Supplementary Information for

Characterizing the volatility and mixing state of ambient fine particles in summer and winter of urban Beijing

Lu Chen¹, Fang Zhang^{1*}, Don Collins², Jieyao Liu¹, Sihui Jiang¹, Jingye Ren¹, Zhanqing Li³

¹College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China

²Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
³Earth System Science Interdisciplinary Center and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA

Correspondence to: F. Zhang (<u>fang.zhang@bnu.edu.cn</u>)

Figure S1. A schematic diagram of the volatility tandem differential mobility analyzer (VTDMA).

Figure S2. Temporal variation of number fractions of completely vaporized particles during the winter periods.

Figure S3. Temporal variation of number fractions of completely vaporized particles during the summer periods.

Figure S4. Temporal variation of **(a)** number concentrations and **(b)** number fractions of Non-BC (in green), In-BC (in blue), and Ex-BC (in red) in the range of 40-300 nm particles during the winter periods.

Figure S5. Temporal variation of **(a)** number concentrations and **(b)** number fractions of Non-BC (in green), In-BC (in blue), and Ex-BC (in red) in the range of 40-300 nm particles during the summer periods.

Figure S6. Time series of the size-dependent D_p/D_c ratio during the winter and summer periods.