Table S1. Global CH₄ sources and sinks (Tg CH₄ a⁻¹) in the 2000s and 2010s. Our results with the EDGAR inventory (GCE) and the CEDS inventory (GCC) are compared with values summarized by Saunois et al. (2020).^a

		Saunois et al. (2020)			This study			
Time period	2000–2009		2008–2017		2000–2009		2008–2017	
Approach ¹	B-U	T-D	B-U	T-D	GCE	GCC	GCE	GCC
Anthropogenic sources	334 (321–	332 (312–	366 (349–393)	359 (336–376)	327	340	362	380
	358)	347)						
Agriculture and	192 (178–	202 (198–	206 (191–223)	217 (207–240)	205	186	220	200
waste	206)	219)						
Biomass and biofuel	31 (26–46)	29 (23–35)	30 (26–40)	30 (22–36)	26	25	29	27
burning								
Fossil fuels	110 (94–129)	101 (71–151)	128 (113–154)	111 (81–131)	94	129	112	153
Natural sources	369 (245–	215 (176–	371 (245–488)	218 (183–248)	193 194		94	
	485)	243)						
Wetlands	147 (102–	180 (153–	149 (102–182)	181 (159–200)	177		177	
	179)	196)						
Other sources	222 (143–	35 (21–47)	222 (143–306)	37 (21–50)	17		17	
	306)							
Sinks								
Soils	30 (11–49)	34 (27–41)	30 (11–49)	38 (27–45)	18		18	
Total chemical loss	595 (489–	505 (459–	595 (489–749)	518 (474–532)	494	501	519	535
	749)	516)						
Totals								
Sum of sources	703 (566–	547 (524–	737 (594–881)	576 (550–594)	520	533	556	574
	842)	560)						
Sum of sinks	625 (500–	540 (486–	625 (500–798)	556 (501–574)	512	519	537	553
	798)	556)						
Imbalance	78	3 (-10-38)	112	13 (0–49)	8	14	19	21

^a Values are estimated by the bottom-up (B-U) and top-down (T-D) approaches, and from our GCC and GCE simulations. Values from Saunois et al. (2020) are presented as means and ranges (minimum and maximum). Rounding errors may result in 1 Tg CH₄ a⁻¹ differences in the totals.

Table S2. Main categories of CH₄ sources and sinks in GCE and GCC

20

Sectors		GCE	GCC			
	Agriculture and waste	Enteric fermentation & Manure management (LIV) Rice cultivation (RIC)	Non-combustion agricultural sector (AGR)			
Sources	(AW)	Waste water handling (WST) Solid waste landfills (LDF) Solid waste incineration	Waste disposal and handling (WST)			
	Biomass and biofuel	Biomass burning (BBN)	Biomass burning (BBN)			
	burning (BB)	Energy for buildings	Residential, commercial and other (RCO)			
		Fuel exploitation (FUEL)	Energy transformation and extraction (ENE)			
	Fossil fuels (FF)	Transporta	Surface transportation (TRA)			
		Transport	International shipping (SHP)			
		Industry ^b	Industrial combustion and processes (IND)			
	Wetlands (WL)	Wetlands (WTL)				
		Agricultural waste burning	/			
	Other sources (OT)	Geological seeps (SEE)				
		Termites (TER)				
	Soil uptake (SU)	Soil absorption (SAB)				
Sinks		Tropospheric OH (OL)				
	Chemical loss (CL)	Stratospheric loss (SL)				
		Tropospheric Cl (Cl)				

^a The transport source includes CH₄ emissions from aviation climbing, descent, cruise, landing, take off and supersonic, railways, pipelines, off-road transport, shipping, and road transportation.

^b The industry source includes emissions from oil refineries and transformation industry, power industry, combustion for manufacturing, chemical process, and iron and steel production.

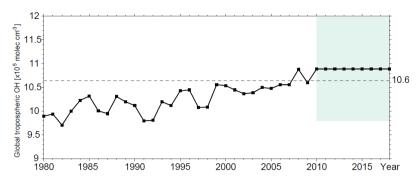


Figure S1. Global mean tropospheric OH concentrations in 1980–2010 from the CESM model results of Zhao et al. (2019). OH concentrations are fixed to the 2010 levels for the years 2011–2018. The shading denotes ±10% of the prescribed OH levels in the sensitivity simulations (Table 1) for 2010–2018. The dashed black line represents the prescribed value of 10.6×10⁵ molecules cm⁻³ (see Table 1).

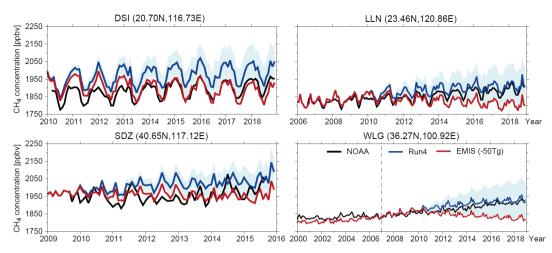
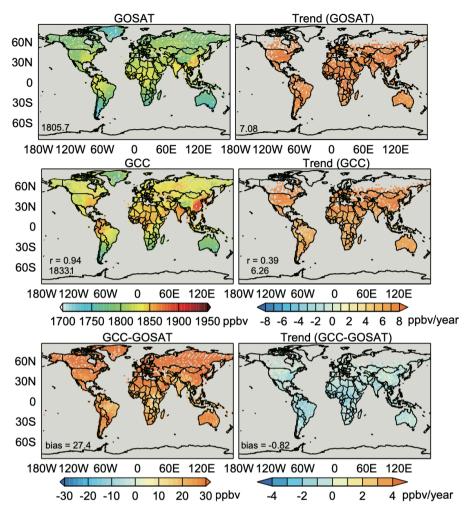



Figure S2. The influences of CH₄ emissions and OH levels on simulated CH₄ concentrations at Chinese surface sites. Measured monthly mean CH₄ concentrations at the four Chinese surface sites are compared with model results from the Run4 (with varying OH, blue lines) and Run7 (-50 Tg over 2010–2018, red lines) simulations (see Table 1). The blue shaded areas represent model results covered by $\pm 10\%$ of the prescribed OH levels in 2010-2018 (Run5 and Run6 in Table 1).

Figure S3. 2010–2017 annual mean GOSAT observed (top panels) and GCC model simulated (middle panels) atmospheric column mean CH₄ concentration and trends. The bottom panels show model minus GOSAT differences.

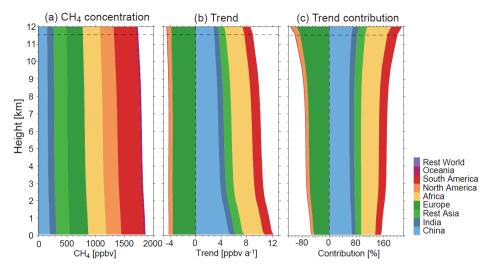


Figure S4. Vertical distributions of Chinese (a) CH₄ concentrations, (b) trends and (c) trends in percentage as contributed by different region-specific tracers averaged over 2007–2018. Dashed lines denote the annual mean tropopause height over China.