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Abstract.  

China, being one of the major emitters of greenhouse gases, has taken strong actions to tackle climate change, e.g., to achieve 

carbon neutrality by 2060. It also becomes important to better understand the changes in the atmospheric mixing ratios and 

emissions of CH4, the second most important human-influenced greenhouse gas, in China. Here we analyze the sources 15 

contributing to the atmospheric CH4 mixing ratios and their trends in China over 2007–2018 using the GEOS-Chem model 

simulations driven by two commonly used global anthropogenic emission inventories: the Emissions Database for Global 

Atmospheric Research (EDGAR v4.3.2) and the Community Emissions Data System (CEDS). The model results are 

interpreted with an ensemble of surface, aircraft, and satellite observations of CH4 mixing ratios over China and the Pacific 

region. The EDGAR and CEDS estimates show considerable differences reflecting large uncertainties in estimates of Chinese 20 

CH4 emissions. Chinese CH4 emission estimates based on EDGAR and natural sources increase from 46.7 Tg per annum (Tg 

a-1) in 1980 to 69.8 Tg a-1 in 2012 with an increase rate of 0.7 Tg a-2, and estimates with CEDS increase from 32.9 Tg a-1 in 

1980 and 76.7 Tg a-1 in 2014 (a much stronger trend of 1.3 Tg a-2 over the period). Both surface, aircraft, and satellite 

measurements indicate CH4 increase rates of 7.0–8.4 ppbv a-1 over China in the recent decade. We find that the model 

simulation using the CEDS inventory and interannually varying OH levels can best reproduce these observed CH4 mixing 25 

ratios and trends over China. Model results over China are sensitive to the global OH level, with a 10% increase in the global 

tropospheric volume-weighted mean OH concentration presenting a similar effect to that of a 47 Tg a-1 decrease in global CH4 

emissions. We further apply a tagged tracer simulation to quantify the source contributions from different emission sectors 

and regions. We find that domestic CH4 emissions account for 11.4.0% of the mean surface mixing ratio and drive 66.78.3% 

of the surface trend (mainly via the energy sector) in China over 2007–2018. We emphasize that intensive CH4 measurements 30 

covering eastern China will help better assess the driving factors of CH4 mixing ratios and support the emission mitigation in 

China. 
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1 Introduction 

Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas contributing more than a quarter of 35 

the human-induced radiative imbalance since 1750 (IPCC, 2013). It also plays an important role in atmospheric chemistry as 

an essential precursor for tropospheric ozone and stratospheric water vapor (Turner et al., 2019). Global mean atmospheric 

CH4 surface concentrations mixing ratios increased from about 1650 ppbv in the mid 1980s to about 1770 ppbv in the late 

1990s, then stabilized around this level in the early 2000s, and started increasing again since 2007 (Dlugokencky et al., 2009; 

Nisbet et al., 2019). The regrowth of the atmospheric CH4 concentrations mixing ratio has drawn worldwide attention and led 40 

to many different or even contradictory explanations  (Zhang et al., 2021; Yin et al., 2021; Zhao et al., 2019; Turner et al., 

2019; Maasakkers et al., 2019)(Maasakkers et al., 2019; Turner et al., 2019; Zhao et al., 2019; Yin et al., 2020; Zhang et al., 

2021). Difficulties in the attribution of the trends are mainly associated with large uncertainties in changes in the CH4 emissions 

from various sources as well as the chemical loss via oxidation by hydroxyl radical (OH) (Turner et al., 2019). A better 

understanding and quantification of the interannual variability of CH4 emissions and the drivers of the concentration growth in 45 

the recent decade is important to support its mitigation. 

 

CH4 has both important anthropogenic and natural sources. It can be emitted from human activities including coal mining, oil 

and gas exploitation, livestock, rice cultivation, waste deposit, and wastewater treatment. It also has a large natural source from 

wetlands, with small sources from forest fires, termites, and geological seeps. Global bottom-up estimates of CH4 emissions 50 

based on statistics of source activities or process-based models have reported a wide range of total CH4 emissions of 542–852 

Tg a-1 in the 2000s (Kirschke et al., 2013). Atmospheric top-down analyses constrained by surface, satellite, and aircraft 

observations of CH4 concentrations mixing ratios tend to suggest lower total CH4 emissions of 526–569 Tg a-1 in the period 

(Kirschke et al., 2013) and find even greater uncertainties in the relative contributions from different CH4 emission sectors 

(Kirschke et al., 2013; Saunois et al., 2016; Saunois et al., 2020). Over 90% of atmospheric CH4 is lost via oxidation by OH 55 

in the troposphere, leading to a lifetime of 9.14 (±10%) years against this sink (IPCC, 2013). Additional minor sinks include 

soil absorption, loss in the stratosphere, and reactions with chlorine radicals (IPCC, 2013). The contemporary growth of 

atmospheric CH4 levels reflect an imbalance between its global sources and sinks. 

 

China is one of the most significant methane producers, especially for anthropogenic sources such as coal mining (Saunois et 60 

al., 2016). Anthropogenic sources in China contribute about 13% of the global anthropogenic CH4 emissions in the 2000s 

(Kirschke et al., 2013). The recent bottom-up emission inventory of Peng et al. (2016) found that the total Chinese CH4 

emissions increased from 24.4 Tg a-1 in 1980 to 45.0 Tg a-1 in 2010, with the largest source sector being rice cultivation in 

1980 and replaced by coal mining after 2005. However, large uncertainties exist in our understanding of the contemporary 
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changes of CH4 emissions over China (Saunois et al., 2020), e.g., whether the Chinese CH4 emissions from coal mining has 65 

decreased due to the mitigation policy in recent years (Miller et al., 2019; Sheng et al., 2019). Atmospheric inversion analyses 

are typically applied at global scales due to very limited in situ CH4 measurements over this region in 2000s. The increases of 

spatiotemporal observations (from satellite or aircraft) and the development of atmospheric transport models would be helpful 

in constraining methane sources over China, but different dataset and methods could provide discrepant information 

(Thompson et al., 2015; Miller et al., 2019). China has pledged to peak the carbon dioxide emissions by 2030 and to reach 70 

carbon neutrality by 2060 for tackling climate change. As CH4 being the second most important anthropogenic greenhouse 

gas, it also becomes crucial to quantify its emissions and concentration trends in China. 

 

In this study, we aim to better understand the recent trends in CH4 emissions and concentrations mixing ratios in China using 

the GEOS-Chem (Goddard Earth Observing System-Chemistry) chemical transport model driven by two commonly used 75 

global anthropogenic emission inventories: the Emission Database for Global Atmospheric Research (EDGAR, version 4.3.2) 

(Janssens-Maenhout et al., 2019) and the Community Emissions Data System (CEDS, version 2017-05-18) (Hoesly et al., 

2018). We use an ensemble of surface, aircraft, and satellite observations to assess the CH4 concentrations mixing ratios and 

trends from surface to the troposphere, and conduct a series of model simulations to examine their driving factors as well as 

the influence of the interannual variability of global volume-weighted OH concentrations. An improved tagged CH4 tracer 80 

simulation (with 100 region- and sector-specific tracers) is applied to identify and quantify the contributions to the spatial 

patterns of CH4 concentrations mixing ratios and trends over China in the recent decade of 2007–2018. 

2 Measurements and the GEOS-Chem model 

2.1 Surface and aircraft measurements 

We use the surface CH4 concentration mixing ratio measurements from the Global Monitoring Division (GMD) of the Earth 85 

System Research Laboratory (ESRL) at the National Oceanic and Atmospheric Administration (NOAA). The CH4 

concentrations mixing ratios are measured by gas chromatography with flame ionization detection (Dlugokencky, 2005). The 

measurement database (https://www.esrl.noaa.gov/gmd/dv/data/, last access: 3 March 2021) includes 95 sites globally 

providing monthly averages of mixing ratios (ppbv). The database has been widely used in assessing regional and global CH4 

concentrations mixing ratios and budgets (Bergamaschi et al., 2013; Fraser et al., 2013; Cressot et al., 2014; Turner et al., 2016; 90 

Miller et al., 2019). 

 

Here we focus on four sites located in China, as summarized in Table 1, including Dongsha Island (DSI, 20.7ºN, 116.7ºE) 

measuring from March 2010 to December 2018, Lulin (LLN, 23.5ºN, 120.9ºE) from August 2006 to December 2018, 

Shangdianzi (SDZ, 40.7ºN, 117.1ºE) from September 2009 to September 2015, and Waliguan (WLG, 36.3ºN, 100.9ºE) from 95 
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May 1991 to December 2018. Three of these sites (LLN, SDZ, and WLG) are mountain-top sites while DSI is located in the 

marine boundary layer. The WLG site located in the Qinghai-Tibet Plateau at 3810 m above sea level is the first baseline 

observatory in China, providing continuous measurements since the year 1991. 

 

We analyze measurements of CH4 concentrations mixing ratios from two aircraft campaigns: the High-performance 100 

Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole observation (HIPPO) and the 

Atmospheric Tomography Mission (ATom). HIPPO consists of five campaigns from January 2009 to September 2011 (Wofsy 

et al., 2011). ATom consists of four campaigns from July 2016 to May 2018 (Wofsy et al., 2018). Figure 1 shows the flight 

tracks from two campaigns. Both HIPPO and ATom datasets provide the merged 10-second data products for all flights (Wofsy 

et al., 2017; Wofsy et al., 2018), which cover the four seasons temporally and the regions over the Pacific Ocean and North 105 

America spatially. Both campaigns provide global-scale measurements of atmospheric composition in all seasons, and conduct 

continuous profiling between ~0.15 km and 8.5 km altitude, with many profiles extending to nearly 14 km. Here we sample 

the model results at the hourly resolution along flight tracks as shown in Fig. 1 and average them in 2º latitude bins for the 

comparison. 

2.2 GOSAT satellite observations 110 

The TANSO-FTS instrument onboard the Greenhouse Gases Observing Satellite (GOSAT) launched in early 2009 measures 

the backscattered solar radiation from a sun-synchronous orbit at around 13:00 local time (Butz et al., 2011; Kuze et al., 2016). 

The observations have a pixel resolution of around 10 km diameter and are separated by about 250 km along the observing 

track with a global coverage every 3 days (Parker et al., 2015). GOSAT retrieves column-averaged dry-air CO2 and CH4 

mixing ratios from the shortwave infrared (SWIR) spectrum with near-unit sensitivity down to the surface (Butz et al., 2011). 115 

We use the University of Leicester version 7.2 GOSAT XCH4 proxy retrieval over China from January 2010 to December 

2017. The glint data over the oceans are not used in this study due to the sparse data coverage. The CH4 product has been 

validated by Parker et al. (2015) against the Total Carbon Column Observing Network (TCCON) and MACC-II model XCH4 

data and suggested a precision of 0.7%. 

 120 

To compare with the GEOS-Chem model results as described below, the GOSAT CH4 observations and satellite averaging 

kernels are averaged over the 2°×2.5° or 4°×5° model grid. We use the satellite observations which pass the criteria that the 

grid has more than 12 months of valid observations which have passed their quality control. The simulated vertical profiles 

(VMRmod) are applied with the satellite averaging kernels (AK) and a priori estimates (VMRapr) using Equ. (1) following Parker 

et al. (2020).  125 

XCH$%&' = 	∑ +,VMR0
123 + 5VMR0%&' − VMR0

1237AK0:ℎ0<
=>?@
0AB    (1) 



5 
 

where AKi is the retrieval averaging kernel and hi is the pressure weight for the vertical level i. This provides column mean 

CH4 mixing ratios (XCH$%&') with the vertical sensitivity of satellite retrievals accounted for. 

 

2.3 The GEOS-Chem model description and simulation design 130 

We use the GEOS-Chem global chemical transport model v11-02 release candidate (http://geos-chem.org, last access: 3 March 

2021) driven by MERRA-2 meteorological fields from the NASA Global Modeling and Assimilation Office (GMAO). The 

MERRA-2 dataset has a native horizontal resolution of 0.5° latitude×0.625° longitude, and is degraded to 4°×5° or 2°×2.5° 

resolutions for input to GEOS-Chem. We use the CH4 simulation that calculates the CH4 sinks using prescribed global 

distributions of OH concentrations or loss frequencies. The model has been applied in a number of studies to understand the 135 

global and regional CH4 emissions and concentrations mixing ratios (Wecht et al., 2014; Turner et al., 2015; Maasakkers et 

al., 2019; Lu et al., 2021; Maasakkers et al., 2021; Zhang et al., 2021). All the simulations are initiated in the year 1980 and 

we focus on the model results in the period of 2007–2018. We find that changes in the initial CH4 conditions in January 1980 

would not affect simulation results after January 2000, indicating that a spin-up time of over 20 years is sufficient for our 

analyses. 140 

 

We use and compare two global anthropogenic CH4 inventories: the Emissions Database for Global Atmospheric Research 

(EDGAR v4.3.2) covering 1970–2012 (Janssens-Maenhout et al., 2019) and the Community Emissions Data System (CEDS, 

version 2017-05-18) (Hoesly et al., 2018) covering 1970–2014. A detailed comparison of the two emission estimates will be 

presented in Section 3. The EDGAR CH4 emissions do not account for seasonal variations. Here we have applied seasonal 145 

scalars to CH4 emissions from manure management based on a temperature dependence described by Maasakkers et al. (2016) 

and to those from rice cultivation following Zhang et al. (2016) in the EDGAR inventory. The CEDS inventory as used in this 

study provides gridded emission estimates with monthly variations. 

 

For natural sources, monthly wetland emissions are from the WetCHARTs version 1.0 extended ensemble mean for 2001–150 

2015 (Bloom et al., 2017) and are scaled by 1.1 to match the estimates in Kirschke et al. (2013) and Saunois et al. (2020). 

Open fire emissions are from the Quick Fire Emissions Database version 2.4 with daily variability over 2009–2015 (Darmenov 

and Da Silva, 2013). Termite and seepage emissions are, respectively, from Fung et al. (1991) and Maasakkers et al. (2019).  

 

The oxidation of CH4 by tropospheric OH is calculated in the model using 3-D monthly averaged OH concentrations archived 155 

from a standard GEOS-Chem tropospheric chemistry simulation in Wecht et al. (2014). Global uniform scalers are then applied 

to account for the interannual variability of OH concentrations during 1980–2010 as simulated by the CESM model in Zhao 

et al. (2019). As shown in Fig. S1, the resulting global volume-weighted mean OH increases by 0.20% a-1 in 1980–2000 and 

0.37% a-1 in 2000–2010, finally reaching to 10.9×105 molecules cm-3. Other minor sinks include tropospheric oxidation by 
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chlorine atoms using monthly chlorine concentration fields of Sherwen et al. (2016), stratospheric loss computed with monthly 160 

loss frequencies of Murray et al. (2012), and soil uptake of Fung et al. (1991) with a temperature dependent seasonality 

(Ridgwell et al., 1999). 

 

We have conducted a series of model simulations over 1980–2018 as summarized in Table 1 to investigate the impacts of OH 

concentrations and model resolution. For all the datasets of emissions (using EDGAR and CEDS) and sinks as described above, 165 

the closest available year will be used for simulation years beyond their available time ranges as recent studies suggested weak 

trends in Chinese CH4 emissions after 2010 (Sheng et al., 2021; Liu et al., 2021). Since CH4 has a long lifetime of about 9 

years, model results in the later years (e.g., after 2012 for EDGAR and after 2014 for CEDS) are strongly affected by the 

emissions in earlier years. Evaluations of these model results with the NOAA surface measurements at the four Chinese sites 

indicate that the simulation with CEDS and interannually varying OH at 2°×2.5° resolution (GCC in Table 1) relatively better 170 

captures the measured concentrations mixing ratios and trends since 2007, as will be discussed in Section 3.2. 

 

We further apply a tagged CH4 tracer simulation to quantify the sources contributing to CH4 mixing ratioconcentrations and 

trends in China over 2007–2018. The tagged CH4 tracer approach has been recently applied in GEOS-Chem to quantify source 

contributions in U.S. Midwest (Yu et al., 2021) and GFDL-AM4.1 with focuses on the global CH4 budget (He et al., 2020). 175 

We implement 100 tracers that tag CH4 emissions from different source types (agriculture, energy, industry, transportation, 

wastewater, residents, shipping, biomass burning, wetlands, seeps and termites) and different regions (China, India, Europe, 

South America, North America, Africa, Oceania, etc., as shown in Fig. 2). The regions used for the tagged simulation are 

shown in Fig.2, mainly based on Bey et al. (2001) with additional tagged regions for China and India in Asia. Global soil 

uptake is also tagged as a sink of CH4. We run the tagged CH4 simulation using the model settings of GCC (i.e., CEDS and 180 

interannually varying OH) for the period of 1980–2018. The results allow us to quantify the detailed source contributions to 

CH4 mixing ratioconcentrations and trends over China.  

3 Results 

3.1 CH4 emissions and sinks over the globe and China 

Figure 3 and Supplementary Table S1 compare the anthropogenic emissions of EDGAR and CEDS, natural emissions, and 185 

sinks in our model simulations (GCE and GCC in Table S1) with the estimates in the literature summarized by Saunois et al. 

(2020). The emissions in the two decades of 2000–2009 and 2008–2017 from both bottom-up and top-down studies are 

reported in Saunois et al. (2016; 2020), and are thus compared with corresponding estimates in this study. The anthropogenic 

emission source categories are different in the EDGAR and CEDS inventories, and we organize all sources into five main 

categories (agriculture and waste, biomass burning, fossil fuels, wetlands, and other sources) following Saunois et al. (2020), 190 

as also summarized in Table S2.  
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As shown in Fig. 3, the global total (anthropogenic and natural) emissions over 2000–2009 are 520 Tg a-1 for GCE and 533 

Tg a-1 for GCC. These total emissions are in the low end of the top-down estimates of 547 Tg a-1 with a range of 524–560 Tg 

a-1, and are smaller than the bottom-up estimates of 703 (566–842) Tg a-1. The bottom-up estimates summarized by Saunois 195 

et al. (2020) included EDGAR and CEDS, and we can see that the differences with our emissions are largely driven by the 

underestimates of some natural emissions (e.g., geological, termites, and freshwaters emissions), which are substantially 

reduced in the top-down estimates. In the 2008–2017 period, global total CH4 emissions in GCE and GCC have increased to 

556 Tg a-1 in GCE and to 574 Tg a-1 in GCC, and are within the top-down emission range of 576 (550-594) Tg a-1. The 

contributions of anthropogenic sources on total CH4 emissions are about 63% (2000–2009) and 65% (2008–2017) in GCE, 200 

and 65% (2000–2009) and 67% (2008–2017) in GCC, which are slightly larger than 60% and 62% in the top-down estimates 

of Saunois et al. (2020). The global CH4 chemical losses simulated in GCE and GCC are also consistent with the top-down 

estimates for both periods, while the sink of soil uptake might be underestimated in the model. 

 

Table 2 and Fig. 4 compare the annual CH4 emissions and sinks in China simulated in GCE and GCC with the results reviewed 205 

by Saunois et al. (2020) and Kirschke et al. (2013) and a bottom-up anthropogenic emission inventory of Peng et al. (2016) 

for the period of 2000–2009. Total Chinese CH4 emissions are 57.2 Tg a-1 (2000–2009) and 67.6 Tg a-1 (2008–2017) in GCE, 

and 55.5 Tg a-1 (2000–2009) and 73.7 Tg a-1 (2008–2017) in GCC. Considerable differences between GCE and GCC can be 

seen for the emission estimates of different sectors. The CH4 emissions from fossil fuels over 2000–2009 are 23.4 Tg a-1 in 

GCC, which are at the high end of the bottom-up estimates (12.6–23.9 Tg a-1) summarized in Saunois et al. (2020). The CH4 210 

emissions from fossil fuels in GCE are smaller (15.8 Tg a-1 over 2000–2009), and are slightly higher than the estimate of 12.8 

in Peng et al. (2016). By contrast, CH4 emissions from agricultural and waste in GCE (33.3 Tg a-1 over 2000–2009) are much 

higher than those in GCC (25.3 Tg a-1 over 2000–2009), and they are, respectively, at the high and low ends of the bottom-up 

(24.0–33.0 Tg a-1) estimates in Saunois et al. (2020). The natural sources (e.g., wetlands, biomass burning) and the soil uptake 

in our study are relatively low compared with the estimates in Saunois et al. (2020). For the period of 2008–2017, the CH4 215 

emissions from fossil fuels increase to 22.8 Tg a-1 in GCE and 38.4 Tg a-1 in GCC, which are also at the averaged level and 

the high end of the bottom-up estimate (16.6–39.6 Tg a-1) in Saunois et al. (2020). 

 

Figure 5 further shows annual total Chinese CH4 emissions from different sectors and their percentage contributions during 

1980–2018 in both GCE and GCC simulations. Chinese total CH4 emissions in GCE are 46.7 Tg a-1 in the year 1980 and 220 

increase to 69.8 Tg a-1 (49.5% increase) in 2012 (the last available year for EDGAR v4.3.2), presenting an increase trend of 

0.7 Tg a-2 over 1980–2018. GCC simulations have a stronger trend of 1.3 Tg a-2 over the period than GCE, with total emissions 

of 32.9 Tg a-1 in 1980 and 76.7 Tg a-1 in 2014 (the last available year of CEDS). Both GCE and GCC show faster increases 

after 2003 than the years before, which are largely driven by the emissions from the fossil fuels or energy sector. The largest 
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differences between GCE and GCC, as also discussed in Fig. 4, come from the sectors of fossil fuels and agriculture. 225 

Agriculture sources in GCE account for 54.7% of the total CH4 emissions in 1980 and gradually decrease to 37.0% in 2018, 

which mainly result from decreases in emissions from rice cultivation with some offset due to increases in the livestock 

emission. The contributions of agricultural sources in GCC are much smaller with values of 36.3% in 1980 and 21.5% in 2018. 

The energy or fossil fuels sector becomes the largest contributor of Chinese CH4 emissions in recent years in GCC, accounting 

for 52.2% of the total emissions in 2018, and largely drives the larger positive trend in GCC than GCE.  230 

 

The comparisons above indicate large uncertainties in the Chinese CH4 emission estimates, as to some extent covered by the 

EDGAR and CEDS anthropogenic emission inventories. The magnitude and temporal variations of methane budgets over the 

past decades are known to have large uncertainties (Kirschke et al., 2013; Turner et al., 2019; Saunois et al., 2020). Relative 

uncertainties are about 20–35% for anthropogenic emissions such as fuel exploitation, agriculture and waste, about 50% for 235 

biomass burning and wetlands, and reach 100% or greater for other natural sources (Saunois et al., 2020). Uncertainties in the 

methane sinks are about 10–20% by proxy methods such as using methyl chloroform, and are 20–40% by atmospheric 

chemistry models (Saunois et al., 2016). More detailed regional methane datasets can help improve assessing the global budget 

(Xu and Tian, 2012; Valentini et al., 2014; Saunois et al., 2016). We will further discuss the uncertainties in CH4 emissions in 

the last section. 240 

3.2 Observed and simulated methane concentrations mixing ratios and trends in China 

Based on the emissions described above, we have conducted a series of model simulations as summarized in Table 1 and 

evaluated the model results with surface CH4 measurements at the four Chinese sites. We find that when using the interannually 

fixed OH (global tropospheric volume-weighted mean of 10.6×105 molecules cm-3 as shown in Fig. S1), both model 

simulations with the EDGAR and CEDS emissions overestimate the observed CH4 trends since 2007 by 0.8–6.2 ppbv a-1 with 245 

EDGAR (Run1) and by 4.0–10.9 ppbv a-1 with CEDS (Run2). The model simulated CH4 concentrations mixing ratios and 

trends over China are rather sensitive to the global OH levels. In the sensitivity simulations with global OH decreasing 10% 

(Run5) or increasing 10% (Run6) relative to the fixed levels (global mean of 10.9×105 molecules cm-3) over 2010–2018, CH4 

concentrations mixing ratios would, respectively, increase by 2.0%–3.4% or decrease 1.9%–3.2% at the four Chinese sites 

(Fig. S2). Increasing OH levels by 10% would lead negative trends in CH4 concentrations mixing ratios at all four sites over 250 

2010–2018 (Fig. S2). Such effects are also found in the simulation with global CH4 emissions decreasing 50 Tg a-1 over the 

same period (Run 7 in Table 1 and Fig. S2). 

 

The uses of interannually varying OH (Fig. S1) in model simulations (Run3 and Run4 in Table 1) overall correct the high 

biases in simulated CH4 trends in simulations with fixed OH (Run1 and Run2) at the Chinese sites. We find that changing 255 

model horizontal resolution from 4°×5° to 2°×2.5° does not significantly affect the simulated surface CH4 trends. Hereafter, 
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we will focus our analyses on the model simulations at 2°×2.5° resolution and with interannually varying OH (i.e., GCE and 

GCC in Table 1). 

 

Figure 6 shows the measured and simulated time series of monthly CH4 concentrations mixing ratios at the four Chinese sites. 260 

Both GCE and GCC model results are shown, and distinct differences in CH4 mixing ratioconcentrations can be seen between 

the two simulations. Among the four Chinese sites, the largest CH4 mixing ratioconcentrations are is observed at the SDZ site, 

a rural site near Beijing surrounded by high anthropogenic emissions, compared with the other three Chinese background sites 

(DSI, LLN, and WLG). GCC with high anthropogenic emission estimates simulate on average 1.0%–4.7% higher CH4 mixing 

ratioconcentrations than GCE results, and are 0.3%–6.5% higher than measurements at the four Chinese sites. Measured CH4 265 

mixing ratioconcentrations at the four sites are increasing at the rates of 7.0–7.9 ppbv a-1 in recent years since 2007. The GCC 

model results reproduce the trends in CH4 mixing ratioconcentrations at the DSI, LLN, and WLG sites, while overestimate the 

2009–2015 trend measured at SDZ by a factor of two. The GCE model results in general underestimate the measured trends 

except for that at the SDZ site. These results can be explained by the higher CH4 emission estimates and trends increases in 

CEDS than EDGAR since 2007, and may also reflect the regional CH4 emissions around SDZ (i.e., North China) are too high 270 

in CEDS. Further evaluations of the two model simulations with CH4 column mixing ratio measurements (since 2011) at six 

TCCON sites in Asia (Wunch et al., 2011) show similar results, with small biases of 0.2%–1.0% in CH4 mixing ratios for GCC 

and negative biases of 2.6%–3.7% for GCE (Fig. S3). This again reflects the higher Chinese CH4 emission estimates in years 

around 2012 in CEDS than EDGAR, which then affect the model simulations afterwards by using their emissions of the latest 

available years.  275 

 

Comparisons with satellite and aircraft observations further provide spatially and vertically resolved evaluations of the model 

simulations. Figures 7 and 8 show, respectively, the GOSAT observed and model simulated spatial distributions of seasonal 

mean CH4 concentrations mixing ratios and trends over 2010–2017. The latitude-dependent biases between simulations and 

observations have found noticeable at the 4°×5° resolution, but is significantly smaller at 2°×2.5° (Stanevich et al., 2020). The 280 

GOSAT observed CH4 column concentrations mixing ratios over China peak in autumn (1825.6 ppbv on average) and reach 

a minimum in spring (1797.4 ppbv). There is a stronger seasonality in the CH4 mixing ratioconcentration in the South China 

(1856.9 ppbv in autumn vs. 1826.8 ppbv in spring) likely attributed to the seasonal variation in agriculture emissions. The 

GOSAT observed 2010–2017 trends show small spatial and seasonal variations over China with values of 7.67–8.43 ppbv a-1. 

Both GCE and GCC model simulated CH4 mixing ratioconcentrations present similar spatial patterns with high correlation 285 

coefficients (r > 0.90), while GCE simulated mixing ratioconcentrations are on average biased low by 23.5–32.4 ppbv (~1.6%), 

and GCC results are overestimated by 25.6–36.8 ppbv (~1.7%). This discrepancy between the two simulations is mainly due 

to the CH4 emissions from fossil fuels, which are 23.5 Tg a-1 for the GCE and 39.9 Tg a-1 for the GCC in China over 2010–

2017. As for the CH4 trends during 2010–2017 over China, both GCC and GCE show similar spatial patterns as those observed 

by GOSAT with moderate correlations of 0.2–0.5, while GCC model results havebetter capture the observed 2010–2017 CH4 290 
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trends over China with smaller biases of -1.7–0.4 ppbv a-1, compared to the GCE results that in general underestimate the 

trends by 2.6–4.7 ppbv a-1. 

 

Figure 9 shows the latitudinal distribution of annual mean CH4 concentrations mixing ratios as observed by HIPPO and ATom 

aircraft campaigns at three altitude layers (1–2 km, 4–5 km, and 7–8 km). Model results sampled along the flight tracks at their 295 

observing time are also shown. Both aircraft measurements and model results are then averaged in 2º latitude bins. As shown 

in Fig. 9, large latitudinal gradients in the tropospheric CH4 mixing ratiosconcentration between the northern and southern 

hemispheres, in particular in the lowest 2 km of the tropics, are observed by the aircraft measurements, and are captured by 

the model results with the two emission inventories. Similar to the comparison with GOSAT observations, Both GCE and 

GCEC model simulated CH4 mixing ratioconcentrations tend to be lower than those in GCC present consistent with the 300 

GOSAT biases due to the lower estimate of global emissions in GCE (556 Tg a-1) than GCC (574 Tg a-1) since 2008 as shown 

in (Table S1). GCE model results underestimate the aircraft measurements with mean negative biases of 27.5–31.1 ppbv at the 

three altitude layers for HIPPO, and even larger negative biases of 61.5–73.7 ppbv for ATom. By contrast, GCC model results 

are in general too high with biases of 18.4–22.8 ppbv for HIPPO, and -1.7–9.4 ppbv for ATom. The biases in GCC are overall 

smaller than those in GCE. 305 

 

The changes in the model bias for the comparisons with HIPPO and ATom measurements reflect their simulated trends in the 

CH4 concentrationmixing ratios. Since both HIPPO (2009–2011) and ATom (2016–2018) provide measurements over the 

Pacific (black box in Fig. 1), we calculate the differences between HIPPO and ATom measurements as the observed CH4 

concentration trends over this region, and these trends also largely reflect the influences from upwind Asian CH4 sources and 310 

levels. Figure 10 shows aircraft observed and corresponding model simulated trends separated for four seasons. The HIPPO 

(2009–2011)–ATom (2016–2018) CH4 trends as estimated by the aircraft measurements range 5.8–10.7 ppbv a-1 for the 

different seasons and altitudes, with typically higher increasing rates in boreal summer and autumn than those in boreal spring 

and winter. Both GCE and GCC model results tend to underestimate the trends, but the biases in GCC are much smaller than 

GCE. A distinct feature can be seen from aircraft observations is the high CH4 increasing rates over the tropics in boreal 315 

summer and autumn (reaching 15 ppbv a-1), while both model results do not capture it and show weak latitudinal gradients in 

the CH4 trends. These tropical CH4 increases are likely driven by the increasing tropical microbial emissions either from 

wetlands or livestock shown in some recent papers (Nisbet et al., 2016; Saunois et al., 2017; Worden et al., 2017; Maasakkers 

et al., 2019; Yin et al., 2021; Zhang et al., 2021) (Nisbet et al., 2016; Saunois et al., 2017; Worden et al., 2017; Maasakkers et 

al., 2019; Yin et al., 2020; Zhang et al., 2021), which have not been found in the model simulations. 320 

 

Summarizing the comparisons of model results with all available measurements over China and the Pacific, we find that the 

surface, aircraft, and satellite CH4 measurements have indicated rather consistent increase rates of CH4 concentrations mixing 
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ratios over China with values ranging 7.0–8.4 ppbv a-1 in recent years. As CH4 has a lifetime of about 9.14 years, such increases 

reflect changes in not only domestic emissions but also global emissions. The GCE and GCC model simulations with the 325 

interannually varying OH levels both capture the main features of the observed CH4 mixing ratioconcentrations and trends 

over China, and the GCC results show much smaller model biases than GCE. We will thus use the GCC model simulation to 

quantify the domestic and global sources contributing to the CH4 concentrations mixing ratios and trends over China. 

3.3 Source attribution of CH4 concentrations mixing ratios and trends in 2007–2018 

Here we apply the GCC model configuration (i.e., the CEDS inventory and interannually varying OH) in the tagged CH4 330 

simulation. The GCC model results can generally reproduce the spatial distribution of GOSAT observed CH4 levels and trends 

as shown in Fig. S43, with mean biases of 27.4 ppbv (observed 1805 ppbv vs. simulated 1833 ppbv) in the global CH4 mixing 

ratioconcentration and -0.8 ppbv a-1 (observed 7.08 ppbv a-1 vs. simulated 6.26 ppbv a-1) in the trend. As described in the 

Section 2.3, our tagged CH4 simulation includes 100 region- and sector-specific CH4 tracers. The tagged CH4 simulation is 

conducted over 1980–2018, and we analyze the results for 2007–2018.  Figure 11 shows contributions of CH4 emissions from 335 

different source regions and different sectors on the mean surface concentrations mixing ratios and trends in China during this 

time period, and the values are also summarized in Table 3 for concentrations mixing ratios and Table 4 for trends. As for the 

concentrationmixing ratios, we find that the largest contributor of the Chinese CH4 mixing ratioconcentrations averaged over 

2007–2018 is the wetland emission in South America, accounting for 11.20.5% due to the large emission magnitude. Together 

with other sources, emissions in South America contribute 20.26% of the surface CH4 levels over China, followed by the 340 

sources from Africa (17.0%) and Europe (157.0%), Africa (16.6%), North America (13.9%), and Rest Asia (12.6%). The 

Chinese domestic emissions account for 14.011.4% of the CH4 mixing ratioconcentrations. The emission contributions to the 

mixing ratioconcentrations are generally proportional to their emission magnitudes because of the CH4 lifetime of about 9.14 

years, and seasonal variations in the percentage contributions are small as can be seen in Fig. 11 (the top left panel). 

 345 

Figure 11 and Table 4 also show the source contributions to the 2007–2018 trends in the surface CH4 mixing 

ratioconcentrations over China. Based on the emission inventory in GCC, the simulated mean trend in the surface CH4 mixing 

ratioconcentration is 9.758.32 ppbv a-1 over the land of China. The domestic energy sector is identified as the largest driver of 

the trend in China contributing an increase rate of 5.544.32 ppbv a-1. Accounting for the trends driven by emissions from 

agriculture and wastewater sectors, domestic contributions can reach 6.505.68 ppbv a-1 (678% of 9.758.32 ppbv a-1). The 350 

remaining trends of 3.252.64 ppbv a-1 are then contributed by emission changes outside China. We find that the anthropogenic 

sources (mainly from energy, agriculture and wastewater sectors) in Africa and other Asian regions (India and Rest Asia) 

contribute, respectively, trends of 3.259 and 2.450 ppbv a-1 over China, highlighting the strong CH4 emission increases in these 

regions such as large emission increases mainly from livestock sources over South Asia and tropical Africa in 2010–2018 

(Zhang et al., 2021). On the contrary, Europe is the only region where CH4 emissions from nearly all sectors have been 355 
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decreasing (Jackson et al., 2020), which lead to a negative trend of -1.813.56 ppbv a-1 over China. We find strong spatial 

variation in the contribution values over different regions of China with standard deviations up to 11% for the contributions to 

CH4 mixing ratios and up to 0.4 ppbv a-1 to the trends (Fig. 11). Not only near the surface, we find similar results for the CH4 

mixing ratioconcentrations throughout the troposphere over China with slightly smaller growth rates in the upper troposphere 

(Fig. S54). 360 

 

Our results indicate that trends in China are dominated by energy emissions from coal, oil and gas, with significant 

contributions from wastewater and agriculture sectors. This is consistent with the top-down emission inversion results by 

Miller et al., (2019) that found the Chinese coal emission is increasing in 2010–2015, while the bottom-up emission estimates 

of Sheng et al. (2019) suggested decreases in the coal emission in 2012–2016. The lack of sub-country emission factors may 365 

result in large uncertainties in the bottom-up emission estimates. A recent global emission inversion study using the EDGAR 

v4.3.2 inventory as the prior estimate also found large overestimates in the Chinese emissions from coal (Maasakkers et al., 

2019). Using the overestimated emissions from the domestic coal sector in the model would offset the influence of missing 

increases in microbial emissions in the tropics as discussed in Section 3.2. 

 370 

The analyses above demonstrate strong foreign source contributions to the CH4 concentrations mixing ratios as well as CH4 

trends over China. We further find large spatial heterogeneity in the domestic vs. foreign contributions. Figure 12 shows the 

spatial distributions of domestic emission contributions to Chinese CH4 surface concentrations mixing ratios and trends over 

2007–2018 calculated as the percentages of sums of all Chinese tagged tracers to the total levels. We can see that the domestic 

contributions to the CH4 surface concentration mixing ratio ranges from 12.40.2% in the western China to 15.13.0% in central 375 

China, and to the trends ranges from 6254.6% over the Tibet Plateau to 70.14.4% in the central China. The largest domestic 

contributions for both surface concentrations mixing ratios and trends are found in the central eastern China, so that 

measurements over this region would most reflect the CH4 emission changes in China. 

4 Conclusions and discussion 

In summary, we have investigated the sources contributing to the CH4 concentrations mixing ratios and trends over China in 380 

the recent decade (2007–2018) using the GEOS-Chem global model. The CH4 model simulations are conducted considering 

two different commonly used anthropogenic emission inventories (EDGAR v4.3.2 and CEDS), and are evaluated with 

available surface, aircraft, and satellite measurements of CH4 mixing ratioconcentrations over China and the Pacific region. 

The surface, aircraft, and satellite measurements have shown CH4 concentration increase rates of 7.0–8.4 ppbv a-1 over China 

in recent years. We find that model results are sensitive to the selection of anthropogenic emission inventories and OH levels. 385 

By using the CEDS anthropogenic emission inventory and interannually varying OH levels (Fig. S2) the model can generally 

reproduce the measured CH4 mixing ratioconcentrations and trends over China. This corresponds to mean Chinese 
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anthropogenic CH4 emissions of 69.4 Tg a-1 (with an increase rate of 1.2 Tg a-2), and global tropospheric volume-weighted 

mean OH concentrations of 10.8×105 molecule cm-3 (with an increase rate of 0.25% a-1) over 2007–2018. 

 390 

We apply a tagged CH4 tracer simulation that implements region- and sector-specific tracers to diagnose and to understand 

their emission contributions. Using the model simulation with CEDS and interannually varying OH, we find strong influences 

from foreign sources on both CH4 concentrations mixing ratios and recent increases over China as due to the long lifetime of 

CH4 as a relatively long lifetime of about 9.14 years. For the mean surface CH4 cmixing ratiooncentration over China (1873.0 

ppbv over 2007–2018), domestic CH4 emissions account for 11.4.0%, and contributions from the sources outside China 395 

reaching 86.08.6%, including 20.26% from South America, 17.0% from AfricaEurope, 15.06.6% from EuropeAfrica, 13.09% 

from North America, and 12.86% from the Rest Asia. For the mean CH4 concentration trend over China (9.758.32 ppbv a-1 

over 2007–2018), the largest driver is estimated to be the domestic energy source contributing 5.544.32 ppbv a-1, and other 

important domestic source contributions include emissions from wastewater (0.681.00 ppbv a-1) and agriculture (0.3053 ppbv 

a-1); natural sources such as wetland emissions have insignificant trend contributions. Emission changes in foreign sources are 400 

also significant. The increase rate of 3.1420 ppbv a-1 in the Chinese surface CH4 concentration mixing ratio can be attributed 

to sources in other Asia countries (India and Rest Asia)Africa, 1.642.20 ppbv a-1 to Africaother Asian countries (India and 

Rest Asia), and 0.951.39 ppbv a-1 to South America (Table 4). 

 

It shall be noted that our source attribution results can be biased by the use of CEDS and the uncertainty in the interannual 405 

variations of OH levels. The Chinese anthropogenic CH4 emissions in the CEDS inventory are higher and increase more rapidly 

than EDGAR v4.3.2 in the recent decade. The two emission inventories significantly differ in the sectors of fossil fuels and 

agriculture. CEDS estimates higher CH4 emissions from fossil fuels while lower emissions from agriculture compared with 

EDGAR v4.3.2. A number of top-down emission inversion studies using surface and satellite observations have found that the 

EDGAR v4.3.2 (Maasakkers et al., 2019; Miller et al., 2019) and previous EDGAR versions (Alexe et al., 2015; Thompson et 410 

al., 2015; Turner et al., 2015; Pandey et al., 2016) overestimated the CH4 emissions from coal production in China, likely due 

to the CH4 emission factors for coal mining are too high in the region (Peng et al., 2016). A recent bottom-up estimate suggested 

that Chinese coal mining CH4 emissions have been decreasing since 2012 driven by the China’s coal mine regulation (Sheng 

et al., 2019), but the interannual trend in Chinese coal emissions still has large uncertainties among studies (Miller et al., 2019; 

Sheng et al., 2019; Lu et al., 2021).  415 

 

We also find that the interannual variability of OH concentrations can strongly affect the simulated CH4 concentration trends. 

Using interannually fixed OH concentrations, the model would overestimate the observed CH4 growth since 2007 in China 

with both the EDGAR and CEDS anthropogenic emissions. The influence of a 10% increase in the global volume-weighted 

mean OH concentration (from 10.9×105 molecule cm-3 to 12.0×105 molecule cm-3) on the simulated Chinese CH4 420 
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concentrations mixing ratios is equivalent to that of a 47 Tg a-1 decrease in global CH4 emissions. The use of interannual 

variability of OH provided by Zhao et al. (2019) improve the model simulated Chinese CH4 concentrations mixing ratios and 

trends. However, large discrepancies exist in the different model OH simulations that would lead to a large wide range (>±30 

ppbv) of simulated CH4 concentrations mixing ratios (Zhao et al., 2019). Despite these uncertainties, our study emphasizes the 

importance of emission changes in both domestic and foreign, anthropogenic and natural sources on the Chinese CH4 425 

concentration trends. Future work with more intensive CH4 measurements covering the eastern China will help better assess 

the driving factors of Chinese CH4 concentrations mixing ratios and recent growth.  
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Tables and Figures 
Table 1. CH4 measurements and GEOS-Chem model simulations at four NOAA surface sites over China. 
 

Case 
Resolutio

n 
Emission OH 

DSI 

(20.7ºN, 116.7ºE) 

LLN 

(23.5ºN, 120.9ºE) 

SDZ 

(40.7ºN, 117.1ºE) 

WLG 

(36.3ºN, 100.9ºE) 

2010.03–2018.12 2006.08–2018.12 2009.09–2015.09 
2000.01–

2006.12 
2007.01–2018.12 

    Mean Trend Mean Trend Mean Trend Mean Mean Trend 

Obs. / / / 1884.8 7.94 1851.7 7.03 1954.6 7.13 1832.4 1878.4 7.25 

Run1 4º×5º EDGAR Fixed +0.4% 
8.74 

(+0.8) 
-3.3% 

9.63 

(+2.6) 
-2.9% 

13.33 

(+6.2) 
-5.5% -3.6% 

9.35 

(+2.1) 

Run2 4º×5º CEDS Fixed +4.4% 
11.94 

(+4.0) 
+0.4% 

13.23 

(+6.2) 
+2.3% 

18.03 

(+10.9) 
-3.8% +0.2% 

12.85 

(+5.6) 

Run3 4º×5º EDGAR Varying +0.7% 
4.24 

(-3.7) 
-2.5% 

4.83 

(-2.2) 
-2.1% 

8.23 

(+1.1) 
-2.6% -2.9% 

4.55 

(-2.7) 

Run4 4º×5º CEDS Varying +4.6% 
7.34 

(-0.6) 
+1.2% 

8.33 

(+1.3) 
+3.0% 

12.73 

(+5.6) 
-1.0% +0.9% 

7.95 

(+0.7) 

Run5 4º×5º CEDS 

Varying 

(-10% over 

2010–2018) 

+8.0% 
19.14 

(+11.2) 
+3.5% 

18.53 

(+11.5) 
+5.0% 

25.93 

(+18.8) 
-1.0% +3.4% 

18.85 

(+11.6) 

Run6 4º×5º CEDS 

Varying 

(+10% over 

2010–2018) 

+1.4% 
-3.56 

(-11.5) 
-1.1% 

-1.17 

(-8.2) 
+1.1% 

0.23 

(-6.9) 
-1.0% -1.5% 

-2.25 

(-9.5) 

Run7 4º×5º 

CEDS 

(-50 Tg over 

2010–2018) 

Varying +0.8% 
-4.16 

(-12.1) 
-1.3% 

-1.87 

(-8.9) 
+0.3% 

-2.27 

(-9.4) 
-1.0% -1.8% 

-3.15 

(-10.4) 

GCE 2º×2.5º EDGAR Varying -2.0% 
3.54 

(-4.4) 
-1.5% 

4.63 

(-2.4) 
+1.8% 

9.73 

(+2.6) 
-2.6% -2.8% 

4.65 

(-2.6) 

GCC 2º×2.5º CEDS Varying +1.6% 
6.44 

(-1.5) 
+1.6% 

8.13 

(+1.1) 
+6.5% 

14.73 

(+7.6) 
-1.6% +0.3% 

7.95 

(+0.7) 
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Table 2. CH4 sources and sinks over China in 2000s and 2010sa. 690 

 Saunois et al. (2020) Peng et 

al. (2016) 

This study 

Time period 2000–2009 2008–2017 2000–

2009 

2000–2009 2008–2017 

Approach B-U T-D B-U T-D B-U GCE GCC GCE GCC 

Sources 

(Tg a-1) 

Agriculture 

and waste 

27.1 (24.0–

33.0) 

23.2 (10.4–

28.3) 

29.7 (25.8–

37.2) 

27.7 (10.9–

34.7) 

22.9 33.3 25.3 36.8 28.2 

Biomass and 

biofuel 

burning 

3.3 (1.8–5.0) 3.6 (0.3–4.9) 3.2 (1.3–

5.1) 

3.7 (0.3–

5.0) 

2.3 4.8 3.6 4.8 3.9 

Fossil fuels 17.9 (12.6–

23.9) 

13.3 (7.4–

31.0) 

26.1 (16.6–

39.6) 

19.0 (8.0–

35.6) 

12.8 15.8 23.4 22.8 38.4 

Wetlands 2.6 (0.9–9.3) 6.0 (2.7–12.5) 2.6 (0.8–

9.2) 

5.2 (2.0–

13.1) 

/ 2.8 2.8 

Other sources / 0.8 (0.6–1.6) / 0.8 (0.5–

1.6) 

/ 0.5 0.4 0.4 0.4 

Sinks 

(Tg a-1) 

Soils / 1.5 (0.8–2.0) / 1.8 (0.8–

2.2) 

/ 
0.9 0.9 

OH chemical 

loss 

/ 8 / / / 
6.3 6.4 6.7 6.9 

a Bottom-up (B-U) and top-down (T-D) sources and soil uptake estimates of mean (range) values reported from Saunois et al., (2020) and 

Peng et al., (2016). OH chemical loss estimates in 2000s are from Kirschke et al., (2013). 
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Table 3. Sources contributing to the mean surface CH4 concentration mixing ratio in China over 2007–2018a 

Concentration [%] AGR ENE WST RCO BBN WTL SEE TER OTH TOT 

China 3.4 6.44.1 2.30 0.89 0.1 0.67 0.1 0.23 0.10 11.4.0 

India 3.76 0.54 1.00.9 0.3 0.0 0.5 0.0 0.1 0.0 6.20 

Rest Asia 3.7 1.63 1.64 0.3 0.3 5.02 0.1 0.2 0.0 12.86 

Europe 3.29 5.86.6 2.46 0.23 0.21 2.79 0.2 0.2 0.1 157.0 

Africa 2.7,4 4.94 1.31 0.4 1.3 5.59 0.2 0.7 0.0 17.06.6 

North America 2.12 2.73.0 1.56 0.1 0.1 6.16 0.2 0.2 0.01 13.09 

South America 4.10 3.42 1.10 0.1 0.4 10.51.2 0.2 0.5 0.0 20.26 

Oceania 0.7 0.2 0.12 0.0 0.2 0.3 0.0 0.1 0.0 1.78 

Rest World 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

Total 23.54.0 25.73.1 11.30.9 2.35 2.56 31.33.4 0.91.0 2.24 0.3 100 
a Percentage contributions of CH4 emissions from the CEDS sectors (Table S2) including agriculture (AGR), energy (ENE), wastewater 705 
(WST), residents (RCO), biomass burning (BBN), wetlands (WTL), seeps (SEE), termites (TER), and others (OTH) including industry 

(IND), transportation (TRA) and shipping (SHP), and from different regions (Fig. 2). Values are estimated using the tagged CH4 tracer 

simulation. 

 

 710 

 

 

 

 

 715 

 

 

 

 

 720 

 

 

 

 

 725 

 

  



26 
 

Table 4. Contributions of region- and sector-specific emissions to the surface CH4 trends in China over 2007–2018a 

Trend [ppbv a-1] AGR ENE WST RCO WTL OTH Total 

China 0.3053 
5.544.3

2 

0.681.0

0 
-0.0418 -0.01 0.012 

6.505.

68 

India 0.5624 0.3219 0.327 0.054 -0.030 0.001 
1.210.

85 

Rest Asia 0.6233 0.9261 0.4462 0.00-0.02 -0.0719 
-0.03

1 

1.933

5 

Europe -0.811.58 
-0.491

.59 
-0.1240 -0.0718 -0.083 

-0.05

6 

-1.81

3.56 

Africa 0.9159 
0.932.0

3 
0.4955 0.121 -0.7501 

-0.05

8 

1.643.

20 

North America -0.090.03 
-0.102

0 
-0.168 -0.013 -0.3211 

-0.06

4 

-0.65

3 

South America 0.5764 
0.501.0

8 
0.2032 0.00-0.01 -0.3560 -0.04 

0.951.

39 

Oceania -0.073 0.054 -0.032 -0.01 -0.003 
-0.01

2 
-0.07 

Rest World 0.00 0.010 0.00 0.00 0.00 0.00 0.021 

Total 1.980.75 
7.686.4

9 
12.54 0.03-0.28 -1.610.95 

-0.12

2 

9.758.

32 
a Contributions of CH4 sources from different CEDS sectors and from different regions to the mean surface trends in China over 2007–2018. 

The CEDS sectors include agriculture (AGR), energy (ENE), wastewater (WST), residents (RCO), wetland (WTL), and others (OTH) 730 
combining industry, transportation, shipping, biomass burning, seeps, and termites (Table S2). Values are estimated using the tagged CH4 

tracer simulation as described in the text. 
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Figure 1. Locations of background NOAA surface sites (red circles), TCCON sites (green triangles) in China and aircraft flight tracks of 
HIPPO and ATom campaigns.  
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 740 
Figure 2. Regions defined in the tagged CH4 tracer simulation. The regions are North America (NA), South America (SA), Europe (EU), 
Africa (AF), Oceania (OC), China (CHN), India (IND) and Rest Asia (RtAS). All other areas are included in the rest of the world (RW) 
region. 
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Figure 3. Global CH4 budgets from main source categories and sinks for the 2000–2009 (2000s) and 2008–2017 (2010s) periods. Categories 
are grouped based on Table S2 including emissions from agriculture and waste (AW), fossil fuels (FF), wetlands (WL), biomass burning 
(BB), and others (OT), and sinks due to soil uptake (SU) and chemical loss (CL). The bar charts show bottom-up (dark-colored bars) and 
top-down (light-colored bars) estimates in previous studies as summarized by Saunois et al. (2020). The global CH4 sources and sinks in the 750 
GCE (black circles) and GCC (black triangles) model simulations are also shown. Table S1 summarizes the values presented in the figure. 

  



30 
 

 
Figure 4. Similar to Fig. 3, but for CH4 sources and sinks over China averaged for the 2000–2009 and 2008–2017 periods. The bar charts 755 
show previous Chinese bottom-up (dark-colored bars on the left) and top-down (light-colored bars on the right) estimates as summarized by 
Saunois et al. (2020) and Kirschke et al. (2013), and are compared with model results in the GCE (black circles) and GCC (black triangles) 
simulations. The bottom-up estimates of 2000–2009 mean Chinese CH4 emissions by Peng et al. (2016) are also shown as black stars. Values 
presented in the figure are summarized in Table 2. 
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Figure 5. Time series of annual Chinese CH4 emissions from different sectors (top panels) and their percentage contributions (bottom panels) 
in the GCE (left panels) and GCC (right panels) model simulations during the period of 1980–2018. The emission sectors and their 
abbreviations are listed in Table S2. Annual mean emission totals and trends over 1980–2018 (with asterisks denoting the statistical 
significance of p-value < 0.05) are shown inset. 765 

  



32 
 

 
Figure 6. Comparison of GCE (with EDGAR anthropogenic emissions and interannually varying OH; red lines) and GCC (with CEDS and 
interannually varying OH; blue lines) simulated monthly mean CH4 concentrations mixing ratios with NOAA in situ observations (black 
lines) in China. The observed mean concentrations mixing ratios (in unit of ppbv), trends (ppbv a-1), and corresponding model biases are 770 
shown inset.  
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Figure 7. 2010–2017 seasonal mean GOSAT observed and model simulated atmospheric CH4 concentrations mixing ratios over Asia. Both 
observations and the GEOS-Chem model simulations (GCE and GCC) are regrided to the 2º×2.5º model resolution. The model results are 775 
then applied with satellite averaging kernels. The middle and right panels show, respectively, GCE (with EDGAR anthropogenic emissions 
and interannually varying OH; column b) minus GOSAT (column a) and GCC (with CEDS and interannually varying OH; column c) minus 
GOSAT differences. The observed mean atmospheric CH4 concentrationmixing ratio, GOSAT vs. model correlation coefficients (r), and 
mean model biases over China are shown inset. The seasonal means are averages of March-April-May (MAM), June-July-August (JJA), 
September-October-November (SON), and December-January-February (DJF). 780 
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Figure 8. The same as Fig. 7, but for seasonal mean trends in atmospheric CH4 concentrations mixing ratios over 2010–2017. The middle 
and right panels show, respectively, GCE (with EDGAR anthropogenic emissions and interannually varying OH; column b) minus GOSAT 
(column a) and GCC (with CEDS and interannually varying OH; column c) minus GOSAT differences. The observed mean CH4 785 
concentration trend, GOSAT vs. model correlation coefficients (r), and mean model biases over China are shown inset. 
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Figure 9. HIPPO and ATom aircraft measured latitudinal gradients of CH4 concentrationsmixing ratios. Measurements from HIPPO (top 
panels) and ATom (bottom panels) flights are averaged in 2º latitude bins and at three altitude levels (left: 1–2 km; middle: 4–5 km; and 790 
right: 7–8 km). The black symbols and bars represent the mean values and ranges for each bin. The corresponding model results from the 
GCE (with EDGAR anthropogenic emissions and interannually varying OH; red lines) and GCC (with CEDS and interannually varying OH; 
blue lines) simulations are also shown, and the values inset present the mean model biases relative to aircraft measurements.  
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Figure 10. Comparisons of simulated CH4 trends in GCE (with EDGAR anthropogenic emissions and interannually varying OH; red dots) 
and GCC (with CEDS and interannually varying OH; blue dots) against aircraft observation trends (black symbols) in four seasons (spring: 
March-April-May; summer: August; autumn: October-November; winter: January-February). All observations and model results sampled 
along the flight tracks are averaged in 2º latitude bins and at three altitude levels (left: 1–2 km; middle: 4–5 km; and right: 7–8 km). Mean 800 
observed and simulated CH4 trends and model biases are shown inset. 

  



37 
 

 



38 
 

Figure 11. Contributions of CH4 emissions from different regions and different source sectors on the mean surface CH4 concentrations 805 
mixing ratios (top panels) and trends (bottom panels) in China over 2007–2018. The left panels show the mean of region-specific source 
contributions for different seasons and error bars are standard deviations denoting spatial variation of contributions over China and . Tthe 
right panels show region- and sector-specific contributions for the annual values. Source contributions are estimated using the tagged CH4 
tracers accounting for emission sources from agriculture (AGR), energy (ENE), industry (IND), transportation (TRA), residents (RCO), 
wastewater (WST), shipping (SHP), biomass burning (BBN), wetlands (WTL), seeps (SEE) and termites (TER) sectors and from nine 810 
regions (Africa, China, Europe, India, Asia excluding China and India, Oceania, South America, North America and the rest of the world).  
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Figure 12. Spatial distributions of Chinese domestic emission contributions in percentage on CH4 surface concentrations mixing ratios (a) 815 
and trends (b) in 2007–2018 over China. The percentage contributions are estimated by summing up all the Chinese tagged CH4 tracers 
divided by the total CH4 tracers in the tagged simulation. 

 
 


