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Abstract. We develop a new method to describe the total cloud cover including optically thin clouds in trade wind cumulus
cloud fields. Climate models as well as Large Eddy Simulations commonly underestimate the cloud cover, while estimates
from observations largely disagree on the cloud cover in the trades. Currently, trade wind clouds contribute significantly to the
uncertainty in climate sensitivity estimates derived from model perturbation studies. To simulate clouds well and especially
how they change in a future climate we have to know how cloudy it is.

In this study we develop a method to quantify the cloud cover from a cloud-free perspective. Using well-known radiative
transfer relations we retrieve the cloud-free contribution in high-resolution satellite observations of trade cumulus cloud fields
during EUREC“A. Knowing the cloud-free part, we can investigate the remaining cloud-related contributions consisting of
areas detected by common cloud masking algorithms and those undetected areas related to optically thin clouds. We find that
the cloud-mask cloud cover underestimates the total cloud cover by 33 %. Aircraft lidar measurements support our findings
by showing a high abundance of optically thin clouds during EUREC*A. Mixing the undetected optically thin clouds into the
cloud-free signal can cause an underestimation of the cloud radiative effect of up to -7.5 %. We further discuss possible artificial
correlations in aerosol-cloud cover interaction studies that might arise from undetected optically thin low clouds. Our analysis
suggests that the known underestimation of trade wind cloud cover and simultaneous overestimation of cloud brightness in

models is even higher than assumed so far.

1 Introduction

Earth’s trade wind regions combine a dry atmosphere and a high abundance of shallow clouds — whose tops are often not much
higher than the long-wave emission height — to efficiently cool the planet. How much clouds in the trades cool the climate
is quantified by their cloud radiative effect, which in a first approximation depends on the cloud cover and the average cloud
reflectance. Changes in the cloud radiative effect with warming can amplify or dampen global warming. Trade cumulus cloud
feedback has been shown to contribute significantly to uncertainties in estimates of the global climate sensitivity (Bony and
Dufresne, 2005; Vial et al., 2016), part of the well known difficulty climate models have in representing clouds and cloud
changes with fidelity.
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Especially in low-cloud regions such as the trades, climate models underestimate the cloud cover while overestimating it’s
average reflectance, a problem often called the "too few, too bright" low-cloud problem (Nam et al., 2012; Klein et al., 2013).
Large eddy simulation studies also show an underestimation of trade wind cumulus cloud cover and a limited representation
of small clouds (Nuijens et al., 2015), while the scaling behaviour of trade cumulus clouds suggests a high abundance and
significant contribution of small clouds to the total cloud cover (Plank, 1969; Wielicki and Welch, 1986; Cahalan and Joseph,
1989; Benner and Curry, 1998; Zhao and Di Girolamo, 2007; Mieslinger et al., 2019). Studies on the "twilight" zone even
suggest that clouds may extend further into the cloud-free area than assumed so far (Koren et al., 2008). To simulate the change
in clouds with future temperature or aerosol perturbations, we first need to know how cloudy it is.

Estimating the cloud cover is a well-known issue in the sense that it decisively depends on the instrument used and the
purpose of respective datasets. All-sky observations by trained humans might have been the first systematic cloud-cover mea-
surements. Such measurements are synonymous with efforts to predict the weather and led to the first International Cloud Atlas
as early as 1896. However, such observations are subject to unknown or hard to quantify uncertainties due to the training of
the observer and further biases originating from overlapping cloud layers and undetected upper clouds, or the higher frequency
of fair weather synoptic reports (Warren et al., 1985). Passive remote sensing opened the way to more objective quantification
of cloud cover from ground, from aircraft since the beginning of the 20th century, and also from space starting in the 1970s.
Active remote sensing added additional approaches to investigate clouds from ground, aircraft, and from space. Those various
instruments dedicated to observe clouds have in common the dependence of a best estimate of cloud cover on (a) the data
resolution in space and / or time, (b) suitable thresholds defined in the physical quantity closest to the instrument raw data, (c)
the wavelength used and the resulting sensitivity of the measurement to clouds (Stubenrauch et al., 2013). Even for collocated
measurements with very high spatial (tens of meters) and temporal resolution, Fig. 5 in Stevens et al. (2019) and more recently
Konow et al. (2021) nicely show that the range of cloud cover estimates from active and passive remote sensing can differ by
a factor of 2.

In this study we present a different view on clouds by quantifying the cloud-free area. The cloud-free signal is well under-
stood in radiative transfer relations and can be simulated with well-posed approximations. The main advantage of estimating
cloudiness as the complement to cloud-free areas is that we overcome the problem of diverse and instrument-specific hard-
coded thresholds in cloud masking algorithms. We apply the cloud-free approach to high-resolution satellite imagery from the
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) recorded during the field campaign EUREC*A
(Elucidating the role of clouds-circulation coupling in climate) in Jan-Feb 2020. EUREC*A was dedicated to the investigation
of trade wind cumulus clouds and their interaction with the large-scale environment (Bony et al., 2017; Stevens et al., 2021).
The high resolution of the ASTER data provides the possibility to include clouds of sizes at the deca- to hectometer scale and,
equally important, increases the probability to observe pixels free of any cloud structures. With the cloud-free approach we
can detect enhanced reflectance from anomalously humidified aerosols and optically thin cloud areas that are undetected by
traditional cloud-masking algorithms. We show the contribution of optically thin cloud areas to the total cloud area and use
Lidar measurements on board the HALO (High Altitude and Long Range Research Aircraft) research aircraft to support our
findings.
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We consider optically thin clouds to be different from humidified aerosols. The marine boundary layer is a humid layer
with the constant presence of humidified sea-salt and ammonium sulfate aerosols. The mixing within the boundary layer will
bring the aerosols almost always into an environment above 80 % relative humidity such that sea-salt and ammonium sulfate
deliquesce, while the humidity is almost everywhere above 60 % making it impossible for the aerosols to effloresce (humidity
as shown by the JOANNE dropsonde dataset, George et al. (2021)). Thus, humidified aerosols are omnipresent and part of the
cloud-free signal and the signal that we attribute to optically thin clouds within this study goes beyond the cloud-free signal.

The remainder of this article is organized as follows. Section 2 describes the high-resolution ASTER satellite dataset, the
WALES (Water Vapor Lidar Experiment in Space demonstrator) Lidar cloud product, and surface wind speed data based on the
fifth generation European Centre for Medium-Range Weather Forecasts reanalysis (ERAS) reanalysis. In Section 3 we show
the cloud-free model setup, and how we identify optically thin clouds in ASTER observations. Results on the contribution of
optically thin clouds to the total cloud cover during EUREC*A are shown in Section 4, followed by a discussion of implications

of our results in Section 5.

2 Observations

Within this study we exploit the potential of the high spatial resolution passive remote sensing instrument ASTER (Advanced
Spaceborne Thermal Emission and Reflection Radiometer; Yamaguchi et al. (1998)) that recorded images of cloud fields east
of Barbados in support of the EUREC*A campaign. We extend the information on the typical cloud fields observed during
EUREC“A with airborne high spectral resolution lidar measurements to support our analysis of clouds from an active sensor

with a high sensitivity to small and optically thin clouds.
2.1 The ASTER dataset for EUREC‘A

ASTER is mounted aboard Terra, a polar-orbiting satellite in a descending Sun-synchronous orbit with an equator crossing
time of 10:30 local solar time. Terra crosses the latitude of Barbados and the HALO flight circle area roughly at 14:25 UTC,
while the tracks further east at about 43°W are observed by ASTER an hour earlier. Fig. 1 shows the location of measurements
taken in the area east of Barbados from 7 °N to 18 °N and from 41 °W to 62 °W between January 11 and February 19 2020.
The data from the observed swaths are segmented in the form of 60 x 60 km? images, each corresponding to 9 s of observation
time.

ASTER’s visible and near-infrared (VNIR) radiometer pointing nadir has three bands in the range of 0.53 - 0.86 um. The
radiometrically calibrated and geometrically co-registered Level 1B data provide top of atmosphere monodirectional radiances
at 15 m pixel resolution at the sub satellite point. We use the band 3 radiance centered at 0.807 pm in the present study to define
the total cloud cover. One image of band 3 radiances consists of 4200 pixels along track and 4980 pixels across track where,
depending on the viewing angle, about 15.4 % are swath edge pixels and neglected within the further analysis leaving about
17684552 pixels per image.

In our analysis we work with reflectance instead of radiance with the aim to reduce the influence of varying solar zenith angles
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Figure 1. ASTER measurement locations during EUREC*A with 419 images (60km x 60km) recorded on 17 days between 11 January and
19 February 2020. WALES lidar measurements are available from HALO’s research flights predominantly on the circular path shown in

green from 13 flight days between January 22 and February 15 2020.

0y within the overpasses and slightly varying extraterrestrial solar irradiance Ej. The reflectance R is calculated from the

radiance L as

R L
cos(60) Eo
We further draw comparisons to the ASTER cloud mask which is based on several bands in the VNIR (Werner et al., 2016).

(1

The cloud mask works with thresholding tests and is representative for traditional passive remote sensing cloud masking
schemes such as the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection scheme. In more detail, the
algorithm uses three tests to distinguish between bright clouds and the dark ocean from thresholds applied to radiance values in
the VNIR range. An additional test based on a band in the short-wave infrared (SWIR) is not applicable anymore as the SWIR
detector broke in 2007. Nevertheless, the three thresholding test allow us to distinguish between confidently clear, probably
clear, probably cloudy, and confidently cloudy pixels following the method described in Werner et al. (2016). Within the current
study we combine the flags probably cloudy and confidently cloudy if we refer to cloudy regions according to the ASTER cloud
mask. We omit a fifth test including ASTER’s thermal band 14 (11.65 ym, 90 m pixel resolution) that is designed to detect
cirrus contaminated areas and sun glint at the expense of a lower resolution. The observations during EUREC“A are luckily
recorded at a minimum sun reflection angle larger than 23 ° making sun glint highly unlikely.

Concerning cirrus cases, we decided to stay with the high resolution, but instead exclude images that have a high likelihood
to be contaminated by cirrus clouds. A test based on the ratio of ASTER’s thermal bands 13 and 14 is implemented following
a publication by Hulley and Hook (2008). The test unfortunately detects next to cirrus also low thin clouds, the latter being the

main actor of the current study which we therefore want to keep in the dataset. Most importantly, we notice that our main results
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and statements change only marginally indicating that cirrus does not have a strong impact on the current study. Nevertheless,
we exclude images that have a chance of more than 10% coverage by potential cirrus as defined by Hulley and Hook (2008),

which leaves 380 images for our analysis.
2.2  WALES airborne lidar measurements

The WALES lidar instrument (Water Vapor Lidar Experiment in Space demonstrator; Wirth et al. (2009)) is part of the remote
sensing package on board the HALO research aircraft during EUREC*A (Stevens et al., 2019). The aircraft flew at about 9 km
altitude throughout of the campaign and thus below the typical altitude of cirrus clouds in the trades. We therefore don’t expect
any cirrus contamination in the WALES dataset. The high spectral resolution lidar measurements from the auxiliary channels
of the instrument at 532nm are well suited to investigate the small and optically thin clouds due to the high instrument
sensitivity to small particles ranging from aerosols to cloud droplets. The advantage of WALES compared to space borne
active instruments such as the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) simply lies in the closer distance
and thus a higher sensitivity to low clouds and the much higher horizontal sampling due to the lower aircraft speed (0.2 km/s
versus 7 km/s). The resulting horizontal spatial resolution of the WALES cloud product is about 40 m during EUREC“A, which
is slightly larger but commensurate with that of ASTER. CALIOP has been shown to struggle detecting small clouds with
cloud tops below 1 km (Leahy et al., 2012), while we find 29 % of clouds detected by WALES during EUREC*A to have cloud
tops below 1 km.

Within the present study we use the cloud mask and cloud optical depth product described in Konow et al. (2021). In the
dataset, a cloud is defined where the backscatter ratio exceeds 10. This threshold is lower compared to the studies by Gutleben
et al. (2019) and Jacob et al. (2020) where the value was chosen to make the detection limit comparable to CALIOP. The
lower value used in the present study nicely separates the highest possible signals originating from marine aerosol and any
cloud related signal that might include anomalously humidified aerosols and the smallest cloud droplets. WALES uses the
High Spectral Resolution Lidar technique (HSRL; Esselborn et al. (2008)) to distinguish molecular from particle backscatter
at 532 nm, which allows for the direct measurement of the (two way) atmospheric transmission. The latter is proportional to

the range () and atmospheric density corrected lidar signal Ry (r). To a first approximation the optical thickness is given by

()

The complete algorithm adds several corrections and is described in detail in Esselborn et al. (2008).

2.3 Surface wind speed estimates

For the methodology described in Sec. 3 we need surface wind speed estimates at 10 m height for a given ASTER pixel. The
fifth generation European Centre for Medium-Range Weather Forecasts reanalysis (ERAS) provides hourly wind speed esti-
mates on a global grid at 10 m height (2D surface product) which would fit our needs, but showed a significant underestimation
compared to collocated dropsonde measurements during EUREC*A (JOANNE dropsonde dataset: George et al. (2021)). The

underestimation is in agreement with a study by Belmonte Rivas and Stoffelen (2019) which find a low bias in ERAS surface
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winds in the trades. Nevertheless, wind speed estimates from the ERAS profile product (hourly, 0.25° grid; Hersbach et al.
(2020)) agree remarkably well with dropsonde measurements.

Thus, we use ERAS wind speeds at the lowest altitude pressure level 1000 hPa which corresponds to about 135 m above
sea level on average based on the dropsonde dataset. We derive a correction that translates from 1000 hPa to 10 m based on
a comparison of ERAS wind speed at 1000 hPa and the 10 m wind speed from dropsonde measurements (Pearson correlation

coefficient 0.88). A least squares fit provides us with the coefficients to estimate the 10 m wind speed by
ws = 0.92 - wsgras,1000nPa + 0.40. 3

This wind speed is an average value representative for a 0.25 ° grid cell. We therefore use measurements at the Barbados
Cloud Observatory (BCO) to estimate the variance in wind speed within 0.25 © compared to the 15 m ASTER grid. The BCO
is located at the easternmost point of the island of Barbados and has been shown to take measurements representative of an
undisturbed marine trade wind boundary layer (Stevens et al., 2016). We use the standard surface wind speed measurements
from a Vaisala WXT-520 to derive an estimate of the surface wind variance within 0.25 ° (27.12 km at 13 °N) which translates
to about 80 minutes sampling period. We add a Gaussian perturbation according to the estimated wind variance of 1.63 m?s~2
to the average wind speed within our further analysis. The campaign average wind speed corresponding to the ASTER image

locations is 9.02 ms™.

3 Methodology

The ASTER cloud mask provides us with a good perception of the certainly clear and certainly cloudy areas, while we are
less confident in between. We approach the intermediate range from the cloud-free by simulating the expected probability
distributions of cloud-free reflectance for a given ASTER image. Knowing the theoretical cloud-free contribution to an all-sky
ASTER image we can then investigate the cloud-related contributions that are undetected by the cloud mask and which we
attribute to optically thin clouds. 3D cloud radiative effects are a potential complicating factor in broken cloud conditions and
we will discuss their influence in section 4.3 together with results from the WALES lidar.

First, we introduce the methodology with a brief overview on the cloud-free retrieval setup and the necessary input informa-
tion on surface wind speed and aerosol optical depth, before we show our approach for transferring the cloud-free information

to the all-sky ASTER observations and defining areas of optically thin clouds.
3.1 A simplified clear-sky model (SCSM)

The cloud-free radiance over ocean in the visible range depends on a narrow set of parameters and can be estimated by sim-
plified one-dimensional radiative transfer calculations. In appendix A we describe the full set of equations and approximations
made in calculating the cloud-free signal with our simplified clear-sky model (SCSM). We generally assume a single-layer
atmosphere with constant air density and calculate the extinction of solar radiance from the top of atmosphere to the ground

and back to the sensor in space. How the light is reflected at the surface into the view direction of the sensor is characterized by
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integrated AOD optimization. A Gaussian perturbation is added to the output average pixel reflectance R,,cqan to account for ocean surface
variability and measurement noise. The figure on the right shows the processing steps that lead to the simulated cloud-free reflectance

distribution for a single ASTER image observed 2020-01-24 14:02:02 UTC.

the bi-directional reflection function which depends on the surface wind speed and the generated ocean wave slope distribution.
Here, we use the wind speed estimates described in section 2.3 as input to the Cox and Munk parameterization to derive an
average reflectance for a given surface condition (Cox and Munk, 1954).

We further need to know the aerosol optical depth (AOD) to estimate the extinction of direct and diffuse radiation on it’s
path through the atmospheric column. Although the aerosol load does not vary much within a 60 x 60 km? ASTER image, the
availability of aerosol information from measurements even for an image-average AOD is very limited. Therefore, we estimate
an effective AOD in an optimization approach by including information from the ASTER dataset. We assume that the pixels
labeled confidently clear in the ASTER cloud mask are a good first guess for cloud-free and shall serve as a reference for
finding a suitable effective AOD such that the simulated cloud-free values are in close agreement with the selected ASTER
pixel values.

In Fig. 2 we illustrate the cloud-free retrieval workflow. In detail, we randomly select 20000 pixel (0.11 % of valid image
pixels) from those defined confidently clear by the ASTER cloud mask (see Sect. 2.1) for a given ASTER image. Simulating
20000 samples ensures a proper representation of the cloud-free distribution at a manageable computational cost. For those
input pixel locations we run the cloud-free model with the corresponding sensor-sun geometries, surface wind speed estimates,
and a first guess on the AOD. We further optimize this image AOD value iteratively by minimizing the summed squared
difference between simulated and observed reflectances. Here, we make use of scipy’s implementation of the limited-memory
Broyden—Fletcher—Goldfarb—Shanno algorithm (LM-BFGS) with bounds (scipy version 1.5.2). The resulting effective AOD
value is representative for the reflectance distribution of a single ASTER image. From all evaluated ASTER images we find a
campaign average effective AOD of 0.077 (£ 0.051).
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From comparing simulated cloud-free reflectance distributions to selected observed ones for manually checked and seem-
ingly cloud-free ASTER observations, we find two things. First, the distributions agree very well in terms of their expected
value. Second, the simulated distributions are more narrow compared to the observed ones as the Cox and Munk parametetriza-
tion returns average pixel reflectance Rpean. We therefore introduce a variability in brightness in a post processing step. We
calculate a kernel density estimate with normal kernels characterized by a standard deviation o, that is placed on each of the
simulated reflectance values (Rosenblatt, 1956; Parzen, 1962). We derive a suitable value for o, from comparing simulated
cloud-free reflectance distributions and corresponding ASTER images that have at minimum 97 % confidently clear pixels in

the ASTER cloud mask. From 22 cases we calculate the average o, ., = 0.0026 from a least-squares optimization using again

the LM-BFGS algorithm. We use a constant value for o, for the whole dataset due to the lack of several cloud-free obser-
vations for various sensor-sun geometries. However, the ASTER dataset is confined to a narrow set of sensor-sun geometries

and outside of possible sun glint observations such that we assume that a constant value is sufficient for our application.
3.2 Identifying optically thin clouds in all-sky observations

The output from our SCSM model provides us with a distribution of cloud-free reflectance p(R|Fcrgar, B), which is the
probability distribution of reflectance values R given that they originate from cloud-free area with the flag F' = Frgar and
additional background conditions B. The background conditions include the sensor-sun geometry, wind speed, and AOD and

are covered by the SCSM by handling each image individually. In the following we evaluate the probabilities on an image basis

and therefore omit the implicit condition on B in the notation. Further, we use standard notation whereby “|” means “given
that” for conditional probabilities and ““,” means “and” and symbolizes combined (or joint) probabilities. For example, the
SCSM output is a conditional probability as the SCSM framework does not include any information on the general cloud-free
fraction within one image.

In the following, we split the observed reflectance distribution of an ASTER image into the categories or flag values F' €
{FcLEar, Forc, FcLoup - The ascending order of the flag values indicates the associated expected increase in reflectance. The
darkest observed pixels originate form cloud-free ocean observations. Small cloud fragments and humidified aerosols slightly
enhance the reflectance, though they are often undetected by cloud masking scheme. We characterize them as optically thin
clouds OTC. The flag CLOUD refers to the cloudy pixels detected by the ASTER cloud masking scheme (see Sec. 2.1). We
know the CLOUD part of a distribution p(R, Fcroup) from the observation and we can infer the CLEAR contribution from the
SCSM output. The all-sky reflectance distribution p(R) is build up by the arithmetic sum of combined probability distributions

of R and the flag values F/, that is:

p(R)=> p(R.F) )
F,

= p(R, FeLear) + (R, Forc) + p(R, Feroup)
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Each combined probability can be represented by the product of the corresponding conditional probability and the probability

of the flag value, i.e. for cloud-free

P(R, Feiear) = p(R|Feigar) - P(FCLEAR)- )

The probability of cloud-free p(Fcrear) is the true cloud-free fraction in an observed image and challenging to estimate.
Note that the true cloud-free fraction is independent of the ASTER cloud mask. If we would know the cloud-free fraction
p(FeLEar), equations Eq. 5 and Eq. 4 together fully describe the observed reflectance distribution p(R). In the following we
describe our approach for estimating the unknown cloud-free fraction.

The first constraint is given by the fact that any probability must be within the range [0, 1], thus we can formulate for our

case:
p(Ferear|R") + p(EFcoup|R”) < 1 VR" € R (6)

We can approach the estimation of the cloud-free fraction p(FcrLgar) from a conservative side by deriving the maximum
possible p(Fcrgar) such that Eq.6 still holds. Thinking visually, we scale the simulated cloud-free distribution up until it
touches the all-sky distribution p(R). At the reflectance R = R’ (of unknown value) where the PDFs touch, we are certain that

the non-cloudy classified reflectances are actually due to cloud-free:
3 R’ such that p(FCLEAR|R/) =1- p(FCLOUD‘R/) @)

We can solve Eq. 7 and Eq. 6 for p(Fcpgar ) (for details see appendix B). While being mathematically concise, the described
method faces a problem. It relies on the exact count of measurements in only a single reflectance bin R’ and thus is especially
susceptible to measurement and model uncertainties. We tackle this problem by extending and relaxing the condition stated
in Eq. 7. We modify this first condition from a single value to an extended range of reflectance values. As Eq. 7 would be
overdetermined for more than one reflectance value in the presence of measurement and model uncertainties, we demand that
the equation approximates the value 1 — p(FcrLoup|R') for reflectivity values measured and known to be caused by cloud-free
skies.

In particular, we do this by a weighted linear regression, minimizing the term:

/Hp(FCLEAR|R) - (1 _p(FCLOUD|R))] . ’LU|2dR (8)

with p(FcLear) as the only free variable. The regression weight w = p(R)p(R|FcLgar) is chosen to only consider measured
reflectance p(R) that overlap with the range of simulated cloud-free reflectance p(R|Fcpgar ). The product of both guarantees
a close agreement around the peaks of measured and simulated PDF.

The resulting estimate of p(FcLgar) is more robust in the presence of small measurement or model errors, but a direct
consequence of this approximate matching is that Eq. 6 does not necessarily hold for all R” anymore. As illustrated in Fig. 3

using dotted and dashed lines, we correct this by clipping the resulting probabilities to the allowed range. As this clipping
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Figure 3. Visualization of the approach for estimating the cloud-free fraction p(Fcrear) by optimization. The orange dotted and dashed lines
show the processing steps leading to the filled orange cloud-free PDF. The blue lines are the respective residuals related to optically thin

clouds and resulting from the all-sky (grey) minus the CLEAR (orange) and minus the CLOUD PDF (dark blue; not visible).

effectively modifies the simulated reflectance distribution and thus is potentially dangerous, we need to ensure that this method
indeed only compensates for small measurement uncertainties (i.e. in the order of a single digital sensor count). We can do this
by comparing the expected value of the clear sky reflectance p( R| Fcrrar) before and after clipping. On average, this difference
is 0.15% and even in the worst (maximum) case, the clipping causes a shift of 0.0018 in reflectance units, which is well below
one digital sensor count of about 0.004 reflectance units. Based on this analysis, we use the more stable regression and clipping
method in stead of a direct application of Eq. 7.

Further, the SCSM does not include cloud shadows on the ocean surface which introduce a signal at very low reflectances
in the observed distribution. Conceptually we add the low reflectance values originating from such shadowed areas to the
cloud-free reflectance distribution p(R, FcpEaR)-

In Fig. 4 we show combined probability distributions per flag for an ASTER observation on the 31% of January east of
Barbados. The inset figure shows the reflectance image that we translate into the distribution using the method described

above.
3.3 Robustness of optically thin cloud estimation

Our target variables are the fraction and expected reflectance of optically thin clouds. The retrieval of cloud-free and subsequent
optically thin clouds in ASTER images depends on visible cloud-free areas which limits the evaluation of the full ASTER
EUREC“A dataset to images with less than 85 % detected cloud cover in the cloud masking algorithm (380 images).

Within the retrieval we have two main free parameters which can introduce uncertainty in our target values, the surface

wind speed estimate and the assumed variability or__ of simulated average pixel reflectances Rye.,. We first have a look

mean

at the added variability. From a comparison of 22 manually checked cloud-free reflectance distributions (>97 % confidently

clear pixels) to the simulated distributions we derived an average variance of 0.0026 (£ 0.0007). We apply the methodology

10
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Figure 4. Reflectance distribution corresponding to the ASTER observation shown in the inset figure recorded on 31 January 2020, 14:08:05
UTC south-east of the HALO circle area at 11.37 °N, 53.86 °W. The cloud-free contribution is retrieved with the method (1) described in
section 3.2 and displayed by the orange curve, while pixel reflectances identified cloudy from the ASTER cloud masking algorithm are

shown in dark blue. We attribute light blue contribution to the distribution to optically thin clouds.

described in this section for the average value, as well as for a 20 % lower (0.0020) and 20 % higher value (0.0031). Similarly,
we add an artificial bias of 420 % to the surface wind speed estimates and investigate the change in our target values. The
average wind speed in our dataset is 9.02 ms™ (4-2.38 ms™'). The resulting deviations in our target values, the fraction p(OTC)
and expected reflectance E(R|OTC) of optically thin clouds, that result from a bias in o, and / or the surface wind speed
are stated in Tab. 1.

The fraction of optically thin clouds p(OTC) changes only slightly with a change in wind speed showing an overestimation
for a negative wind speed bias meaning that a small part of the cloud-free distribution is wrongly attributed to optically thin
clouds. For a positive wind speed bias the opposite is the case. The low uncertainties (4.6 % and -4.9 %) are a result of the
retrieval setup including the optimization of AOD which can partly compensate a bias in wind speed. Changing the variability
of simulated average pixel reflectances o, can narrow (negative bias in og, ) and broaden (positive bias in op, ) the
cloud-free distribution and thus lead to strong over- or underestimation of p(OTC) as high as 13.1 % and -14.1 % (relative
deviations). Combining the highest retrieval uncertainties from the two free parameters, the wind speed and the variability
O Ruen» WE can get a deviation in the estimated fraction of optically thin clouds of up to £ 0.027 (relative: & 19.7 %).

The expected reflectance of optically thin clouds E(R|OTC) shows a smaller sensitivity to changes in the wind conditions
and og, ., compared to the fraction of optically thin clouds discussed above. An underestimation in wind speed leads to a
marginal underestimation in the expected reflectance as lower cloud-free reflectance is wrongly attributed to optically thin
clouds. In the case of an overestimation in wind speed, the cloud-free reflectance distribution extends to higher reflectance
values which are missing in the estimated E(R|OTC) and thus leads to a high bias in E(R|OTC). A more narrow (negative
bias in o, ) or broader (positive bias in o, ) cloud-free distribution can decrease or increase the expected reflectance of

optically thin clouds up to -4.5 %. However, the combined deviation due to possible biases in wind speed and o, are still

mean
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Table 1. Deviations of the fraction Ap(OTC) and expected reflectance A E(R|OTC) of optically thin clouds for the two main free parameters
to the clear-sky retrieval, the surface wind speed and the variability o r,,.,,- The two numbers in each cell state the absolute / relative difference

to the reference case with no wind speed bias and o r,,,,= 0.0026 respectively.

| Ap(OTC) | AE(R|OTC)

! -1 1.8 ms™

wind speed bias ‘ -1.8 ms’ 0 ms 1.8 ms’! ‘ -1.8 ms™! 0 ms

0.00204 | 0.027/19.7% 0.018/13.1% 0.010/7.3 % -0.0031/-55% -0.0026/-4.5% -0.0018/-3.1%
ORmean  0.00255 0.006 /4.6 % 0.000/0.0% -0.007/-49% | -0.0017/-3.0%  0.0000/0.0%  -0.0004/-0.6 %
0.00306 | -0.014/-106% -0.019/-141% -0.024/-17.5% | -0.0001/-0.2%  0.0003 /0.5 % 0.0007/1.3%

within the range of +0.0031 (& 5.5 %) which is smaller than the reflectance bin size of the original Level 1B ASTER data
(least significant bit).

4 Results

We investigate 380 ASTER images for the signal from optically thin clouds (OTC) that are undetected by the ASTER cloud
mask but can be identified with the method described in Sect. 3. We first visualize pixels in an image that we attribute to
the total cloud cover including OTC pixels and those detected in the ASTER cloud mask. We then define a close match of
OTC reflectances in ASTER images and the signal of OTC detectable in WALES lidar data. WALES measurements provide
an independent view of the results of the cloud cover by OTC from a different instrument technology and complement our

analysis based on ASTER images. Finally, we show the significant contribution of optically thin clouds to the total cloud cover.
4.1 Visualizing optically thin clouds in an ASTER image

To visualize the OTC area in an image we can define a threshold in reflectance similar to common cloud masking algo-
rithms. We construct a total cloud cover mask that includes pixels with a probability of that pixel reflectance to be cloudy
p(Frorar_cLoun| R = Rpixe) > 0.9 with Frotar_croup = Forc V Feroup- In the particular ASTER image shown partially in
Fig. 5 all reflectance values greater than 0.049 satisfy that condition. The cloud mask derived with the cloud masking algorithm
by including several ASTER bands is shown in blue in panel a) while the total cloud cover mask is shown by the contours in
red in panel b). The background reflectance image in panel b) is adjusted in its reflectance range with the aim to enhance the
range reflectances related to OTC.

The figure visualizes how OTC is often classified in pixels surrounding detected clouds. Detraining clouds and anomalously
humidified aerosols likely cause enhanced reflectances close to thicker clouds. Possible scattering of light at the sides of thicker
clouds might additionally enhance the brightness of their surrounding areas. Such surrounding halos of optically thin clouds
lead to (threshold dependent) smoother cloud edges, an interesting result in the context of cloud boundaries and related fractal

dimensions. Also, cloud structures tend to be more connected in the total cloud cover mask leading to larger cloud objects with
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smooth reflectance transitions to the cloud-free ocean background. While there are numerous studies on cloud shapes we rather
focus on a statistical estimate of area coverage and the contribution of OTC to the total cloud cover in the remainder of this

work.
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Figure 5. Visualization of the area corresponding to optically thin clouds. Shown are reflectances at 0.807 ym for a 1.5 x 1.5 km? selection of
an ASTER image recorded on 5 February 2020, 14:25:15 UTC. (a) shows the full physical range of reflectance values ranging from 0 to 1 with
overlayed blue contours outlining the ASTER cloud mask. (b) is similar to (a) but with the color scale limited to the 10" and 90" percentile of

reflectances attributed to total cloud cover including optically thin clouds. The red contours correspond to p( FrorarL_cLoun|R = Rpixel) > 0.9.

4.2 The OTC equivalence in Lidar data

In Fig. 5 optically thin clouds are barely visible in the reflectance field in panel a) suggesting that those clouds have a very low
cloud optical thickness. Due to non-linearities in the physical and radiative properties of small cumulus clouds and the large
influence of 3D radiative effects, plane-parallel retrieval of microphysical properties do not work reliably and we cannot derive
cloud optical thickness from ASTER measurements directly (Davies, 1978; Loeb et al., 1997; Varnai and Marshak, 2003;
Marshak et al., 2006; Stevens et al., 2019; Kélling, 2020). However, we use the theoretical relationships that plane-parallel
retrievals are based on to estimate an effective cloud optical thickness that could be detected by ASTER against the ocean

surface background following the two-stream approximation by Lacis and Hansen (1974):

_ VB(-gr 7T ©
24+V3(1—g)r THTT
with the cloud albedo A, cloud optical thickness 7 and the asymmetry parameter g = 0.85. In Fig. 6 we show the relationship
stated in Equ. 9 of a plane-parallel cloud (black line) and add uncertainties from cloud 3D effects and the background ocean
signal.
The average ocean reflectance during EUREC*A was 0.04 including single cases as high as 0.08. Due to additional variability
in the ocean wave reflection we expect that clouds with an albedo below 0.1 and corresponding cloud optical thickness below

1 to dissolve in the ocean signal. For clouds with cloud optical thickness larger than 1, 3D effects such as brightening and
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Figure 6. Plane-parallel relationship between cloud albedo and cloud optical thickness following Lacis and Hansen (1974). The ocean
reflectance is estimated from the ASTER observations during EUREC*A, while the uncertainty due to 3D radiative effects is a rough estimate

from the literature (Marshak et al., 2006; Stevens et al., 2019).

shadowing as well as photon loss through the cloud sides become relevant and can easily cause a factor of 2 error in the
reflectance that spans up a distibution around the plane-parallel estimate and that we indicate by the grey shaded area in Fig. 6
(Marshak et al., 2006; Stevens et al., 2019). Overall, we assume that due to natural variability in the background ocean signal
and the cloud signal, clouds with optical thickness below 1 likely do not stand out from the ocean and the ASTER cloud mask
presumably is insensitive to such optically thin clouds.

Clouds with an optical thickness below 1 are thin enough for a lidar beam to penetrate through the cloud and provide a
reliable estimate of the cloud optical thickness. We can therefore make use of WALES lidar measurements for supporting
information on the abundance of optically thin clouds.

Fig. 7 shows the distribution of cloud optical thickness measurements from WALES for days with local research flights. The
peak at low cloud optical thickness values corresponds to optically thin clouds that the lidar beam manages to penetrate. A
cloud with optical thickness of about 2.5 reduces the lidar signal below the cloud to more than one hundredth and the method
to derive the optical thickness still works. At night the range of retrieved optical thickness increases to about 3.5 due to a better
signal to noise ratio above clouds without scattered Sun light. In thicker clouds the signal vanishes in the system noise. We
aggregate all measurements from optically opaque and thick clouds in one bin as we have no information on the actual cloud
optical thickness.

In WALES measurements we associate optically thin clouds to have an optical thickness below 1. The campaign average
cloud optical thickness of OTC is 0.37, the median is 0.31. Optically thin clouds have on average a cloud top height at 1.3 km
altitude (median 1.0 km). We further use the WALES measurements to derive a fractional cloud cover in time for optically thin

clouds and compare the results to the optically thin cloud cover from ASTER in the following section.
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Figure 7. Cloud optical thickness distribution from WALES lidar measurements for all days with local research flights during EUREC*A
resulting in 92 hours of data. Panel a) shows the frequency distribution of all days, while panel b) additionally shows the cumulative distribu-

tions for individual days. The days are sorted by their increasing average cloud optical thickness that we associate with optically thin clouds

(yellow to dark green). The split x-axis visualizes the limited information on thick clouds that are optically opaque to the lidar.

Table 2. Cloud cover estimates during EUREC*A from 380 ASTER satellite observations (60 x 60km?) at 15 m resolution on 17 days and

from WALES lidar measurements recoded within 13 research flights (days) at about 40 m resolution in January and February 2020.

Optically Detected™ Total

thin cloud cover/ %  cloud cover/ %  cloud cover/ %

ASTER (mean) 14.1 28.5 42.6
ASTER (median) 13.3 16.7 34.9
WALES (mean) 14.3 19.3 33.7

) "detected" refers to the ASTER cloud mask and in the case of WALES data to clouds with cloud
optical thickness > 1.

4.3 The contribution of OTC to the total cloud cover

From analysing 380 ASTER images during EUREC*A we find an average total cloud cover of 42.6 %, combined of 28.5 %
from detected clouds and 14.1 % from optically thin clouds (see Tab. 2). Based on the cloud-free retrieval uncertainties derived
in Sec. 3.3 we estimate the uncertainty in ASTER optically thin cloud cover to be within the range of 2.7 %. In Table 2 we
state the respective numbers derived from WALES measurements. We explicitly note that a direct comparison is not reasonable
as the two instruments and approaches show optically thin cloud areas from two different perspectives. However, what we can
say is that WALES lidar measurements indicate a high fractional coverage by optically thin clouds, similar to what we find
from ASTER images.
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Figure 8. Change in optically thin cloud cover with total cloud cover. The blue markers correspond to values derived from 380 ASTER
images (60 x 60 m?) with the dark blue line following along the median values. The green markers correspond to daily-averaged cloud cover
estimates from WALES lidar measurements. The grey diagonal line shows the maximum possible contribution of optically thin clouds to the

total cloud cover.

In Sec. 4.1 we mentioned the possible influence of scattering at cloud edges which can illuminate areas surrounding thicker
clouds. Such 3D effects would influence our results based on ASTER data and lead to an overestimation of OTC related cloud
cover. As WALES is less affected by the 3D scattering at cloud edges but shows a higher fraction of optically thin clouds
(42.4 %) relative to ASTER (33.1 %), the ASTER analysis does not seem to be unduly influenced by 3D radiative effects.

Our results based on ASTER and WALES measurements are lower compared to an analysis of optically thin marine clouds
from CALIOP measurements by Leahy et al. (2012). The authors find a fraction of optically thin clouds in the trades to be
as high as 84 %. From WALES measurements we derived an OTC fraction of 42.4 % for cloudy profiles with cloud optical
thickness < 1. If we include clouds with cloud optical thickness up to about 3 as it is done in the study by Leahy et al. (2012),
the OTC fraction in WALES data increases to 74 %. Estimates based on CALIOP data are likely to overestimate the OTC
fraction due to the lower sensor resolution of 90 m footprints every 335 m. The authors in Leahy et al. (2012) derive a possible
overestimation of OTC fraction of up to 25 % in the trades due to partially cloudy CALIOP footprints, which supports our
findings in the current study of a lower, but still significant contribution of optically thin clouds to the total cloud cover.

We further notice that the area covered by optically thin clouds increases with detected cloud cover for low total cloud cover
as shown in Fig. 8 and similarly stated in Leahy et al. (2012). The positive correlation up to 0.4 total cloud cover might be due
to a combination of two features. First, optically thin cloud areas are often found surrounding detected clouds (see also Fig. 5).
This idea is supported in a study by Koren et al. (2007), which find enhanced reflectances in solar irradiance measurements

before and after an identified cloud originating from humidified aerosols and/or unresolved cloud fragments.
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The second ingredient to the proposed positive correlation is the cloud field structure. Trade wind cumulus cloud fields at
low cloud cover typically correspond to sugar or gravel type structures as described by Stevens et al. (2020), consisting of
many small clouds with enough space in between that can be partly filled with undetected optically thin clouds. More clouds
and more cloud boundary therefore leads to more optically thin cloud area up to a point where this relationship saturates at
about 0.4 total cloud cover. The saturation might be due to larger clouds or cloud structures being surrounded by pronounced
cloud-free regions. A recent study by Schulz et al. (2021) identifies the so-called flower and fish cloud patterns of having
characteristic cloud-free areas between clouds. By constraint, the positive correlation turns negative above 0.7 total cloud
cover as the cloud-free, OTC, and detected cloud cover always add up to 1 and high cloud-mask cloud cover situations leave
little space for optically thin clouds.

We conclude that optically thin clouds cover large parts of the trades leading to a higher total cloud cover than assumed so

far from passive satellite observations.
4.4 The cloud reflectance - cloud cover relationship in ASTER observations

Current climate models typically have a narrow range of cloud optical thickness that might affect model perturbation exper-
iments due to the non-linearity of cloud optical thickness and it’s albedo. Especially in low-cloud regions such as the trades,
climate models underestimate the cloud cover while overestimating it’s average reflectance, a problem often called the "too
few, too bright" low-cloud problem (Nam et al., 2012; Klein et al., 2013). While observations show a positive correlation of
cloud cover and cloud reflectance, models show a reverse sign (Konsta et al., 2016).

We investigate the cloud cover - cloud reflectance relationship in Fig. 9 and Fig. 10. Fig. 9 panel a) shows in blue curves
the change in all-sky reflectance distribution with increasing cloud cover as defined by the ASTER cloud mask, while the red
lines show similarly the change with increasing total cloud cover. We show two representative cloud cover ranges, a low range
from 0.1 to 0.3 and a high range from 0.5 to 0.7. With increasing cloud cover, the reflectance distributions shift to higher values
meaning that the overall image is brighter (dashed versus solid lines). As expected, the reflectance distributions as defined by
our method (red lines, including optically thin clouds) peak at lower reflectance values compared to their ASTER cloud-mask
counterparts meaning that the total cloud cover area is less bright on average when optically thin clouds are included.

Panel b) shows an interesting new facet to the difference in total and cloud-mask cloudy areas. The distributions show how
the total cloud reflectance relative to the total cloud area in the image depends on cloud cover. The comparison of low and high
cloud cover cases reveals that clouds are brighter with increasing cloud cover (dashed versus solid lines), which is in agreement
with our perception of larger, deeper, and brighter clouds being present in high cloud cover situations. The change in cloud
brightness with cloud cover is less pronounced if the total cloud cover is considered (red lines, including optically thin clouds)
compared to the cloud-mask only case (blue lines).

We further investigate the expected cloud reflectance in relation to derived cloud cover values for all 380 ASTER images
in Fig. 10. Both, cloud mask and total cloud cover, exhibit positive correlations with respective cloud reflectance values in
agreement with findings in Konsta et al. (2016). We here derive a campaign average cloud reflectance from total cloud cover

of 0.15, with contributions from the ASTER cloud-mask clouds (avg: 0.21) and optically thin clouds (avg: 0.06), which agrees
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Figure 9. Combined probability density functions (PDF)s of a) all-sky reflectance from ASTER p(RICC), binned according to the total (red)
and cloud mask (blue) cloud cover (CC). We define two representative cloud cover ranges, low CC (0.1 to 0.3) and high CC (0.5 to 0.7).
Panel b) shows the conditional probability of total cloud reflectance p(RIFrorar, CC), given that they are within the range of low or high CC.

Compared to a), the distributions in panel b) do not include the cloud-free contributions at low reflectance.

quite well with an average trade wind cumulus cloud reflectance of 0.15 derived from a combination of POLDER (Polarization
and Directionality of the Earth’s Reflectances) and CALIOP measurements in the study by Konsta et al. (2016). Based on the
cloud-free retrieval uncertainty stated in Sec. 3.3, the uncertainty in expected reflectance of optically thin clouds is as low as
0.0031 and does not influence our results and conclusions drawn here.

The positive correlation in Fig. 10 for total cloud cover agrees well with the corresponding Fig. 6a in Konsta et al. (2016).
As mentioned before, climate models show a reverse sign of this correlation together with a general underestimation of cloud
cover and simultaneous overestimation of cloud reflectance. Next to the model intrinsic mechanisms leading to too few, but too
bright clouds, biases might be partially due to tuning the model based on traditional cloud masks that overestimate the cloud

reflectance especially in the frequent low cloud cover situations.

5 Discussion

Most passive satellite imager operate at resolutions in the order of hectometer to kilometer range and derive cloud products
at 1 km scale or coarser. Undetected optically thin clouds, as well as small clouds detected at the ASTER 15m scale, are
unresolved and lead to partially cloudy pixel measurements. Several studies in the past have investigated the resolution effect

in trade cumulus cloud cover estimated from passive satellite imagers. Zhao and Di Girolamo (2006) find a three- to fivefold
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Figure 10. Expected cloud reflectance corresponding to the ASTER cloud mask (blue) and the derived total cloud cover (red) from 380
ASTER images. The median cloud reflectances are given by the lines and the dataset averages are visualized by the “+” marker and the
respectively colored tick labels. The frequency distributions of cloud cover and cloud reflectance are shown in the panels on the top and right

respectively.

overestimation of cloud cover in MODIS and Multi-angle Imaging SpectroRadiomete (MISR) images respectively compared
to ASTER observations during the RICO (Rain in shallow cumulus over the ocean) campaign. For the same dataset, a study by
Dey et al. (2008) suggests a fourfold overestimation of cloud cover if the ASTER cloud mask is degraded from 15m to 1 km
while cloud detection thresholds are kept constant. However, degrading the resolution can also lead to an underestimation of
cloud cover estimates in cloud masking schemes if the resulting pixel radiances fall below fixed radiance thresholds. In an early
study by Wielicki and Parker (1992) the authors estimate that roughly one third of the cloud cover detected in 30 m Landsat
images showing cumulus clouds would not be detected by certain cloud masking schemes, which is in line with our study
results.

An underestimation of cloud cover due to undetected optically thin clouds and an overestimation due to an reduced spatial
resolution have compensating tendencies. However, one effect that does not cancel out in typical passive satellite cloud products
is the influence of optically thin clouds in partially cloudy pixels that are classified to be clear. Pure cloud-free observations are
crucial for aerosol retrievals, as well as cloud radiative effect (CRE) estimates. With decreasing sensor resolution the probability
for cloud-free observations decreases as well. We therefore investigate implications that undetected optically thin clouds can

have on CRE estimates, as well as our inferences on cloud-aerosol interactions in the trades, despite their low cloud albedo.
5.1 Implication for CRE estimates

In temperature perturbation studies, cloud feedback defines how clouds adjust to a perturbation in surface temperature and

whether this change amplifies or dampens the initial temperature perturbation. As such, it is tied to the cloud radiative effect
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(CRE), the difference in all-sky and cloud-free radiative flux at the top of the atmosphere, in the initial as well as in the

perturbed climate.
CRE = Fa1L — FeLear (10)

In the trades, climate models show a less negative CRE in response to warming, indicative of a positive cloud feedback (Zelinka
et al., 2020). Observational constraints based on satellite data at coarse resolution might be insensitive to sub-pixel scale clouds
and consequently lack a robust cloud-free signal. From our analysis we can estimate an upper bound on the error in CRE that
might arise from a cloud-free signal that is contaminated by undetected optically thin clouds.

If we assume that the pixel reflectances corresponding to optically thin clouds from the present analysis are fully mixed into
the cloud-free signal, we would overestimate the cloud-free reflectance and consequently underestimate the CRE. We derive
a relative bias AC'RFE per image from the differences in all-sky Lar, cloud-free Lcpgar, and "contaminated” cloud-free

Lcrear+orc expected radiance values:

CREciear+orc — CRECLEAR
CREcLEAR
_ LaiL — LeLearyore

ACRE = (11)

1 (12)
Larr — Lerear

Note that we use here the simulated cloud-free Lcppar radiances as those do not contain the low radiances from cloud
shadows on the ocean surface which would cause a slight underestimation of the cloud-free radiance.
In principle, a mono-directional radiance L can be converted to a radiative flux F as it is done by Clouds and the Earth’s
Radiant Energy System (CERES) radiative flux products by the following equation (Loeb et al., 2003; Su et al., 2015):
wL(0s,0y,D)
" 7(6.6,,9)

with the Sun 6 and sensor view 6, zenith angles, the azimuthal difference ® and the anisotropic factor f. The anisotropic

13)

factor is challenging to estimate and no suitable values are available for ASTER observations. However, if we assume isotropic
scattering of cumulus cloud fields (f = 1) we can translate the CRE bias into an effective radiative flux at 0.807 pm.

The mean CRE bias from the ASTER dataset amounts to -7.5 % which roughly translates to about -2.2 Wm ™2 (at 0.807 ;zm).
The order of magnitude is significant and highlights the importance of an improved representation of optically thin clouds in

future studies.
5.2 Optically thin clouds in the aerosol-cloud interaction context

First, we would like to revisit and confirm our distinction of aerosols and optically thin clouds from the introduction to this
article. We consider humidified aerosols to be part of the cloud-free signal. As both, ASTER and WALES data suggest a total
cloud cover well below 100 % (insensitive to the exact cloud threshold in WALES) we are confident that the described signal of

optically thin clouds can only be due to anomalously humidified aerosols and cloud droplets. However, we do see a possibility
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that fossil clouds, in the form of lingering pockets of humidified aerosol, might be classified as optically thin clouds, too.
We think the WALES analysis, and the magnitude of the observed optical depths (from WALES) excludes this as a major
contributor. Even if this inference was incorrect, we believe it would be more correct to think of cloud fossils as optically thin
(and fading) clouds than as an aerosol signal, particularly since such signals will not scale with aerosol amount. We therefore
discuss possible implications of undetected optically thin clouds for aerosol-cloud interaction studies in the following.

Aerosol-cloud interaction studies are a topic in itself and we will not go into great detail, but rather want to show where opti-
cally thin clouds might need to be considered in these studies. One largely debated issue is the positive correlation of AOD and
cloud cover as an indirect aerosol effect. The underlying principle is that hydrophilic aerosols can serve as cloud condensation
nuclei and increase the cloud droplet number concentration. More aerosols might therefore reduce the precipitation formation
rate and increases the cloud liquid water content and cloud lifetime (Albrecht, 1989). Whether this so-called cloud lifetime
effect actually leads to increased cloud cover is largely debated (Loeb and Manalo-Smith, 2005; Kaufman et al., 2005; Stevens
and Feingold, 2009; Gryspeerdt et al., 2016).

Some modeling studies suggest negligible or equally small enhancing or decreasing influences of aerosols on the cloud
cover (Xue and Feingold, 2006; Quaas et al., 2008; Seifert et al., 2015), while others suggest a considerable effect (Quaas
et al., 2009). Observational studies on the other hand, mostly rely on coarse satellite observations and show deficiencies in
the accuracy in aerosol and cloud retrievals as discussed in Quaas et al. (2020). The positive correlation in optically thin cloud
cover and detected clouds in the current study suggests that part of the proposed sensitivity of cloud cover to AOD might reflect
a high bias in cloud-free estimates that is interpreted as high AOD. In agreement with our perception, an observational study
by Gryspeerdt et al. (2016) estimates meteorological covariations to account for 80 % of the often proposed AOD-cloud cover
relationship with the additional note on shallow cumulus regions having a very weak relationship.

Independent of the cloud-lifetime effect, a positive perturbation in aerosols increases the cloud droplet number concentration
and thus the cloud brightness, which is commonly referred to as the Twomey effect (Twomey, 1959; Quaas et al., 2020).
Increasing the brightness also increases the probability of undetected and optically thin clouds identified in the current study
to cross the detection threshold of common cloud masking schemes. We therefore speculate that the Twomey effect indirectly
leads to positive AOD-cloud cover relationships found in previous studies. It might be interesting to investigate the AOD-cloud

cover relationship based on a more comprehensive definition of total cloud cover including optically thin clouds.

6 Conclusions

Climate models as well as Large Eddy Simulations commonly underestimate the cloud cover, while estimates from observations
largely disagree on the cloud cover in the trades. We use a new method to estimate the total cloud cover from the cloud-free
perspective by simulating the cloud-free contribution to an observed all-sky reflectance distribution with a simplified radiative
transfer model. The present study shows the high abundance of optically thin clouds in the trade wind region that are undetected

by common cloud-masking schemes.
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We analyzed 380 ASTER satellite images recorded in support of the EUREC“A field campaign in January and February
2020 and find that about 33 % of the total cloud cover is due to undetected optically thin clouds. A comparison to independent
WALES lidar measurements supports our findings.

We find that pixels attributed to optically thin clouds are often found surrounding brighter cloud objects that can be detected
in cloud-masking schemes. Accounting for optically thin clouds significantly reduces the average cloud reflectance (-0.06, i.e.
30 %) as optically thin clouds are systematically less reflective than clouds detected in cloud masking schemes. Our analysis
suggests that the known underestimation of trade wind cloud cover and simultaneous overestimation of cloud brightness in
models is even higher than assumed so far.

We identify two implications from our study. First, if mixed into the cloud-free signal, the enhanced radiance from optically
thin cloud areas leads to a high bias in cloud-free estimates over ocean and hence a low bias of -7.5 % in the estimated cloud
radiative effect of trade wind cumulus cloud fields.

And second, the positive correlation in optically thin cloud cover and detected clouds for low cloud cover suggests that part of
the sensitivity of cloud cover to AOD found in aerosol-cloud interaction studies might reflect a high bias in cloud-free estimates
that is interpreted as high AOD. In addition, increasing cloud brightness with higher AOD likely increases the probability of
undetected and optically thin clouds identified in the current study to cross the detection threshold of common cloud masking
schemes. These effects could contribute to an unrealistically strong relationship between satellite retrieved values of AOD
and cloud cover, and would suggest that not accounting for optically thin clouds could overstate the strength of aerosol cloud

interactions.

Code and data availability. In addition to the publicly available ASTER L1B data from NASA we provide processed data for the ASTER
images recorded during EUREC*A and displayed in Fig. 1. NetCDF files containing physical quantities from bands in the VNIR and thermal
range, latitude and longitude information, a cloud mask, and cloud top height estimates are available on the AERIS data server (https:
/lobservations.ipsl.fr/aeris/eurec4a-data/SATELLITES/TERRA/ASTER/). ASTER image tiles were calculated and are stored on AERIS
(https://observations.ipsl.fr/aeris/eurec4a/Leaflet/index.html) providing a user-friendly browsing experience with the possibility to zoom
in on the rich structures of beautiful trade cumulus cloud fields. The cloud information from WALES is published on AERIS https:
//doi.org/10.25326/216) and further described in Konow et al. (2021).

Code for processing the original ASTER L1B data is available in the Python package typhon version 0.8.0, subpackage cloudmask
(https://github.com/atmtools/typhon). The basic code for the cloud-free radiative transfer simulations is available at https://doi.org/10.5281/
zenodo.4842675. The main data resulting from the applied methodology and forming the basis for all interpretations is available at https:
//doi.org/10.5281/zenodo.4844482.

Appendix A: Components and equations to the simplified clear-sky model (SCSM)

Knowing the extraterrestrial irradiance Fy emitted by the Sun and entering the atmosphere, the radiative transfer equation

describes the radiance at any location (X, y, z) and for any direction defined by a zenith angle # and an azimuthal angle ¢. In a
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Figure Al. Sketches of the simple clear-sky model. a) illustrated the main radiance components, while b) shows the geometry setup based

on the vectors s pointing into the Sun, v pointing to the sensor, and the wave facet normal 7.

cloud-free atmosphere with small solar and viewing zenith angles we can use 1D plane-parallel radiative transfer to estimate
the radiance observable at the top of atmosphere (TOA).

The cloud-free radiance L reaching a sensor in space is a combination of three main components that we illustrate in Fig. A1
a): (1) the direct Sun ray reflected at the ocean surface L gireet and (2) the hemispheric diffuse radiance reflected at the surface
towards the sensor L gisruse. Together they are combined in the component L4 of light that touched the surface. On the way
from the surface to the sensor L4t experiences attenuation following Lambert-Beer and depending on the atmospheric optical
thickness 7 and the cosine of the sensor or view zenith angle v,. In addition, there is component (3), the diffuse light from

single-scattering events happening within the atmosphere L am.

L= LTsfc + LTatm (Al)

—T
= exXp <1}> [Lidirect + L\Ldiffuse] + LTatm (AZ)

z

In the following, we describe the derivation of L based on the vector s pointing from an observed location on the ground to

the Sun, and the view vector v pointing to the sensor (see Fig. Al b)).

Sx Ux
s=| s [o=] v (A3)
S, vy

s and v are unit vectors meaning that they satisfy the condition:
[s|=|v|=1. (A4)

Working with vectors instead of the traditional approach with angles simplifies several of the following calculations next to
a significant enhancement in computational speed. For example, the previously mentioned view zenith angle v, is simply the

third component of the view vector v.
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A1l Direct radiance and the bi-directional reflection function (BRDF)

L | girect 1s defined by the sensor-sun geometry with the cosine of the Sun zenith angle s, and the corresponding aerosol extinction
along the path from the top of atmosphere (TOA) to the surface where the reflection is characterized by the bi-directional
reflection function (BRDF) p.
—T
L\Ldirecl - EO €xp (S) p(savvwsvniant) (AS)
z
How a Sun ray is reflected at the ocean surface mostly depends on the surface wind speed ws and the generated wave slopes.
The earliest and still widely used surface slope parametrization goes back to photographic measurements by Cox and Munk
in 1954. Their parametrization is embedded in a 1D Guassian surface slope distribution p, combined with Fresnel reflection
coefficients for unpolarized light r and a prefactor handling the sensor-sun geometry with the Sun s and view v vectors. For

the general equation for p we follow Stamnes et al. (2017):

1
p(s,v,ws,ni,ny) :m -p(s,v,ws) - r(s,v,ni,M) (A6)

In the first factor, n, is the third component of the wave facet normal n with

Tix
s+v
n ny st v] (AT)
n,

The second factor in Eq. A6 gives the probability of a specular reflection p and the third the intensity of the reflected light .

In detail, we assume a 1D Guassian surface slope probability distribution p with

1 1—n2
p(S,'U,IUS) = Wexp <_n?o'(u)8)2) (AS)

and the variance o2 of the surface slope distribution. The Cox and Munk parametrization provides an empirical estimate for -2

depending on the 10 m surface wind speed ws (Cox and Munk, 1954):

o(ws)? =0.003 4 0.00512 - ws. (A9)
The intensity of the reflected light r is given by the unpolarized Fresnel reflection coefficient:

(/J] rUt) + <Mt rHl) (A10)
i + Nefle fie+ nefti

with n,. = ™, the ratio of the refractive index of the transmitted medium 7, = 1.333 (ocean) and the refractive index of the

1
T(Sav7nivnt) = 5

incoming medium n; = 1 (atmosphere). Further, y; is the cosine of the incidence angle and is given by the dot product of the

Sun and wave facet normal vector:

U=s8mn (A11)
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¢ 1s the cosine of the transmission angle, which follows directly from Snell’s law by transformation:

1—p?
n?

po=1/1 (A12)

A2 Diffuse downward radiance and hemispheric BRDF

The hemispheric diffuse radiance L gffuse includes Sun rays that are scattered within the atmosphere on their way to the ground
and get reflected at the pixel of interest into the direction of the sensor view. Thus, we integrate the integration vector  over

the hemisphere €2

L gitfuse = /p(:c,'v,ws) - Lin(1,2)dx (A13)
Q

Assuming that the incoming diffuse downward radiance Li, (7, ) is isotropic, we can pull L;, out of the integral and derive
a hemispheric BRDF by integrating equation A6 over 2. Here, we make use of the Gauss-Legendre quadrature to approximate
the integral based on only a few nodes in the u space while keeping a high accuracy.

The diffuse downward irradiance on the other hand is difficult to approximate. Thus, we sample from a pre-calculated
look-up table of diffuse downward irradiance for a range of Sun zenith angles and aerosol optical depths. The look-up table
was calculated with the full radiative transfer model libRadtran for a sensor at the surface pointing up nadir and observing
at ASTER’s band 3 central wavelength 807 nm (Mayer and Kylling, 2005; Emde et al., 2016). The input file defines a U.S.
Standard Atmosphere with default molecular absorption calculated with the representative wavelengths parameterization REP-
TRAN (medium) where the absorption is based on the HITRAN 2004 catalog. The aerosols species is set to be maritime
tropical as defined by the OPAC package and finally, the radiative transfer equation is solved with DISORT. We further use the
bivariate spline approximation provided within the Python package scipy (version 1.5.2) to interpolate over the output look-up

table.
A3 Diffuse upward radiance from single-scattering events

The atmospheric diffuse scattering L1,m describes Sun rays that are reflected within the atmosphere into the view direction of
the sensor. We only consider single scattering events as the aerosol optical depth over tropical ocean is mostly below or in the
order of 0.1 and the probability of further scattering events is unlikely. The extinction within an atmospheric column is generally
given by the integral over the extinction coefficients 0., ; in single atmospheric layers depending on their density (temperature)
and particles. We simplify the problem by integrating over 7 instead of the atmospheric path lengths with dl = % of
a respective zenith angle #. Correspondingly, we can write the integral over all single (aerosol) scattering events along an

atmospheric path [ from the surface to TOA

25



605

610

615

620

625

TOA TOA

1
Liym = Ey / exp | —— / Oext(2)dz (A14)

s

sfc ‘ Zscat
1 TOA
cexp | —— / Oext(2)dz (A15)
UZ

OscatO G dzscat (A16)

where the extinction is accounted for in the exponential functions with the scattering event happening at the height zsc,¢. The
product of the scattering coefficient o, and the scattering phase function Oyg describes the scattering efficiency.

In our atmospheric column of constant density, oy, is independent of height and the integral fg chOA Oscatl dl simplifies to
fOT dr' with 7 being the optical depth of the atmospheric column. In more detail, we can rewrite the relation and include the

single scattering albedo wy

d
Oscat * dl = WoOext * i = @d’r (A17)
R
and further include those in Eq. A14:
Wo —7 —7! ,
Lyam = Oug— [ exp exp dr (A18)
My A Ho v

The Henyey Greenstein phase function Oyg is an approximation for the scattering phase function and only depends on
the assymetry parameter g, that is the mean cosine of the scattering angle calculated by integrating over the scattering phase
function (Henyey and Greenstein, 1941):

_ 1 1-g°
AT 14 g2 — 29 (e

Ong (A19)

)3/2

For wy and g we use constant values taken from the libRadtran calculations with the input setup described in Sect. A2.

Appendix B: Derivation of the cloud-free fraction

Based on equations Eq. 6 and Eq. 7 we could directly solve for the cloud-free fraction p(FcLgar)-
We start with the cloud-free model output and apply Bayes’ theorem:
p(R|FeLear)
p(R)
We can add this information to Eq. 7

p(R = R'|Fcipar)
p(R=FR)

p(Feiear|R) = -p(FcLear) (BD)

1 —p(FeLown|R') =

-p(FCLEAR) (B2)
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and solve for p(Fcrgar)

p(R=R')

1 — p(Fq R B3
RZR’\FCLEAR)( p(FerLoun|R')) (B3)

p(FeLear) = o

We further add the information from Eq. B1 and Eq. B3 to our constraint stated in Eq. 6:

1 >p(Ferear|R) + p(FeLoup| R) (B4)
p(R[FcLear) p(R=R') ,
1> . L o(Fre IR o
= p(R) p(R _ R/lFCLEAR) ( p( CLOUD| )) (BS)
+p(FerLoun|R) (B6)
Rearranging the equation we get
p(R=R") p
1 — p(F R B7
p(R = R"|FcLEAR) (1= p(Feroun| 7)) (B7)
R=R
ol ) (1—p(FeLown|R')) VR" € R (BS)

~ p(R= R/|FcLEar)
and consequently we can find R’ by searching for the minimum:

p(R=R")
R = R"|FciLgar)

R' = argmingn (p( —(1 _p(FCLOUDRH))> (B9)

Knowing the R’ we could in principle derive the cloud-free fraction p(Fcgar) from Equ. B3. However, Equ. B9 becomes
unstable where p(FcLouplR”) is close to 1 which corresponds to cloudy parts while we are interested in the clear part of the

distribution. We therefore apply the modified method described in Sec. 3.2 in the current study.
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