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Abstract. We develop a new method to describe the total cloud cover including optically thin clouds in trade wind cumulus

cloud fields. Climate models as well as Large Eddy Simulations commonly underestimate the cloud cover, while estimates

from observations largely disagree on the cloud cover in the trades. Currently, trade wind clouds contribute significantly to the

uncertainty in climate sensitivity estimates derived from model perturbation studies. To simulate clouds well and especially

how they change in a future climate we have to know how cloudy it is.5

In this study we develop a method to quantify the cloud cover from a clear-sky
::::::::
cloud-free

:
perspective. Using well-known

radiative transfer relations we retrieve the clear-sky
::::::::
cloud-free contribution in high-resolution satellite observations of trade

cumulus cloud fields during EUREC4A. Knowing the clear-sky
::::::::
cloud-free part, we can investigate the remaining cloud-related

contributions consisting of areas detected by common cloud masking algorithms and those undetected areas related to optically

thin clouds. We find that the cloud-mask cloud cover underestimates the total cloud cover by a factor of 2. Lidar measurements10

on board the HALO aircraft
::::
33 %.

:::::::
Aircraft

::::
lidar

::::::::::::
measurements

:
support our findings by showing a high abundance of optically

thin clouds during EUREC4A. Mixing the undetected optically thin clouds into the clear-sky
::::::::
cloud-free signal can cause an un-

derestimation of the cloud radiative effect of up to -32
::::
-7.5 %. We further discuss possible artificial correlations in aersol-cloud

:::::::::::
aerosol-cloud cover interaction studies that might arise from undetected optically thin

:::
low clouds. Our analysis suggests that

the known underestimation of trade wind cloud cover and simultaneous overestiamtion
::::::::::::
overestimation of cloud brightness in15

models is even higher than assumed so far.

1 Introduction

Earth’s trade wind regions combine a dry atmosphere and a high abundance of shallow clouds – whose tops are often not much

higher than the long-wave emission height – to efficiently cool the planet. How much clouds in the trades cool the climate

is quantified by their cloud radiative effect, which in a first approximation depends on the cloud cover and the average cloud20

reflectance. Changes in the cloud radiative effect with warming pace cloud feedbacks, which in the trades have
:::
can

:::::::
amplify

::
or

::::::
dampen

::::::
global

::::::::
warming.

:::::
Trade

:::::::
cumulus

:::::
cloud

::::::::
feedback

:::
has been shown to contribute significantly to uncertainties in estimates
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of the global climate sensitivity (Bony and Dufresne, 2005; Vial et al., 2016), part of the well known difficulty climate models

have in representing clouds and cloud changes with fidelity.

Especially in low-cloud regions such as the trades, climate models underestimate the cloud cover while overestimating it’s25

average reflectance, a problem often called the "too few, too bright" low-cloud problem (Nam et al., 2012; Klein et al., 2013).

Large eddy simulation studies also show an underestimation of trade wind cumulus cloud cover and a limited representation

of small clouds (Nuijens et al., 2015), while the scaling behaviour of trade cumulus clouds suggests a high abundance and

significant contribution of small clouds to the total cloud cover (Plank, 1969; Wielicki and Welch, 1986; Cahalan and Joseph,

1989; Benner and Curry, 1998; Zhao and Di Girolamo, 2007; Mieslinger et al., 2019). Studies on the "twilight" zone even30

suggest that clouds may extend further into the cloud-free area than assumed so far (Koren et al., 2008). To simulate the change

in clouds with future temperature or aerosol perturbations, we first need to know how cloudy it is.

Estimating the cloud cover is a well-known issue in the sense that it decisively depends on the instrument used and the

purpose of respective datasets. All-sky observations by trained humans might have been the first systematic cloud-cover mea-

surements. Such measurements are synonymous with efforts to predict the weather and led to the first International Cloud Atlas35

as early as 1896. However, such observations are subject to unknown or hard to quantify uncertainties due to the training of

the observer and further biases originating from overlapping cloud layers and undetected upper clouds, or the higher frequency

of fair weather synoptic reports (Warren et al., 1985). Passive remote sensing opened the way to more objective quantification

of cloud cover from ground, from aircraft since the beginning of the 20th century, and also from space starting in the 1970s.

Active remote sensing added additional approaches to investigate clouds from ground, aircraft, and from space. Those various40

instruments dedicated to observe clouds have in common the dependence of a best estimate of cloud cover on (a) the data

resolution in space and / or time, (b) suitable thresholds defined in the physical quantity closest to the instrument raw data, (c)

the wavelength used and the resulting sensitivity of the measurement to clouds
:::::::::::::::::::::
(Stubenrauch et al., 2013). Even for collocated

measurements with very high spatial (tens of meters) and temporal resolution, Fig. 5 in Stevens et al. (2019) and more recently

Konow et al. (2021) nicely show that the range of cloud cover estimates from active and passive remote sensing can differ by45

a factor of 2.

In this study we present a different view on clouds by quantifying the clear-sky
::::::::
cloud-free area. The clear-sky

::::::::
cloud-free

signal is well understood in radiative transfer relations and can be simulated with well-posed approximations. The main advan-

tage of estimating cloudiness as the complement to clear-sky
:::::::::
cloud-free

::::
areas

:
is that we overcome the problem of diverse and

instrument-specific hard-coded thresholds in cloud masking algorithms. We apply the clear-sky
::::::::
cloud-free approach to high-50

resolution satellite imagery from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) recorded

during the field campaign EUREC4A in
::::::::::
(Elucidating

:::
the

::::
role

::
of

:::::::::::::::
clouds-circulation

::::::::
coupling

:::
in

:::::::
climate)

::
in

:
Jan-Feb 2020.

EUREC4A was dedicated to the investigation of trade wind cumulus clouds and their interaction with the large-scale environ-

ment (Bony et al., 2017; Stevens et al., 2021). The high resolution of the ASTER data provides the possibility to include clouds

of sizes at the deca- to hectometer scale and, equally important, increases the probability to observe clear-sky pixels free of any55

cloud structures. With the clear-sky
::::::::
cloud-free approach we can detect enhanced reflectances

::::::::
reflectance

:
from anomalously

humidified aerosols and optically thin cloud areas that are undetected by traditional cloud-masking algorithms. We show the
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contribution of optically thin cloud areas to the total cloud area and use Lidar measurements on board the HALO
:::::
(High

:::::::
Altitude

:::
and

:::::
Long

:::::
Range

::::::::
Research

::::::::
Aircraft) research aircraft to support our findings.

:::
We

:::::::
consider

::::::::
optically

::::
thin

::::::
clouds

::
to

::
be

::::::::
different

::::
from

::::::::::
humidified

::::::::
aerosols.

:::
The

:::::::
marine

::::::::
boundary

:::::
layer

::
is

:
a
::::::
humid

:::::
layer60

::::
with

:::
the

:::::::
constant

:::::::
presence

:::
of

:::::::::
humidified

::::::
sea-salt

::::
and

:::::::::
ammonium

::::::
sulfate

::::::::
aerosols.

::::
The

::::::
mixing

:::::
within

:::
the

:::::::::
boundary

::::
layer

::::
will

::::
bring

:::
the

:::::::
aerosols

::::::
almost

::::::
always

::::
into

:::
an

::::::::::
environment

:::::
above

:::::
80 %

::::::
relative

::::::::
humidity

:::::
such

:::
that

:::::::
sea-salt

:::
and

::::::::::
ammonium

::::::
sulfate

:::::::::
deliquesce,

:::::
while

:::
the

::::::::
humidity

:
is
::::::
almost

::::::::::
everywhere

:::::
above

:::::
60 %

::::::
making

::
it
:::::::::
impossible

:::
for

:::
the

:::::::
aerosols

::
to

::::::::
effloresce

:::::::::
(humidity

::
as

:::::
shown

:::
by

:::
the

::::::::
JOANNE

:::::::::
dropsonde

::::::
dataset,

:::::::::::::::::
George et al. (2021)

:
).
:::::
Thus,

:::::::::
humidified

:::::::
aerosols

:::
are

:::::::::::
omnipresent

:::
and

::::
part

::
of

:::
the

::::::::
cloud-free

:::::
signal

::::
and

:::
the

:::::
signal

::::
that

::
we

::::::::
attribute

::
to

:::::::
optically

::::
thin

:::::
clouds

::::::
within

:::
this

:::::
study

::::
goes

:::::::
beyond

:::
the

::::::::
cloud-free

::::::
signal.

:
65

The remainder of this article is organized as follows. Section 2 describes the high-resolution ASTER satellite dataset, the

WALES Lidar
:::::
(Water

::::::
Vapor

::::
Lidar

::::::::::
Experiment

::
in

:::::
Space

::::::::::::
demonstrator)

:::::
Lidar cloud product, and surface wind speed data based

on
::
the

::::
fifth

:::::::::
generation

::::::::
European

::::::
Centre

:::
for

:::::::::::::
Medium-Range

:::::::
Weather

::::::::
Forecasts

:::::::::
reanalysis

:
(ERA5

:
) reanalysis. In Section 3 we

show the clear-sky
::::::::
cloud-free model setup, and how we identify optically thin clouds in ASTER observations. Results on the

contribution of optically thin clouds to the total cloud cover during EUREC4A are shown in Section 4, followed by a discussion70

of implications of our results in Section 5.

2 Observations

Within this study we exploit the potential of the high spatial resolution passive remote sensing instrument ASTER (Advanced

Spaceborne Thermal Emission and Reflection Radiometer; Yamaguchi et al. (1998)) that recorded images of cloud fields east

of Barbados in support of the EUREC4A campaign. We extend the information on the typical cloud fields observed during75

EUREC4A with airborne high spectral resolution lidar measurements to support our analysis of clouds from an active sensor

with a high sensitivity to small and optically thin clouds.

2.1 The ASTER dataset for EUREC4A

ASTER is mounted aboard Terra, a polar-orbiting satellite in a
:::::::::
descending

:
Sun-synchronous orbit with an equator crossing

time of 10:30 local solar time. Terra crosses the latitude of Barbados and the HALO flight circle area roughly at 14:25 UTC,80

while the tracks further east at about 43°W are observed by ASTER an hour earlier. Fig. 1 shows the
:::::::
location

::
of measurements

taken in the area east of Barbados from 7 °N to 18 °N and from 41 °W to 62 °W between January 11 and February 19 2020.

The data from the observed swaths are segmented in the form of 60 × 60 km2 images, each corresponding to 9 s of observation

time.

ASTER’s visible and near-infrared (VNIR) radiometer pointing nadir has three bands in the range of 0.53 - 0.86
:
µm. The85

radiometrically calibrated and geometrically co-registered Level 1B data provide top of atmosphere monodirectional radiances

at 15 m pixel resolution at the sub satellite point. We use the band 3 radiance centered at 0.807 µm in the present study to

define the total cloud cover.
:::
One

::::::
image

::
of

:::::
band

:
3
::::::::
radiances

:::::::
consists

:::
of

::::
4200

:::::
pixels

::::::
along

::::
track

::::
and

::::
4980

::::::
pixels

:::::
across

:::::
track

:::::
where,

:::::::::
depending

:::
on

:::
the

:::::::
viewing

:::::
angle,

:::::
about

::::::
15.4 %

:::
are

:::::
swath

:::::
edge

:::::
pixels

:::
and

:::::::::
neglected

:::::
within

:::
the

::::::
further

:::::::
analysis

:::::::
leaving

3
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Figure 1. ASTER dataset
:::::::::
measurement

:::::::
locations during EUREC4A with 419 images (60km x 60km) recorded on 17 days between 11 January

and 19 February 2020. WALES lidar measurements are available from HALO’s research flights predominantly on the circular path shown in

green from 13 flight days between January 22 and February 15 2020.

::::
about

:::::::::
17684552

:::::
pixels

:::
per

::::::
image.90

::
In

:::
our

:::::::
analysis

:::
we

::::
work

::::
with

:::::::::
reflectance

::::::
instead

:::
of

:::::::
radiance

::::
with

:::
the

:::
aim

::
to

::::::
reduce

:::
the

::::::::
influence

::
of

::::::
varying

:::::
solar

:::::
zenith

::::::
angles

::
θ0 ::::::

within
:::
the

:::::::::
overpasses

::::
and

:::::::
slightly

::::::
varying

:::::::::::::
extraterrestrial

::::
solar

:::::::::
irradiance

::::
E0.

::::
The

:::::::::
reflectance

::
R

:
is

:::::::::
calculated

:::::
from

:::
the

:::::::
radiance

:
L

::
as

R=
πL

cos(θ0)E0
::::::::::::

(1)95

We further draw comparisons to the ASTER cloud mask which is based on several bands in the VNIR
:::::::::::::::::
(Werner et al., 2016)

. The cloud mask works with thresholding tests and is representative for traditional passive remote sensing cloud masking

schemes . In detail, we distinguish between
::::
such

::
as

:::
the

:::::::::
Moderate

:::::::::
Resolution

:::::::
Imaging

::::::::::::::::
Spectroradiometer

:::::::::
(MODIS)

:::::
cloud

:::::::
detection

:::::::
scheme.

:::
In

::::
more

::::::
detail,

:::
the

::::::::
algorithm

::::
uses

:::::
three

::::
tests

::
to

:::::::::
distinguish

:::::::
between

::::::
bright

::::::
clouds

:::
and

:::
the

::::
dark

:::::
ocean

:::::
from

::::::::
thresholds

:::::::
applied

::
to

:::::::
radiance

:::::
values

::
in
:::
the

::::::
VNIR

:::::
range.

:::
An

::::::::
additional

::::
test

:::::
based

::
on

::
a

::::
band

::
in

:::
the

:::::::::
short-wave

:::::::
infrared

:::::::
(SWIR)100

:
is
:::
not

:::::::::
applicable

::::::::
anymore

::
as

:::
the

:::::
SWIR

:::::::
detector

:::::
broke

::
in

:::::
2007.

:::::::::::
Nevertheless,

:::
the

:::::
three

::::::::::
thresholding

:::
test

:::::
allow

::
us

::
to
::::::::::
distinguish

:::::::
between confidently clear, probably clear, probably cloudy, and confidently cloudy pixels following the method described in

Werner et al. (2016)for the VNIR bands. Within this .
:::::::

Within
:::
the

::::::
current

:
study we combine the flags probably cloudy and

confidently cloudy if we refer to cloudy regions according to the ASTER cloud mask. We omit thresholding tests including the

broken short-wave infrared detector as well as
:
a

:::
fifth

:::
test

::::::::
including

:
ASTER’s thermal band 14 (11.65 µm, 90 m pixel resolution)105

. The latter would
:::
that

::
is

::::::::
designed

::
to detect cirrus contaminated areas

:::
and

:::
sun

::::
glint

:
at the expense of a lower resolution.

:::
The
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::::::::::
observations

::::::
during

:::::::::
EUREC4A

:::
are

::::::
luckily

:::::::
recorded

::
at

:
a
:::::::::
minimum

:::
sun

::::::::
reflection

:::::
angle

:::::
larger

::::
than

:::
23 °

:::::::
making

:::
sun

::::
glint

::::::
highly

:::::::
unlikely.

In our analysis we work with reflectances instead of radiances with the aim to reduce the influence of varying solar zenith

angles θ0 within the overpasses and slightly varying extraterrestrial solar irradiance E0. The reflectance R is calculated from110

the radiance L as

R=
πL

cos(θ0)E0

:::::::::
Concerning

:::::
cirrus

::::::
cases,

::
we

:::::::
decided

::
to

::::
stay

::::
with

:::
the

::::
high

:::::::::
resolution,

:::
but

::::::
instead

:::::::
exclude

::::::
images

:::
that

:::::
have

:
a
::::
high

:::::::::
likelihood

::
to

::
be

:::::::::::
contaminated

:::
by

:::::
cirrus

::::::
clouds.

::
A

:::
test

::::::
based

::
on

:::
the

::::
ratio

:::
of

::::::::
ASTER’s

::::::
thermal

::::::
bands

::
13

::::
and

::
14

::
is

:::::::::::
implemented

::::::::
following

::
a

:::::::::
publication

:::
by

::::::::::::::::::::
Hulley and Hook (2008).

::::
The

:::
test

::::::::::::
unfortunately

::::::
detects

::::
next

::
to

:::::
cirrus

::::
also

:::
low

::::
thin

::::::
clouds,

:::
the

:::::
latter

:::::
being

:::
the115

::::
main

::::
actor

::
of
:::
the

::::::
current

:::::
study

:::::
which

:::
we

::::::::
therefore

::::
want

::
to

::::
keep

::
in

:::
the

:::::::
dataset.

::::
Most

::::::::::
importantly,

:::
we

:::::
notice

::::
that

:::
our

::::
main

::::::
results

:::
and

:::::::::
statements

::::::
change

::::
only

:::::::::
marginally

:::::::::
indicating

:::
that

:::::
cirrus

::::
does

::::
not

::::
have

:
a
::::::
strong

::::::
impact

::
on

:::
the

::::::
current

:::::
study.

::::::::::::
Nevertheless,

::
we

:::::::
exclude

::::::
images

::::
that

::::
have

::
a

::::::
chance

::
of

:::::
more

::::
than

::::
10%

::::::::
coverage

::
by

::::::::
potential

:::::
cirrus

::
as

:::::::
defined

::
by

::::::::::::::::::::
Hulley and Hook (2008)

:
,

:::::
which

:::::
leaves

::::
380

::::::
images

:::
for

:::
our

:::::::
analysis.

:

2.2 WALES airborne lidar measurements120

The WALES lidar instrument (Water Vapor Lidar Experiment in Space demonstrator; Wirth et al. (2009)) is part of the remote

sensing package on board the HALO research aircraft during EUREC4A (Stevens et al., 2019). The
::::::
aircraft

:::
flew

::
at
:::::
about

:::::
9 km

::::::
altitude

:::::::::
throughout

::
of

:::
the

:::::::::
campaign

:::
and

::::
thus

:::::
below

:::
the

::::::
typical

::::::
altitude

::
of

:::::
cirrus

::::::
clouds

::
in

:::
the

::::::
trades.

:::
We

:::::::
therefore

:::::
don’t

::::::
expect

:::
any

:::::
cirrus

::::::::::::
contamination

::
in

:::
the

:::::::
WALES

:::::::
dataset.

:::
The

:
high spectral resolution lidar measurements from the auxiliary channels

of the instrument at 532 nm are well suited to investigate the small and optically thin clouds due to the high instrument125

sensitivity to small particles ranging from aerosols to cloud droplets. The advantage of WALES compared to space borne

active instruments such as the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) simply lies in the closer distance

and thus a higher sensitivity to low clouds and the much higher horizontal sampling due to the lower aircraft speed (0.2 km/s

versus 7 km/s). The resulting horizontal spatial resolution of the WALES cloud product is about 40 m during EUREC4A, which

is slightly larger but commensurate with that of ASTER. CALIOP has been shown to struggle detecting small clouds with130

cloud tops below 1 km (Leahy et al., 2012), while we find 29 % of clouds detected by WALES during EUREC4A to have cloud

tops below 1 km.

Within the present study we use the cloud mask and cloud optical depth product described in Konow et al. (2021). In the

dataset, a cloud is defined where the backscatter ratio exceeds 10. This threshold is lower compared to the studies by Gutleben

et al. (2019) and Jacob et al. (2020) where the value was chosen to make the detection limit comparable to CALIOP. The135

lower value used in the present study nicely separates the highest possible signals originating from marine aerosol and any

cloud related signal that might include anomalously humidified aerosols and the smallest cloud droplets. WALES uses the

High Spectral Resolution Lidar technique (HSRL; Esselborn et al. (2008)) to distinguish molecular from particle backscatter

at 532 nm, which allows for the direct measurement of the (two way) atmospheric transmission. The latter is proportional to

5



the range (r) and atmospheric density corrected lidar signal RM (r). To a first approximation the optical thickness is given by140

τ =−1

2
· ln

RM (r)

RM (0)

RM(r)

RM(0)
:::::

 . (2)

The complete algorithm adds several corrections and is described in detail in Esselborn et al. (2008).

2.3 Surface wind speed estimates

For the methodology described in Sec. 3 we need surface wind speed estimates at 10 m height for a given ASTER pixel. The

fifth generation European Centre for Medium-Range Weather Forecasts reanalysis (ERA5) provides hourly wind speed esti-145

mates on a global grid at 10 m height (2D surface product) which would fit our needs, but showed a significant underestimation

compared to collocated dropsonde measurements during EUREC4A (JOANNE dropsonde dataset: George et al. (2021)). The

underestimation is in agreement with a study by Belmonte Rivas and Stoffelen (2019) which find a low bias in ERA5 surface

winds in the trades. Nevertheless, wind speed estimates from the ERA5 profile product (hourly, 0.25° grid; Hersbach et al.

(2020)) agree remarkably well with dropsonde measurements.150

Thus, we use ERA5 wind speeds at the lowest
::::::
altitude

:
pressure level 1000 hPa which corresponds to about 135 m above sea

level on average based on the dropsonde dataset. We derive a correction that translates from 1000hPa to 10m
:::::::
1000 hPa

::
to

:::::
10 m

based on a comparison of ERA5 wind speed at 1000 hPa and the 10 m wind speed from dropsonde measurements (Pearson

correlation coefficient 0.88). A least squares fit provides us with the coefficients to estimate the 10 m wind speed by

ws= 0.92 ·wsERA5,1000hPaERA5,1000hPa
::::::::

+ 0.40. (3)155

This wind speed is an average value representative for a 0.25 ° grid cell. We therefore use measurements at the Barbados

Cloud Observatory (BCO) to estimate the variance in wind speed within 0.25 ° compared to the 15 m ASTER grid. The BCO

is located at the easternmost point of the island of Barbados and has been shown to take measurements representative of an

undisturbed marine trade wind boundary layer (Stevens et al., 2016). We use the standard surface wind speed measurements

from a Vaisala WXT-520 to derive an estimate of the surface wind variance within 0.25 ° (27.12 km at 13 °N) which translates160

to about 80 minutes sampling period. We add a Gaussian perturbation according to the estimated wind variance of 1.63 m2s−2

to the average wind speed within our further analysis. The campaign average wind speed corresponding to the ASTER image

locations is 9.02 ms-1.

3 Methodology

The ASTER cloud mask provides us with a good perception of the certainly clear and certainly cloudy areas, while we are less165

confident in between. We approach the intermediate range from the clear-sky
::::::::
cloud-free by simulating the expected probability

distributions of clear-sky reflectances
:::::::::
cloud-free

:::::::::
reflectance

:
for a given ASTER image. Knowing the theoretical clear-sky

::::::::
cloud-free

:
contribution to an all-sky ASTER image we can then investigate the cloud-related contributions that are undetected

6



Figure 2. Sketch illustrating the clear-sky
:::::::
cloud-free

:
retrieval workflow. ASTER and ERA5 input data is used to run radiative transfer

simulations with integrated AOD optimization. A Gaussian perturbation is added to the output average pixel reflectance Rmean to account

for ocean surface variability and measurement noise. The figure on the right shows the processing steps that lead to the simulated clear-sky

:::::::
cloud-free

:
reflectance distribution for a single ASTER image observed 2020-01-24 14:02:02 UTC.

by the cloud mask and which we attribute to optically thin clouds.
::
3D

:::::
cloud

:::::::
radiative

::::::
effects

:::
are

:
a
::::::::
potential

:::::::::::
complicating

:::::
factor

::
in

::::::
broken

:::::
cloud

::::::::
conditions

::::
and

:::
we

:::
will

::::::
discuss

:::::
their

:::::::
influence

:::
in

::::::
section

:::
4.3

:::::::
together

::::
with

::::::
results

::::
from

:::
the

:::::::
WALES

:::::
lidar.170

We start
::::
First,

:::
we

::::::::
introduce

:::
the

::::::::::::
methodology

:
with a brief overview on the clear-sky

::::::::
cloud-free

:
retrieval setup and the

necessary input information on surface wind speed and aerosol optical depth, before we show our approach for transferring the

clear-sky
::::::::
cloud-free information to the

::::::
all-sky ASTER observations and defining areas of optically thin clouds.

3.1 A simplified clear-sky model (SCSM)

The clear-sky
:::::::::
cloud-free radiance over ocean in the visible range depends on a narrow set of parameters and can be estimated175

by simplified 1D
:::::::::::::
one-dimensional

:
radiative transfer calculations. In appendix A we describe the full set of equations and

approximations made in calculating the clear-sky
::::::::
cloud-free signal with our simplified clear-sky model (SCSM). We generally

assume a single-layer atmosphere with constant air density and calculate the extinction of solar radiance from the top of

atmosphere to the ground and back to the sensor in space. How the light is reflected at the surface into the view direction of

the sensor is characterized by the bi-directional reflection function which depends on the surface wind speed and the generated180

ocean wave slope distribution. Here, we use the wind speed estimates described in chapter
:::::
section 2.3 as input to the Cox and

Munk parameterization to derive an average reflectance for a given surface condition
:::::::::::::::::::
(Cox and Munk, 1954).

We further need to know the aerosol optical depth (AOD) to estimate the extinction of direct and diffuse light
:::::::
radiation

on it’s path through the atmospheric column. Although the aerosol load does not vary much within a 60 x 60 km2 ASTER

image, the availability of aerosol information from measurements even for an image-average AOD is very limited. Therefore,185

we estimate an effective AOD in an optimization approach by including information from the ASTER dataset. We assume that

the pixels labeled confidently clear in the ASTER cloud mask are a good first guess for clear-sky
::::::::
cloud-free

:
and shall serve as
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a reference for finding a suitable effective AOD such that the simulated clear-sky
::::::::
cloud-free values are in close agreement with

the selected ASTER pixel values.

In Fig. 2 we illustrate the clear-sky
::::::::
cloud-free

:
retrieval workflow. In detail, we randomly select 20000 pixel

::::::
(0.11 %

::
of

:::::
valid190

:::::
image

::::::
pixels) from those defined confidently clear by the ASTER cloud mask (see Sect. 2.1) for a given ASTER image. Sim-

ulating 20000 samples ensures a proper representation of the clear-sky
::::::::
cloud-free

:
distribution at a manageable computational

cost. For those input pixel locations we run the clear-sky
::::::::
cloud-free model with the corresponding sensor-sun geometries, sur-

face wind speed estimates, and a first guess on the AOD. We further optimize this image AOD value iteratively by minimizing

the summed squared difference between simulated and observed reflectances. Here, we make use of scipy’s implementation195

of the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (LM-BFGS) with bounds (scipy version 1.5.2).
:::
The

:::::::
resulting

:::::::
effective

:::::
AOD

:::::
value

::
is

::::::::::::
representative

:::
for

:::
the

:::::::::
reflectance

::::::::::
distribution

::
of

::
a

:::::
single

:::::::
ASTER

::::::
image.

:
From all evaluated

ASTER images we find a campaign average effective AOD of 0.076
:::::
0.077 (± 0.051).

From comparing simulated clear-sky
::::::::
cloud-free reflectance distributions to the

::::::
selected

:
observed ones for fully clear-sky

ASTER observations
:::::::
manually

:::::::
checked

::::
and

::::::::
seemingly

:::::::::
cloud-free

:::::::
ASTER

:::::::::::
observations,

:
we find two things. First, the distribu-200

tions agree very well in terms of their expected value. Second, the simulated distributions are more narrow compared to the

observed ones as the Cox and Munk parametetrization returns average pixel reflectances Rmean:::::::::
reflectance

:::::
Rmean. We there-

fore introduce a variability in brightness in a post processing step. We calculate a kernel density estimate with normal kernels

characterized by a standard deviation σRmean :::::
σRmean that is placed on each of the simulated reflectance values (Rosenblatt,

1956; Parzen, 1962). We derive a suitable value for σRmean :::::
σRmean:

from comparing simulated clear-sky
:::::::::
cloud-free reflectance205

distributions and corresponding ASTER images that have at minimum 97 % confidently clear pixels in the ASTER cloud mask.

From 22 cases we calculate the average σRmean
= 0.0026

:::::::::::::
σRmean = 0.0026

:
from a least-squares optimization using again the

LM-BFGS algorithm. We use a constant value for σRmean ::::
σRmean:

for the whole dataset due to the lack of several clear-sky

::::::::
cloud-free

:
observations for various sensor-sun geometries. However, the ASTER dataset is confined to a narrow set of sensor-

sun geometries and outside of possible sun glint observations such that we assume that a constant value is sufficient for our210

application.

3.2 Identifying optically thin clouds in all-sky observations

The output from our SCSM model provides us with a distribution of clear-sky reflectances
::::::::
cloud-free

:::::::::
reflectance

:
p(R|FCLEAR,B),

which is the probability distribution of reflectance values R given that they originate from clear-sky
:::::::::
cloud-free area with the

flag F = FCLEAR and additional background conditions B. The background conditions include the sensor-sun geometry, wind215

speed, and AOD and are covered by the SCSM by handling each image individually. In the following we evaluate the prob-

abilities on an image basis and therefore omit the implicit condition on B in the notation. Further, we use standard notation

whereby “|” means “given that” for conditional probabilities and “,” means “and” and symbolizes combined (or joint) proba-

bilities. For example, the SCSM output is a conditional probability as the SCSM framework does not include any information

on the general clear-sky
::::::::
cloud-free fraction within one image.220
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In the following, we split the observed reflectance distribution of an ASTER image into the categories or flag values F ∈
{FCLEAR,FOTC,FCLOUD}. The ascending order of the flag values indicates the associated expected increase in reflectance. The

darkest observed pixels originate form clear-sky
::::::::
cloud-free ocean observations. Small cloud fragments and humidified aerosols

slightly enhance the reflectance, though they are often undetected by cloud masking scheme. We characterize them as optically

thin clouds OTC. The flag CLOUD refers to the cloudy pixels detected by the ASTER cloud masking scheme (see Sec. 2.1).225

We know the CLOUD part of an
:
a distribution p(R,FCLOUD) from the observation and we can infer the CLEAR contribution

from the SCSM output. The all-sky reflectance distribution p(R) is build up by the arithmetic sum of combined probability

distributions of R and the flag values F , that is:

p(R) =
∑

FnFn
:
p(R,Fnn) (4)

= p(R,FCLEAR) + p(R,FOTC) + p(R,FCLOUD)230

Each combined probability can be represented by the product of the corresponding conditional probability and the probability

of the flag value, i.e. for clear-sky
:::::::::
cloud-free

p(R,FCLEAR) = p(R|FCLEAR) · p(FCLEAR). (5)

The probability of clear-sky
::::::::
cloud-free

:
p(FCLEAR) is the true clear-sky

::::::::
cloud-free

:
fraction in an observed image and chal-

lenging to estimate. Note that the true clear-sky
::::::::
cloud-free

:
fraction is independent of the ASTER cloud mask. If we would235

know the clear-sky
::::::::
cloud-free

:
fraction p(FCLEAR), equations Eq. 5 and Eq. 4 together fully describe the observed reflectance

distribution p(R). In the following we describe our approach for estimating the unknown clear-sky
:::::::::
cloud-free fraction.

The first constraint is given by the fact that any probability must be within the range [0,1], thus we can formulate for our

case:

p(FCLEAR|R′′) + p(FCLOUD|R′′)≤ 1 ∀R′′ ∈ R (6)240

We can approach the estimation of the clear-sky
::::::::
cloud-free

:
fraction p(FCLEAR) from a conservative side by deriving the maxi-

mum possible p(FCLEAR) such that Eq.6 still holds. Thinking visually, we scale the simulated clear-sky
::::::::
cloud-free

:
distribution

up until it touches the all-sky distribution p(R). At the reflectance R=R′ (of unknown value) where the PDFs touch, we are

certain that the non-cloudy classified reflectances are actually due to clear-sky
:::::::::
cloud-free:

∃ R′ such that p(FCLEAR|R′) = 1− p(FCLOUD|R′) (7)245

We can solve Eq. 7 and Eq. 6 for p(FCLEAR) (for details see appendix B). While being mathematically concise, the de-

scribed method faces a problem. It relies on the exact count of measurements in only a single reflectance bin R′ and thus is

especially susceptible to measurement and model uncertainties. We tackle this problem by extending and relaxing the condi-

tion stated in Eq. 7. We modify this first condition from a single value to an extended range of reflectance values. As Eq. 7
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would be overdetermined for more than one reflectance value in the presence of measurement and model uncertainties, we250

demand that the equation approximates the value 1− p(FCLOUD|R′) for reflectivity values measured and known to be caused

by clear-sky
::::::::
cloud-free

::::
skies.

In particular, we do this by a weighted linear regression, minimizing the term:∫
|[p(FCLEAR|R)− (1− p(FCLOUD|R))] ·w|2 dR (8)

with p(FCLEAR) as the only free variable. The regression weight w = p(R)p(R|FCLEAR) is chosen to only consider mea-255

sured reflectances
:::::::::
reflectance

:
p(R) that overlap with the range of simulated clear-sky reflectances

::::::::
cloud-free

::::::::::
reflectance

p(R|FCLEAR). The product of both guarantees a close agreement around the peaks of measured and simulated PDF.

The resulting estimate of p(FCLEAR) is more robust in the presence of small measurement or model errors, but a direct

consequence of this approximate matching is that Eq. 6 does not necessarily hold for all R′′ anymore. As illustrated in Fig. 3

using dotted and dashed lines, we correct this by clipping the resulting probabilities to the allowed range. As this clipping260

effectively modifies the simulated reflectance distribution and thus is potentially dangerous, we need to ensure that this method

indeed only compensates for small measurement uncertainties (i.e. in the order of a single digital sensor count). We can do this

by comparing the expected value of the clear sky reflectance p(R|FCLEAR) before and after clipping. On average, this difference

is 0.15% and even in the worst (maximum) case, the clipping causes a shift of 0.0018 in reflectance units, which is well below

one digital sensor count of about 0.004 reflectance units. Based on this analysis, we use the more stable regression and clipping265

method in stead of a direct application of Eq. 7.

Further, the SCSM does not include cloud shadows on the ocean surface which introduce a signal at very low reflectances

in the observed distribution. Conceptually we add the low reflectance values originating from such shadowed areas to the

clear-sky
::::::::
cloud-free reflectance distribution p(R,FCLEAR).

In Fig. 4 we show combined probability distributions per flag for an ASTER observation on the 31st of January east of270

Barbados. The inset figure shows the reflectance image that we translate into the distribution using the method described

above.

3.3 Robustness of optically thin cloud estimation

Our target variables are the fraction and expected reflectance of optically thin clouds. The retrieval of clear-sky
::::::::
cloud-free

:
and

subsequent optically thin clouds in ASTER images depends on visible clear-sky
:::::::::
cloud-free areas which limits the evaluation275

of the full ASTER EUREC4A dataset to images with less than 85 % detected cloud cover in the cloud masking algorithm (395

:::
380

:
images).

Within the retrieval we have two main free parameters which can introduce uncertainty in our target values, the surface

wind speed estimate and the assumed variability σRmean :::::
σRmean of simulated average pixel reflectances Rmean ::::

Rmean. We first

have a look at the added variability. From a comparison of 22 manually checked clear-sky
::::::::
cloud-free

:
reflectance distributions280

(> 97 % confidently clear pixels) to the simulated distributions we derived an average variance of 0.0026 (± 0.0007). We apply

the methodology described in this section for the average value, as well as for a 20 % lower (0.0020) and 20 % higher value
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Figure 3. Visualization of the approach for estimating the clear-sky
:::::::
cloud-free

:
fraction p(FCLEAR) by optimization. The orange dotted and

dashed lines show the processing steps leading to the filled orange clear-sky
::::::::
cloud-free PDF. The blue lines are the respective residuals

related to optically thin clouds and resulting from the all-sky (grey) minus the CLEAR (orange) and minus the CLOUD PDF (dark blue; not

visible).

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Reflectance / -

0

20

40

60

80

PD
F

Area fraction
all-sky: 1.00
Cloud-free: 0.77
Opt. thin cloud: 0.13
ASTER cloud mask: 0.10

0.00

0.25

0.50

0.75

1.00

Figure 4. Reflectance distribution corresponding to the ASTER observation shown in the inset figure recorded on 31 January 2020, 14:08:05

UTC south-east of the HALO circle area at 11.37 °N, 53.86 °W. The clear-sky
::::::::
cloud-free contribution is retrieved with the method (1)

described in section 3.2 and displayed by the orange curve, while pixel reflectances identified cloudy from the ASTER cloud masking

algorithm are shown in dark blue. We attribute light blue contribution to the distribution to optically thin clouds.

(0.0031). Similarly, we add an artificial bias of ± 20 % to the surface wind speed estimates and investigate the change in our

target values. The average wind speed in our dataset is 9.02 ms-1 (± 2.38 ms-1). The resulting deviations in our target values,

the fraction p(OTC) and expected reflectance E(R|OTC) of optically thin clouds, that result from a bias in σRmean ::::
σRmean:

and285

/ or the surface wind speed are stated in Tab. 1and Tab. ??. .
:

The fraction of optically thin clouds p(OTC) changes only slightly with a change in wind speed showing an overestimation

for a negative wind speed bias meaning that a small part of the clear-sky
::::::::
cloud-free distribution is wrongly attributed to optically

thin clouds. For a positive wind speed bias the opposite is the case. The low uncertainties (3.1
:::
4.6 % and -2.5

:::
-4.9 %) are a result
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Table 1. Deviations of the fraction
:::::::
∆p(OTC)

::::
and

:::::::
expected

::::::::
reflectance

::::::::::
∆E(R|OTC)

:
of optically thin clouds ∆p(OTC) for the two main

free parameters to the clear-sky retrieval, the surface wind speed and the variability σRmean:::::
σRmean . The two numbers in each cell state the

absolute / relative difference to the reference case with no wind speed bias and σRmean ::::
σRmean = 0.0026 respectively.

∆p(OTC) ∆E(R|OTC)

wind speed bias
:::
-1.8

:::
ms-1

: :
0
:::
ms-1

: ::
1.8

::::
ms-1 -1.8 ms-1 0 ms-1 1.8 ms-1

σRmean

0.0020
:::::
0.00204

:
0.026

::::
0.027 / 14.2

::::
19.7 % 0.018 / 10.1

::::
13.1 % 0.012

::::
0.010

:
/ 6.3%

::::
7.3 % 0.0026 0.006

::::::
-0.0031 / 3.1

:::
-5.5 % 0

::::::
-0.0026 / 0

:::
-4.5 % -0.005

:::::
-0.0018

:
/ -2.5

:::
-3.1 %

0.0031
:::::
0.00255

:
-0.012

::::
0.006 / -6.4

:::
4.6 % -0.019

::::
0.000

:
/ -10.0

:::
0.0 % -0.022

:::::
-0.007 / -11.9% Deviations of the expected reflectance of optically thin clouds ∆E(R|OTC) for the two main free parameters to the clear-sky retrieval, the surface wind speed and the variability σRmean . The two numbers in each cell state the absolute / relative difference to the reference case with no wind speed bias and σRmean= 0.0026 respectively.

:::::
-4.9 % -1.8 ms-1 0 ms-1 1.8 ms-10.0020 -0.0043

::::::
-0.0017 / -4.4

:::
-3.0 % -0.0031

:::::
0.0000

:
/ -3.1

:::
0.0 % -0.0017

::::::
-0.0004 / -1.8

:::
-0.6 %

0.0026
:::::
0.00306

:
-0.0011

:::::
-0.014 / -1.1

::::
-10.6 % 0

::::
-0.019

:
/ 0

::::
-14.1 % 0.0014

::::
-0.024

:
/ 1.4%

:::::
-17.5 %

:
0.0031 0.0024

:::::
-0.0001

:
/ 2.5

:::
-0.2 % 0.0038

:::::
0.0003

:
/ 3.9

::
0.5 % 0.0049

:::::
0.0007 / 5.0

:::
1.3 %

of the retrieval setup including the optimization of AOD which can partly compensate a bias in wind speed. Changing the290

variability of simulated average pixel reflectances σRmean ::::
σRmean:

can narrow (negative bias in σRmean:::::
σRmean ) and broaden

(positive bias in σRmean
) the clear-sky

:::::
σRmean )

:::
the

:::::::::
cloud-free

:
distribution and thus lead to strong over- or underestimation of

p(OTC) as high as ∼
::::
13.1 10

::
%

:::
and

:::::
-14.1 %

::::::
(relative

::::::::::
deviations). Combining the highest retrieval uncertainties from the two

free parameters, the wind speed and the variability σRmean:::::
σRmean , we can get a deviation in the estimated fraction of optically

thin clouds of
:::
up

:::
to ± 0.026 (

::::
0.027

::::::::
(relative: ± 14.2

:::
19.7 %).295

The expected reflectance of optically thin clouds E(R|OTC) shows a smaller sensitivity to changes in the wind conditions

and σRmean ::::
σRmean:

compared to the fraction of optically thin clouds discussed above. An underestimation in wind speed

leads to a marginal underestimation in the expected reflectance as lower clear-sky reflectances are
::::::::
cloud-free

::::::::::
reflectance

::
is

wrongly attributed to optically thin clouds. In the case of an overestimation in wind speed, the clear-sky
:::::::::
cloud-free reflectance

distribution extends to higher reflectance values which are missing in the estimated E(R|OTC) and thus leads to a high bias in300

E(R|OTC). A more narrow (negative bias in σRmean:::::
σRmean ) or broader (positive bias in σRmean

) clear-sky
:::::
σRmean )

:::::::::
cloud-free

distribution can decrease or increase the expected reflectance of optically thin clouds up to ±
:::
-4.5 4 %. However, the combined

deviation due to possible biases in wind speed and σRmean :::::
σRmean:

are still within the range of ± 0.0049
::::::
0.0031

:
(± 5.0

::
5.5 %)

:::::
which

::
is

::::::
smaller

::::
than

:::
the

:::::::::
reflectance

:::
bin

::::
size

::
of

:::
the

:::::::
original

:::::
Level

::
1B

:::::::
ASTER

::::
data

:::::
(least

:::::::::
significant

:::
bit).

4 Results305

We investigate 395
:::
380

:
ASTER images for the signal from optically thin clouds (OTC) that are undetected by the ASTER

cloud mask but can be identified with the method described in Sect. 3. We first visualize pixels in an image that we attribute

to the total cloud cover including OTC pixels and those detected in the ASTER cloud mask. We then define a close match of

OTC reflectances in ASTER images and the signal of OTC detectable in WALES lidar data. WALES measurements provide

an independent view of the results of the cloud cover by OTC from a different instrument technology and complement our310

analysis based on ASTER images. Finally, we show the significant contribution of optically thin clouds to the total cloud cover.
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4.1 Visualizing optically thin clouds in an ASTER image

To visualize the OTC area in an image we can define a threshold in reflectance similar to common cloud masking algo-

rithms. We construct a total cloud cover mask that includes pixels with a probability of that pixel reflectance to be cloudy

p(FTOTAL_CLOUD|R=Rpixel)≥ 0.9 with FTOTAL_CLOUD = FOTC ∨FCLOUD. In the particular ASTER image shown partially in315

Fig. 5 all reflectance values greater than 0.049 satisfy that condition. The cloud mask derived with the cloud masking algorithm

by including several ASTER bands is shown in blue in panel a) while the total cloud cover mask is shown by the contours in

red in panel b). The background reflectance image in panel b) is adjusted in its reflectance range with the aim to enhance the

range reflectances related to OTC.

The figure visualizes how OTC is often classified in pixels surrounding detected clouds. Detraining clouds and anomalously320

humidified aerosols likely cause enhanced reflectances close to thicker clouds. Possible scattering of light at the sides of thicker

clouds might additionally enhance the brightness of their surrounding areas. Such surrounding halos of optically thin clouds

lead to (threshold dependent) smoother cloud edges, an interesting result in the context of cloud boundaries and related fractal

dimensions. Also, cloud structures tend to be more connected in the total cloud cover mask leading to larger cloud objects with

smooth reflectance transitions to the clear-sky
::::::::
cloud-free

:
ocean background. While there are numerous studies on cloud shapes325

we rather focus on a statistical estimate of area coverage and the contribution of OTC to the total cloud cover in the remainder

of this work.
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Figure 5. Visualization of the area corresponding to optically thin clouds. Shown are reflectances at 0.807 µm for a 1.5 x 1.5 km2 selection of

an ASTER image recorded on 5 February 2020, 14:25:15 UTC. (a) shows the full physical range of reflectance values ranging from 0 to 1 with

overlayed blue contours outlining the ASTER cloud mask. (b) is similar to (a) but with the color scale limited to the 10th and 90th percentile of

reflectances attributed to total cloud cover including optically thin clouds. The red contours correspond to p(FTOTAL_CLOUD|R=Rpixel)≥ 0.9.

4.2 The OTC equivalence in Lidar data

In Fig. 5 optically thin clouds are barely visible in the reflectance field in panel a) suggesting that those clouds have a very low

cloud optical thickness. Due to non-linearities in the physical and radiative properties of small cumulus clouds and the large330
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Figure 6. Plane-parallel relationship between cloud albedo and cloud optical thickness following Lacis and Hansen (1974). The ocean

reflectance is estimated from the ASTER observations during EUREC4A, while the uncertainty due to 3D radiative effects is a rough estimate

from the literature
::::::::::::::::::::::::::::::

(Marshak et al., 2006; Stevens et al., 2019).

influence of 3D radiative effects, plane-parallel retrieval of microphysical properties do not work reliably and we cannot derive

cloud optical thickness from ASTER measurements directly (Davies, 1978; Loeb et al., 1997; Várnai and Marshak, 2003;

Marshak et al., 2006; Stevens et al., 2019; Kölling, 2020). However, we use the theoretical relationships that plane-parallel

retrievals are based on to estimate an effective cloud optical thickness that could be detected by ASTER against the ocean

surface background following the two-stream approximation by Lacis and Hansen (1974):335

A=

√
3(1− g)τ

2 +
√

3(1− g)τ
≈ τ

τ + 7.7
(9)

with the cloud albedo A, cloud optical thickness τ and the asymmetry parameter g = 0.85. In Fig. 6 we show the relationship

stated in Equ. 9 of a plane-parallel cloud (black line) and add uncertainties from cloud 3D effects and the background ocean

signal.

The average ocean reflectance during EUREC4A was 0.04 including single cases as high as 0.07
:::
0.08. Due to additional340

variability in the ocean wave reflection we expect that clouds with an albedo below 0.1 and corresponding cloud optical

thickness below 1 to dissolve in the ocean signal. For clouds with cloud optical thickness larger than 1, 3D effects such as

brightening and shadowing as well as photon loss through the cloud sides become relevant and can easily cause a factor

of 2 error in the reflectance (Marshak et al., 2006; Stevens et al., 2019). We therefore
:::
that

:::::
spans

:::
up

:
a
:::::::::
distibution

:::::::
around

:::
the

:::::::::::
plane-parallel

:::::::
estimate

::::
and

::::
that

:::
we

:::::::
indicate

:::
by

:::
the

:::::
grey

::::::
shaded

::::
area

::
in
::::

Fig.
::

6
:::::::::::::::::::::::::::::::::::
(Marshak et al., 2006; Stevens et al., 2019)

:
.345

::::::
Overall,

:::
we

:
assume that due to natural variability in the background ocean signal and the cloud signal, clouds with optical

thickness below 2
:
1
:::::
likely

:
do not stand out clearly from the ocean and the ASTER cloud mask presumably is insensitive to

such optically thin clouds.
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Figure 7. Cloud optical thickness distribution from WALES lidar measurements for all days with local research flights during EUREC4A

resulting in 92 hours of data. Panel a) shows the frequency distribution of all days, while panel b) additionally shows the cumulative distribu-

tions for individual days. The days are sorted by their increasing average cloud optical thickness that we associate with optically thin clouds

(yellow to dark green). The split x-axis visualizes the limited information on thick clouds that are optically opaque to the lidar.

Clouds with an optical thickness below 2
:
1 are thin enough for a lidar beam to penetrate through the cloud and provide

a reliable estimate of the cloud optical thickness. We can therefore make use of WALES lidar measurements for supporting350

information on the abundance of optically thin clouds.

Fig. 7 shows the distribution of cloud optical thickness measurements from WALES for days with local research flights. The

peak at low cloud optical thickness values corresponds to optically thin clouds that the lidar beam manages to penetrate. A

cloud with optical thickness of about 2.5 reduces the lidar signal below the cloud to more than one hundredth and the method

to derive the optical thickness still works. At night the range of retrieved optical thickness increases to about 3.5 due to a better355

signal to noise ratio above clouds without scattered sun
::::
Sun light. In thicker clouds the signal vanishes in the system noise. We

aggregate all measurements from optically opaque and thick clouds in one bin as we have no information on the actual cloud

optical thickness.

In WALES measurements we associate optically thin clouds to have an optical thickness below 2.
:
1.

:
The campaign average

cloud optical thickness of OTC is 0.75
::::
0.37, the median is 0.52

:::
0.31. Optically thin clouds have on average a cloud top height360

at 1.5
:::
1.3 km altitude (median 1.2

::
1.0 km). We further use the WALES measurements to derive a fractional cloud cover in time

for optically thin clouds and compare the results to the optically thin cloud cover from ASTER in the following section.

4.3 The contribution of OTC to the total cloud cover

From analysing 395
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Table 2. Cloud cover estimates during EUREC4A from 395
:::
380

:
ASTER satellite observations (60 x60

:
x
::
60 km2) at 15 m resolution on 17

days and from WALES lidar measurements recoded within 13 research flights (days) at about 40 m resolution in January and February 2020.

Optically thin
::::::::
Detected(*) Total

:::
thin cloud cover / % cloud cover / %

::::
cloud

:::::
cover

:
/
:
%
:

ASTER (mean) 19
:::
14.1 42

:::
28.5

: :::
42.6

:

ASTER (median) 19
:::
13.3 36

:::
16.7

: :::
34.9

:

WALES (mean) 21
:::
14.3 34

:::
19.3

: ::::
33.7

(*) "detected" refers to the ASTER cloud mask and in the case of WALES data to clouds with cloud optical

thickness≥ 1.

::::
From

:::::::::
analysing

::::
380 ASTER images during EUREC4A we find an average total cloud cover of 42

:::
42.6 %, combined of365

24
::::
28.5 % from detected clouds and 19

::::
14.1 % from optically thin clouds (see Tab. 2). Based on the clear-sky

::::::::
cloud-free retrieval

uncertainties derived in Sec. 3.3 we estimate the uncertainty in ASTER optically thin cloud cover to be within the range

of ± 2.6
::
2.7 %. In Table 2 we state the respective numbers derived from WALES measurements. We explicitly note that a

direct comparison is not reasonable as the two instruments and approaches show optically thin cloud areas from two different

perspectives. However, what we can say is that WALES lidar measurements indicate a high fractional coverage by optically370

thin clouds, similar to what we find from ASTER images.

In Sec. 4.1 we mentioned the possible influence of scattering at cloud edges which can illuminate areas surrounding thicker

clouds. Such 3D effects would influence our results based on ASTER data and lead to an overestimation of OTC related cloud

cover. As WALES is less affected by the 3D scattering at cloud edges but shows a higher fraction of optically thin clouds

:::::::
(42.4 %) relative to ASTER

::::::
(33.1 %), the ASTER analysis does not seem to be unduly influenced by 3D radiative effects.375

Our results based on ASTER and WALES measurements are lower compared to an analysis of optically thin marine clouds

from CALIOP measurements by Leahy et al. (2012). From two years of nighttime measurements the authors attribute 45 %

of total cloud cover to
:::
The

:::::::
authors

:::
find

::
a
:::::::
fraction

::
of

:
optically thin clouds between 60 °S and 60 °N, while in the trades the

fraction of optically thin clouds is
::
to

::
be

:
as high as 84 %. From WALES measurements we derived an OTC fraction of 63

::::
42.4 %

for cloudy profiles with cloud optical thickness < 2.
::
1. If we include clouds with cloud optical thickness up to about 3 as it is380

done in the study by Leahy et al. (2012), the OTC fraction in WALES data increases to 74 %. Estimates based on CALIOP

data are likely to overestimate the OTC fraction due to the lower sensor resolution of 90 m footprints every 335 m. The authors

in Leahy et al. (2012) derive a possible overestimation of OTC fraction of up to 25 % in the trades due to partially cloudy

CALIOP footprints, which supports our findings in the current study of a lower, but still significant contribution of optically

thin clouds to the total cloud cover.385

We further notice that the area covered by optically thin clouds increases with detected cloud cover for low total cloud cover

as shown in Fig. 8 and similarly stated in Leahy et al. (2012). The positive correlation up to 0.4 total cloud cover might be due

to a combination of two features. First, optically thin cloud areas are often found surrounding detected clouds (see also Fig. 5).
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Figure 8. Change in optically thin cloud cover with total cloud cover. The blue markers correspond to values derived from 395
:::
380 ASTER

images (60 x 60 m2) with the dark blue line following along the median values. The green markers correspond to daily-averaged cloud cover

estimates from WALES lidar measurements. The grey diagonal line shows the maximum possible contribution of optically thin clouds to the

total cloud cover.

This idea is supported in a study by Koren et al. (2007), which find enhanced reflectances in solar irradiance measurements

before and after an identified cloud originating from humidified aerosols and/or unresolved cloud fragments.390

The second ingredient to the proposed positive correlation is the cloud field structure. Trade wind cumulus cloud fields at

low cloud cover typically correspond to sugar or gravel type structures as described by Stevens et al. (2020), consisting of

many small clouds with enough space in between that can be partly filled with undetected optically thin clouds. More clouds

and more cloud boundary therefore leads to more optically thin cloud area up to a point where this relationship saturates at

about 0.4 total cloud cover. The saturation might be due to larger clouds or cloud structures being surrounded by pronounced395

clear-sky
::::::::
cloud-free

:
regions. A recent study by Schulz et al. (2021) identifies the so-called flower and fish cloud patterns of

having characteristic clear-sky
:::::::::
cloud-free areas between clouds. By constraint, the positive correlation turns negative above

0.7 total cloud cover as the clear-sky
::::::::
cloud-free, OTC, and detected cloud cover always add up to 1 and high cloud-mask cloud

cover situations leave little space for optically thin clouds.

We conclude that optically thin clouds cover large parts of the trades leading to a higher total cloud cover than assumed so400

far from passive satellite observations.

4.4 The cloud reflectance - cloud cover relationship in ASTER observations

Current climate models typically have a narrow range of cloud optical thickness that might affect model perturbation exper-

iments due to the non-linearity of cloud optical thickness and it’s albedo. Especially in low-cloud regions such as the trades,
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climate models underestimate the cloud cover while overestimating it’s average reflectance, a problem often called the "too405

few, too bright" low-cloud problem (Nam et al., 2012; Klein et al., 2013). While observations show a positive correlation of

cloud cover and cloud reflectance, models show a reverse sign (Konsta et al., 2016).

We investigate the cloud cover - cloud reflectance relationship in Fig. 9 and Fig. 10. Fig. 9 panel a) shows in blue curves

the change in all-sky reflectance distribution with increasing cloud cover as defined by the ASTER cloud mask, while the

red lines show similarly the change with increasing total cloud cover. We show two representative cloud cover ranges, a410

low range from 0.1 to 0.3 and a high range from 0.5 to 0.7. With increasing cloud cover, the reflectance distributions shift

to higher values meaning that the overall image is brighter
:::::::
(dashed

:::::
versus

:::::
solid

:::::
lines). As expected, the total cloud cover

reflectance distributions
::::::::
reflectance

:::::::::::
distributions

::
as

:::::::
defined

::
by

:::
our

:::::::
method

::::
(red

:::::
lines,

::::::::
including

:::::::
optically

::::
thin

::::::
clouds)

:
peak at

lower reflectances
:::::::::
reflectance

::::::
values compared to their

:::::::
ASTER cloud-mask counterparts meaning that the total cloud cover

area is less bright on average .
::::
when

:::::::
optically

::::
thin

::::::
clouds

:::
are

::::::::
included.415

Panel b) shows an interesting new facet to the difference in total and cloud-mask cloudy areas. The distributions show how

the total cloud reflectance relative to the total cloud area in the image depends on cloud cover. The comparison of low and high

cloud cover cases reveals that clouds are brighter with increasing cloud cover
:::::::
(dashed

:::::
versus

::::
solid

:::::
lines), which is in agreement

with our perception of larger, deeper, and brighter clouds being present in high cloud cover situations. The change in cloud

brightness with cloud cover is less pronounced if the total cloud cover is considered (
::
red

:::::
lines,

:
including optically thin clouds)420

compared to the cloud-mask only case
::::
(blue

:::::
lines).

We further investigate the expected cloud reflectances
:::::::::
reflectance in relation to derived cloud cover values for all 395

:::
380

ASTER images in Fig. 10. Both, cloud mask and total cloud cover, exhibit positive correlations with respective cloud reflectance

values in agreement with findings in Konsta et al. (2016). We here derive a campaign average cloud reflectance from total cloud

cover of 0.15, with contributions from
::
the

:::::::
ASTER

:
cloud-mask clouds (avg: 0.21) and optically thin clouds (avg: 0.10

::::
0.06),425

which agrees quite well with an average trade wind cumulus cloud reflectance of 0.15 derived from a combination of POLDER

(Polarization and Directionality of the Earth’s Reflectances) and CALIOP measurements in the study by Konsta et al. (2016).

Based on the clear-sky
::::::::
cloud-free

:
retrieval uncertainty stated in Sec. 3.3, the uncertainty in expected reflectance of optically

thin clouds is as low as 0.005
:::::
0.0031

:
and does not influence our results and conclusions drawn here.

The positive correlation in Fig. 10 for total cloud cover agrees well with the corresponding Fig. 6a in Konsta et al. (2016).430

As mentioned before, climate models show a reverse sign of this correlation together with a general underestimation of cloud

cover and simultaneous overestimation of cloud reflectance. Next to the model intrinsic mechanisms leading to too few, but too

bright clouds, biases might be partially due to tuning the model based on traditional cloud masks that overestimate the cloud

reflectance especially in the frequent low cloud cover situations.

5 Discussion435

Most passive satellite imagers
::::::
imager operate at resolutions in the order of hectometer to kilometer range and derive cloud

products at 1 km scale or coarser. Undetected optically thin clouds, as well as small clouds detected at the ASTER 15 m scale,
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Figure 9. Combined probability density functions (PDF)s of a) all-sky reflectances
::::::::
reflectance from ASTER p(R|CC), binned according to

the total (red) and cloud mask (blue) cloud cover (CC). We define two representative cloud cover ranges, low CC (0.1 to 0.3) and high CC

(0.5 to 0.7). Panel b) shows the conditional probability of total cloud reflectances
:::::::

reflectance
:
p(R|FTOTAL, CC), given that they are within

the range of low or high CC. Compared to a), the distributions in panel b) do not include the clear-sky
:::::::
cloud-free

:
contributions at low

reflectances
::::::::
reflectance.

are unresolved and lead to partially cloudy pixel measurements. Several studies in the past have investigated the resolution effect

in trade cumulus cloud cover estimated from passive satellite imagers. Zhao and Di Girolamo (2006) find a three- to fivefold

overestimation of cloud cover in MODIS and MISR
::::::::::
Multi-angle

:::::::
Imaging

::::::::::::::::
SpectroRadiomete

:::::::
(MISR)

:
images respectively440

compared to ASTER observations during the RICO
:::::
(Rain

::
in

::::::
shallow

:::::::
cumulus

::::
over

:::
the

::::::
ocean) campaign. For the same dataset, a

study by Dey et al. (2008) suggests a fourfold overestimation of cloud cover if the ASTER cloud mask is degraded from 15 m to

1 km while cloud detection thresholds are kept constant. However, degrading the resolution can also lead to an underestimation

of cloud cover estimates in cloud masking schemes if the resulting pixel radiances fall below fixed radiance thresholds. In

an early study by Wielicki and Parker (1992) the authors estimate that roughly one third of the cloud cover detected in 30 m445

Landsat images showing cumulus clouds would not be detected by certain cloud masking schemes, which is in line with our

study results.

An underestimation of cloud cover due to undetected optically thin clouds and an overestimation due to an reduced spatial

resolution have compensating tendencies. However, one effect that does not cancel out in typical passive satellite cloud products

is the influence of optically thin clouds in partially cloudy pixels that are classified to be clear. Pure clear-sky
::::::::
cloud-free

:
obser-450

vations are crucial for aerosol retrievals, as well as cloud radiative effect (CRE) estimates. With decreasing sensor resolution

the probability for clear-sky
::::::::
cloud-free

:
observations decreases as well. We therefore investigate implications that undetected
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Figure 10. Expected cloud reflectance corresponding to the ASTER cloud mask (blue) and the derived total cloud cover (red) from 395
:::
380

ASTER images. The median cloud reflectances are given by the lines and the dataset averages are visualized by the “+” marker and the

respectively colored tick labels. The frequency distributions of cloud cover and cloud reflectance are shown in the panels on the top and right

respectively.

optically thin clouds can have on CRE estimates, as well as our inferences on cloud-aerosol interactions in the trades, despite

their low cloud albedo.

5.1 Implication for CRE estimates455

In temperature perturbation studies, cloud feedback defines how clouds adjust to a perturbation in surface temperature and

whether this change amplifies or dampens the initial temperature perturbation. As such, it is tied to the cloud radiative effect

(CRE), the difference in all-sky and clear-sky
::::::::
cloud-free

:
radiative flux at the top of the atmosphere, in the initial as well as in

the perturbed climate.

CRE = FALL−FCLEAR (10)460

In the trades, climate models show a less negative CRE in response to warming, indicative of a positive cloud feedback (Zelinka

et al., 2020). Observational constraints based on satellite data at coarse resolution might be insensitive to sub-pixel scale clouds

and consequently lack a robust clear-sky
::::::::
cloud-free

:
signal. From our analysis we can estimate an upper bound on the error in

CRE that might arise from a clear-sky
::::::::
cloud-free

:
signal that is contaminated by undetected optically thin clouds.

If we assume that the pixel reflectances corresponding to optically thin clouds from the present analysis are fully mixed into465

the clear-sky
::::::::
cloud-free

:
signal, we would overestimate the clear-sky

:::::::::
cloud-free reflectance and consequently underestimate

the CRE. We derive a relative bias ∆CRE per image from the differences in all-sky LALL, clear-sky
::::::::
cloud-free

:
LCLEAR, and

"contaminated" clear-sky
::::::::
cloud-free LCLEAR+OTC expected radiance values:
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∆CRE =
CRECLEAR+OTC−CRECLEAR

CRECLEAR
(11)

=
LALL−LCLEAR+OTC

LALL−LCLEAR
− 1 (12)470

Note that we use here the simulated clear-sky
:::::::::
cloud-free LCLEAR radiances as those do not contain the low radiances from

cloud shadows on the ocean surface which would cause a slight underestimation of the clear-sky
::::::::
cloud-free radiance.

In principle, a mono-directional radiance L can be converted to a radiative flux F as it is done by Clouds and the Earth’s

Radiant Energy System (CERES) radiative flux products by the following equation (Loeb et al., 2003; Su et al., 2015):

F =
πL(θs,θv,Φ)

f(θs,θv,Φ)

πL(θs,θv,Φ)

f(θs,θv,Φ)
::::::::::

(13)475

with the sun θs ::::
Sun

::
θs:and sensor view θv ::

θv:zenith angles, the azimuthal difference Φ and the anisotropic factor f . The

anisotropic factor is challenging to estimate and no suitable values are available for ASTER observations. However, if we

assume isotropic scattering of cumulus cloud fields (f = 1) we can translate the CRE bias into an effective radiative flux at

0.807 µm.

The mean CRE bias from the ASTER dataset is as high as -32
:::::::
amounts

::
to

:::
-7.5 % which roughly translates to about -6

:::
-2.2 Wm−2480

::
(at

:::::::::
0.807µm). The order of magnitude of the potential CRE bias from optically thin clouds is comparable to the magnitude of

the aerosol direct effect that has been estimated to be about 5 Wm−2 for the winter trades in Loeb and Manalo-Smith (2005)

highlighting the
::
is

:::::::::
significant

:::
and

:::::::::
highlights

:::
the

:
importance of an improved representation of optically thin clouds in future

studies.

5.2 Optically thin clouds in the aerosol-cloud interaction context485

First, we would like to point out the difference between optically thin clouds and aerosols. The marine boundary layer is a humid

layer with the constant presence of humidified sea-salt and ammonium sulfate aerosols . The mixing within the boundary layer

will bring the aerosols almost always into an environment above 80 % relative humidity such that sea-salt and ammonium

sulfate deliquesce, while the humidity is almost everywhere above 60 % making it impossible for the aerosols to effloresce

(humidity as shown by the JOANNE dropsonde dataset, George et al. (2021)). Thus, humidified aerosols are omnipresent and490

:::::
revisit

::::
and

:::::::
confirm

:::
our

:::::::::
distinction

:::
of

:::::::
aerosols

::::
and

:::::::
optically

::::
thin

::::::
clouds

:::::
from

:::
the

:::::::::::
introduction

::
to

::::
this

::::::
article.

:::
We

::::::::
consider

:::::::::
humidified

:::::::
aerosols

::
to

::
be

:
part of the clear-sky

::::::::
cloud-free

:
signal. As both, ASTER and WALES data suggest a total cloud cover

well below 100 % (insensitive to the exact cloud threshold in WALES) we are confident that the described signal of optically

thin clouds can only be due to anomalously humidified aerosols and cloud droplets.
:::::::
However,

:::
we

::
do

:::
see

::
a
::::::::
possibility

::::
that

:::::
fossil

::::::
clouds,

::
in

:::
the

::::
form

:::
of

:::::::
lingering

:::::::
pockets

::
of

::::::::::
humidified

:::::::
aerosol,

:::::
might

::
be

::::::::
classified

:::
as

:::::::
optically

::::
thin

::::::
clouds,

::::
too.

:::
We

:::::
think

:::
the495

:::::::
WALES

:::::::
analysis,

:::
and

:::
the

:::::::::
magnitude

::
of

:::
the

::::::::
observed

:::::
optical

::::::
depths

:::::
(from

::::::::
WALES)

:::::::
excludes

:::
this

:::
as

:
a
:::::
major

::::::::::
contributor.

::::
Even

::
if

:::
this

::::::::
inference

:::
was

:::::::::
incorrect,

::
we

:::::::
believe

:
it
::::::
would

::
be

:::::
more

::::::
correct

::
to

:::::
think

::
of

:::::
cloud

:::::
fossils

:::
as

:::::::
optically

::::
thin

::::
(and

::::::
fading)

::::::
clouds

:::
than

:::
as

::
an

:::::::
aerosol

::::::
signal,

::::::::::
particularly

:::::
since

::::
such

::::::
signals

::::
will

:::
not

:::::
scale

::::
with

:::::::
aerosol

:::::::
amount.

:::
We

::::::::
therefore

::::::
discuss

::::::::
possible

::::::::::
implications

::
of

:::::::::
undetected

::::::::
optically

:::
thin

::::::
clouds

:::
for

:::::::::::
aerosol-cloud

:::::::::
interaction

::::::
studies

::
in
:::
the

:::::::::
following.

:
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Aerosol-cloud interaction studies are a topic in itself and we will not go into great detail, but rather want to show where opti-500

cally thin clouds might need to be considered in these studies. One largely debated issue is the positive correlation of AOD and

cloud cover as an indirect aerosol effect. The underlying principle is that hydrophilic aerosols can serve as cloud condensation

nuclei and increase the cloud droplet number concentration. More aerosols might therefore reduce the precipitation formation

rate and increases the cloud liquid water content and cloud lifetime (Albrecht, 1989). Whether this so-called cloud lifetime

effect actually leads to increased cloud cover is largely debated (Loeb and Manalo-Smith, 2005; Kaufman et al., 2005; Stevens505

and Feingold, 2009; Gryspeerdt et al., 2016).

While
::::
Some

:
modeling studies suggest negligible or equally small enhancing or decreasing influences of aerosols on the

cloud cover (Xue and Feingold, 2006; Quaas et al., 2008; Seifert et al., 2015), observational studies
::::
while

::::::
others

::::::
suggest

::
a

::::::::::
considerable

:::::
effect

:::::::::::::::::
(Quaas et al., 2009).

::::::::::::
Observational

::::::
studies

:::
on

:::
the

::::
other

:::::
hand,

:
mostly rely on coarse satellite observations

and show deficiencies in the accuracy in aerosol and cloud retrievals as discussed in Quaas et al. (2020). The positive correlation510

in optically thin cloud cover and detected clouds in the current study suggests that part of the proposed sensitivity of cloud

cover to AOD might reflect a high bias in clear-sky
:::::::::
cloud-free estimates that is interpreted as high AOD. In agreement with

our perception, an observational study by Gryspeerdt et al. (2016) estimates meteorological covariations to account for 80 %

of the often proposed AOD-cloud cover relationship with the additional note on shallow cumulus regions having a very weak

relationship.515

Independent of the cloud-lifetime effect, a positive perturbation in aerosols increases the cloud droplet number concentration

and thus the cloud brightness, which is commonly referred to as the Twomey effect (Twomey, 1959; Quaas et al., 2020).

Increasing the brightness also increases the probability of undetected and optically thin clouds identified in the current study

to cross the detection threshold of common cloud masking schemes. We therefore speculate that the Twomey effect indirectly

leads to positive AOD-cloud cover relationships found in previous studies. It might be interesting to investigate the AOD-cloud520

cover relationship based on a more comprehensive definition of total cloud cover including optically thin clouds.

6 Conclusions

Climate models as well as Large Eddy Simulations commonly underestimate the cloud cover, while estimates from observations

largely disagree on the cloud cover in the trades. We use a new method to estimate the total cloud cover from the clear-sky

::::::::
cloud-free

:
perspective by simulating the clear-sky

::::::::
cloud-free

:
contribution to an observed all-sky reflectance distribution with525

a simplified radiative transfer model. The present study shows the high abundance of optically thin clouds in the trade wind

region that are undetected by common cloud-masking schemes.

We analyzed 395
:::
380

:
ASTER satellite images recorded in support of the EUREC4A field campaign in January and Febru-

ary 2020 and find that about half
::::
33 % of the total cloud cover is due to undetected optically thin clouds. A comparison to

independent WALES lidar measurements supports our findings.530

We find that pixels attributed to optically thin clouds are often found surrounding brighter cloud objects that can be detected

in cloud-masking schemes. Accounting for optically thin clouds significantly (29±2%) reduces the average cloud reflectance
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:::::
(-0.06,

:::
i.e.

::::::
30 %) as optically thin clouds are systematically less reflective than clouds detected in cloud masking schemes.

Our analysis suggests that the known underestimation of trade wind cloud cover and simultaneous overestimation of cloud

brightness in models is even higher than assumed so far.535

We identify two implications from our study. First, if mixed into the clear-sky
::::::::
cloud-free

:
signal, the enhanced radiance from

optically thin cloud areas leads to a high bias in clear-sky
::::::::
cloud-free estimates over ocean and hence a low bias up to -32

::
of

:::
-7.5 % in the estimated cloud radiative effect of trade wind cumulus cloud fields.

And second, the positive correlation in optically thin cloud cover and detected clouds for low cloud cover suggests that

part of the sensitivity of cloud cover to AOD found in aerosol-cloud interaction studies might reflect a high bias in clear-sky540

::::::::
cloud-free

:
estimates that is interpreted as high AOD. In addition, increasing cloud brightness with higher AOD likely increases

the probability of undetected and optically thin clouds identified in the current study to cross the detection threshold of common

cloud masking schemes. These effects could contribute to an unrealistically strong relationship between satellite retrieved

values of AOD and cloud cover, and would suggest that not accounting for optically thin clouds could overstate the strength of

aerosol cloud interactions.545

Code and data availability. In addition to the publicly available ASTER L1B data from NASA we provide processed data for the ASTER

images recorded during EUREC4A and displayed in Fig. 1. NetCDF files containing physical quantities from bands in the VNIR and thermal

range, latitude and longitude information, a cloud mask, and cloud top height estimates are available on the AERIS data server (https:

//observations.ipsl.fr/aeris/eurec4a-data/SATELLITES/TERRA/ASTER/). ASTER image tiles were calculated and are stored on AERIS

(https://observations.ipsl.fr/aeris/eurec4a/Leaflet/index.html) providing a user-friendly browsing experience with the possibility to zoom550

in on the rich structures of beautiful trade cumulus cloud fields. The cloud information from WALES is published on AERIS https:

//doi.org/10.25326/216) and further described in Konow et al. (2021).

Code for processing the original ASTER L1B data is available in the Python package typhon version 0.8.0, subpackage cloudmask

(https://github.com/atmtools/typhon). The basic code for the cloud-free radiative transfer simulations is available at https://doi.org/10.5281/

zenodo.4842675. The main data resulting from the applied methodology and forming the basis for all interpretations is available at https:555

//doi.org/10.5281/zenodo.4844482.

Appendix A: Components and equations to the simple
::::::::
simplified

:
clear-sky model (SCSM)

Knowing the extraterrestrial irradiance E0 emitted by the sun
:::
Sun and entering the atmosphere, the radiative transfer equation

describes the radiance at any location (x, y, z) and for any direction defined by a zenith angle θ and an azimuthal angle φ. In a

clear-sky
::::::::
cloud-free

:
atmosphere with small solar and viewing zenith angles we can use 1D plane-parallel radiative transfer to560

estimate the radiance observable at the top of atmosphere (TOA).

The clear-sky
:::::::::
cloud-free radiance L reaching a sensor in space is a combination of three main components that we illustrate

in Fig. A1 a): (1) the direct sun
:::
Sun

:
ray reflected at the ocean surface L↓direct and (2) the hemispheric diffuse radiance reflected

at the surface towards the sensor L↓diffuse. Together they are combined in the component L↑sfc ::::
L↑sfc of light that touched the
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Figure A1. Sketches of the simple clear-sky model. a) illustrated the main radiance components, while b) shows the geometry setup based

on the vectors s pointing into the sun
:::
Sun, v pointing to the sensor, and the wave facet normal n.

surface. On the way from the surface to the sensor L↑sfc :::
L↑sfc:experiences attenuation following Lambert-Beer and depending565

on the atmospheric optical thickness τ and the cosine of the sensor or view zenith angle vz::
vz. In addition, there is component

(3), the diffuse light from single-scattering events happening within the atmosphere L↑atm:::::
L↑atm.

L= L↑sfc +L↑atm (A1)

= exp

−τ
vz

−τ
vz

:::

 [L↓direct +L↓diffuse] +L↑atm↑atm
:::

(A2)

In the following, we describe the derivation of L based on the vector s pointing from an observed location on the ground to570

the sun
:::
Sun, and the view vector v pointing to the sensor (see Fig. A1 b)).

s =


sx

sy

sz

 , v =


vx

vy

vz

 (A3)

s and v are unit vectors meaning that they satisfy the condition:

| s |=| v |= 1. (A4)

Working with vectors instead of the traditional approach with angles simplifies several of the following calculations next to575

a significant enhancement in computational speed. For example, the previously mentioned view zenith angle vz is simply the

third component of the view vector v.

A1 Direct radiance and the bi-directional reflection function (BRDF)

L↓direct is defined by the sensor-sun geometry with the cosine of the sun zenith angle sz :::
Sun

::::::
zenith

::::
angle

:::
sz and the correspond-

ing aerosol extinction along the path from the top of atmosphere (TOA) to the surface where the reflection is characterized by580
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the bi-directional reflection function (BRDF) ρ.

L↓direct = E0 exp

−τ
sz

−τ
sz

:::

ρ(s,v,ws,nii,ntt

)
(A5)

How a sun
:::
Sun ray is reflected at the ocean surface mostly depends on the surface wind speedws and the generated wave slopes.

The earliest and still widely used surface slope parametrization goes back to photographic measurements by Cox and Munk

in 1954. Their parametrization is embedded in a 1D Guassian surface slope distribution p, combined with Fresnel reflection585

coefficients for unpolarized light r and a prefactor handling the sensor-sun geometry with the sun
::::
Sun s and view v vectors.

For the general equation for ρ we follow Stamnes et al. (2017):

ρ(s,v,ws,nii,ntt) =
1

4vzsz(nz)4

1

4vzsz(nz)4
:::::::::

· p(s,v,ws) · r(s,v,nii,ntt) (A6)

In the first factor, nz is the third component of the wave facet normal n with

n =


nx

ny

nz

=
s+v

| s+v |
(A7)590

The second factor in Eq. A6 gives the probability of a specular reflection p and the third the intensity of the reflected light r.

In detail, we assume a 1D Guassian surface slope probability distribution p with

p(s,v,ws) =
1

πσ(ws)2
exp

− 1−n2
z

n2
z ·σ(ws)2

1−n2
z

n2
z ·σ(ws)2

:::::::::

 (A8)

and the variance σ2 of the surface slope distribution. The Cox and Munk parametrization provides an empirical estimate for σ2

depending on the 10 m surface wind speed ws (Cox and Munk, 1954):595

σ(ws)2 = 0.003 + 0.00512 ·ws. (A9)

The intensity of the reflected light r is given by the unpolarized Fresnel reflection coefficient:

r(s,v,nii,ntt) =
1

2


µi−nrµt
µi +nrµt

µi−nrµt

µi +nrµt
:::::::

2

+

µt−nrµi
µt +nrµi

µt−nrµi

µt +nrµi
:::::::

2
 (A10)

with nr = nt

ni ::::::
nr = nt

ni
, the ratio of the refractive index of the transmitted medium nt = 1.333

:::::::::
nt = 1.333 (ocean) and the re-

fractive index of the incoming medium ni = 1
:::::
ni = 1

:
(atmosphere). Further, µi :

µi:is the cosine of the incidence angle and is600

given by the dot product of the sun
:::
Sun

:
and wave facet normal vector:

µii = s ·n (A11)
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µt is the cosine of the transmission angle, which follows directly from Snell’s law by transformation:

µtt =

√
1− 1−µ2

i

n2
r

√
1− 1−µ2

i

n2
r

:::::::::::

(A12)

A2 Diffuse downward radiance and hemispheric BRDF605

The hemispheric diffuse radiance L↓diffuse includes sun
:::
Sun

:
rays that are scattered within the atmosphere on their way to the

ground and get reflected at the pixel of interest into the direction of the sensor view. Thus, we integrate the integration vector

x over the hemisphere Ω:

L↓diffuse =

∫
Ω

ρ(x,v,ws) ·Lin(τ,x)dx (A13)

Assuming that the incoming diffuse downward radiance Lin(τ,x) is isotropic, we can pull Lin ::
Lin:out of the integral and610

derive a hemispheric BRDF by integrating equation A6 over Ω. Here, we make use of the Gauss-Legendre quadrature to

approximate the integral based on only a few nodes in the µ space while keeping a high accuracy.

The diffuse downward irradiance on the other hand is difficult to approximate. Thus, we sample from a pre-calculated

look-up table of diffuse downward irradiance for a range of sun
:::
Sun

:
zenith angles and aerosol optical depths. The look-

up table was calculated with the full radiative transfer model libRadtran for a sensor at the surface pointing up nadir and615

observing at ASTER’s band 3 central wavelength 807 nm (Mayer and Kylling, 2005; Emde et al., 2016). The input file defines

a U.S. Standard Atmosphere with default molecular absorption calculated with the representative wavelengths parameterization

REPTRAN (medium) where the absorption is based on the HITRAN 2004 catalog. The aerosols species is set to be maritime

tropical as defined by the OPAC package and finally, the radiative transfer equation is solved with DISORT. We further use the

bivariate spline approximation provided within the Python package scipy (version 1.5.2) to interpolate over the output look-up620

table.

A3 Diffuse upward radiance from single-scattering events

The atmospheric diffuse scattering L↑atm describes sun
:::
Sun rays that are reflected within the atmosphere into the view direction

of the sensor. We only consider single scattering events as the aerosol optical depth over tropical ocean is mostly below or in

the order of 0.1 and the probability of further scattering events is unlikely. The extinction within an atmospheric column is625

generally given by the integral over the extinction coefficients σext,i ::::
σext, i:in single atmospheric layers depending on their

density (temperature) and particles. We simplify the problem by integrating over τ instead of the atmospheric path lengths with

dl = dz
cos(θ) of a respective zenith angle θ. Correspondingly, we can write the integral over all single (aerosol) scattering events

along an atmospheric path l from the surface to TOA
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L↑atm↑atm
:::

= E0

∫
sfcsfc

:

TOA exp

− 1

sz

1

sz
::

∫
zscatzscat

::

TOAσextext
:

(z)dz

 (A14)630

· exp

− 1

vz

1

vz
::

∫
zscatzscat

::

TOAσextext
:

(z)dz

 (A15)

·σscatscat
::

ΘHG dzscatscat
::

(A16)

where the extinction is accounted for in the exponential functions with the scattering event happening at the height zscat:::
zscat.

The product of the scattering coefficient σscat :::
σscat:and the scattering phase function ΘHG :::

ΘHG:describes the scattering effi-

ciency.635

In our atmospheric column of constant density, σscat :::
σscat:is independent of height and the integral

∫ TOA
sfc

σscat l dl::::::::::::

∫ TOA
sfc σscat l dl

simplifies to
∫ τ

0
dτ ′ with τ being the optical depth of the atmospheric column. In more detail, we can rewrite the relation and

include the single scattering albedo ω0

σscatscat
::
· dl = ω0σextext

:
· dz
µv

dz

µv
::

=
ω0

µv

ω0

µv
::

dτ (A17)

and further include those in Eq. A14:640

L↑atm↑atm
:::

= ΘHG
ωo
µv

HG
ωo
µv

::::

τ∫
0

exp

−τ ′
µo

−τ ′

µo
:::

exp

−τ ′
µv

−τ ′

µv
:::

dτ ′ (A18)

The Henyey Greenstein phase function ΘHG ::::
ΘHG is an approximation for the scattering phase function and only depends

on the assymetry parameter g, that is the mean cosine of the scattering angle calculated by integrating over the scattering phase

function (Henyey and Greenstein, 1941):

ΘHGHG
::

=
1

4π

1− g2

1 + g2− 2g (µscat)
3/2

1− g2

1 + g2− 2g (µscat)
3/2

:::::::::::::::::

(A19)645

For ω0 and g we use constant values taken from the libRadtran calculations with the input setup described in Sect. A2.

Appendix B: Derivation of the clear-sky
::::::::
cloud-free

:
fraction

Based on equations Eq. 6 and Eq. 7 we could directly solve for the clear-sky
:::::::::
cloud-free fraction p(FCLEAR).

We start with the clear-sky
::::::::
cloud-free

:
model output and apply Bayes’ theorem:

p(FCLEAR|R) =
p(R|FCLEAR)

p(R)
· p(FCLEAR) (B1)650

27



We can add this information to Eq. 7

1− p(FCLOUD|R′) =
p(R=R′|FCLEAR)

p(R=R′)
· p(FCLEAR) (B2)

and solve for p(FCLEAR)

p(FCLEAR) =
p(R=R′)

p(R=R′|FCLEAR)
(1− p(FCLOUD|R′)) (B3)

We further add the information from Eq. B1 and Eq. B3 to our constraint stated in Eq. 6:655

1≥p(FCLEAR|R) + p(FCLOUD|R) (B4)

1≥p(R|FCLEAR)

p(R)
· p(R=R′)

p(R=R′|FCLEAR)
(1− p(FCLOUD|R′)) (B5)

+ p(FCLOUD|R) (B6)

Rearranging the equation we get

p(R=R′′)

p(R=R′′|FCLEAR)
(1− p(FCLOUD|R′′)) (B7)660

≥ p(R=R′)

p(R=R′|FCLEAR)
(1− p(FCLOUD|R′)) ∀R′′ ∈ R (B8)

and consequently we can find R’
::
R′ by searching for the minimum:

R′ = argminR′′

(
p(R=R′′)

p(R=R′′|FCLEAR)
− (1− p(FCLOUD|R′′))

)
(B9)

Knowing the R’
::
R′

:
we could in principle derive the clear-sky

::::::::
cloud-free fraction p(FCLEAR) from Equ. B3. However, Equ. B9

becomes unstable where p(FCLOUD|R”
::
R′′) is close to 1 which corresponds to cloudy parts while we are interested in the clear665

part of the distribution. We therefore apply the modified method described in Sec. 3.2 in the current study.
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