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S1 Definition of desorption and adsorption equilibrium constants

When defining the equilibrium constant and thermodynamic quantities, the subscripts describe the process direction in the
order of (from left to right) process (adsorption or desorption), educt, and product. We are defining the equilibrium between

the adsorbed 2D ideal gas and the 3D ideal gas as

(Ng/V)O (Ng/v)
a (Ng/V) N4/v9,
Xaaszp © Xg, and KQps0p 5 = aadfw = = ((ﬁads)) _ 1)

(Nags/#)” (Na/m)

We define the equilibrium between the adsorbed 2D ideal lattice gas and the 3D ideal gas as

(“’g/V)0 (Ng/v)
0 _ 4 __(Ng/v)  _ (Na/vR)
Xads,latt « ng and Kdes,latt,g - Qads latt - (6/0-6) — (9/(1—10!1)) ) (2)

(6°/(1-69))  (69/(1-09))
We define the equilibrium between the adsorbed 2D ideal gas and the TS for desorption as

(NTs/A) (NTS/?)
0 __ars _ (Nps/A) _ (Na/A%)
Xadas2p © Xrs, and Kges op 75 = daasop . (MNags/A) — (Vags) @)

(Nggs/A)®  (Na/Ah)

We define the equilibrium between the adsorbed 2D ideal lattice gas and the TS for desorption as

(NTs/cﬂ)O (Npg/A)
0 _ _ars _ (Npg/A)  _ (Na/AD)
Xaasjate © Xrs, and Kgeg jqee7s = /G-y = ~G/a=on" - (4)

Qqds,latt

(0°/(1-6%))  (6°/(1-6%)
We define the equilibrium between the 3D ideal gas and the TS for adsorption as (note that the direction is different now, TS
is the product)

(Nrs/A)  (Npg/a)
_ars _ (Nps/A)” _ (Ng/A%)

Xg g XTS’ and K(?ds,g,TS = i = (;Z/V) = (1‘\‘719/17) . (5)
(vg/)° (Na/vR)



S2 Derivation of thermodynamic functions for desorption and adsorption

This section establishes the partition functions and their relationship to thermodynamic variables for desorption and adsorption

considering the 3D ideal gas, 2D ideal gas, 2D ideal lattice gas, and transition state. The 3D gas case is reiterated here for

25

30

35

40

45

reference and comparison to the other cases.
S2.1 Calculation of molecular and molar thermodynamic functions for the 3D ideal gas

With = gV /N, using Stirling’s approximation, we can approximate:
InQ=Nlng—InN!'= Nlng—NInN + N . (6)

Considering translations in 3 dimensions only for a gas, %g = (2mmkgzT /h*)3/?, yields (Atkins et al., 2006)

v 2mm)3/2
a9 ==V (55) = V(@mmkyT/h?)*? )
. _ B \/2 h !
withA=nh (%) = 7(21kaBT)1/2 and ,B = kaT . (8)
We can now derive the thermodynamic functions. The inner energy is
_ — (99 _ _y (2mag) _ _Ng(%99) _ _pn (M) (-3v\=3
Ug = Ug(0) = ( 2B )V B Ng( ap )v T g (6/?)V =Ny (v)( 231\3) =2 NoksT ©)
Note that the energy reference is set such that for T = 0, U,(0) = 0, and thus
3 U 3
Uy =>NgksT and Uy = é =-RT. (10)

For the enthalpy we derive

d1lnQq
op

01InQg

)V+kBTv( ). = I NgksT + NgkpTVA? 1

v A3

NngTV (an

3
P —ENngT-I‘

Hy = Hy(0) = — ( ), = 3NoksT +

dg

NgksT = ZNgkpT . (11)

In this case, the reference conditions is in such a way that for T = 0, H,(0) = 0, and thus H, = gNngT and Hy ,,, = :—g =
g

>RT . (12)

For the Gibbs’ free energy, we derive

alnq
Gy = Go(0) = —kyTIn Qg + ke TV (52) = —ky TNy Inqy + ks T(Ng In Ny = Ng) + NykiyT = —NgksT In (g—z) .
(13)
Note that the energy reference is set such that for T = 0, G,4(0) = U,(0) =0.
Expressed in molar quantities: G, ,, = —RT In (q“’—'m) . (14)
) Na

Lastly, we derive the entropy for the 3D ideal gas as
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S =00 4 kyInQy = SNyky + NokyIn gy — Noky In Ny + Nyk = Nykp(In(e%/2) +1ngy —InN, +1Ine) =
5/2
Nyks In ( Ngqf’) (15)
Expressed in molar quantities, we can write
5/24 e5/2 5/2 2\3/2 5/2 21\3/2
Sym =R 1n< ) RIn (ﬂ) — R (&LCmmisT/W) T _ pyp (22 mmigT/nE) (16)
Ng Na (Ng/V) (k;ﬁ)

The last expression is the Sackur-Tetrode equation (Atkins et al., 2006).

The chemical potential, i, can be derived in the following way (Hill, 1986), accounting for the standard concentrations:

Ng
Gg=Gg(0) _ a1n Qg _ ag _ 2mm 3/2i] _ 2mm)\3/2 1 v,
o (1) = 1y (0) = 5700 kBT( e )w = ~lesTIn 3% = —ksTIn [(hzﬁ) | = —ksTin () 3
2mm\3/2 1 kl;’r _ 211:m /ZkBTp 271:m 3/2
—ksTIn (hzﬁ) | = = —kyTln [ hz/? F?] = —kyTln [ = ] +ksTIn 17)
kT
The last term we identify with
Hg(T) = 1g(0) = () + kpT I3, (18)
so that we can express the standard chemical potential of the ideal 3D gas as
2nm 3/2 kT
u(T) = —kyTn [(h ) p—o]. (19)

Note that the energy reference is set such that for T = 0, G,(0) = U,(0) = 0, and thus also u,(0) = ug(o) = 0. With this

we obtain the common general expression for the chemical potential of an ideal gas

#g(T) = pg(T) + kpTIn 5
S2.2 Calculation of molecular and molar thermodynamic functions for molecules adsorbed as 2D ideal gas

For the 2D ideal gas of adsorbates on a surface, the canonical ensemble still represents independent indistinguishable non-

interacting molecules on the surface, as in the 3D ideal gas case. With qf“‘%’“’ = (2mnmkyT/h?), we can write

A 2 2/2
Quranszp = 35 = A(555) " = A(mmikyT/h2)/? (20)
with
(BN n -
A=h (an) " (2mmkpT)1/2 and § = kpT (21)

If the adsorbed molecule still has vibrations in the z-direction, this adds a factor g, ,,;;,. Then the overall partition function for
the ideal 2D gas is

Qads,2p = Qtrans,2p9z,vib - (22)
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Here, we just consider q,q52p = Girans,2p and obtain

Uads2p — ads,ZD(O) = —Ngas (alm;%)ﬂ = _%(%)A = —Nags (g)( [;;\12) NygskpT (23)

The energy reference for the inner energy is the gas phase molecule at rest (T = 0 K). The adsorbed molecule is at the bottom
of a potential well, at —q3,, with g3, being a positive number indicating the necessary heat for the molecule to desorb. At
constant volume, the change in heat equals the change in inner energy. At T = 0 K, Upags,20(0) = —Nggsles = —E€3es, thus,
Uaaszp = NadskBT_gdes (24)
and in molar quantities with E9,s = N,qJ.s
Uaas,zpm = RT—Et(i)es : (25)

As a reminder, EJ,, represents the depth of the potential well in molar units and has a positive value. Similarly, for the

enthalpy we can write

al al a
Haaszp = Haasap(0) = = (SR5H828) o+ kg TA (HGH) = Nygolep T 4+ MA7E0E (S8820) = Nyl T +

Nadsh8TAN L — 4 kT + NoasksT = 2NaasksT . (26)
Also, hereat T =0 K:

Haas,2p(0) = =Nagsqdes = —Eges» thUS, Hagsop = 2NaaskpT —€des (27)
and

Haas2pm = 2RT—Eges . (28)

Following with the derivation of Gibbs’ free energy

91nQqqs,
Gads,ZD ads 2D (0) - _kBTln Qads 2D + kBT‘/‘Z (M)T = _kBTNads In ads,2D + kBT(Nads In Nads - Nads) +

oA
NaasksT = —NggskpT In (124:22) 29
adsB__adanN—- ()
ads
AtT =0K, GadS,ZD (0) = ads 2D (0) adsqdes = _Sc(i]eSI thus, we obtain
q
Gaasp = ~NaasksTIn (%4522) — gf,, (30)
In molar quantities, as above for the ideal 3D gas, we obtain
EO
— 9ads2Dm\ _ 0 _ _ dads2D,m des
Gaas20m = —RT In (—NA ) E%, = —RTIn <—NA e RT ) (31)
while qqqs2p m reflects only 2 translations and vibrations.
Lastly, for the entropy we can write
Uqads,2D—Uads,2D(0)
Sadsz2p = M + kgln Qadsz2p = Ngaskg + Nggskg In Qads,2D — NgaskgIn Nogs + Nggskp = Nggskp (111 e+
2
In Gaas2p — In Nags + Ine) = Nyggkp In (ez“ﬂ) : (32)
ads

with the molar quantities
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2 2 2 2)2/2
Sadszpm = RIn (F54522) = RIn (*Aedsibm) — R n < A{dmmig /i) ) . (33)

ads Nads
This is the equivalent of the Sackur-Tetrode equation in 2 dimensions.
The chemical potential for a mono-atomic 2D ideal gas can be derived in a similar way as shown above for the 3D ideal

gas and considering that there are only 2 translational degrees of freedom (Hill, 1986)

2
_ Gads2D—Gads,2p(0) _ 01InQqads2p — 9ads2D __ _ 2mm\z 1 _
Haas,2p(T) = Haas,2p(0) = T Neas kpT (—aNads )T“A = —kpTIn= === Nodgs kT In [(hzﬁ) Nads] =
2 N64 2
_ 2rm\2 A Ay 2mm zﬂm 1 _ 2mm\2 Am
ksT In (hzﬁ) o 2—5‘] —ksTn [( ﬁ) o amw] =—kzTIn [(hzﬁ) NA] + kT In aggs o - (34)
m

Gads,zD (0) Uads 2D (0)

Since pgqs2p(0) = —q3,s , We obtain

Nads Nads

2mm zcﬂ 2mm zcﬁl qdes

Hads,ZD(T) = —kgT In [(hzﬁ) Nm] + kgT Inaggs,p qges = —kgT In ( B) NzlekBT + kpT Inaggs,p =
2mm\z A% %

—kgT In (hzﬁ) N €T + kgT Inaggsop - (35)
Applying
ﬂads,ZD (T) = ﬂgds,ZD (T) + kBT In aads,ZD ’ (36)
we can express the standard chemical potential of the adsorbed ideal 2D gas as

2 c/lm Edes
Woaszp(T) = —ksTIn [(h’;’,’;) ekt ] . 37

S2.3 Calculation of molecular and molar thermodynamic functions for molecules adsorbed as 2D ideal lattice gas

For the 2D ideal lattice gas, no translations are allowed, and the adsorbed molecules have three vibrational degrees of freedom,
leading to (Hill, 1986)

Qads,latt = 9xwibqyvib9zvib - (38)
For the vibrational partition function q,,;;,, we can write, setting the zero-point level (g, = %hv) as 0 (Atkins et al., 2006),

1

Qvib = T, —prv - (39)

In the 2D lattice gas model, N adsorbed molecules distribute over M equivalent but distinguishable sites, leading to the
canonical partition function being:

Q=

It is worthwhile noting that this approach holds for a solid and liquid surface as long as the number of adsorption sites is given

migN
NI(M=N)!

InQ=MInM—-NInN—(M—-N)In(M—-N)+Nlngq (40)

by M. In other words, the partition function does not consider how the M sites are distributed over the surface and time.
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Using the definition of 6 = %, this can also be written as:

Nag Nag Nad Nag Ngg
In Qads,latt = l; Sln% — Ngggs In Nogg — (% - ads) ln( l; * - ads) + Nggs In Qads,latt = — c; *In(1—6) +

1-6
Nads In (T) + Nads In Qads,latt : (41)
For the thermodynamic functions, the number of sites M is the new variable that replaces the area (used in the 2D ideal

gas) or the volume used in the 3D ideal gas as variables:

91nQqds,latt dInqggs,att Nads 94qqds,latt Nggs'hv
U —U 0) =— (— = —N —_— = — - = . 42
ads,latt ads,latt( ) ap v ads ap u ads,latt ap M eBhv_1 ( )

Like the case of the 2D ideal gas, the adsorbed molecule resides in the bottom of the potential well:

Uads,latt(o) = _Nadsqt(i)es = _3395, (43)
and thus

Naash
Uads,iatt = eBZ"—l} - Sges . (44)

In molar quantities, we derive

_ Nghv 0
Uads,latt,m T eBWw_q _Edes . (45)

Note that the partition function of vibration does not depend on surface area and thus molecular partition functions are used
here and for the remainder of the 2D ideal lattice gas discussion.

For the enthalpy of an adsorbed 2D ideal lattice gas, we obtain

d1n Qqads,la d1n Qquds,la Nads 0qads,la M
Haasate — Hads,latt(o) = _( 6[? : tt)M + kBTM( 6131 l ”)T == Qadsjatt( ;Bl ") + kgTM In (M—Nads) =
Nads (99ads,latt Nads » _ _ _ _Nags 9qads,latt _ Nads _ _ Nggshv Nags _

Qads.latt( op ) + kBT 0 ( 11’1(1 9)) N Qads,latt( ap ) kBT 6 11‘1(1 9) T eBhv_q kBT 0 11‘1(1
0). (46)
Also, hereatT = 0 K:
Hads,latt(o) = _Nadsqges = _Sges ' (47)
We obtain

Nggshv Ng

Haasiatt = gy — keT =52 In(1 — 0) =g - (48)

In molar quantities, we can derive

Ng-hv In(1-6)
Hads,latt,m = eﬁil’—l —RT P _Eges . (49)

For the Gibbs free energy, we derive

91nQqgs,la Nads (1-6)
Gads,latt - Gads,latt(o) = _kBTln Qads,latt + kBTM ($>T = _kBT (_len(l - 9) + Nads 1n< 9 ) +

(1-6)
6

Nads _
Nggs In Qads,latt) - kBTlen(l —-0) = —NgaskpT In Qads,latt — NaasksT ln( ) = NaasksT 1n(1 —-e [?hv) -

(1-9)
NoasksTIn (=2). (50)



AtT = 0K, Guastare(0) = Uggsaee (0) = _Nadsqges = _83251 thus, we obtain

_ (1-6)
Gads,latt = NadskBT]n(1 —e€ ﬁhv) NadskBTln( ) ‘Sges . (51)
Expressed in molar quantities:
1-9) - (1-6)
Gadstatm = —RT N Gaastace = RTIn (52) =S, = RTIn(1 — e =) — RT In (“52) —E3, (52)
155 Lastly, we derive the entropy of the adsorbed 2D ideal lattice gas:
Ud,l tt_Ud,l tt(O)
Sads,latt =22 T —— kg In Qads,latt =
__Nggs (aqads,latt) _Nggskp (aqads,latt)
dads,latt B + kB( Nadsl (1 _ 9) + Nads In ((1 9)) + Nads In Gaas latt) _ qads,lat;BT op +

(1-6) Nads 9Indgadsia
kBNads In Gads,latt + kBNadS In (T) - kB lel’l(l - 9) = NadskB (ll’l Gads,latt — ﬁ (%)) +

(1-6) In(1-6)
NadskB (ln( P ) - P ) = Sads,latt,vib + Sads,latt,config- (53)

160 In molar quantities:

91Inqqgsla (1-6) In(1-6)
Sads attm = R (ln Qadsate = B (%)) +R (In(2) - 22, (54)
The chemical potential of the adsorbed 2D ideal lattice gas can be derived in the following way:
GllSll_GllSll(o) al aas,la
“ads,latt(T) - .uads,latt(o) = Jadsl ttN — = _kB (%) kBT( In Nads +In Nads + ln( 1) +
ads ads .M Nads
[
In Gas are =100 = I0(1 = 0) = I Gags aee) = ks T In (). (55)
(1-0)qads,latt
165 Accounting for the standard surface coverage, keeping the same dependence as 6, we can write (Hill, 1986;Campbell et al.,
2016)
0 0 % 1-6°
Hads,iatt (T) — Hads,aee (0) = kT In (m) =kgTIn m(l oo | = —kgT In [qads latt 50 ] +
1-6
(199) 1-9°
kgT In = —kgTIn [qads latt ~go ] + kgT In aggg it - (56)
1—00

Gads,latt(o) Uqgds,latt(0)
Nads Nads

Since Uaas,iaee (0) = _qdes » We obtain

1-90 qdes

kgT —
qads latt 90 —o e"B + kBTln aads,latt -

1-6°
170 Hads, latt (T) = _kBT In [qads,latt W] + kBT In Aqds latt — qges = kBT In

1-09 E?ies
_kBT In Qads,latt g0 € RT | + kBT In Qqaas,latt - (57)
Applying
#ads,latt (T) = :ugds,latt (T) + kBT ln aads,latt ' (58)
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we can express the standard chemical potential of the adsorbed 2D ideal lattice gas as

£O
0 _ 1-09 Zdes
ﬂads,latt(T) = —kgTIn [qads,latt 90 e RT

(59)
S2.4 Calculation of molecular and molar thermodynamic functions for molecules in the transition state for desorption
or adsorption

The TS for desorption is assumed to exist at some fixed distance from the surface but within a very thin layer of thickness
d. The molecules do not have any interactions with the surface, but it is activated to an energy level according to the barrier
height above the gas phase reference. According to TS theory, the molecules are moving in the direction of the reaction
coordinate (thus desorption or adsorption) with the mean thermal velocity. They are treated as a 2D ideal gas in the plane
parallel to the surface, but they feature translation in the direction orthogonal to it, which is confined to d. Therefore, when

omitting vibrations, the total partition function is

A d 2mm 2/2 2mm 1/2 2mm 3/2 2mmkpgT 3/2 Ad
4rs = qrsz2pqrsdes = 25 = A (W) d (W) =Ad (hzﬁ) =Ad ( th ) =3 (60)
] 3 B Y2 h 1
with A = h (%) = G B = o (61)

The partition function of the TS is made up of the partition function of the TS confined to two dimensions similar to a 2D ideal
gas (qrs2p) and the one dimensional translation (qrs 4es). Thus, overall, the partition function of the TS is similar to that of a
3D ideal gas, confined, however, to a thin layer.

The energy reference for the inner energy is the gas phase molecule at rest (T = 0 K). The molecule in the TS does not
have any interactions with the surface, but is activated to the level of the energy barrier for desorption or adsorption. Hence,

for the inner energy, we obtain

Urs — Urs(0) = — (%)ﬂ = —Nrs (alg%)ﬂ = _ZTT;(BZ_;S)UQ = —Nrs (2_2) (_ 23;:13) = SNTSkBT (62)

Since the molecule in the TS does not have any interactions with the surface but sits on top of the energy barrier, g7, thus, we
obtainat T = 0 K, Urs(0) = Nysqp = €7, so that:

Urs =2 NskpT + &5 (63)
and in molar quantities

Ursim = 2 RT+E] . (64)
The inner energy of the TS includes the two translations in the horizontal and the orthogonal translation along the reaction
axis. In contrast, the activation inner energy associated with the TS corresponds to the TS with the translational motion along
the desorption or adsorption direction omitted, and thus, is similar to a 2D gas. Here, the activation process can be

conceptionally envisioned by bringing the molecules in the 2D ideal gas from the zero-point energy to the actual energy level

that allows for the formation of the TS. In other words, without bringing up the adsorbed molecules to the actual energy level,

8
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desorption cannot progress. For the remainder of the manuscript the subscript “act” refers to the TS described as a 2D ideal

gas. Therefore, we obtain the corresponding inner energy of activation, neglecting vibrations:

_ 9lngrszap\ _ _ Nads (94rszp) _ _ A2 A
Uact Uact(o) NTS( B ):ﬂ - ‘Zads,zD( ap )ﬂ - NTS (Jl) ( ﬁAZ) NTSkB (65)
with U, (0) = & and in molar quantities
Ugctm = RTHEY . (66)

For the enthalpy, we proceed analogously:

NTskBTn‘lA d _

Hys = Hys(0) = = (P505) 4 kTl (5005) = Ny + P20 (HIS) = 2ok T 4 M0

B ars A
> NrskpT + NrskyT = ZNpskgT. (67)
For the same reasons as above, the reference conditions are in such a way that for T = 0, Hys(0) = £, and thus
Hrs = 2 NyskgT + &) and Hrgp, = ::j ZRT+E. (68)
Correspondingly, for the enthalpy of activation (assuming 2D ideal gas only), we obtain
Hger = 2NpskgT + € and Hyepy = 2RT+E] (69)
Following with the derivation of Gibbs’ free energy
Grs — Grs(0) = —kpT In Qrg + kgTA (%)T = —kpTNrsIngrs + kpT(NpsIn Npg — Npg) + NpgkpT =
—NypgksT In (Zi—ii) . (70)
AtT = 0K, Gr5(0) = Urg(0) = &2, thus, we obtain
Grs = —NpsksT In (g—;‘i) +ef. (71)

In molar quantities, we obtain

Grsm = —RTIn (‘”SA’”) +ED. (72)

The Gibbs’ free energy of activation, which does not include the motion along the desorption coordinate, is derived as,

with Gact(o) = Uact(o) = 88,

ars,
Gact - NTskBTln <m) + Sg = _NTskBTln (%) + 88 (73)
and
_ qarsm 0 _ _ qTs,2D,m 0
Gactm = —RTIn (—qu,desNA) +EY = —RT1In (—NA ) +ED. (74)

Lastly, for the entropy we write

STS = %’I‘S(O) + kB ln QTS = zNTSkB + NTSkB ln qTS - NTSkB 11’1 NTS + NTSkB = NTskB(lne + ln qTS - ll’l NTS +

Ine3/2) = Nkg In (95;2%), (75)

with the corresponding molar quantities
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5/2 23/2
Srsm =RIn (_N:STS) RIn (—:js’”) =RIn <e Ad(2mmkgT/h7) )

Nts

For the activation entropy, we obtain

2 2 2 22/2
Sactm = RIn (222) = Rin (2222m) = R1n <e A(emmkpT/h7) ) .

Nrs

The chemical potential for the TS can be derived the following way

3
_ _ Grs—Grs(0) _ dInQrs _ ars _ 2tm\2 d _
prs(1) = pirs(0) = SR =~k T (TR0 = —kpTIn 2% = kT [(hz i
3 N(,;l 3 3
2mm\ 2 dcﬂ Am 2mm :/lm 11 _ _ 2mm Jlm
—kyT1n (hzﬁ) - NA] —ksTIn [(hzﬁ) d3m -t = —kyTIn [(hzﬁ) o ]+kBT1naTS.
A

Grs(0) _ Urs(0)

0 .
= q; , we obtain
Nts NTts g

Since urs(0) =
3

A
urs(T) = —kgTIn [(Z’;’;)Z dﬂ] + kgTInars + qp.

Applying

Urs(T) = u(T) + kgTInars ,
we can express the standard chemical potential of the TS as

3
195(T) = —kpT In [(2’"")2 dﬁ] +qp.

h2p Ny

The chemical potential for the activated state can be derived the following way

Hace(T) — Hace (0) = Sact—baer@ _ —NrskpT In (¢> = —NrskpTIn (q;s_,zu) = —kpTIn [(

Nts ars,desNTs TS
2 Nag
_ 2mm\2 A Am | _ 2mm\ A 1] _ _ 2mm A
kyT In (hzﬁ) T kgT In [(hzﬁ) | = —ksTIn [(hzﬁ) NA] + kT Inars .
m
Since g (0) = G‘x;io) = U‘I‘;;EO) = qp , we obtain

2mm

aqO
hzﬁ) T]+kBTlnaTs+q8.

Hact (T) _kBT In [(

Applying
tace(T) = pgee(T) + kT Inars
we can express the standard chemical potential of activation as

Woee(T) = —kpTIn [(i’;’;) %] +q0.

10
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S3 Standard molar enthalpies, entropies, and Gibbs free energies

For the relationship to the equilibrium constant, we need the standard molar Gibbs free energies. Those are derived in the

following subsections for the 3D ideal gas, 2D ideal gas, 2D ideal lattice gas, and TS.

S3.1 3D ideal gas

_ dln Qgm 6ang_m _ E ﬂ an,m _ 3 _ E
Hym = (—aﬁ )V + kg TV (—av )T = SRT + 7% (—av )T =2RT + RT =2RT (86)
and
o _ _(0InQgm dInQgm) _ 3 RTVS, (aqg_m) _3 _5
Hgm = (—aﬁ )v + kBTV( v ), = 2RT + B Vovg, ), =3 RT + RT = 2RT. (87)
_ eS2qgm\ _ e~"/2(27rkaT/h2)3/2
Sgm =R ln( o ) =R 1n< o) (88)
and
5/2,,0 5/2 2)3/2
ng =Rln (M) — RInlé (ankBTéh ) . (89)
g Ng (Ng/V)
Ggm = —RTIn (22) (90)
and
0 _ Qg,m
Ggm = —RTIn (2%, (91)
with g5, = Vi (2nmksT/h?)3/% (92)

where the standard molar partition function qg,m is the molar partition function evaluated using the standard molar volume

70,

S3.2 Adsorbed 2D ideal gas

Hads,ZD,m - ads,ZD,m(O) = 2RT—Eges (93)
and
dIn Q2 dIn Q2 RTAS, (9qqds2D
HO _ HO O — _( ads,ZD,m) k Tc/lo ( ads,ZD,m) _EO — RT + m ads,2D,m _EO —
ads,2D,m ads,ZD,m( ) ap c/lf,’n + B m 6:/179,1 r des CIads,zD,m( 6cﬂ$n )T des
2RT—EJ, . (94)
e2qqads,2p, e2(2nmkgT/h?)*?

Sads2pm = RIn (7“;:“”") =RIn <—( G ) (95)
and

11



2.0 2 242/2
275 SSaom = Rin(Z%es20m) _ g <— (zmmi/12) ) | (96)

(Nads/ﬂ)o
G = —RTIn (feds2bm) _po (97)
ads,2D,m Nga des
and
q°
ngs 2pm = —RT In (%) _Egew (98)
e A
With qus,ZD,m = cﬂ?n(ZTIkaT/hz) ' (99)

280 where the standard molar partition function gy .., is the molar partition function evaluated using the standard molar area

AL
S3.3 Adsorbed ideal 2D lattice gas

Ng-hv

Hogstatem = Bhv_q RT 9_ - c(l)es (100)
and
285 Hustatem = o — RTE) g0, (10)
Sadsattm = R (ln Qadsact — B (ng—gslm» +R (ln ((1;9)) - 1n(19—9)) (102)
and
SSastcim = R (10 Gassr — 8 (222252) ) 4  (1n (4527 - 252). (103)
Gaasiattm = —RTIN Gas aee = RT In (52) ~Efes (104)
290 and
Gadsjattm = —RT I qaggiare — RT In ((1;20)) —Eges - (105)

Note that in the first term, the molecular partition function is used (not the molar). Because the vibrational gq,,;;, are independent

of the surface coverage,

1
Qads,latt = Qxwibqyvib9zvib = 1—e—FBmv (106)

295 S3.4 Transition state for desorption or adsorption

H 5

Hrsm = Hism = n_:j = ERT+E19 (107)
and

Hoctm = cht,m = 2RT+EI()) (108)

12



5/2 5/2 21\3/2
Srsm = RIn (“=2551) = R1n ( Ad(armiegT/17) ) (109)

A Nts
300 and
o _ es/zqgs’m> _ e5/2d(2nkaT/h2)3/2
Stsm = RlIn (7NA =RIn s/ )0 : (110)
2 m 24 (2nmkpT/h2)*?
Sactm = RIn (SUI22m) = Rin ( et ] (111)
and
0 _ e®aPszpm) _ eZ(ZHkaT/hZ)Z/Z
Sacem =R ln( N, ) =R 1n< Wrs/o)0 . (112)
305 Grsm = —RTIn (qj%) +E? (113)
and
0
Gfsm = —RTIn (qjvs"”) +Ey. (114)
A
Gactyn = —RT In (qTi;IZ:'m) +EI(7) (115)
and
0
310 6%, =—RTIn ("”Nﬂ) +E (116)
A
with q’(IJ‘S,m = ng,ZD,quS,des = cﬂ%ld(ZTkaBT/hz)yz (117)
and qs2pm = Am(2mmksT/h?) (118)

where the standard molar partition function g ,,, is the molar partition function evaluated using the standard molar area A,.
Note that the thickness d as part of qrs 4.s remains as is and is not normalized to a standard length. qrg 4.5 acts as a

315 multiplicator to the standard molecular partition function of the 2D ideal gas and remains specified by the thickness of the
layer assumed.

S4 Derivation of Equilibrium Constants

Here, we derive the thermodynamic functions that describe the equilibrium constants between the gas phase and the adsorbed

state for the different adsorbate models and TS.
320 4.1 Standard molar thermodynamic functions and equilibrium constant between 2D ideal gas and 3D ideal gas

The standard molar change in Gibbs free energy for desorption from a 2D ideal gas is given by:
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qo,m qg_ s,2D,m
AGt(i)r»zs,ZD,g,m = G;,m - Gt(z]ds,ZD,m = —RTIn (z_A) - [_RT In (dN—;D) _Eges] = E((i)es —RTIn|-———|=

(qads,zD m>
Ng
‘Igm
0
—RT |“2des 4 I (119)
RT qads 2Dm
For the change in enthalpy, we can write
5 1
325 AI-Iz(i)es,ZD,g,m = Hg,m - HadS,ZD,m = ERT —2RT + E((i)es = ERT + Et(i)es : (120)
For the change in entropy, we derive
e%2qgm ¢%dads20,m el/2qgm
ASJes20,gm = Sqm — Seaszpm = RIn (Tf) Rln (%) Rln (ﬁ) : (121)

The equilibrium constant, K2y ,p 4. is also related to the free energy change, AG2ys 2p g.m. Via

0 _—AGY /RT
Kdes,ZD,g = e deszDgm : (122)

330 We can, thus, express the equilibrium constant as

(qﬁ—m) Eges 0 E?des
Kdesapg = 70—~ € R = e kT (123)
( ads,ZD,m> qads,zD,m
Ng
When setting in the expressions for the standard molar partition functions:
KO Vm(ZTEkaT/hZ) —Eges _ Vi 2 koT/h? 1/2 —Eges (Nggs/A)° 2 koT /h? 1/2 —% 124
4es.2D.9 = " 40 GrmkpT/n?) RT_E(T[mB/)eR m(nmg/)em. (124)

We should obtain the same result, when assuming equilibrium and using the chemical potential of the gas and the adsorbed
335 2D ideal gas:

ﬂg (T) = Mg (T) + kBTln:;o = .uads,ZD (T) = Mgds,ZD (T) + kBT In aads,ZD . (125)
We use above derivations to write
EO
—kpTIn [(1’;’;)2 ’;T] +kpTIn % = —kyT1n [(i;’;‘)z ‘f,—;fle 355] + kT In aggs . (126)
~kTIn [225] 4 kT In g2 = —kpTn Gadszn 250 Hes] e (127)
B V Na B ]1:’—64 B A N B ;V_OA .

340 Rearranging terms yields

N, Na S q Vm adas, m des
kT Ing% — kBTln[ wos| = ksTIn |27 ] kgTIn [q ‘jﬂ“’ e R ] (128)
Vi A
g AV Eges
kBTln [aadSZD] = kBTln Kdes 2Dg = kBTln [qadszD;cﬂ_e RT ] y (129)

14



EQ 3/2 EQ £,
qg AV _—des 2mmkgT/h? _—des
o AR e (rmksT/n?) T Vi -—es m(2nkaT/h2)1/2e 2 o (130)
dads2p V Am (@2rmkgT/h2) AY,

0 —
Kdes,ZD,g -

This is the same result for K7, ,, , We obtained when solving for the Gibbs free energy.

345 4.2 Standard molar thermodynamic functions and equilibrium constant between 2D ideal lattice gas and 3D ideal gas

The standard molar change in Gibbs free energy for desorption from a 2D ideal lattice gas is given by:

qo,m 1-6°
AG((i)es,latt,g,m = Gg?,m - G((z)ds,latt,m = [_RT In <13—)] - [_RT In qus,latt = RTIn (( 90 )) _Eges] = Eges -

(m) . qgm

Na — “Edes

RT In|—— 5| = —RT |2 + In o 90) (131)
qadslatt 60 qadslatt 60

For the change in enthalpy, we can write

Ng-hv In(1-6)

5
350 AI-Ic(i)es,latt,g,m = Hg,m - Hads,latt,m = ERT - eBhV_q + RT 9 +Edes ’ (132)
when neglecting the vibrational term:
1 (1 6)
AI-Ic(i)es,latt,g,m = Hg,m - Hads,latt,m = RT + RT E +E395 . (133)

For the change in entropy, we derive

e5/2q), d1lnqqgs, 1-69) In(1-69)
Asges,latt,g,m = Sg,m - Sgds,latt,m =RIn <Tgm) —-R (ln Qads,latt — ,8 (%)) —R (ln ((T) - T) .

355 (134)
Note that q,qs,14¢c ONly consists of vibrations and as such does not refer to a standard state. When neglecting the contribution

of vibrations, we obtain

e5/2q% m 1-60 In(1-6°
Asges,latt,g,m = S.g,m - Sc(l)ds,latt,m =RlIn (Tg> -R (11’1 ((9—0)) - %} . (135)

A

Therefore, we can express the equilibrium constant as

m)
360 1Ky 0009 = Ed“+ln (”A

1-69) (136)
Qads,latta—o
and
)
0 A _C“des
Kdes,latt,g 90) RT . (137)
dads,latt™ (g0 90
When setting in the expressions for the standard molar partition functions:
<V-,91(2nkaT/h2)3/2>
Na Ecoies 2)3/2 Eg
0 _ - _ (ankBT/h ) es
Kiesattg = 1-69) RT = a 90) RT , (138)
dads,latt 00 (Ng/v) dads,latt™ g0
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365

370

375

380

385

We should obtain the same result, when assuming equilibrium and using the chemical potential of the gas and the adsorbed

2D ideal lattice gas:
Uy () = Uy (T) + kgT ln o —Hads,latt (T = llads latt (T) + kgT In QAqds,latt - (139)

We use above derivations to write

2 KT 1-60 Edes
—kgTIn [(h’;'l’;)z p ] +kpTIn 5 = —kyTn [qads,lattwe R ] + kT In Qags jare » (140)
qq VO N, 1-6° Edes (199)
—kyTln [?gﬁ] + kpTIng% = —kpT In | Quasaee —g-€ KT |+ kpTIn . (141)
V9 1—90
Rearranging terms yields
o qq V, —g0 Eges
kBTlnN—— kBTln[(l ")] kBTln[ g m] kgT In [qad“att - eW], (142)
1-60
0
0 _ ag l% _Edes
kBT ln [aads latt:l kBT ln Kdes,latt,g = kBT 11’1 [qiads'lattlggo VN, € RT ] y (143)
0 0 0
q 110, _Edes  (2mmkpr/n2)*/?v0, _Edes 2mmigr/n2)*’? _Edes
thes,latt,g —gVN e RT %N_ RT — ( mmkp )( 90)6 RT . (144)
dads,latt—g0 A dads,latt—g0 A (Ng/v) dads|latt™—go

This is the same result for K, 1., , We obtained when solving for the Gibbs free energy.

4.3 Standard molar thermodynamic functions and equilibrium constant between the 2D ideal gas and the transition

state for desorption

The standard molar change in Gibbs free energy between the TS for desorption and the adsorbed 2D ideal gas is given by:
<q'?'5,m>
Ng

——| =
9ads,2D,m
Ny
qTS m

(0 0
—RT (EdeS+Eb) +l (145)

RT qads ZDm

qo m qg s,2D,m
AGc(i)es,ZD,TS,m = GTO"S,m - ngs,ZD,m = —RTIn <%> +EI(J] - [_RT In <le7‘1&) _Ec(i)es] = Ec(i)es+El(J) —RTIn

In the CTST, the free energy of activation is similar to that of the TS, but with the contribution of the motion along the

desorption coordinate omitted:

q m qg. s,2D,m
AGt(i)es,ZD,act,m = Gt(z]ct,m - Gc(z)ds,ZD,m = —RT 11‘1( 22D, >+Eb [ RT In (dTia) _Ec(l)es] = Eges—l'El? -

<q(7)'5,2D,m> o qu 2D, m o 0 0
N —
RTIn |22 | = —RT|Edes 4 1 |t ) g (Spszom )| (146)
(qads,ZD,m> RT qads 2D m RT qads,zD,m
Ng

For the change in enthalpy we can write for the TS and activated state
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390

395

400

405

1
AHt(i)es,ZD,TS,m = Hrsm — Haaszpm = ERT+E1(7) + Eges (147)

and
AI'It(i)es,ZD,act,m = Hact,m - Hads.ZD,m = El? + Eges . (148)
For the change in entropy we can write for the TS and activated state

/ 1/2,,0

AStges,ZD,TS,m = S?S,m - Sads 2D,m — =RIn <qqﬂ) =RlIn (M) (149)
ads,2D,m qads,zD,m

and
q

ASz(i]e‘s,ZD,aclt,m = Sgct,m Sads 2Dm =RIn (q“‘ﬂ) . (150)
ads,2Dm

Therefore, we can express the equilibrium constant with respect to the TS as

~(Edes*Ep) +1n (qum>

InK? = 151
des,2D,TS = RT qus,zD,m ( 5 )
Ng
and
0
aTs,m
) (sG] (ESes25)
K9 =2/ 7 Rt = _Irsm_ ,——%r (152)
des2D,TS = 74 e =5 e '
ads,2D,m qads,zD,m
( Na >

When setting in the expressions for the standard molar partition functions:

(ot (et (v (Eess}) (ehes2)
KSus 215 = 20 %E e /hz)) - Mi/{ﬂ){)d(znmkﬂ/hzy/z = dQ2umkyT /R V2e ™ &r ",
(153)
We should obtain the same result, when assuming equilibrium and using the chemical potential of the TS and adsorbed
2D ideal gas:
prs(T) = u%S(T) + kgTInars = paas2p(T) = .Ugds,zp (T) + kgT Inagqs2p - (154)
We use above derivations to write
2 2 2 Z 0 Eges
—kpTIn [( ’"[:}) d2 ] +kgTInaps + q° = —kzTIn [(h’;’;) T ] + kpTIn agqs2p (155)
0 [ 0 Eoe
—ksTIn [‘”Sd"’m] +kpTIn [ FZE| + g9 = —ksTIn [q“d”l’ Am ]+ JpT In | 2pads |, (156)
Na | E A NA Ao
Rearranging terms yields
NTS Nads 0 _ ars ﬁ _ Qads,zDﬁ Edes
kyT In Ty ] kyT In [ i +q0 =kyTln [ﬂdd NA] kgT In [—ﬂ i ] , (157)
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_Ecoies _Eges i
kgT In [a‘;”z D] = kgTIn Ky 2p7s = ksT In [qadm e ] q) = kgTn [qmw e RT ] — kgTIn eksfl =
g Ege (Edes"'Eb)
kgTIn e RT | —kgTIn|eRT | = kgTIn|———e ~ RrT , (158)
dads,2D dads,2D
(Eg +Eb) 2 3/2 (Edes+Eb) ( des+E?J)
0 _ qars — es (ZﬂkaT/h ) 2 2 1/2 —

410  Kgesaprs = tndsan RT 7(2717”]{8”}12) v e =d(2mmkgT/h?) RT . (159)

This is the same result for K3, ,, 7 We obtained when solving for the Gibbs free energy.

We can express the equilibrium constant with respect to the activated state as

a1s,2Dm
(Edes+Eb) Na
In Kdes 2D,act — RT +1In 0 (160)
qads,zD,m
Ng
and
0
ars,2pm 0 0 0 0
0 ( Ny > (Edes+Eb) s 20m _(Edes+Eb)
415 Kdes,2p,act = 70 e RT == € RT . (161)
qads,zD,m qads,zD,m
Ng

When setting in the expressions for the standard molar partition functions:

EY, +EY EY +E EY +EY
0 _ A(emmegryn?) (Fdest®h) oy (FaestED) e (Fles53) (162)
des,2D,act — 40 (mmkgT/h2) (NTs/A)° '

We should obtain the same result, when assuming equilibrium and using the chemical potential of the activated state and
adsorbed 2D ideal gas:
420 tace(T) = Qe (T) + kT Inars = taas2p(T) = pags2p(T) + kT Inagqeqzp - (163)
We use above derivations to write

0 0 Eg
—ksTIn [(i’;’ﬁ") ‘z—;ﬁ] +kgTInaps + q° = —ksTn [(j:;’;)lv—e Ris] +kpTInaggs2p . (164)
o EJ
—kpT In [ 17522 “l’"] + kBTln[ +qp = —kpTIn [”TDT;Z‘ d—] + kT n [”adSl (165)
Am A
Rearranging terms yields
des
425 kpTIn || — kpTIn [ 588 4 g0 = kyTIn ["T“D "‘m] kpT In |dadszn A 52| (166)
AO A_OA A A Ny
0 0
k Tln[ ] kT In K2 _ T In [[arszn - — g0 = kpTIn | 97522 ¢ o) (167)
B Qads,2D B ads,2D,act B dads,2D b dads,2D ’
(EGes*ED) 2 (EGes*ED) (EGes*ED)
qTs, _yaes "0) 2nmkgT/h*) A €s es
Kges2p,act = q;:—;:;e RT = W; RT — =e RT . (168)
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This is the same result for K3, , c; We obtained when solving for the Gibbs free energy.

4.4 Standard molar thermodynamic functions and equilibrium constant between the 2D ideal lattice gas and the

430 transition state for desorption

The standard molar change in Gibbs free energy between the transition state for desorption and the adsorbed 2D ideal lattice

gas is given by:

ars,m
MGSesiatersm = (s = Glastaerm = [T (22) 4 £9] - [~RT 10 Guaaee = RT 0 (S500) ~E,.] = Bfeu S —
(qTSm> . . qTSm
RTIn |42t = —Rr | ~destb) 11y - 90) (169)
dads, latt™go dads,latt™ (0 50
435 For the change in enthalpy, we can write for the TS and activated state
Ng4-hv ln(1 -6)
AHz(i)es,latt,TS,m = H%S,m - Hgds,latt,m = ERT - eﬁf"’ 1 +RT + E((i)es+EI(7) (170)
and
Ng-hv In(1-6
AHz(i)es,latt,act,m Ht(z)ctm - Hgds,latt,m = 2RT - eﬁfw 1 +RT ( ) + Edes+Eb ' (171)

For the change in entropy, we can write for the TS and activated state

e5/249 dlng 1-6° In(1-6°
440 ASges,latt,TS,m = Sgs,m - Sgds,latt,m =RIn <N—T5m) —R <1n Qads,latt — .8 (%)) - R (ln ((9—0)) - %) '

A

(172)
and
e2q2s2pm dInqaqdsia 1-6° In(1-6°
ASc(iJes,latt,act,m = Sgct,m - Sc(l)ds,latt,m =RIn (%) -R (11‘1 Qads,latt — :8 (#)) -R (11‘1 ((9—0)) - %) '
(173)
445  We can express the equilibrium constant as
0 0 <qTS,m>
—(EgestE| Ng
In Kdoes,latt,TS = ( dRT b) +In 1-69) (174)
dads,latt™Qpo 90
and
0
i (o) (5gecrst)
Kbesiaters = ——(gme BT . (175)

dads,latt™Qpo 90

When setting in the expressions for the standard molar partition functions:
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3/2
AYd(2emkgT/h2) /
Ng

(EO +E°) 3/2 (EO +E°)
des™”b d(ank T/hz) _Udes™b
0 — _ B

450 Kdes,latt,TS - (1 90) € RT - o (1 90) RT . (176)
Qadslatt™go (NTs/A)°qads,latt—50— 50

We should obtain the same result, when assuming equilibrium and using the chemical potential of the TS and adsorbed
ideal 2D lattice gas:
prs(T) = ups(T) + kpTInars = paaspare (T) = Uoasiaee(T) + kT In Agag e - (177)
We use above derivations to write

2mm A 1-09 Eges
455 —kyThn|(52 B) |+ ksTInars +qf = —ksTIn |qaasare T55-€ ¥ | + ks T In Qagstare (178)
ars ; A9 N 1-69 Edes o
—kpTIn[q Zl] + kT In | T | + g8 = kT In [qads,latt e RT ] +kyTIn [“ 9>]. (179)
A 1-60
Rearranging terms yields
N g A9 1-9° E?des
kpT In | 3| — kT In [(1 ")] kyT In ["Tsd m] — kyTln [qads_mwev] —q2, (180)
A?n 1-69 Na
0 E?des
kyTIn [a ars ] ks TIn Kls rarrs = ksTIn [Lo;ﬁme— o ] —q0, (181)
ads,latt Jads.latt 50 A
0 0 0 0
q 1A et Grmiegr/n2)? a8, _(FdestED) d(zmmicgr/n2)??  _(Fdes*ED)
460 Kc(lJes,latt,TS = = —00 AN, RT ( z zo Na RT = ( 5 £ )(1 90 € rT . (182)
qadslatt 50 CIads,latt 50 (N1s/A)°qadslatt—50— 90

This is the same result for K, ;¢ 7 We obtained when solving for the Gibbs free energy.

For the free energy of activation (with the translation along the desorption coordinate omitted), we obtain:

7s20m 1-6°
AGc(i)es,latt,act,m = cht,m - Gc(l)ds,latt,m = [_RT In (%) +El?] - [_RT In Qads,latt — RT In (( 90 )) _Ec(i)es] =

<q’(l)"S,2D,m) o 0 (qTS 2D m)
N - N
EQoo+E) — RTIn [ 4| = —pr | ~Cdestb) 4 g |1 T4/ (183)
dadslatt™go dadslatt™go
465 Therefore, we can express the equilibrium constant as
( 0 0) <q%s,zn,m>
—(E;,.+E N4
In K(ges,latt,act = d;; 2 +1n (1-69) (184)
dadslatt™go
and
qO
(Mszom) (s, ee9)
Ka(l]es,latt,act T (-89 e RT . (185)

dads,latt™Qpo 90

When setting in the expressions for the standard molar partition functions:
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470

475

480

485

490

AY(2emkgT/h2) o o o

0 Na ——(Edes+Eb) (2mmkpT /h?) —(Edes+Eb)
Kdesiatt,act = (1—e9) ¢ RT = . (109 € RT . (186)
dadslatt™—go (N1s/A)°qadslatt—50

We should obtain the same result, when assuming equilibrium and using the chemical potential of the activated state and
adsorbed 2D ideal lattice gas:
Uace(T) = ﬂgct (T) + kgTInars = Hads,latt M = ,ugds,latt (T) + kgT'In QAqds,latt - (187)
We use above derivations to write

2 AL 1-00 Eges
—kpTIn|(52) 22| + kT In ars + a5 = —KpTIn |qagsiare 50— KT | + kaT 1N Qagstare - (188)
h2B/) Ng 0
_g0 Eq
—kpT In [qTSZD ﬂm] + kpT In [NTS = —kpTIn [qads,latt 99 € R;S] +kpTIn [(éijg 23’)))] — a5 - (189)
Am
Rearranging terms yields
0
N (6/(1-6)) qTs, AY 1-0° Eges
kgT In TS] kyT In [m = kyTIn [%N—T] — kyT In [qads,lwwe o ] — g0, (190)
A
0
qTS,ZD(I/\l,_Z: (Eges"'Elo))
KT In || = kT 10 Ko ot ace = s In e R (10)
ads,latt Aqads,latt 90
Y
0 QTSZD‘;!;,A (Edes+Eb) (Zn'kaT/hz) c/l— (Eges"'Eg) _ (2mmkpT /h?) _(Eges"'EIOJ)
Kdes,latt,act 1-00) € RT - T (109 4 4e RT = (1=60 RT . (192)
Afadslatt—g0 90 dads,latt™ g0 (NTs/A)°qqaaslatt—p0— 90

This is the same result for K3y 14: occ We obtained when solving for the Gibbs free energy.

S5. Standard molar Gibbs free energy change and equilibrium constant between the 3D ideal gas and the transition

state for adsorption

Here, we derive the thermodynamic functions that describe the interactions between the gas phase and transition state for
adsorption.

The standard molar change in Gibbs free energy between the transition state for adsorption and the 3D ideal gas is given
by:

0 0 0
Angs,g,TS,m = GPsm — Gom = [—RT In (%) +Eg] - [—RT In <q§—:‘)] = —RTIn [‘;?m] +E)= —RTIn [qrsm]

gm
E9 E?
RTIn [eﬁ] = —RTIn ["”me R?] (193)
gm
For the change in enthalpy, we can write for the TS and activated state
AHSus.g75m = Hism — Hym = SRT+E{ — > RT = E§ (194)
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and

AHSus.gacem = Hicem — Hym = 2RT+E) —ZRT = —~RT+E} . (195)
For the change in entropy, we can write for the TS and activated state
e5/2qR5m €529 m aPsm 952D mATS,des
495 ASQusgrsm = Stsm — Sgm = RIn (Tfs) —RIn <N—f> =RIn (ngLm) =RIn (%) (196)
and
AS? —S0 50 _RIn (ez‘#ﬂ) —Rln <%> —RIn (qgm'm) (197)
ads,g,act;m act,m gm Na Na el/zq‘g'm .
We can express the equilibrium constant as
a d:
In K245 975 = In [q”’"e‘ﬁ (198)
gm
500 and
_Ep
KadngS qqzsm € RT. (199)

When setting in the expressions for the standard molar partition functions:

0 A% (2nmipT /%) E) 404 _Eb
Kaas,grs = RT = —0—e RT. (200)
ez V9, (2emkgT/h2)3/2 9

We should obtain the same result, when assuming equilibrium and using the chemical potential of the TS and adsorbed
505 2D ideal lattice gas:

prs(T) = pps(T) + kgTInars = pg(T) = pg(T) + kBTln% . (201)
We use above derivations to write
3
2 7 AN 2 kT
—kyTIn [(h’;’;)z 2|+ ksTInars + g5 = —ksTIn [(h’;’g)z = ] +ksTIn s (202)
—kyTIn %d‘”m] +kyTln NTS] = —kzTIn [qH Vm] + kBTln e . (203)
Am

510 Rearranging terms yields

0

9y
kgT In NTS] ksTIng% = kyTIn [‘”Sd“‘m] kyT In ["g Vm] kgT In eksrl (204)
A9, 79,
E
kT In [‘;—7;] = kpTIn KOs = kT n qquﬂge‘;e?] . (205)

Thus, we obtain
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KO ars V A _}";_g _ (2nmipr/n2)*% 449, _E_g _dAY, _% (206)
ads,g.TS = ag A VG o €  (2mmkgT/h2)3/2 VY, € vl e .
515 This is the same result for K3 , s We obtained when solving for the Gibbs free energy.
For the free energy of activation (with the translation along the adsorption coordinate omitted), we obtain:
qo 2Dm dgm qo 2Dm
AGys gactm = Gocem — Gym = [—RT In (%) +E;3] [ RT ln( ~"A )] = —RTIn [%] +E) =
a° E)
—RTIn [% e‘ﬁ] . (207)
dgm
Therefore, we can express the equilibrium constant as
° EY
520 InKgys gace =1n [%e_ﬁ] (208)
agm
and
2 EY
Kads ,g,act — % e RT. (209)
dgm
When setting in the expressions for the standard molar partition functions:
0
A% (2mmkpT/n%)  _Zb AY, _E_b
Kads ,g,act — Vm(21'rkaT/h2)3/2 € RT = Vm(ankBT/h2)1/2 RT . (210)
525 We should obtain the same result, when assuming equilibrium and using the chemical potential of the activated state and
adsorbed ideal 3D gas:
Hace(T) = Uaee(T) + kpT nars = pg(T) = pg(T) + kpTIn 7. (211)
We use above derivations to write
3
2 A 2 kT
—ksTIn [(h’;’ﬁ") m] +kpTInaps + q° = —kzTIn [(h’;’;)z = ] +hsTIn %, (212)
530 Rearranging terms yields
kyT In NTS] ksTInge = kpTln ["T“D ‘”m] kyT In ["9 Vm] - (213)
A%, v9,
ars arsz2p V. Af £
kBTln I:E:l = kBTln Kg act — kBTl [ g c/l T(rile RT] . (214)
“dsﬂ act = g, AVY = mmkpT/n?)3/2 VY, Gl g (27rkaT/h2)1/2 '
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545

550

This is the same result for K, ; ... We obtained when solving for the Gibbs free energy.

6. Adsorption-Desorption Equilibrium

Considering the equilibrium, for the case that the adsorbed state is a 2D ideal gas, at low coverage, starting with the

thermodynamic expressions:

R R
ads _ fdes (216)
A A
0 0
K (kB;T) e AGa.dsg act,m/RT M — (k"l) M e_AGges,zD,act,m/RTN (217)
g 0 ads
h (Ng/V) (Nggs/A)
EY EG s +ED
WNrs/A)° o+ ATsm —=L _ (Nrs/A)° a7sm E—W (218)
(vg/v)° "0 agm (Naas/A° ™ %% Q45 pm
Ny fsm __ Nags ¥ -Edes
g o mo_ ads == ,m e RT (219)
(Ng/V) dgm (Nadas/A)° dgas2pm
0 EY
Nads (Ng/V) — Res qads 2D,m K — 1 (Ng/V) (220)
Ng (Nads/ﬂ)o qgm ads,g,2D ngs,zDg lin (Ng d—/cﬂ)o .

For the case of the activity-based adsorption and desorption rates, starting with the thermodynamic expressions, we obtain

Rads _ Rdes
raire (221)
0 0
K (M) e_AGadsg act, m/RT M]\[‘ (kBT) M e_AGz(i)es,zD,act,m/RTNads (222)
h (Ng/V) (Nggs/A)°
g9 EY  +E9
(NTs/A)° [ — (NTs/A)° arsm e w (223)
Ng/v)° 9 aGm Waas/A° " aQ452pm
0
N, g% N o _Edes
) 5 T;S,m — ads == TSm e RT (224)
(Ng/V) dgm (Nads/A)° Aggs2pm
0 EY 0
Nads (Ng/v) _ R;s qadssz = KO 1 _ (Ng/v) 295
N, (N A0 adngD KO — MMin A0 ( )
g (Nags/A) (ng des,2D,g (Nggs/A)

This is again consistent with our findings above.
In case the adsorbed state on the surface is treated as a 2D ideal lattice gas, using the thermodynamic expressions as a
starting point:

Rads,ZD — Rdes,latt (226)
A A
kpT\ -AGY, JRT (N7s/A)° o (kT\ (Nrs/A)°  _ago /RT _

K ( o ) e ads,g,act,m (Ng/v) ‘N:q =K ( ) ©9/(1-09) e des,latt,actm (9/(1 9)) (227)

0,
ars,m
< Ng > (E395+Eg)
—60) RT (228)

0 o Ep
Wrs/ A gy, rsm =g = Wrs/A°_ (g /(1 _ gy)
(qadslatt 90 )

(Ng/v)° "9 agm (6°/(1-69))
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1 0
Egq

Ne 1 (6/(1-0)) N4 _Zdes
555 g = A ~e  RT (229)
(Ng/V) Qg,m (90/(1_60)) dads,latt 1;3 )
—g0
0/a-0) (Ng/v)" e% Qads,lattle—o) o0 1 _g (Ng/)° (230)
Ny (6°/(1-6%) (‘lg_m) Sl Tttt O™ 0°/(1-00)
Ny
For the case of the activity-based adsorption and desorption rates, starting with the thermodynamic relationships, we
obtain:
gds,ZD = Rges,latt (231)
kgT\ —AGO RT (N7s/A)°  AY kBT\ —AGO (1-6°) (Nps/A)°
560 Kk (%) e ads,g,actm/ —(1::/1;)0 g ﬁ =K (%) e Gdes,lattactm/RT = N‘;F;S'max Qads latt (232)
(Nrs/A)° A asm 2 _ (1-6°) (Nrs/A)° Na 6—7(""‘*6,:;5”)61 (233)
/)" Vi aGm g 09 Naasmax (Qads,latt(l;—go)> ads,latt
a A% 1 NL EQes a
9 O_Sn —= A e RT ads,latt (234)
(Ng/V) Vm dgm Qads,latt Nadsmax
Aadslatt _ Nadsmax A dadslatt Eges 2\-3/2 Eges A A%
ag = (Ng/V)O ﬁ (%2_,m) e RT = Nads‘max(ZT[kaT/h ) e RT ﬁ = Nads.maxKLangﬁ . (235)
Ny
This is again consistent with our findings above.
565
570
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580
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Table S1. Physical Parameters and Standard States Applied in Calculations for Figures 2 to 15.

T/K | M/gmol? m / kg R /JK?1mol?! kgl JK? hills N, / molec. mol*
298 100 1.6605%x10% 8.3145 1.38065%x10% | 6.62607x103* 6.02214x10%
V2 [ m® molt (ﬁ)” /m3 AL, I m? mol? (M)O / m?2 Nodsmax | M2 a°
v A
0.0248 2.4283x10% 5.1471x108 1.17x10Y7 1x10% 0.0117
d/m K q’?,m qus,ZD,m Qads latt q’?‘s,m drs,des ng,ZD,m = q?ls‘m
1x1010 1 2.3976x10% | 5.0325x10%8 1 4.9761x10%° 9.8880 5.0325x10%

26




605

610

615

620

References

Ammann, M., Cox, R. A., Crowley, J. N., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.:
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI - heterogeneous reactions with liquid
substrates, Atmos. Chem. Phys., 13, 8045-8228, 10.5194/acp-13-8045-2013, 2013.

Atkins, P., and de Paula, J.: Physical Chemistry, 8th ed., W. H. Freeman and Company, New York, 1040 pp., 2006.
Campbell, C. T., Sprowl, L. H., and Arnadottir, L.: Equilibrium Constants and Rate Constants for Adsorbates: Two-
Dimensional (2D) Ideal Gas, 2D Ideal Lattice Gas, and Ideal Hindered Translator Models, J. Phys. Chem. C, 120, 10283-
10297, 10.1021/acs.jpcc.6b00975, 2016.

Crowley, J. N., Ammann, M., Cox, R. A, Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troc, J., and Wallington,
T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V - heterogeneous reactions on solid
substrates (vol 10, pg 9059, 2010), Atmos. Chem. Phys., 13, 7359-7359, 10.5194/acp-13-7359-2013, 2013.

de Boer, J. H.: The Dynamical Character of Adsorption, Clarendon Press, Oxford, 1968.

Donaldson, D. J., Ammann, M., Bartels-Rausch, T., and Pdschl, U.: Standard States and Thermochemical Kinetics in
Heterogeneous Atmospheric Chemistry, J. Phys. Chem. A, 116, 6312-6316, 10.1021/jp212015g, 2012.

Hill, T. L.: An Introduction to Statistical Thermodynamics, Dover Publications, Inc., New York, 501 pp., 1986.

Kemball, C., and Rideal, E. K.: The adsorption of vapours on mercury .1. Non-polar substances, Proceedings of the Royal
Society of London Series A - Mathematical and Physical Sciences, 187, 53-73, 10.1098/rspa.1946.0065, 1946.

27



