average NH3 surface concentrations from the passive sampler networks from both analysis runs 465 

(xa and xa,CrIS) slightly worsened compared to the background runs (xb and xb,CrIS). The comparison at the hourly observation 

and wet-only sampler sites, on the other hand, showed clear improvements. Here, virtually all statistical measures improved, 

illustrating an overall improvement in modelled NH3 surface concentration and NH4
+ wet deposition field spatially. Of all runs, 

the analysis run with the CrIS-based NH3 time factors (xa,CrIS) compared the best with the hourly observation and wet-only 

sampler network. The differences between the modelled and observed NH3 surface concentrations at the hourly observation 470 
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were distinctly smaller, compared to the default background run (xb: {RMSE = 2.79, MAD = 1.96, MRD = -0.15, NMB = -

0.28} versus xa,CrIS: {RMSE = 2.2, MAD = 1.69, MRD = -0.11, NMB = -0.08}). Here, also the slope largely improved (xb: 

slope = 0.61 versus xa,CrIS: slope = 0.76). The same is observed for the modelled NH4 wet deposition fields, where the slope 

improved particularly (xb: {RMSE = 0.95, MAD = 0.63, MRD = -0.13, NMB = -0.22, slope = 0.81} versus xa,CrIS: {RMSE = 

0.92, MAD = 0.61, MRD = -0.02, NMB = -0.11, slope = 0.95}).  475 

 

Figure 12: Comparison of the modelled annual average NH3 surface concentrations and NH4
+ wet deposition fields to 

in-situ observations.  
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3.4.2. Temporal distribution  

Fig. 13 shows the scatterplots of the monthly means per site. The modelled monthly NH3 surface concentrations from the 480 

default background run (xb) are strongly correlated with the hourly observation network (r = 0.73), and with the passive sampler 

network (r = 0.63). Both comparisons show a distinct overestimation of the NH3 surface concentration in March and April. 

The observed NH3 surface concentrations at the hourly observation sites are higher than the modelled ones during the rest of 

the year. At the passive sampler sites, the observed versus modelled monthly NH3 surface concentrations during the rest of the 

year lie more around the one-on-one line. Here, too, the modelled NH3 surface concentrations are slightly underestimated at 485 

the beginning of summer (June and July). The NH4
+ wet deposition is moderately correlated with monthly observations from 

wet-only samplers (r = 0.44). At these sites, a similar pattern is observed. The modelled NH4
+ wet deposition is overestimated 

in spring (especially March and April), and underestimated during the rest of the year. In general, this comparison indicates 

an overestimation of the NH3 spring peak emissions in the default model runs, particularly in March and April, and an 

underestimation of the NH3 emission during the rest of the year, mainly during summer (June, July, August).  490 

 

The use of the CrIS-based NH3 time factors (xb,CrIS) led to an overall improvement at the hourly observation and wet-only 

sampler sites.  Compared to the default background run (xb), higher correlations and lower differences (RMSE, MAD, MRD, 

NMB) are observed. At the hourly observation sites, the comparison improved the most (xb: {r = 0.73, RMSE = 3.67, MAD = 

2.67, MRD = -0.22, NMB = -0.27, slope = 0.84} versus xb,CrIS:{r = 0.82, RMSE = 2.98, MAD = 2.24, MRD = -0.12, NMB = 495 

-0.20, slope = 0.88}). Compared to observations from the passive sampler and wet-only sampler networks, the modelled 

monthly NH3 surface concentration and NH4
+ wet deposition fields now generally lie around the one-on-one line during spring 

(March, April, May). There is, on the other hand, an overestimation in July and August now. Moreover, as a result of the 

decrease in CrIS-based NH3 time factors to zero during winter, the NH3 surface concentration and NH4
+ wet deposition in 

December is underestimated in the xb,CrIS run.  500 

 

Compared to the background runs (xb and xb,CrIS), the two analysis runs (xa and xa,CrIS) show higher correlations with all types 

of measurements. The differences (RMSE, MAD, MRD, NMB) between the observed and modelled monthly NH3 surface 

concentrations at the passive sampler sites are now, on the other hand, larger in the two analysis runs (xa and xa,CrIS), illustrating 

an overall overestimation of the NH3 concentrations in background regions. Although a large shift in the temporal distribution 505 

of the monthly NH4
+ wet deposition is observed, the differences between the observed and modelled values remained similar. 

At the hourly observation sites, the comparison improved the most in the analysis run with the CrIS-based NH3 time factors 

(xa,CrIS). Here, compared to the default background run (xb), higher correlations and smaller differences were found (xb: {r = 

0.73, RMSE = 3.67, MAD = 2.67, MRD = -0.22, NMB = -0.27, slope = 0.84} versus xa,CrIS:{r = 0.83, RMSE = 2.83, MAD = 

2.21, MRD = 0.03, NMB = -0.07, slope = 1.0}). 510 
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Figure 13: Comparison of the modelled monthly mean NH3 surface concentrations and NH4
+ wet deposition fields to 

in-situ observations. The colors indicate the month.  

3.4.3. Regional patterns  515 

The modelled NH3 surface concentrations were compared to observations from each passive sampler network separately. Fig. 

S15, S16 and S17 show comparison with the MAN network in the Netherlands, the UBA network in Germany and the VMM 

network in Belgium, respectively. In the default background run (xb), the Dutch sites with relatively higher NH3 surface 

concentrations are overestimated, most of which are located along the eastern border of the Netherlands. The highest 

correlation coefficients and lowest differences (RMSE, MAD) are found at the VMM network in Belgium. Here, the lower 520 
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NH3 surface concentration sites are overestimated and the higher NH3 concentrations sites are underestimated in the default 

background run (xb). At the German UBA stations, the comparison lies more around the one-on-one line. The mean NH3 

surface concentrations at the sites close to the western border of Germany are generally overestimated in the default 

background run (xb). 

 525 

The use of the CrIS-based NH3 time factors (xb,CrIS) led to an overall increase in modelled mean NH3 surface concentrations 

compared to the default background run (xb). This led to a slight, overall increase in differences (RMSE and MAD) at all 

networks. Furthermore, steeper slopes were found at all three networks, i.e., the modelled NH3 surface concentrations increased 

relatively more at sites with already higher concentrations. The same is observed in the two analysis runs (xa and xa,CrIS), but 

to a greater extend. Compared to background runs (xb and xb,CrIS), the differences (RMSE, MAD) between the modelled and 530 

observed concentrations were relatively higher at all networks. At the Dutch MAN network, a slightly higher correlation 

coefficient is observed.  

 

Fig. S18 of the supplementary materials shows another comparison of the modelled and observed NH3 surface concentrations 

at the hourly observation stations at daily resolution. Here, the correlation coefficient, root-mean-squared error RMSE, the 535 

mean difference MD and the slope are shown per site. The stations are located in different NH3 emission regimes and are 

sorted by increasing NH3 surface concentrations. The modelled NH3 surface concentrations in the default background run (xb) 

are generally overestimated at stations with low NH3 emission regimes and underestimated at stations with medium to high 

NH3 emission regimes. The use of the CrIS-based NH3 time factors (xb,CrIS) led to an improved comparison (higher correlation 

coefficient and lower RMSE) at the Dutch stations, but a worse comparison at the German stations. On a monthly basis, the 540 

comparison to the German UBA sites slightly worsened after the use of the CrIS-based NH3 time factors (xb,CrIS) (Fig. S19). 

The modelled NH3 surface concentrations in the background run with the CrIS-based NH3 time factors (xb,CrIS) were, on the 

other hand, closer to the observations of the Dutch LML network in most months, with a lower differences (RMSE, MD) and 

slopes closer to 1. Here, the largest increase in correlation coefficients were found in March and April.  In both analysis runs 

(xa and xa,CrIS), the correlation coefficient improved and lower model-observation differences were found at all sites. Here, no 545 

clear distinction between sites located in different NH3 emission regimes can be seen.  

 

Compared to the default background run (xb), the modelled NH3 surface concentrations in the background run with the CrIS-

based NH3 time factors (xb,CrIS) thus improved the most at Dutch stations located in medium to high NH3 emission regimes. 

Most of the Dutch stations are located in the proximity of agricultural hotspots. The German stations, on the other hand, are 550 

located in background areas in central Germany, further away from major agricultural hotspots for NH3. Fig. S8 of the 

supplementary materials shows the fitted CrIS-based NH3 time factors at each site. The fitted NH3 time factors at the majority 

of the Dutch stations show clear, identifiable peaks, in particular the spring peak. Moreover, most Dutch sites show clear year-

to-year variations. For the German stations, on the other hand, the fitted NH3 time factors are much flatter and show much less 
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interannual variation. This indicates that the observed CrIS-NH3 surface concentrations at these locations remained around the 555 

same level, and thus that no clear (inter)annual patterns were present in the CrIS data. 

 

In the Netherlands, the CrIS-based NH3 time factors led to an improvement in the representation of the NH3 spring peak. A 

time-series of the observed daily NH3 surface concentrations at LML sites Valthermond and Zegveld are plotted in Fig. S20 

of the supplementary materials. The modelled NH3 surface concentrations in the default background run (xb) start to rise too 560 

early in the year, particularly in 2014. In the background run with the CrIS-based NH3 time factors (xb,CrIS), both the start and 

the duration of the spring peak in NH3 concentration improve. Here, the onset of the spring peak is delayed, better matching 

the observed NH3 timeseries.   

4.1. Summary 

In this study, the CrIS-NH3 product is integrated into the LOTOS-EUROS chemical transport model using two different 565 

methods. In the first method, the CrIS-NH3 surface concentrations were used to fit spatially varying NH3 time factors to 

redistribute the NH3 emission inputs in LOTOS-EUROS over the year. In the second method, the CrIS-NH3 columns were 

assimilated to adjust NH3 emissions through local Ensemble Transform Kalman filtering in a top-down approach.  

 

The fitted NH3 time factors based on the CrIS-NH3 surface concentrations led to a major temporal redistribution of the NH3 570 

emissions. In most regions, the updated NH3 time profiles became flatter, with an overall decrease in spring (March to May) 

NH3 emissions and an increase in NH3 emissions in June to October. As a result, the mean modelled NH3 fields between 2014 

and 2018 spatially changed by up to +25% in NH3 surface concentrations, -5 to +5% in NH3 total column concentrations and 

-5 to +5% in NHx budget. The CrIS-based NH3 time factors added an extra interannual variation of up to ±25% in the annual 

mean NH3 concentrations and deposition fields. Data assimilation of the CrIS-NH3 columns with the LETKF led to a 575 

unanimous increase in total NH3 emissions. The modelled NH3 fields between 2014 and 2018 changed with up to +30% in 

NH3 surface concentrations, up to +20% in NH3 total column concentrations and +10 to +25% in NHx budget. The largest 

increases in NH3 emissions (+30%) were found over the south of the Netherlands (Brabant), the west of Belgium (West-

Vlaanderen) and a large region in northeastern Germany. The temporal distribution of the NH3 emissions wasn’t largely 

adjusted by the LETKF. The largest positive NH3 emission updates took place in late summer and the beginning of autumn 580 

(July to September) and both increases and decreases in NH3 emissions were observed in spring (March to May).  

 

The modelled NH3 surface concentration and NH4
+ deposition fields were compared to in-situ observations. The statistics are 

summarized in Table 2.  Our results illustrate that the strength of the first method, i.e., CrIS-based NH3 time factors, primarily 

lies in improving the temporal distribution of the NH3 emissions. Compared to in-situ networks, an overall increase in 585 

correlation coefficient and clear decrease in differences (RMSE, MAD, MRD, NMB) at the hourly observation and the wet-

only sampler sites was observed. Moreover, time-series of observed daily NH3 surface concentrations illustrate that using the 
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CrIS-based NH3 time factors resulted in a better representation of both the onset and duration of the spring NH3 peak in the 

Netherlands. The second method, data assimilation of the CrIS-NH3 columns with the LETKF, improved the comparability to 

in-situ observation both spatially and temporally. Here, higher correlations with both annual and monthly observed mean NH3 590 

surface concentrations and NH4
+ wet deposition were observed. This method also led to a decrease in differences (RMSE, 

MAD, MRD, NMB) at the hourly observation and the wet-only sampler sites. The mean NH3 surface concentrations at the 

passive sampler sites, on the other hand, were more strongly overestimated in both methods. The comparison to in-situ 

observations improved the most, both spatially and temporally, in the run where both methods are combined (xa,CrIS). This 

illustrates that an initial, observation-based, rescaling of the NH3 emissions enhances the adaptability of the LETKF, herewith 595 

thus improving the modelled NH3 surface concentration and NH4
+ wet deposition fields.   

 
  

hourly observations passive samplers wet-only samplers 
  

xb xa xb,cris xa,cris xb xa xb,cris xa,cris xb xa xb,cris xa,cris 

a
n

n
u

a
l 

m
ea

n
  

r 0.88 0.89  0.87 0.87 0.69 0.70 0.69 0.70 0.45 0.45 0.46 0.46 

RMSE 2.79 2.34 2.50 2.20 2.05 2.67 2.45 3.22 0.95 0.91 0.94 0.92 

MAD 1.96 1.68 1.82 1.69 1.55 2.05 1.84 2.49 0.63 0.61 0.62 0.61 

MRD -0.15 -0.02 -0.05 0.11 0.25 0.46 0.37 0.61 -0.13 -0.03 -0.14 -0.02 

NMB -0.28 -0.17 -0.20 -0.08 0.16 0.36 0.28 0.50 -0.22 -0.13 -0.22 -0.11 

slope 0.61 0.71 0.68 0.76 1.17 1.39 1.32 1.53 0.81 0.90 0.84 0.95 

m
o

n
th

ly
 m

ea
n

  

r 0.73 0.79 0.82 0.83 0.63 0.68 0.64 0.67 0.44 0.46 0.49 0.50 

RMSE 3.67 3.10 2.98 2.83 3.45 3.74 3.68 4.57 1.40 1.37 1.27 1.30 

MAD 2.67 2.25 2.24 2.21 2.18 2.52 2.60 3.26 0.93 0.91 0.88 0.92 

MRD -0.22 -0.09 -0.12 0.03 0.20 0.40 0.32 0.53 -0.09 0.03 -0.03 0.11 

NMB -0.27 -0.16 -0.20 -0.07 0.16 0.36 0.29 0.51 -0.21 -0.11 -0.19 -0.07 

slope 0.84 0.90 0.88 1.00 1.62 1.72 1.69 1.98 1.10 1.17 1.01 1.15 

Table 2: Summary of the computed statistics (correlation coefficient (r), root mean square error (RMSE), mean absolute 

difference (MAD), mean relative difference (MRD), normalized mean bias (NMB) and slope) for each type of instruments 

from Figure 12 and 13.  600 

4.2. Discussion  

4.2.1. CrIS-based NH3 time factors 

The temporal redistribution of the NH3 emissions after using the fitted CrIS-based NH3 time factors led to a significantly better 

representation of the temporal variation in NH3 emissions, especially the spring peak. Compared to in-situ observations, 

however, the NH3 surface concentrations were overestimated in late summer and autumn (August to October). Further fine-605 

tuning of the fitting algorithm could help to reduce the current overestimation and potentially improve the fitted NH3 time 
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factors. For example, data filtering and selection criteria could be adapted. Narrowing the selection radius used for selecting 

the CrIS-NH3 observations could for instance lead to a better representation of the NH3 concentrations locally. This, however, 

may not always be possible, as a minimum number of observations is needed for a converging fit. Furthermore, the fitting 

algorithm currently doesn’t allow for NH3 area emissions during winter, because of the limited number of available CrIS 610 

observations at this time. As a result, the fitted NH3 time factors show a relatively steep increase at the beginning of spring and 

a decrease at the beginning of winter. This could lead to step-like functions in areas where clear NH3 peaks in the CrIS-NH3 

data are absent. However, as this mainly occurs in areas with little to no NH3 emissions, this shouldn’t severely impact the 

modelled NH3 concentrations in this study.  

4.2.2. Local Ensemble Transform Kalman Filter 615 

The NH3 emission updates computed by the Local Ensemble Transform Kalman Filter (LETKF) always remain tied to the 

initial model fields by a certain uncertainty range. As such, data assimilation of the CrIS-NH3 columns with the LETKF is 

mainly suitable for fine-tuning NH3 emissions in regions where the NH3 emissions are already relatively well known. The 

chosen LETKF configuration is for instance not able to correct for missing NH3 emissions in areas where little or no initial 

NH3 emissions are present. Furthermore, the LETKF is unable to resolve temporal patterns well without sensible input, as was 620 

illustrated in an experiment with homogeneous NH3 emission fields (supplement section S1).   

 

The LETKF filter settings used in this modelling setup (ρ = 15 km, σ = 0.5, τ = 3 days) led to a maximum emission increase 

of roughly ~30% on the initial NH3 emissions for long-term simulations. The choice of these filter settings affects the 

adaptability of the LETKF, i.e., the achievable emission adjustments by correction factors. In this study, a temporal length 625 

scale τ of 3 days was chosen as a compromise between short time scales needed for irregular emissions (e.g., fertilizer 

application) and longer time scales needed for regular emissions (e.g., stables and other point sources). Moreover, it matches 

the average satellite revisiting time per grid cell given the number of CrIS-NH3 observations left after data selection (Fig. S21). 

A spatial correlation of ρ = 15 km was chosen because it matches the footprint size of the satellite. Furthermore, as shown in 

section S1 in the supplement, increasing standard deviation σ leads to larger, positive β factors. To prevent further 630 

overestimations in background regions, a σ of 0.5 was used for this region.  

 

The current LETKF settings could for instance be improved by using spatially varying τ values. The choice of τ could be 

optimized for each emission category in the model. Locations with fertilizer application as dominant NH3 emission source 

could for instance be set to lower τ values than locations with predominantly regular NH3 sources. Another way to optimize 635 

the filter settings would be to study timeseries of the model-satellite discrepancies in more detail and base the choice of τ on 

this. A more apparent memory effect (i.e., higher τ) would be useful in areas with consistent model-satellite discrepancies, 

whereas in areas with incidental differences a lower τ would be more appropriate. Similarly, statistical analysis of the already 

computed emission perturbation factors β could be performed. In this study, the model uncertainty follows a normal 
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distribution in the current model setup. The distribution of the NH3 concentrations, however, is, in reality, better approximated 640 

by a log-normal distribution. It would therefore be more realistic to use a log-normal distribution for the model uncertainty as 

well. This would incidentally allow for larger correction factors when high NH3 peaks are observed, for instance after fertilizer 

application.  

 

In the current LETKF model setup, only the NH3 emissions are perturbed. Thus, the discrepancies between the observed and 645 

modelled NH3 concentrations are currently thus fully assigned to errors in the underlying model NH3 emissions. However, 

other model uncertainties could also cause these discrepancies, for instance uncertainties in other model inputs (e.g., other 

trace gas emissions) or parameterizations (e.g., deposition routines). In a follow-up study, it would be interesting to further 

investigate to the effect of an inverted LETKF setup, where model sink terms are perturbed instead of the source terms. 

However, the current setup is the most obvious as the NH3 emissions are likely the largest source of model uncertainty in this 650 

area. It would also be interesting to assimilate in-situ observations and/or other satellite products (for instance IASI-NH3) 

simultaneously in a follow-up study.  

4.2.3. Data products  

Direct comparison of the observed and simulated NH3 columns showed distinctly lower NH3 total column concentrations in 

LOTOS-EUROS. This discrepancy could be the result of a systematic underestimation of the input NH3 emission in LOTOS-655 

EUROS, or other model uncertainties. It could, on the other hand, also be partially related to the CrIS observations themselves. 

Here, only CrIS observations with the highest quality flag (QF=5) were used, which for instance could have resulted in a bias 

towards observations with higher NH3 concentrations or during good weather (e.g., no clouds), as these observations usually 

have a lower uncertainty. Moreover, an offset of approximately ~0.5x1016 molecules/cm2 is observed. This seems to be the 

effect of the detection limit of the CrIS instrument, which is unable to detect very low NH3 concentrations. Furthermore, this, 660 

too, could be enhanced by the relatively strict data selection criteria used in this study, which favors higher NH3 concentrations 

that usually have a lower uncertainty. In the next version of the CrIS-NH3 product, which was not yet available for this study, 

these non-detects are addressed. This might lead to lower NH3 concentrations in background regions and partially solve this 

discrepancy. Moreover, this could also result in a better comparison with observations of the passive sampler networks.  

 665 

The differences between the modelled and observed NH3 concentrations and NH4
+ wet deposition fields are partially related 

to limitations in the spatial representativeness of the in-situ observations. The comparison of the different model runs to in-

situ observations showed an overall overestimation at the passive sampler sites. These sites are mainly located in nature areas 

and therefore assumed to be representative of background regions with little to no NH3 emissions. However, especially in the 

Netherlands, the landscape layout is very heterogenous and the nature areas are relatively small. As a result, at the current 670 

model grid size, each model pixel is likely to include other landscape elements than nature alone. The larger model scale 

averages out the small-scale effects, thus leading to an overestimation. The opposite is true for the hourly observation sites 
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located in medium to high NH3 emission regimes. Especially at sites close to NH3 emission sources, an underestimation is 

expected.  

4.2.4. Conclusions 675 

To conclude, satellite observed CrIS-NH3 timeseries are helpful in improving NH3 emissions, both spatially and temporally. 

Our results illustrated that CrIS-NH3 surface concentrations can be successfully used to fit spatially variable NH3 time factors, 

which allows us to improve temporal NH3 emission distributions relatively easy in a forward modelling setup. Comparison 

with in-situ NH3 surface concentrations and NH4
+ wet deposition observations showed that the fitted CrIS-based NH3 time 

factors were particularly useful for adjusting the timing and duration of the NH3 spring peak in medium to high NH3 regimes. 680 

Moreover, the comparison showed that the CrIS-based NH3 time factors improve the temporal distribution of the modelled 

NH3 surface concentrations and NH4
+ wet deposition fields. Our results show that data assimilation of the CrIS-NH3 columns 

data with the Local Ensemble Transform Kalman Filter (LETKF) improves the comparability with in-situ observations both 

spatially and, to a lesser extent, temporally, too. As the adaptability of the LETKF is limited by the uncertainty in the modelled 

fields, the strength of this method primarily lies in fine-tuning pre-existing NH3 emission patterns. As a result, this method 685 

proved particularly useful for improving spatial NH3 distributions in long-term simulations. Moreover, our results illustrated 

that combining both methods enhanced the adaptability of the LETKF, and led to the largest improvements in modelled NH3 

surface concentration and NH4
+ wet deposition fields compared to in-situ observations.  
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