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Abstract. 

Adsorption and desorption represent the initial processes of the interaction of gas species with the condensed phase. It has 

important implications for evaluating heterogeneous (gas-to-solid) and multiphase chemical kinetics involved in catalysis, 

environmental interfaces, and, in particular, aerosol particles. When describing gas uptake, gas-to-particle partitioning, and the 10 

chemical transformation of aerosol particles parameters describing adsorption and desorption rates are crucial to assess the 

underlying chemical kinetics such as surface reaction and surface-to-bulk transfer. For instance, the desorption lifetime, in 

turn, depends on the desorption free energy which is affected by the chosen adsorbate model. To assess the impact of those 

conditions on desorption energy and, thus, desorption lifetime, we provide a complete classical and statistical thermodynamic 

treatment of the adsorption and desorption process considering transition state theory for two typically applied adsorbate 15 

models, the 2D ideal gas and the 2D ideal lattice gas, the latter being equivalent to Langmuir adsorption. Both models apply 

to solid and liquid substrate surfaces. We derive the thermodynamic and microscopic relationships for adsorption and 

desorption equilibrium constants, adsorption and desorption rates, first-order adsorption and desorption rate coefficients, and 

the corresponding pre-exponential factors. Although, some of these derivations can be found in the literature, this study aims 

to bring all derivations into one place to facilitate the interpretation and analysis of the variables driving adsorption and 20 

desorption for their application in multiphase chemical kinetics. This exercise allows for a microscopic interpretation of the 

underlying processes including the surface accommodation coefficient and highlights the importance of the choice of adsorbate 

model and standard states when analyzing and interpreting adsorption and desorption processes. We demonstrate how the 

choice of adsorbate model choice affects equilibrium surface concentrations and coverages, desorption rates, and decay of the 

adsorbate species with time. In addition, we show how those results differ when applying a concentration- or activity-based 25 

description. Our treatment demonstrates that the pre-exponential factor can differ by orders of magnitude depending on the 

choice of adsorbate model with similar effects on the desorption lifetime, yielding significant uncertainties in the desorption 

energy derived from experimentally derived desorption rates. Furthermore, uncertainties in surface coverage and assumptions 

in standard surface coverage can lead to significant changes in desorption energies derived from measured desorption rates. 

Providing a comprehensive thermodynamic and microscopic representation aims to guide theoretical and experimental 30 
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assessments of desorption energies and estimate potential uncertainties in applied desorption energies and corresponding 

desorption lifetimes important for improving our understanding of multiphase chemical kinetics. 

  

 

 35 

Short Summary (500 character in total) 

Adsorption on and desorption of gas molecules from solid or liquid surfaces or interfaces represent the initial interaction of 

gas-to-condensed phase processes that can define the physicochemical evolution of the condensed phase. We apply a 

thermodynamic and microscopic treatment of these multiphase processes to evaluate how adsorption and desorption rates and 

surface accommodation depend on the choice adsorption model and standard states with implications for desorption energy 40 

and lifetime.   

1 Introduction 

Any interaction between gas-phase species and condensed matter, including liquid, semi-solid, and solid phases, commences 

by adsorption and desorption processes (McNaught and Wilkinson, 2014;Langmuir, 1918, 1916, 1915). Those are of 

importance in the research areas of catalysis and, in particular, multiphase chemical kinetics or phase transfer kinetics involving 45 

environmental surfaces and interfaces (Cussler, 2009;Chorkendorff and Niemantsverdriet, 2007;Finlayson-Pitts and Pitts, 

2000;Ravishankara, 1997;Solomon, 1999). Surfaces including water bodies, ice, and terrestrial and anthropogenic structures 

can provide interfaces at which phase transfer processes, multiphase and heterogeneous reactions can take place. In the 

atmospheric sciences, multiphase chemical reactions have been the foci of research since the realization that heterogeneous 

reactions on the surface of polar stratospheric clouds lead to the activation of inert chlorine reservoir species that subsequently 50 

result in ozone depletion, manifested in the spring southern hemispheric ozone hole (Solomon, 1999;Rowland, 1991). By now 

it is well established that gas-particle interactions play crucial roles in particle growth by condensation, gas-particle 

partitioning, and the chemical evolution of particles during aerosol formation and aging (Pöschl et al., 2007;Kolb et al., 

2010;Rudich et al., 2007;George and Abbatt, 2010;Pöschl and Shiraiwa, 2015;Moise et al., 2015;Ammann et al., 2013;Crowley 

et al., 2013;Kroll et al., 2011;Donahue et al., 2011;Jimenez et al., 2009). The role of reversible adsorption and desorption has 55 

been addressed in many studies of gas uptake and multiphase chemical reactions, in particular for the decoupling of mass 

transport and chemical reaction (Kolb et al., 1995;Hanson and Ravishankara, 1991;Kolb et al., 2010;Ammann et al., 

2013;Crowley et al., 2013;Pöschl and Shiraiwa, 2015). 

In the context of atmospheric sciences, adsorption is commonly described by the surface accommodation coefficient, αs, 

which is the probability that a molecule undergoing a gas kinetic collision is adsorbed at the surface (see overview and 60 

definitions by (Kolb et al., 2010)). For desorption, according to the Frenkel equation, the desorption lifetime (𝜏𝑑) of a surface-
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adsorbed chemical species (i.e., the adsorbate) follows an Arrhenius-type behavior (Arrhenius, 1889b;Arrhenius, 

1889a;Laidler, 1949;Frenkel, 1924;Laidler et al., 1940):  

𝜏𝑑 =
1

𝑘𝑑
=

1

𝐴
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇  ,           (1) 

where 𝐸𝑑𝑒𝑠
0  is the desorption energy with the energy reference of the gas molecule at rest at 𝑇 = 0 𝐾 (as outlined below), 𝑘𝑑 65 

is a first-order desorption rate coefficient, 𝐴 is a pre-exponential factor, 𝑅 is the general gas constant, and 𝑇 is temperature. 

Adsorption is treated as an activated process if an energy barrier exists. Desorption is always treated as an activated process; 

independent of whether an additional energy barrier exists. When describing multiphase chemical kinetics, 𝑘𝑑  affects the 

overall rate of transfer of a gas molecule into the bulk by impacting the loss rate by surface reaction and the surface-to-bulk 

transfer and, thus, the bulk accommodation coefficient (Ammann and Pöschl, 2007;Pöschl et al., 2007;Shiraiwa and Poschl, 70 

2021). For example, a kinetic multilayer model analysis of measured uptake coefficients for OH radicals on levoglucosan 

substrates yielded a tight correlation between 𝜏𝑑  and the chemical reaction rate coefficient at the surface, because the 

experimental data only allowed to constrain the product/ratio of the two (Arangio et al., 2015). A similar issue, the competition 

between adsorption (and uptake) and desorption, pertains to gas-particle partitioning kinetics when describing condensation 

of water vapor and volatile organic compounds (VOCs) and volatilization of organic reaction products (Shiraiwa et al., 75 

2013;Shiraiwa et al., 2012;Shiraiwa and Seinfeld, 2012). Thus, accurate derivation of the chemical reaction kinetics requires 

accurate 𝜏𝑑 values. Atmospheric trace gases and water vapor can undergo reversible adsorption on aerosol, cloud, and ground 

surfaces over a wide range of temperatures from below 200 to above 300 K. Especially at low temperatures, large values of τd 

could counteract slow rates of chemical reaction and diffusion, enhancing the overall gas uptake which may involve reversible, 

reactive, and catalytic processes on the surface or in the bulk of the particles (Ammann et al., 2013;Crowley et al., 2013;Kolb 80 

et al., 2010;Pöschl et al., 2007;Rudich et al., 2007;Li et al., 2020;Li and Knopf, 2021).  

Equation (1) does not explicitly show that the desorption rate depends on the choice of adsorbate model and standard 

states. The same applies to the surface accommodation coefficient, which is not referring to the adsorbate model. Once the 

pre-exponential factor 𝐴 for desorption is expressed in terms of the free energy of activation (Campbell et al., 2016;Donaldson 

et al., 2012;Kolasinski, 2012;Campbell et al., 2013), the choice of adsorbate model and standard states has a significant impact 85 

on the values of the pre-exponential factor 𝐴 and thus 𝜏𝑑. Vice versa, when using experimentally observed desorption rates to 

derive 𝐸𝑑𝑒𝑠
0 , assumptions about the adsorbate model can result, as we show in this study, in significant changes in the 

corresponding 𝐸𝑑𝑒𝑠
0  values. It is known that the choice of standard states and adsorbate model impacts the interpretation of the 

equilibrium constant and the desorption process (Campbell et al., 2016;Donaldson et al., 2012;Kolasinski, 2012).  

The difference in adsorbate models reflects the treatment of the potential well in which the adsorbate “sits” in (Hill, 90 

1986;Campbell et al., 2016). The most commonly applied adsorbate model is the 2D ideal gas which lacks one translational 

degree of freedom compared to the 3D ideal gas (Hill, 1986). It is defined by the condition of negligible lateral potential wells; 

thus, it can freely move parallel across the surface. The other extreme is the 2D ideal lattice gas where the absorbate cannot 

overcome the potential well of the adsorption site. Thus, it exerts only vibrational movements parallel and vertical to the 
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surface. A model that can describe both extremes is, e.g., the ideal hindered translator model (Hill, 1986;Campbell et al., 95 

2016;Sprowl et al., 2016). Which of the two models, the ideal 2D gas and the ideal lattice gas, are realized will depend on the 

activation barrier for adsorbate diffusion parallel to the surface. If this activation barrier is above 𝑘𝐵𝑇 (Boltzmann constant 

times temperature), the ideal lattice gas model is the preferred model, whereas if it is below 𝑘𝐵𝑇, diffusion of adsorbates 

parallel to the surface can commence and the adsorption is described by an ideal 2D gas (Sprowl et al., 2016). The hindered 

translator model (Sprowl et al., 2016) is not discussed in this study. It will be shown that the choice of adsorbate model and 100 

corresponding standard states will result in different equilibrium constants, pre-exponential factors, and, thus, desorption rates, 

but counter-intuitively, in the same adsorption rates. Ultimately, the choice of the adsorbate model will also render 𝐸𝑑𝑒𝑠
0  and 

𝜏𝑑, important parameters when examining and interpretating the multiphase chemical kinetics at environmental interfaces.  

The purpose of this study is to provide a holistic description of the thermodynamic functions derived from microscopic 

principles (i.e., corresponding partition functions) that allow for the calculation of the pre-exponential factor of the desorption 105 

rate based on transition state (TS) theory for the case of the 2D ideal gas and 2D ideal lattice gas. We will apply statistical 

thermodynamics to describe the microscopic, i.e., on the molecular level, processes and classical thermodynamics that define 

the overall energy and equilibrium conditions. The presented framework only considers physisorptive processes, within the 

general framework of treating adsorption in atmospheric chemistry (Kolb et al., 2010;Pöschl et al., 2007). Although, many 

aspects of the presented derivations can be found in statistical thermodynamic textbooks (Hill, 1986;Kolasinski, 2012) and 110 

articles (Campbell et al., 2016;Donaldson et al., 2012;Savara, 2013), a complete treatment of adsorption and desorption 

including the TS and respective standard states is not readily available in the literature, as far as the authors are aware of. An 

outcome of this exercise is an improved understanding of the defining parameters that govern typically measured and reported 

thermodynamic parameters and their dependency on chosen standard states. For example, the presented derivations 

demonstrate that the pre-exponential factor, commonly assumed to be around 1013 s-1 (Atkins and de Paula, 2006), can differ 115 

by orders of magnitude in response to the choice of standard state and adsorbate model (Campbell et al., 2016). This, in turn, 

will alter interpretation and analyses of multiphase chemical kinetics occurring at interfaces. 

The outline of this study is guided by ways of the derivation of the thermodynamic functions. TS theory assumes 

thermodynamic equilibrium between the adsorbed state and the TS for desorption (Kolasinski, 2012;Eyring, 1935). The 

description of this equilibrium in terms of the basic thermodynamic functions is based on adsorption thermodynamics. Since 120 

the desorption rate and the pre-exponential factor are expressed in terms of molecular properties (i.e., the microscopic picture), 

the linkage between statistical thermodynamics and the thermodynamic functions have to be considered and applied. However, 

the foundational derivations for the thermodynamics and statistical thermodynamics of adsorption are not well established and 

not treated in comprehensive ways in textbooks. We therefore retrace this theory first for the case of desorption as an overall 

process. This will then serve as the basis for applying this theory to the TS theory for desorption and adsorption and to derive 125 

the pre-exponential factor for desorption. A great part of those derivations follows the treatment by Campbell et al. (2016). 

Subsequently, combination of the rate expressions of desorption and adsorption establishes the links between the overall 

adsorption thermodynamics and the microscopic kinetic parameters including the interpretation of the surface accommodation 
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coefficient. In this study, the surface accommodation coefficient follows the definition by (Kolb et al., 2010) valid for 

physisorptive processes and consistent with the Langmuir adsorption description but not necessarily the same as the sticking 130 

coefficient used in surface sciences or catalysis, which is often inconsistently defined, and sometimes or sometimes not lumps 

physisorption and chemisorption. There are alternative descriptions such as the Kisliuk-type precursor mechanism that 

consider more complex configurations of the adsorbate (Kisliuk, 1957;Tully, 1994;Campbell et al., 2016), not discussed in 

this study. Lastly, we evaluate how our findings impact interpretation and analysis of measured or theoretically derived 𝐸𝑑𝑒𝑠
0  

values.  135 

Since the basis for describing desorption by TS theory requires consideration of thermodynamic equilibria, in section 2 to 

5 and the Supplement, we introduce first the overall desorption thermodynamics in more detail to provide the necessary 

equations and terminology. Section 2 discusses the general thermodynamic functions for describing adsorption and desorption, 

their derivations from microscopic properties (partition functions), and definitions of the standard states. Section 3 provides 

the derivation of equilibrium thermodynamic functions that describe the desorption process for the two different adsorbate 140 

models. The results so far will be applied in Section 4 to derive the desorption rates and associated pre-exponential factors for 

the different adsorbate models in terms of thermodynamic and microscopic quantities. Section 5 presents the derivation of the 

adsorption rate including thermodynamic and microscopic treatment and evaluation of the surface accommodation coefficient. 

In Section 6, by combination of the previous results we consider the equilibrium between adsorption and desorption to derive 

the corresponding equilibrium constants demonstrating that the derivations are internally consistent. Section 7 provides the 145 

derivation of the kinetic parameters from equilibrium between adsorption and desorption. Section 8 discusses how the choices 

made for standard states and the type of adsorbate model impact surface concentration, activity, and coverage, adsorption and 

desorption rates, and 𝐸𝑑𝑒𝑠
0  and 𝜏𝑑 values and thus our interpretation of multiphase chemical kinetics. This is followed by the 

conclusions section.  

To fundamentally follow all derivations presented in this document, an excess number of equations would need to be 150 

shown, which would have rendered this document difficult to read. In the supplement we provided all necessary definitions, 

equations, and derivations from first principles to follow the thoughts in the main document. The reader is encouraged to study 

this document side-by-side with the Supplement that contains all information leading to the results shown here. We apply the 

definitions of parameters and standard states given in the Supplement. The Supplement includes all necessary detailed 

derivations of the thermodynamic equations for 3D ideal gas, 2D ideal gas, 2D ideal lattice gas, and TS. It includes the 155 

following sections: (S1) Definition of desorption and adsorption equilibrium constants; (S2) Derivation of thermodynamic 

functions for desorption and adsorption; (S3) Standard molar enthalpies, entropies, and Gibbs free energies; (S4) Derivation 

of Equilibrium Constants; (S5) Standard molar Gibbs free energy change and equilibrium constant between the 3D ideal gas 

and the transition state for adsorption; (S6) Adsorption-Desorption Equilibrium.  
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2. Thermodynamic and Microscopic Considerations of the Adsorption/Desorption Process 160 

In this section we define the nomenclature, signage, and units involved of partition functions, thermodynamic quantities, and 

standard states when describing adsorption and desorption processes.  

2.1 Gibbs Free Energy, Enthalpy, and Entropy of the Adsorption and Desorption Process 

The spontaneous occurrence of adsorption implies an exergonic process with the thermodynamic condition (Bolis, 2013): 

∆𝐺𝑎𝑑𝑠,𝑚
0 = ∆𝐻𝑎𝑑𝑠,𝑚

0 − 𝑇∆𝑆𝑎𝑑𝑠,𝑚
0 < 0         (2) 165 

∆𝐻𝑎𝑑𝑠,𝑚
0 = 𝐻𝑎𝑑𝑠,𝑚

0 − 𝐻𝑔,𝑚
0 = −∆𝐻𝑑𝑒𝑠,𝑚

0          (3) 

∆𝑆𝑎𝑑𝑠,𝑚
0 = 𝑆𝑎𝑑𝑠,𝑚

0 − 𝑆𝑔,𝑚
0 = −∆𝑆𝑑𝑒𝑠,𝑚

0          (4) 

Since adsorption of a gas on a substrate results in an increase of molecular ordering and ∆𝑆𝑎𝑑𝑠,𝑚
0 < 0, the change in enthalpy 

∆𝐻𝑎𝑑𝑠,𝑚
0  has to be negative. In this study, ∆𝐺𝑚

0  and ∆𝐻𝑚
0  are expressed in units J mol-1 and ∆𝑆𝑚

0  in units J mol-1 K-1. 

For the remainder of the text, the subscripts denote the process direction in the order of (from left to right) process (adsorption 170 

or desorption), educt (e.g., adsorbate), and product (e.g., gas species). Subscript 𝑚 denotes molar quantities. 

2.2 Adsorption and Desorption Energy and Activation Barrier 

We define the energy reference as the internal energy of the gas molecule at rest at 𝑇 = 0 𝐾. The adsorbed or desorbing 

molecule is at the bottom of a potential well, at −𝜖𝑑𝑒𝑠
0  with 𝜖𝑑𝑒𝑠

0  being a positive number in units of Joule indicating the 

necessary heat for the molecule to desorb as depicted in Fig. 1. Different processes can contribute to 𝜖𝑑𝑒𝑠
0  such as molecular 175 

rotations and vibrations or other molecular interactions. In molecular quantities and at constant volume, accounting for the 

number of adsorbed molecules in the system, 𝑁𝑎𝑑𝑠, yields 

𝑈𝑎𝑑𝑠(0) = −𝑁𝑎𝑑𝑠𝜖𝑑𝑒𝑠
0 = −𝜀𝑑𝑒𝑠

0 ,           (5) 

where 𝜀𝑑𝑒𝑠
0  represents the molecular desorption energy. In molar quantities we obtain 

𝐸𝑑𝑒𝑠
0 = 𝑁𝐴𝜖𝑑𝑒𝑠

0             (6) 180 

and, thus, 

𝑈𝑎𝑑𝑠,𝑚(0) = −𝐸𝑑𝑒𝑠
0  .            (7) 

We treat the general case of activated adsorption/desorption here, meaning that the TS’s internal energy is elevated by the 

barrier height above the reference level. The TS for adsorption/desorption is assumed to exist at some fixed distance from the 

surface but within a very thin layer of thickness 𝑑, where it experiences an increase in potential energy (relative to the gas 185 

phase at infinite separation) to a maximum value expressed by the energy barrier 𝜖𝑏
0 due to its interaction with the surface (e.g., 

due to Pauli repulsion) as outlined in Fig. 1. We further assume for simplicity that at this TS distance from the surface, the 
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potential energy does not depend on the rotational orientation of the molecule nor on the location parallel to the surface. In 

molecular quantities, accounting for the number of molecules in the TS in the system, 𝑁𝑇𝑆, and at constant volume yields 

𝑈𝑇𝑆(0) = 𝑁𝑇𝑆𝜖𝑏
0 = 𝜀𝑏

0           (8) 190 

and in molar quantities 

𝑈𝑇𝑆,𝑚(0) = 𝐸𝑏
0 .            (9) 

In the literature, the desorption energy often includes the energy barrier (Kolasinski, 2012), so that the activation of desorption 

is, expressed in our notation here, as 

𝐸𝑑𝑒𝑠,𝑎𝑐𝑡
0 = 𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0 .           (10) 195 

For the remainder of the document, we treat the desorption energy and energy barrier separately. In the absence of an energy 

barrier for adsorption and desorption, i.e., 𝐸𝑏
0 = 0, and all equations simplify accordingly. Note, however, and as mentioned 

above, in absence of a barrier, the desorption process remains an activated process with 𝐸𝑑𝑒𝑠,𝑎𝑐𝑡
0 = 𝐸𝑑𝑒𝑠

0 . 

2.3 Relationship Between Partition Functions and Thermodynamic Quantities 

We use statistical thermodynamics to relate the microscopic properties to the matter’s bulk properties. Via the partition function 200 

𝑄 we can express the thermodynamic functions 𝑈, 𝑆 (entropy), 𝐻 (enthalpy) and 𝐺 (Gibbs free energy) in the following way 

(Atkins and de Paula, 2006) 

𝑈 − 𝑈(0) = − (
𝜕 ln 𝑄

𝜕𝛽
)

𝑉
   with  𝛽 =

1

𝑘𝐵𝑇
       (11) 

𝑆 =
𝑈−𝑈(0)

𝑇
+ 𝑘𝐵 ln 𝑄         (12) 

𝐻 − 𝐻(0) = − (
𝜕 ln 𝑄

𝜕𝛽
)

𝒱
+ 𝑘𝐵𝑇𝒱 (

𝜕 ln 𝑄

𝜕𝒱
)

𝑇
       (13) 205 

𝐺 − 𝐺(0) = −𝑘𝑇 ln 𝑄 + 𝑘𝐵𝑇𝒱 (
𝜕 ln 𝑄

𝜕𝒱
)

𝑇
 .       (14) 

𝑇 and 𝒱 are the system’s temperature and volume, respectively, and 𝑘𝐵  is the Boltzmann constant. We first calculate the 

molecular quantities U, H, G, S, and then express them as molar quantities,  

Um=U/n, Hm=H/n, Gm=G/n, Sm=S/n, via =
𝑁

𝑁𝐴
 , 𝑅 = 𝑁𝐴𝑘, and 𝑞𝑚 =

𝑞

𝑛
 ,      (15) 

where 𝑞 is the molecular partition function (Atkins and de Paula, 2006), 𝑁 is the number of molecules in the system, 𝑛 is the 210 

number of moles in the system, 𝑁𝐴 is the Avogadro number, and 𝑅 is the general gas constant.  

As introduced below for the cases of 3D ideal gas, 2D ideal gas, 2D ideal lattice gas, and TS for desorption, we will apply 

the appropriate partition functions (see also Supplement S3). For the 3D and 2D ideal gases we will use the canonical partition 

function, expressed for indistinguishable and independent molecules as 𝑄 = 𝑞𝑁/𝑁! (Atkins and de Paula, 2006). For the 2D 

ideal lattice gas, we will have to modify the canonical partition function to introduce adsorption sites (Hill, 1986). 215 



8 

 

2.4 Concentration, Standard States of Gas Species and Adsorbates, and Activities 

The concentration of the 3D ideal gas in the gas phase is given by 

𝒩𝑔 =
𝑁𝑔

𝒱
 ,             (16) 

where 𝑁𝑔 is the number of gas molecules in the system and 𝒱 is the volume of the system. Its standard concentration is  

(
𝑁𝑔

𝒱
)

0

=
𝑛𝑔

0 ∙𝑁𝐴

𝒱0 =
𝑁𝐴

𝒱𝑚
0  ,           (17) 220 

where 𝑛𝑔
0 is the standard number of moles of the gas species (typically set equal to 1), 𝑁𝐴 is Avogadro’s number, and 𝒱𝑚

0  

indicates the standard molar volume reflecting 𝑛𝑔
0. For 𝑛𝑔

0 = 1 mol, 𝒱𝑚
0  = 24.8 L mol-1 at 298 K and 1000 hPa. We define the 

gas phase activity, 𝑎𝑔, as the concentration in the gas phase,𝒩𝑔, divided by the standard concentration, (𝑁𝑔 𝒱⁄ )
0
: 

𝑎𝑔 =
(𝑁𝑔 𝒱⁄ )

(𝑁𝑔 𝒱⁄ )
0 =

𝒩𝑔

(𝑁𝑔 𝒱⁄ )
0 =

𝒩𝑔

(𝑁𝐴 𝒱𝑚
0⁄ )

 .          (18) 

The concentration for the adsorbate representing a 2D ideal gas, we define as  225 

𝒩𝑎𝑑𝑠 =
𝑁𝑎𝑑𝑠

𝒜
 ,             (19) 

where 𝑁𝑎𝑑𝑠 is the number of gas molecules on the surface and 𝒜 is the surface of the system. Its standard concentration is  

(
𝑁𝑎𝑑𝑠

𝒜
)

0

=
𝑛𝑎𝑑𝑠

0 ∙𝑁𝐴

𝒜0 =
𝑁𝐴

𝒜𝑚
0  ,           (20) 

where 𝑛𝑎𝑑𝑠
0  is the standard number of moles of adsorbate and 𝒜𝑚

0  indicates the corresponding standard molar surface area. 

Several suggestions have been made for the surface concentrations (Donaldson et al., 2012;Ammann et al., 2013;Campbell et 230 

al., 2016;Kemball and Rideal, 1946;de Boer, 1968). Campbell et al. (2016) argue that when choosing (𝑁𝑎𝑑𝑠 𝒜⁄ )0 =

𝑒1/3(𝑁𝐴 𝒱𝑚
0⁄ )2/3, the adsorbate considered as a 2D ideal gas has an entropy of 2/3 of that of the gas species, i.e., 𝑆𝑎𝑑𝑠

0 =
2

3
𝑆𝑔

0 

when just considering only the translational degrees of freedom (see below). Since a 2D ideal gas is a simple and 

straightforward assumption especially for physisorption, this standard state has advantages. This standard surface 

concentration corresponds to (𝑁𝑎𝑑𝑠 𝒜⁄ )0 = 1.17×1013 cm-2 at 298 K at 1000 hPa. In comparison, the IUPAC Task Group on 235 

Atmospheric Chemical Kinetic Data Evaluation is using (𝑁𝑎𝑑𝑠 𝒜⁄ )0 = 1.61×1012 cm-2 (Ammann et al., 2013;Crowley et al., 

2013). We define the surface activity for the 2D ideal gas, 𝑎𝑎𝑑𝑠,2𝐷, as the concentration at the surface, 𝒩𝑎𝑑𝑠, divided by the 

standard surface concentration, (𝑁𝑎𝑑𝑠 𝒜⁄ )0: 

𝑎𝑎𝑑𝑠,2𝐷 =
(𝑁𝑎𝑑𝑠 𝒜⁄ )

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 =
(𝒩𝑎𝑑𝑠)

(𝑁𝐴 𝒜𝑚
0⁄ )

=
(𝒩𝑎𝑑𝑠)

(𝑁𝐴 𝒜𝑚
0⁄ )

 .         (21) 

The concentration for the molecule in the TS for desorption, we define as  240 

𝒩𝑇𝑆 =
𝑁𝑇𝑆

𝒜
 ,             (22) 

where 𝑁𝑇𝑆 is the number of molecules in the TS and 𝒜 is the area of the system. Its standard concentration is  

(
𝑁𝑇𝑆

𝒜
)

0

=
𝑛𝑇𝑆

0 ∙𝑁𝐴

𝒜0 =
𝑁𝐴

𝒜𝑚
0  ,           (23) 
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where 𝑛𝑇𝑆
0  is the standard moles of TS molecules and 𝒜𝑚

0  indicates the standard molar surface area. Since the TS is assumed 

to exist at some fixed distance from the surface but within a very thin layer of thickness, it is treated as a 2D ideal gas, 245 

independent of the choice of model for the adsorbate. Hence, we define the surface activity for the TS, 𝑎𝑇𝑆, as the concentration 

of the TS, 𝒩𝑇𝑆, divided by the standard concentration of the TS, (𝑁𝑇𝑆 𝒜⁄ )0: 

𝑎𝑇𝑆 =
(𝑁𝑇𝑆 𝒜⁄ )

(𝑁𝑇𝑆 𝒜⁄ )0 =
(𝒩𝑇𝑆)

(𝑁𝐴 𝒜𝑚
0⁄ )

=
(𝒩𝑇𝑆)

(𝑁𝐴 𝒜𝑚
0⁄ )

 .         (24) 

For many applications, it has been common to normalize the surface concentration, 𝒩𝑎𝑑𝑠, to a maximum concentration  

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥 =
𝑁𝑎𝑑𝑠,𝑚𝑎𝑥

𝒜
 .           (25) 250 

Then, the surface concentration can also be expressed as a coverage 

𝜃 =
𝑁𝑎𝑑𝑠

𝒜
𝑁𝑎𝑑𝑠,𝑚𝑎𝑥

𝒜

=
𝒩𝑎𝑑𝑠

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
           (26) 

with a corresponding standard surface coverage 

𝜃0 = (
𝑁𝑎𝑑𝑠

𝒜
)

0

/
𝑁𝑎𝑑𝑠,𝑚𝑎𝑥

𝒜
 .           (27) 

Similar to the 3D ideal gas, also for the 2D ideal gas case, in principle, there is no limit to the surface concentration. To remain 255 

within physically reasonable bounds, all equations in conjunction with the 2D ideal gas model relate to conditions of surface 

coverages below a typical monolayer coverage of about 1014 cm-2. 

For the 2D ideal lattice gas case, the maximum number of equivalent but distinguishable sites is 𝑁𝑎𝑑𝑠,𝑚𝑎𝑥 = 𝑀, which 

will be important for the statistical thermodynamic derivation (Supplement S2.3). A physically reasonable choice for 𝑀 is such 

that 
𝑀

𝒜
 = 1015 cm-2. Then, the standard surface coverage is 𝜃0 = 0.0117 at 298 K. We define the surface activity for the 2D ideal 260 

lattice gas, 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡: 

𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 =
(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )
 ,           (28) 

where 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡  does not depend linearly on surface coverage, 𝜃, and standard surface coverage, 𝜃0 . The reason for this, 

ultimately, lies in the canonical partition function describing equivalent but distinguishable adsorption sites (Supplement Eqs. 

(40 and 41)). For example, from the derivation of the chemical potential of the adsorbed 2D ideal lattice gas (Supplement Eq. 265 

(56)), it can be clearly seen that Eq. (28) provides a self-consistent definition of the activity for this adsorbate model. The 

difference between surface coverage and activity will be further discussed below.  

3. Thermodynamic Functions of the Desorption Equilibrium  

We derive the desorption equilibrium constants for the 2D ideal gas and 2D ideal lattice gas in equilibrium with the gas phase 

considering the corresponding standard states and partition functions. See also general definitions for equilibrium constants 270 

outlined in Supplement section S1. For both adsorbate models we also derive the change in enthalpy and entropy between the 
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adsorbed and the gas molecule. The derivations in this section will demonstrate the importance of standard states when 

calculating the equilibrium constants for the desorption processes. 

3.1 Desorption equilibrium for adsorbed 2D ideal gas  

The adsorbed 2D ideal gas is characterized by molecules moving freely parallel to the surface with a constant binding energy 275 

to the surface. In other words, the adsorbate vibrates in all directions but has only free translational motion in the horizontal 

plane. The thermodynamic desorption equilibrium constant is defined by the ratio of the activity in the gas phase (𝑎𝑔) to that 

on the surface (𝑎𝑎𝑑𝑠),  

𝐾𝑑𝑒𝑠,2𝐷,𝑔
0 =

𝑎𝑔

𝑎𝑎𝑑𝑠,2𝐷
=

(𝑁𝑔 𝒱⁄ )

(𝑁𝑔 𝒱⁄ )
0

(𝑁𝑎𝑑𝑠 𝒜⁄ )

(𝑁𝑎𝑑𝑠 𝒜⁄ )
0

=

𝒩𝑔

(𝑁𝑔 𝒱⁄ )
0

(𝒩𝑎𝑑𝑠)

(𝑁𝐴 𝒜𝑚
0⁄ )

=

𝒩𝑔

(𝑁𝐴 𝒱𝑚
0⁄ )

(𝒩𝑎𝑑𝑠)

(𝑁𝐴 𝒜𝑚
0⁄ )

 .       (29) 

As indicated by the definition of the adsorbate surface activity, 𝑎𝑎𝑑𝑠,2𝐷, used in the definition of the equilibrium constant, 280 

for the 2D ideal gas, the surface activity and thus, also the surface concentration, are linearly correlated with the gas phase 

activity and concentration (i.e., number density). This is often expressed with a constant (𝐾𝑙𝑖𝑛) directly relating gas phase 

number density with surface concentration (Crowley et al., 2010): 

𝒩𝑎𝑑𝑠 = 𝐾𝑙𝑖𝑛𝒩𝑔 .            (30) 

As mentioned above, no limitations by surface area or number of sites are convoluted in this equation. The relationship between 285 

𝐾𝑙𝑖𝑛 and the equilibrium constant is: 

𝐾𝑙𝑖𝑛 =
𝒩𝑎𝑑𝑠

𝒩𝑔
=

(𝑁𝑎𝑑𝑠 𝒜⁄ )0

𝐾𝑑𝑒𝑠,2𝐷,𝑔
0 (𝑁𝑔 𝒱⁄ )

0 .          (31) 

The equilibrium constant, 𝐾𝑑𝑒𝑠,2𝐷,𝑔
0 , is also related to the free energy change, ∆𝐺𝑑𝑒𝑠,2𝐷,𝑔,𝑚

0 . Since Δ𝐺𝑑𝑒𝑠,2𝐷,𝑔,𝑚
0 = 𝐺𝑔,𝑚

0 −

𝐺𝑎𝑑𝑠,2𝐷,𝑚
0 , we can associate the two free energies with the two partition functions for the two states, and thus express the 

equilibrium constant as (see Supplement Eqs. (119-123) with Supplement Eqs. (86), (89), (91), (93), (97), (98)) 290 

𝐾𝑑𝑒𝑠,2𝐷,𝑔
0 = 𝑒−∆𝐺𝑑𝑒𝑠,2𝐷,𝑔,𝑚

0 𝑅𝑇⁄ =
𝑞𝑔,𝑚

0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇  .        (32) 

The two partition functions, 𝑞𝑔,𝑚
0  and 𝑞𝑎𝑑𝑠,2𝐷,𝑚

0  are evaluated using the standard molar volume and area, respectively. Typical 

values for standard partition functions are given in Table S1. The desorption or activation energy at the molecule’s zero-point 

energy reflects the energy to elevate the adsorbed molecule from the lowest vibrational state to the lowest vibrational state of 

the activated complex, i.e., the molecular state from which the adsorbate can directly desorb into the gas phase. In other words, 295 

Edes corresponds to the depth of the potential well (per mole). It has a positive value as defined above (Eq. (5)). When applying 

the standard adsorption enthalpy and entropy in Eq. (32) (via ∆𝐺𝑑𝑒𝑠,2𝐷,𝑔,𝑚
0 ), those have to be based on the same standard 

concentrations as given in Eqs. (17) and (20), to result in the same 𝐾𝑑𝑒𝑠,2𝐷,𝑔
0 . Applying the expressions for the partition 

functions (see Supplement Eqs. (92) and (99)): 
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𝐾𝑑𝑒𝑠,2𝐷,𝑔
0 =

𝒱𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

3 2⁄

𝒜𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

𝑒−
𝐸𝑑𝑒𝑠

0

𝑅𝑇 =
𝒱𝑚

0

𝒜𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )1 2⁄ 𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 =
(𝑁𝑎𝑑𝑠 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )1 2⁄ 𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇   (33) 300 

and thus, it follows 

𝐾𝑙𝑖𝑛 = (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇  .          (34) 

Hence, 𝐾𝑙𝑖𝑛 can be readily calculated if vibrations are not considered. For a molecule at 298 K with molecular weight of 60 g 

mol-1 and 𝐸𝑑𝑒𝑠
0  = 45 kJ mol-1, 𝐾𝑙𝑖𝑛 is about 0.1 cm, a typical value also found experimentally for many species (Crowley et al., 

2010). 305 

The standard free energy change (and the equilibrium constant) is also related to the adsorption entropy and enthalpy via 

(Supplement Eqs. (119-121)) 

−𝑅𝑇 ln(𝐾𝑑𝑒𝑠,2𝐷,𝑔
0 ) = ∆𝐺𝑑𝑒𝑠,2𝐷,𝑔,𝑚

0 = ∆𝐻𝑑𝑒𝑠,2𝐷,𝑔,𝑚
0 − 𝑇∆𝑆𝑑𝑒𝑠,2𝐷,𝑔,𝑚

0 = 𝐸𝑑𝑒𝑠
0 − 𝑅𝑇 ln [

(
𝑞𝑔,𝑚

0

𝑁𝐴
)

(
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑁𝐴
)

] .   (35) 

As shown in the Supplement (Eqs. (12), (28), and (120))  

∆𝐻𝑑𝑒𝑠,2𝐷,𝑔,𝑚
0 = 𝐻𝑔,𝑚 − 𝐻𝑎𝑑𝑠,2𝐷,𝑚 =

5

2
𝑅𝑇 −

4

2
𝑅𝑇+𝐸𝑑𝑒𝑠

0 =
1

2
𝑅𝑇+𝐸𝑑𝑒𝑠

0  .      (36) 310 

The enthalpy difference is due to the change in translational degrees of freedom between the 3D and 2D ideal gases, and the 

binding energy of the 2D ideal gas on the surface. 

As derived in the Supplement (Eq. (16)) from statistical thermodynamics, the entropy in the gas phase is given by the 

Sackur-Tetrode equation (Campbell et al., 2016;Atkins and de Paula, 2006;Hill, 1986) as 

𝑆𝑔,𝑚
0 = 𝑅 ln (

𝑒5 2⁄ 𝑞𝑔,𝑚
0

𝑁𝐴
) = 𝑅 ln(𝒱𝑚

0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )3 2⁄ 𝑒5 2⁄ ) = 𝑅 ln (
(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

3 2⁄
𝑒5 2⁄

(𝑁𝑔 𝒱⁄ )
0 ) ,    (37) 315 

while the entropy on the surface is (Supplement Eq. (33)): 

𝑆𝑎𝑑𝑠,2𝐷,𝑚
0 = 𝑅 ln (

𝑒2𝑞𝑎𝑑𝑠,2𝐷,𝑚
0

𝑁𝐴
) = 𝑅 ln(𝑒2𝒜𝑚

0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )2 2⁄ ) = 𝑅 ln (
𝑒2(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

2 2⁄

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 ) .    (38) 

As already mentioned above, following Campbell et al. (2016), because the standard state is chosen as (𝑁𝑎𝑑𝑠 𝒜⁄ )0 =

𝑒1/3(𝑁𝐴 𝒱𝑚
0⁄ )2/3, the entropy on the surface is 2/3 of that in the gas phase (Eq. (37)), because  

𝑆𝑎𝑑𝑠,2𝐷,𝑚
0 = 𝑅 ln (

(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )𝑒2

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 ) = 𝑅 ln (
(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )𝑒5 3⁄

(𝑁𝐴 𝒱𝑚
0⁄ )

2 3⁄ ) =
2

3
𝑅 ln (

(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
3 2⁄

𝑒5 2⁄

(𝑁𝑔 𝒱⁄ )
0 ) =

2

3
𝑆𝑔,𝑚

0  .  (39) 320 

From this follows (Supplement Eq. (121) with Supplement Eq. (89)) 

∆𝑆𝑑𝑒𝑠,2𝐷,𝑔,𝑚
0 = 𝑆𝑔,𝑚

0 − 𝑆𝑎𝑑𝑠,2𝐷,𝑚
0 = 𝑅 ln (

𝑒5 2⁄ 𝑞𝑔,𝑚
0

𝑁𝐴
) − 𝑅 ln (

𝑒2𝑞𝑎𝑑𝑠,2𝐷,𝑚
0

𝑁𝐴
) = 𝑅 ln (

𝑒5 2⁄ 𝑞𝑔,𝑚
0 𝑁𝐴

𝑁𝐴𝑒2𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 ) = 𝑅 ln (

𝑒1 2⁄ 𝑞𝑔,𝑚
0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 ) =

1

2
𝑅 +

𝑅 ln (
𝑞𝑔,𝑚

0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 ) ,            (40) 

Using ∆𝐻𝑑𝑒𝑠,2𝐷,𝑔,𝑚
0  (Eq. (36)) and ∆𝑆𝑑𝑒𝑠,2𝐷,𝑔,𝑚

0  (Eq. (40)) together in the second part of Eq. (35) results in the last expression 

of Eq. (35). Thus, the expressions for the thermodynamic functions are all consistent with each other. 325 
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Substituting the definition of 𝜃 (Eq. (27)) into the equation for the adsorption entropy (Eq. (39)) leads to: 

𝑆𝑎𝑑𝑠,2𝐷,𝑚
0 = 𝑅 ln (

(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )𝑒

(𝑁𝑎𝑑𝑠,𝑚𝑎𝑥 𝒜⁄ )
) + 𝑅 ln(𝑒 𝜃0⁄ ) = 𝑆𝑡𝑟𝑎𝑛𝑠,2𝐷 + 𝑆𝑐𝑜𝑣 .      (41) 

Thus, the adsorption entropy can be considered the sum of a translational term, 𝑆𝑡𝑟𝑎𝑛𝑠,2𝐷, and a coverage-dependent term, 𝑆𝑐𝑜𝑣. 

For 𝜃0 = 0.012, 𝑆𝑐𝑜𝑣 = 5.42R. At room temperature, 𝑆𝑡𝑟𝑎𝑛𝑠,2𝐷 varies around 23R.  

3.2 Desorption equilibrium for adsorbed 2D ideal lattice gas  330 

In contrast to the adsorbate being equivalent to a 2D ideal gas, where molecules freely diffuse parallel across the surface, the 

adsorbed molecule could also randomly populate a fixed number of adsorption sites, where the adsorbates have only vibrational 

degrees of freedom in three directions. This adsorption model is generally referred to as Langmuir adsorption (Langmuir, 1915, 

1916, 1932). It is worthwhile noting that this concept holds for solid and liquid surfaces as long as the number of adsorption 

sites is given by 𝑀. In other words, it is not necessary to know how the 𝑀 adsorption sites are distributed over the surface and 335 

time. The corresponding picture would be to treat the adsorbate as a 2D ideal lattice gas (Campbell et al., 2016). The activity 

is then given by 
(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )
 (Supplement S2.3). In analogy to Eq. (29), the equilibrium constant is formulated as the ratio of 

activities  

𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔
0 =

𝑎𝑔

𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
=

(𝑁𝑔 𝒱⁄ )

(𝑁𝑔 𝒱⁄ )
0

(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )

=

𝒩𝑔

(𝑁𝑔 𝒱⁄ )
0

(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )

=

𝒩𝑔

(𝑁𝐴 𝒱𝑚
0⁄ )

(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )

 .       (42) 

In the traditional formulation of Langmuir adsorption, the coverage is related to the gas phase concentration via 340 

𝜃 =
𝐾𝐿𝑎𝑛𝑔𝒩𝑔

(1+𝐾𝐿𝑎𝑛𝑔𝒩𝑔)
 ,            (43) 

where 𝐾𝐿𝑎𝑛𝑔 is the Langmuir adsorption constant. From this, we can derive 

(𝜃 (1 − 𝜃)⁄ ) = 𝐾𝐿𝑎𝑛𝑔𝒩𝑔 .           (44) 

This equation clearly demonstrates the usefulness of the definition of the adsorbate surface activity. Thus, for the relationship 

between the 𝐾𝐿𝑎𝑛𝑔 and 𝐾𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
0 , we obtain 345 

𝐾𝐿𝑎𝑛𝑔 =
(𝜃0 (1−𝜃0)⁄ )

𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔
0 (𝑁𝑔 𝒱⁄ )

0 .           (45) 

This relationship demonstrates that the functional form of the dependence of the surface coverage with pressure or 

concentration in the gas phase is the same for both definitions of the equilibrium constants (apart from the inverse formulation 

of the equilibrium constant as the ratio of gas-to-surface concentrations (Eq. (42)) versus surface-to-gas concentrations). 

However, only 𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔
0  can be related to the free energy change directly. Also in this case, the standard free energy change, 350 

∆𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚
0 , embodied in 𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔

0 , can be related to the partition functions describing the molecules in the gas phase and 

adsorbed phases as (see Supplement Eqs. (131, 133, 134) with Supplement Eqs. (86), (89), (91), (100), (103), 105)) 
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𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔
0 =

(
𝑞𝑔,𝑚

0

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
𝐸𝑑𝑒𝑠

0

𝑅𝑇  .          (46) 

When inserting the expressions for the standard molar partition functions for the translational motions (see Supplement Eq. 

(92)): 355 

𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔
0 =

(
𝒱𝑚

0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
3 2⁄

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
𝐸𝑑𝑒𝑠

0

𝑅𝑇 =
(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

3 2⁄

(𝑁𝑔 𝒱⁄ )
0

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
𝐸𝑑𝑒𝑠

0

𝑅𝑇 .      (47) 

𝐾𝐿𝑎𝑛𝑔 can now be expressed as 

𝐾𝐿𝑎𝑛𝑔 =
𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇

(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )3 2⁄  .           (48) 

Hence, 𝐾𝐿𝑎𝑛𝑔 can be readily calculated. For a molecule at 273 K with molecular weight of 48 g mol-1, and vibration frequency 

of about 1013 s-1, and 𝐸𝑑𝑒𝑠
0  = 70 kJ mol-1, 𝐾𝐿𝑎𝑛𝑔 is about 10-13 cm3, representing a typical value (Ammann et al., 2013). 360 

Since 𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔
0  is also related to the enthalpy and entropy of adsorption, we can write  

−𝑅𝑇 ln(𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔
0 ) = ∆𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚

0 = ∆𝐻𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚
0 − 𝑇∆𝑆𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚

0 = 𝐸𝑑𝑒𝑠
0 − 𝑅𝑇 ln

(
𝑞𝑔,𝑚

0

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

 .  (49) 

In variation to the case of the 2D ideal gas, and neglecting vibrations, 𝑈𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚 = −𝐸𝑑𝑒𝑠
0  (Supplement Eq. (45)), due to the 

absence of translational motion (while in the gas phase, 𝑈𝑔,𝑚 =
3

2
𝑅𝑇, or for the 2D ideal gas, 𝑈𝑎𝑑𝑠,2𝐷,𝑚 = 𝑅𝑇−𝐸𝑑𝑒𝑠

0 ). Also, as 

shown in the Supplement Eq. (49) (neglecting contribution of vibrations in gas and adsorbed phase), we obtain 365 

𝐻𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 = −𝐸𝑑𝑒𝑠

0 − 𝑅𝑇
ln(1−𝜃0) 

𝜃0 .           (50) 

Overall, for the change in enthalpy between gas and adsorbed states (see also Supplement Eq. (133)), we obtain 

∆𝐻𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚
0 = 𝐻𝑔,𝑚

0 − 𝐻𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 =

5

2
𝑅𝑇 + 𝐸𝑑𝑒𝑠

0 + 𝑅𝑇
ln(1−𝜃0) 

𝜃0  .      (51) 

We can now obtain the relationship between the desorption energy and the adsorption enthalpy as  

𝐸𝑑𝑒𝑠
0 = ∆𝐻𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚

0 (𝑇) −
5

2
𝑅𝑇 − 𝑅𝑇

ln(1−𝜃0)

𝜃0   .        (52) 370 

Thus, in the case of the 2D ideal lattice gas, the relationship between the desorption energy and the enthalpy contains the 

standard surface coverage explicitly.  

For the entropy of the adsorbed 2D ideal lattice gas (Supplement Eqs. (54) and (103)), we can write (Campbell et al., 

2016) 

𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 = 𝑅 (ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝛽 (

𝜕 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝛽
)) + 𝑅 (ln (

(1−𝜃0)

𝜃0 ) −
ln(1−𝜃0)

𝜃0 ) = 𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑣𝑖𝑏
0 + 𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑐𝑜𝑛𝑓𝑖𝑔

0  . (53) 375 

The adsorption entropy has a contribution for the vibrations in three dimensions at the site, 𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑣𝑖𝑏, (related to 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡, 

Supplement Eq. (38)) and a configurational contribution, 𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑐𝑜𝑛𝑓𝑖𝑔. Using the above standard state of 𝜃0 = 0.012 leads to 
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𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 = 𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑣𝑖𝑏

0 + 5.42𝑅 .          (54) 

Typical values for 𝑆𝑣𝑖𝑏 for 3 dimensions at room temperature, assuming a vibration frequency of 1014 s-1, are around 4.90R 

(Campbell et al., 2016;McQuarrie, 2000;Atkins and de Paula, 2006). Note that also another choice of 𝜃0 has been used, i.e., 380 

𝜃0 = 0.5, because then, the 𝜃0 (1 − 𝜃0)⁄  is unity. Consequently, this leads to a different numerical value for the standard 

adsorption entropy (𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑐𝑜𝑛𝑓𝑖𝑔 = 1.39𝑅). The choice of the standard state adopted here and suggested by Campbell et al. 

(2016) has the advantage that the standard adsorbate coverage is low and the coverage dependent contributions 𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑐𝑜𝑛𝑓𝑖𝑔 

for the 2D ideal lattice gas and 𝑆𝑐𝑜𝑣  for the 2D ideal gas have nearly the same value (5.417 and 5.423, respectively). 

For the change in entropy upon desorption, we can derive (Supplement Eq. (135)(Campbell et al., 2016))  385 

ΔS𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚
0 = 𝑆𝑔,𝑚

0 − 𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 = 𝑅 ln (

𝑒5 2⁄ 𝑞𝑔,𝑚
0

𝑁𝐴
) − 𝑅 (ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝛽 (

𝜕 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝛽
)) − 𝑅 (ln (

(1−𝜃0)

𝜃0 ) −
ln(1−𝜃0)

𝜃0 ) .

             (55) 

3.3 Adsorbate model comparison of surface concentration, activity, and coverage 

We can now use the results in section 3.1 and 3.2 to evaluate the equilibrium conditions between gas phase and surface 

concentrations and activities and respective coverages for the 2D ideal gas and 2D ideal lattice gas, presented in Figs. 2-4. The 390 

thermodynamic quantities to reproduce these figures are given in Table S1. Figure 2 illustrates the behavior of the adsorption 

equilibria for the 2D ideal gas and the 2D ideal lattice gas cases in terms of surface concentration versus gas phase 

concentration. As intuitively clear from the defining equations, for the 2D ideal gas case, the surface concentration increases 

linearly with gas phase concentration without a limitation, thus, increasing beyond a monolayer coverage, here assumed as 

1019 m-2. In turn, for the 2D ideal lattice gas case, the initially linear increase is followed by the well-established adsorption 395 

saturation due to the limitation by the number of available sites on the surface, known as Langmuir adsorption. Note that we 

purposely chose a larger desorption energy for this case, leading to the higher initial slope. Assuming the same desorption 

energy for both cases, the initial slopes would be the same for both adsorption models. As shown in Fig. 3, when normalizing 

the surface concentration to the maximum number of adsorption sites to obtain the coverage, the picture remains the same. 

In contrast to Figs. 2 and 3, when considered in terms of activities, both adsorbate models exhibit a linear relationship 400 

between the surface activity and the gas phase activity as shown in Fig. 4. While trivial for the 2D ideal gas case, for the 2D 

ideal lattice gas case, this is related to the definition of the activity as being proportional to 𝜃 (1 − 𝜃)⁄ . Note that the gas phase 

activity range in Fig. 4 covers the same gas phase concentration range as in Figs. 2 and 3. Also note that the numerical values 

for the activities are completely different for the two cases. For example, for the 2D ideal gas case, at values of 𝜃 of 0.5 and 

0.8, 𝑎𝑎𝑑𝑠,2𝐷 is 42.8 and 68.4, respectively, while for the 2D ideal lattice gas at the same coverages, 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 is 85.9 and 336.8, 405 

respectively. On the one hand, the different slopes of surface activity as a function of gas phase activity are related to the 

normalization to the two different standard states. On the other hand, when considered as a function of 𝜃, the relationship 

between the two surface activities is highly non-linear due to the diverging nature of the 𝜃 (1 − 𝜃)⁄  term for high 𝜃.  
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4. Derivation of the Desorption Rate and Pre-Exponential Factor A 

Above we have outlined the determination of the equilibrium constant 𝐾𝑑𝑒𝑠
0  and the importance to consider the standard 410 

concentrations. In this section we will derive the desorption rate and its pre-exponential factor 𝐴 from TS theory, which starts 

from the free energy change between the adsorbate and the TS. This exercise will demonstrate the necessity of knowing the 

standard state of the entropic contribution or the standard concentrations of the TS and adsorbate for the correct derivation of 

𝐴. As we will show below, the pre-exponential factor 𝐴 in the desorption rate coefficient, 𝑘𝑑𝑒𝑠, includes the entropic change 

between the adsorbed and TS of the desorbing molecule. If we like to calculate 𝐴, the standard desorption entropy has to be 415 

based on the same standard concentrations as for the definition of the activity. Again, the same activity definitions have to be 

applied to calculate actual desorption rates. We will see that without knowledge of the chosen standard state of the entropy or 

standard concentrations of TS and adsorbate species, 𝐴 cannot be accurately derived. Furthermore, we examine two cases of 

adsorbate where we first treat the adsorbate as a 2D ideal gas and secondly as a 2D ideal lattice gas. The TS is treated as a 2D 

ideal gas in both cases. This section follows the derivations outlined in Campbell et al. (2016). Detailed derivations are given 420 

in the Supplement. 

In general, the desorption rate can be expressed as 

𝑅𝑑𝑒𝑠

𝒜
= −

𝑑𝒩𝑎𝑑𝑠

𝑑𝑡
= −𝑘𝑑𝑒𝑠𝒩𝑎𝑑𝑠 ,          (56) 

where 𝑘𝑑𝑒𝑠  represents the first-order rate coefficient for desorption (in units s-1), describing the rate of change of surface 

concentration. As is evident from the definitions of activity above, the surface concentration is not necessarily proportional to 425 

the surface activity. We therefore introduce a separate rate expression and corresponding desorption rate coefficient acting on 

surface activities, 𝑅𝑑𝑒𝑠
𝑎 and 𝑘𝑑𝑒𝑠

𝑎 , respectively, as 

𝑅𝑑𝑒𝑠
𝑎 = −

𝑑𝑎𝑎𝑑𝑠

𝑑𝑡
= −𝑘𝑑𝑒𝑠

𝑎 𝑎𝑎𝑑𝑠 .          (57) 

4.1 Desorption of a 2D ideal gas 

According to conventional transition state theory (CTST) (Kolasinski, 2012), Edes is the activation energy necessary to elevate 430 

an adsorbed species from the lowest vibrational state to the lowest vibrational state of the activated complex, i.e., the molecular 

state from which the adsorbate can directly desorb into the gas phase. Note that desorption is always considered an activated 

process, thus, also including the case of desorption of a physisorbed molecule, and irrespective of whether an energy barrier is 

considered or not. In CTST, rates are derived from assuming equilibrium between the adsorbed state and the TS, which is the 

reason for discussing the overall adsorption/desorption equilibrium in detail above. The TS for desorption is assumed to exist 435 

at some fixed distance from the surface but within a very thin layer of thickness 𝑑, where it experiences an increase in potential 

energy to a maximum value expressed by the energy barrier 𝜖𝑏
0 due to its interaction with the surface as outlined above. In 

principle, the TS resembles a 2D ideal gas, but as discussed further below and in the Supplement S3.4, CTST assumes 

molecules in the TS exhibit translational motion along the reaction coordinate, which for the case of desorption is orthogonally 
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away from the surface. The associated equilibrium constant is related to the free energy change between the adsorbed state and 440 

the TS, each expressed with the corresponding standard molar partition function, 𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 , and 𝑞𝑇𝑆,𝑚

0  (Supplement sections 

S1, S2, and S4, Eqs. (3), (22), (60), (117) and (152)) 

𝐾𝑑𝑒𝑠,2𝐷,𝑇𝑆
0 =

(
𝑞𝑇𝑆,𝑚

0

𝑁𝐴
)

(
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑁𝐴
)

𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 =
𝑞𝑇𝑆,𝑚

0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇  .       (58) 

The equilibrium constant is also related to the ratio of activities 

𝐾𝑑𝑒𝑠,2𝐷,𝑇𝑆
0 = 𝑒−∆𝐺𝑑𝑒𝑠,2𝐷,𝑇𝑆,𝑚

0 𝑅𝑇⁄ =

(𝑁𝑇𝑆 𝒜⁄ )

(𝑁𝑇𝑆 𝒜⁄ )
0

(𝑁𝑎𝑑𝑠 𝒜⁄ )

(𝑁𝑎𝑑𝑠 𝒜⁄ )
0

=

𝒩𝑇𝑆

(𝑁𝑇𝑆 𝒜⁄ )
0

𝒩𝑎𝑑𝑠

(𝑁𝑎𝑑𝑠 𝒜⁄ )
0

=
𝑎𝑇𝑆

𝑎𝑎𝑑𝑠
=

𝑞𝑇𝑆,𝑚
0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇  .    (59) 445 

As discussed above, the entropy values depend strongly on the configuration (i.e., degrees of freedom) of the species in the 

adsorbed state and the TS.   

Within this CTST approach, the desorption rate can be obtained by assuming that the TS has a finite width 𝑑 across which 

the molecule moves with its mean thermal velocity in the direction orthogonal to the surface 

𝑅𝑑𝑒𝑠,2𝐷

𝒜
= 𝜅 (

𝑁𝑇𝑆

𝒜
)

(𝑘𝐵𝑇/2𝜋𝑚)1 2⁄

𝑑
 ,          (60) 450 

where  𝜅  is a transmission coefficient defining the probability with which an activated complex proceeds to desorption 

(Kolasinski, 2012). The partition function for the translational motion of the transition state in the direction of desorption is 

𝑞𝑇𝑆,𝑑𝑒𝑠 = (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )1 2⁄ 𝑑 .          (61) 

Solving this for d and inserting into Eq. (60) allows to express the desorption rate as a function of this partition function:  

𝑅𝑑𝑒𝑠,2𝐷

𝒜
= 𝜅 (

𝑘𝐵𝑇

ℎ
) (

𝑁𝑇𝑆

𝒜
)

1

𝑞𝑇𝑆,𝑑𝑒𝑠
 .          (62) 455 

The surface concentration of the TS can be derived from the equilibrium (Eq. (59)) 

𝒩𝑇𝑆 =
𝑁𝑇𝑆

𝒜
=

𝑞𝑇𝑆,𝑚
0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 𝒩𝑎𝑑𝑠 .         (63) 

Inserting Eq. (63) into Eq. (62) leads to  

𝑅𝑑𝑒𝑠,2𝐷

𝒜
= 𝜅 (

𝑘𝐵𝑇

ℎ
) (

1

𝑞𝑇𝑆,𝑑𝑒𝑠

𝑞𝑇𝑆,𝑚
0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 )

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 𝒩𝑎𝑑𝑠 .       (64) 

When considering surface activities, by dividing by the standard surface concentration we obtain 460 

𝑅𝑑𝑒𝑠,2𝐷
𝑎 =

𝑅𝑑𝑒𝑠,2𝐷
𝒜

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 = 𝜅 (
𝑘𝐵𝑇

ℎ
) (

1

𝑞𝑇𝑆,𝑑𝑒𝑠

𝑞𝑇𝑆,𝑚
0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 )

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 𝑎𝑎𝑑𝑠,2𝐷 .     (65) 

As further discussed in Supplemental Section 3.4, the activation process can be conceptionally envisioned by bringing the 

molecules in the 2D ideal gas from the zero-point energy to the actual energy level that allows for the formation of the TS. 

Thus, activation does not include the energy of the motion along the desorption coordinate, and as such is less than the energy 

associated with the TS. When defining ∆𝐺𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0  of desorption as ∆𝐺𝑑𝑒𝑠,2𝐷,𝑇𝑆,𝑚

0  (see Supplement Eq. (145) and (146)) 465 
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minus the TS’s free energy associated with the motion along the desorption coordinate, expressed by its molecular partition 

function, 𝑞𝑇𝑆,𝑑𝑒𝑠, we obtain 

𝑒−∆𝐺𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 𝑅𝑇⁄ =

𝑒
−∆𝐺𝑑𝑒𝑠,2𝐷,𝑇𝑆,𝑚

0 𝑅𝑇⁄

𝑞𝑇𝑆,𝑑𝑒𝑠
=

1

𝑞𝑇𝑆,𝑑𝑒𝑠

𝑞𝑇𝑆,𝑚
0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇  .      (66) 

With this definition of ∆𝐺𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 , we can express the desorption rate as 

𝑅𝑑𝑒𝑠,2𝐷

𝒜
= 𝜅 (

𝑘𝐵𝑇

ℎ
) (

1

𝑞𝑇𝑆,𝑑𝑒𝑠

𝑞𝑇𝑆,𝑚
0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 )

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 𝒩𝑎𝑑𝑠 = 𝜅 (
𝑘𝐵𝑇

ℎ
) 𝑒−∆𝐺𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄ (𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝒩𝑎𝑑𝑠  (67) 470 

and obtain for the activity-based desorption rate 

𝑅𝑑𝑒𝑠,2𝐷
𝑎 = 𝜅 (

𝑘𝐵𝑇

ℎ
) (

1

𝑞𝑇𝑆,𝑑𝑒𝑠

𝑞𝑇𝑆,𝑚
0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 )

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 𝑎𝑎𝑑𝑠,2𝐷 = 𝜅 (
𝑘𝐵𝑇

ℎ
) 𝑒−∆𝐺𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄ (𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑎𝑎𝑑𝑠,2𝐷 . (68) 

Thus, we can derive the desorption rate coefficient as 

𝑘𝑑𝑒𝑠,2𝐷 = 𝑘𝑑𝑒𝑠,2𝐷
𝑎 = 𝜅 (

𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑒−∆𝐺𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 𝑅𝑇⁄ = 𝜅 (

𝑘𝐵𝑇

ℎ
) 𝑒−∆𝐺𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄  ,    (69) 

where we assume 
(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 = 1. Equation (69) is consistent with Eq. (4.4.24) in Kolasinski (2012), since the standard 475 

concentrations are the same for the TS and the adsorbed state in this case. 

Following Campbell et al. (2016) defining 𝑞𝑇𝑆
0′

𝒜𝑚
0⁄  as the partition function for the TS after omitting motion in the 

direction of the reaction coordinate, this leaves the partition function for a 2D ideal gas (Supplement Eq. (117)): 

(
𝑞𝑇𝑆,𝑚

0

𝑞𝑇𝑆,𝑑𝑒𝑠
) = 𝑞𝑇𝑆,𝑚

0′
= 𝑞𝑇𝑆,2𝐷,𝑚

0 = 𝒜𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )2 2⁄  .       (70) 

Using Eq. (70) in Eq. (71), we obtain 480 

𝑅𝑑𝑒𝑠

𝒜
= 𝜅 (

𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆,𝑚
0′

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 )

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 𝒩𝑎𝑑𝑠        (71) 

and 

𝑅𝑑𝑒𝑠,2𝐷
𝑎 = 𝜅 (

𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆,𝑚
0′

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 )

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 𝑎𝑎𝑑𝑠,2𝐷 .       (72) 

Identifying Eq. (71) with Eq. (56) yields 

𝑘𝑑𝑒𝑠,2𝐷 = 𝑘𝑑𝑒𝑠,2𝐷
𝑎 = 𝜅 (

𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
0′

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 )

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇  .       (73) 485 

We can convert the standard molar partition functions back to the molecular ones. For that, we consider that (
𝑁𝑎𝑑𝑠

𝒜
)

0

=

𝑛𝑎𝑑𝑠∙𝑁𝐴

𝒜0 =
𝑁𝐴

𝒜𝑚
0   and analogously for the TS, then we obtain 

1

𝑞𝑇𝑆,𝑑𝑒𝑠

𝑞𝑇𝑆,𝑚
0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 =
𝑞𝑇𝑆,𝑚

0′

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 =
𝑞𝑇𝑆

′

𝒜
𝑞𝑎𝑑𝑠,2𝐷

𝒜

=
𝑞𝑇𝑆

′

𝑞𝑎𝑑𝑠,2𝐷
 .      (74) 

This yields 
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𝑘𝑑𝑒𝑠,2𝐷 = 𝑘𝑑𝑒𝑠,2𝐷
𝑎 = 𝜅 (

𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′

𝑞𝑎𝑑𝑠,2𝐷
) 𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇  .        (75) 490 

Hence, we have an expression for 𝑘𝑑𝑒𝑠,2𝐷 based on thermodynamic quantities (Eq. (69)) and on molecular properties (Eq. 

(75)). The latter is consistent with Eq. (4.4.20) given by (Kolasinski, 2012): 

𝑘𝑑𝑒𝑠,2𝐷 = 𝑘𝑑𝑒𝑠,2𝐷
𝑎 = 𝜅

𝑘𝐵𝑇

ℎ

𝑞‡

𝑞𝑎𝑑𝑠
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇  ,         (76) 

where 𝑞‡ represents the partition function of the TS, for which, in the explanation of Kolasinski, ‘the loose vibration in the 

direction of desorption has been factored out’ and can be identified with 𝑞𝑇𝑆
′ . Note that factoring out a ‘loose’ vibration has 495 

the same effect on 𝑞𝑇𝑆 as assigning the TS a translation over the length d, as discussed above and in other text books (Hill, 

1986;Pilling and Seakins, 1996). As outlined above, in the literature, the desorption energy often includes the energy barrier 

(Kolasinski, 2012), i.e., 𝐸𝑑𝑒𝑠,𝑎𝑐𝑡
0 = 𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0.  

The above derivations include the definition of the free energy of desorption (i.e., the free energy change between the 

adsorbed and the TS) and, thus, allow us to evaluate the pre-exponential factor A. We first formulate 𝑘𝑑𝑒𝑠 using the definition 500 

of ∆𝐺𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0  (Eq. 66), equate it with the expression in Eq. (75) and apply the relationship Δ𝐻𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚

0 = 𝐸𝑏
0 + 𝐸𝑑𝑒𝑠

0  

(Supplement Eq. (148) with Supplement Eqs. (108) and (93)) 

𝑘𝑑𝑒𝑠,2𝐷 = 𝑘𝑑𝑒𝑠,2𝐷
𝑎 = 𝜅 (

𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑒−∆𝐺𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 𝑅𝑇⁄ = 𝜅 (

𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′

𝑞𝑎𝑑𝑠,2𝐷
) 𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 ≡

𝜅 (
𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑒∆𝑆𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 𝑅⁄ 𝑒−∆𝐻𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄ = 𝜅 (
𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′

𝑞𝑎𝑑𝑠,2𝐷
) 𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 ≡

𝜅 (
𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑒∆𝑆𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 𝑅⁄ 𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 = 𝜅 (
𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′

𝑞𝑎𝑑𝑠,2𝐷
) 𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇  .     (77) 505 

With this, we can define the pre-exponential factor 𝐴 as 

𝐴𝑑𝑒𝑠,2𝐷 = 𝜅 (
𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′

𝑞𝑎𝑑𝑠,2𝐷
) = 𝜅 (

𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑒∆𝑆𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 𝑅⁄ = 𝜅 (

𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑒
𝑆𝑎𝑐𝑡,𝑚

0 −𝑆𝑎𝑑𝑠,2𝐷,𝑚
0

𝑅  .  (78) 

Equation (78) demonstrates the relevance of knowing the standard state. The first expression on the right-hand side, the 

formulation in terms of the molecular partition functions (𝑞𝑇𝑆
′ , 𝑞𝑎𝑑𝑠,2𝐷), indicates that the value of 𝐴𝑑𝑒𝑠,2𝐷 is directly linked to 

the assumptions of the adsorbate model as a basis for the calculation of the partition functions. In contrast, when 𝐴𝑑𝑒𝑠,2𝐷 is 510 

obtained from the entropy of activation (∆𝑆𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 ), the Arrhenius term needs to be corrected by the ratio of the standard 

states, 
(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0.  

Above derivations (Eq. (77)) now allow for the interpretation of 𝐴𝑑𝑒𝑠,2𝐷. Let us assume 𝜅 ≈ 1. Also recall that if both 

adsorbed and TS are 2D ideal gases and if we neglect vibrations,  (
𝑞𝑇𝑆

′

𝑞𝑎𝑑𝑠,2𝐷
) =

(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
= 1, which is equivalent to having 

no significant change in entropy, i.e., ∆𝑆𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 = 0. This leads to the commonly applied value of 𝐴𝑑𝑒𝑠,2𝐷 ≈  

𝑘𝐵𝑇

ℎ
≈515 

6 × 1012 ≈ 1013 s-1 at room temperature (298 K). It is clear, that if the ratio of the partition functions deviates significantly 
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from one and, thus, there are significant changes in ∆𝑆𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0  when going from the adsorbed state to the activated state, 

substantial deviations from the ‘benchmark’ value of  1013  s-1 are expected. For example, 𝐴𝑑𝑒𝑠,2𝐷  > 1013 s-1 with 

∆𝑆𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 > 0 and 

𝑞𝑇𝑆,𝑚
0′

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 > 1, which represents the case where a greater number of accessible configurations of the TS 

(more degrees of freedom) are available that are more easily excited by thermal energy than the adsorbed state. In contrast, 520 

𝐴𝑑𝑒𝑠,2𝐷 < 1013 s-1, ∆𝑆𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 < 0 and 

𝑞𝑇𝑆,𝑚
0′

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 < 1 indicates that the TS is constrained where, e.g., the molecule has to 

obtain a specific configuration in the activated complex. Campbell et al.(2013) showed that the observed variations in 𝐴 for 

different adsorbates can be well described by a linear correlation between adsorbate entropies and gas-phase entropies provided 

the adsorbate’s surface residence time is less than ∼1000 s. The underlying explanation is that the gas molecule’s motions in 

z direction are arrested (i.e., frustrated rotational and translational modes) resulting in a steep interaction potential well in the 525 

z direction, better described by a hindered translator model. 

 

4.2 Desorption of a 2D ideal lattice gas 

For the case of the adsorbate being a 2D ideal lattice gas, but the TS a 2D ideal gas, the associated equilibrium constant is 

related to the free energy change between the TS and the absorbed state, each expressed with the corresponding standard molar 530 

partition function, 𝑞𝑇𝑆,𝑚
0 , and 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 (Supplement Eqs. (4), (38), and (175)): 

𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑇𝑆
0 =

(
𝑞𝑇𝑆,𝑚

0

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇  .         (79) 

The equilibrium constant is also related to the ratio of activities: 

𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑇𝑆
0 = 𝑒−∆𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑇𝑆,𝑚

0 𝑅𝑇⁄ =

(𝑁𝑇𝑆 𝒜⁄ )

(𝑁𝑇𝑆 𝒜⁄ )
0

(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )

=

𝒩𝑇𝑆

(𝑁𝑇𝑆 𝒜⁄ )
0

(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )

=
(

𝑞𝑇𝑆,𝑚
0

𝑁𝐴
)

(𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0 )
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇  .    (80) 

Note that 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 represents only vibrations and rotations. In addition, for the 2D ideal lattice gas, the surface activity is based 535 

on the coverage, and correspondingly, for the normalization to the standard state, 𝜃0 (1 − 𝜃0)⁄  is replacing (𝑁𝑎𝑑𝑠 𝒜⁄ )0. Using 

the same procedure as for the 2D ideal gas case, i.e., rearranging Eq. (80), leads to (Campbell et al., 2016): 

𝒩𝑇𝑆 =
𝑁𝑇𝑆

𝒜
=

(
𝑞𝑇𝑆,𝑚

0

𝑁𝐴
)

(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )

(𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0 )
(𝑁𝑇𝑆 𝒜⁄ )0𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 =
(

𝑞𝑇𝑆,𝑚
0

𝑁𝐴
)

(𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡)
(𝑁𝑇𝑆 𝒜⁄ )0𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 (𝜃 (1 − 𝜃)⁄ ) .  (81) 

Setting this into Eq. (62) yields 

𝑅𝑑𝑒𝑠,𝑙𝑎𝑡𝑡

𝒜
= 𝜅 (

𝑘𝐵𝑇

ℎ
)

(
𝑞𝑇𝑆,𝑚

0

𝑁𝐴
)

𝑞𝑇𝑆,𝑑𝑒𝑠𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(𝑁𝑇𝑆 𝒜⁄ )0𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 (𝜃 (1 − 𝜃)⁄ ).      (82) 540 
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We note that Eq. (82) differs from Eq. (71) for the ideal 2D gas, such that 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 has only vibrational degrees of freedom 

(instead of two translational motions) (Campbell et al., 2016).  

Equation (82) highlights that the desorption rate is not proportional to the surface concentration but is depending non-

linearly on the surface coverage 𝜃 for high 𝜃. Figure 5 highlights this behavior. The desorption rate first changes linearly with 

coverage for both adsorbate models, but then strongly non-linearly for the 2D ideal lattice gas when approaching high (𝜃 close 545 

to 1) surface coverages. This fact makes conversion of the rate expression to the surface activity challenging. The rate of 

change in surface activity is related to the rate of change in 𝜃 as (Supplement Eq. (2)) 

𝑅𝑑𝑒𝑠,𝑙𝑎𝑡𝑡

𝒜𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
= −

𝑑𝜃

𝑑𝑡
 .           (83) 

Assuming that the steady state surface concentration of the TS remains much smaller than the number of adsorbed molecules 

(in a time interval necessary to populate the TS), and correspondingly the desorption rate remains relatively small in 550 

comparison to the actual coverage, we can write 

𝑅𝑑𝑒𝑠,𝑙𝑎𝑡𝑡

𝒜𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
= −

𝑑𝜃

𝑑𝑡
≈ −

𝑑(𝜃 (1−𝜃)⁄ )

𝑑𝑡
 ,          (84) 

since  

lim
𝜃→0

(
𝜃

1−𝜃
) ≈ 𝜃 . 

In other words, for small rates of change of 𝜃, the desorption rate in terms of rate of change of activity can be assumed to 555 

depend linearly on 𝜃. Since this concerns the rate of change of 𝜃, Eq. (84) holds for any coverage. This allows us to express 

the desorption rate in terms of activity as  

𝑅𝑑𝑒𝑠,𝑙𝑎𝑡𝑡

𝒜𝒩𝑎𝑑𝑠,𝑚𝑎𝑥(𝜃0 (1−𝜃0)⁄ )
≈ −

𝑑(
(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )
)

𝑑𝑡
= −

𝑑𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝑑𝑡
 .        (85) 

Therefore, dividing Eq. (82) by 𝒩𝑎𝑑𝑠,𝑚𝑎𝑥(𝜃0 (1 − 𝜃0)⁄ ) leads to the corresponding activity-based desorption rate expression 

𝑅𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 = 𝜅 (

𝑘𝐵𝑇

ℎ
)

(
𝑞𝑇𝑆,𝑚

0

𝑁𝐴
)

𝑞𝑇𝑆,𝑑𝑒𝑠(𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡)
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇
(𝑁𝑇𝑆 𝒜⁄ )0

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 .      (86) 560 

We now follow a similar derivation as for the 2D ideal gas. We define ∆𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚
0  of desorption as ∆𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑇𝑆,𝑚

0  

minus the TS’s free energy associated with the motion along the desorption coordinate and obtain 

𝑒−∆𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚
0 𝑅𝑇⁄ =

𝑒
−∆𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑇𝑆,𝑚

0 𝑅𝑇⁄

𝑞𝑇𝑆,𝑑𝑒𝑠
=

1

𝑞𝑇𝑆,𝑑𝑒𝑠

(
𝑞𝑇𝑆,𝑚

0

𝑁𝐴
)

(𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0 )
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇  .     (87) 

Thus, we can express the desorption rate for an adsorbate treated as a 2D ideal lattice gas as 

𝑅𝑑𝑒𝑠,𝑙𝑎𝑡𝑡

𝒜
= 𝜅 (

𝑘𝐵𝑇

ℎ
)

(
𝑞𝑇𝑆,𝑚

0

𝑁𝐴
)

𝑞𝑇𝑆,𝑑𝑒𝑠(𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0 )
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇
(1−𝜃0)

𝜃0
(𝑁𝑇𝑆 𝒜⁄ )0(𝜃 (1 − 𝜃)⁄ ) =565 

𝜅 (
𝑘𝐵𝑇

ℎ
) 𝑒−∆𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄ (1−𝜃0)

𝜃0
(𝑁𝑇𝑆 𝒜⁄ )0(𝜃 (1 − 𝜃)⁄ ) = 𝜅 (

𝑘𝐵𝑇

ℎ
) 𝑒−∆𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄ (𝑁𝑇𝑆 𝒜⁄ )0 (𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )
 . (88) 
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The activity-based desorption rate expression becomes 

𝑅𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 = 𝜅 (

𝑘𝐵𝑇

ℎ
)

(
𝑞𝑇𝑆,𝑚

0

𝑁𝐴
)

𝑞𝑇𝑆,𝑑𝑒𝑠(𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0 )
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇
(1−𝜃0)

𝜃0

(𝑁𝑇𝑆 𝒜⁄ )0

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 =

𝜅 (
𝑘𝐵𝑇

ℎ
) 𝑒−∆𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄ (1−𝜃0)

𝜃0

(𝑁𝑇𝑆 𝒜⁄ )0

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 .        (89) 

Therefore, the desorption rate coefficient (in units s-1) related to the surface activity is given by 570 

𝑘𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 = 𝜅 (

𝑘𝐵𝑇

ℎ
)

(
𝑞𝑇𝑆,𝑚

0

𝑁𝐴
)

𝑞𝑇𝑆,𝑑𝑒𝑠(𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡)

(𝑁𝑇𝑆 𝒜⁄ )0

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 = 𝜅 (
𝑘𝐵𝑇

ℎ
)

(1−𝜃0)

𝜃0

(𝑁𝑇𝑆 𝒜⁄ )0

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒−∆𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄  .  (90) 

While the activity-based desorption rate expression (Eq. (86)) clearly displays the first order decay behavior of the activity, 

driven by 𝑘𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 , Eqs. (82) and (88) demonstrate that when expressed in terms of molecules desorbing per unit area and time, 

it is not first order in the surface concentration but shows a strong dependence on the surface coverage, (𝜃 (1 − 𝜃)⁄ ), otherwise 

included in the activity. Therefore, for high surface coverage, an apparent 𝑘𝑑𝑒𝑠,𝑙𝑎𝑡𝑡 cannot easily be derived. For low coverage 575 

(of the adsorbate, not of the transition state), (𝜃 (1 − 𝜃)⁄ ) ≈ 𝜃 =
𝒩𝑎𝑑𝑠

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
, the rate equations (82) simplifies to 

𝑅𝑑𝑒𝑠,𝑙𝑎𝑡𝑡

𝒜
≈ 𝜅 (

𝑘𝐵𝑇

ℎ
)

(
𝑞𝑇𝑆,𝑚

0

𝑁𝐴
)

𝑞𝑇𝑆,𝑑𝑒𝑠(𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡)

(𝑁𝑇𝑆 𝒜⁄ )0

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝒩𝑎𝑑𝑠 .       (91) 

From this it follows, 𝑘𝑑𝑒𝑠,𝑙𝑎𝑡𝑡(𝜃 ≪ 1) = 𝑘𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 . This demonstrates that the decay of surface concentration at high coverage 

cannot be used to derive 𝐸𝑑𝑒𝑠
0 , as also pointed out by Campbell et al. (2016). In other words, the decay of the surface coverage 

is not a first-order process at high coverages. Using Eq. (70) in Eq. (82), yields 580 

𝑅𝑑𝑒𝑠,𝑙𝑎𝑡𝑡

𝒜
= 𝜅 (

𝑘𝐵𝑇

ℎ
)

(
𝑞𝑇𝑆,𝑚

0′

𝑁𝐴
)

(𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡)
(𝑁𝑇𝑆 𝒜⁄ )0𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 (𝜃 (1 − 𝜃)⁄ ).      (92) 

Note that the last equation is consistent with the desorption rate derived by Campbell et al. (2016) for the special case of 𝜃0 = 

0.5.  

We can now express the desorption rate coefficient as  

𝑘𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 = 𝜅 (

𝑘𝐵𝑇

ℎ
)

(
𝑞𝑇𝑆,𝑚

0′

𝑁𝐴
)

(𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡)

(𝑁𝑇𝑆 𝒜⁄ )0

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 = 𝜅 (
𝑘𝐵𝑇

ℎ
)

(𝑞𝑇𝑆
′ 𝒜⁄ )

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 =
(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇  .585 

             (93) 

For the second and third expression in Eq. (93), we have converted the standard molar partition function back to the molecular 

ones, using (
𝑁𝑇𝑆

𝒜
)

0

=
𝑛𝑇𝑆∙𝑁𝐴

𝒜0 =
𝑁𝐴

𝒜𝑚
0  .  

We can establish the link between the entropy and the pre-exponential factor by taking the expression for 𝑘𝑑𝑒𝑠
𝑎  and 

inserting the definition of ∆𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚
0  accounting for the relationship between 𝐸𝑑𝑒𝑠

0  and ∆𝐻𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚
0  (Supplement Eqs. 590 

(108) and (171)) 
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Δ𝐻𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚
0 = 𝐻𝑎𝑐𝑡,𝑚

0 − 𝐻𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 = 2𝑅𝑇 −

𝑁𝐴∙ℎ𝜈

𝑒𝛽ℎ𝜈−1
+ 𝑅𝑇

ln(1−𝜃0)

𝜃0 + 𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0 .    (94) 

Neglecting vibrations, we obtain 

Δ𝐻𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚
0 ≈ 2𝑅𝑇 + 𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0 + 𝑅𝑇

ln(1−𝜃0)

𝜃0  .        (95) 

Then it follows 595 

𝑘𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 = 𝜅 (

𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝜃0 (1−𝜃0)⁄ )𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒−∆𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄ = 𝜅 (
𝑘𝐵𝑇

ℎ
)

(𝑞𝑇𝑆
′ 𝒜⁄ )

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 ≡

𝜅 (
𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝜃0 (1−𝜃0)⁄ )𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒∆𝑆𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚

0 𝑅⁄ 𝑒−∆𝐻𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚
0 𝑅𝑇⁄ = 𝜅 (

𝑘𝐵𝑇

ℎ
)

(𝑞𝑇𝑆
′ 𝒜⁄ )

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 ≡

𝜅 (
𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝜃0 (1−𝜃0)⁄ )𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒−2𝑒∆𝑆𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚

0 𝑅⁄ 𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 (1 − 𝜃0)−
1

𝜃0 = 𝜅 (
𝑘𝐵𝑇

ℎ
)

(𝑞𝑇𝑆
′ 𝒜⁄ )

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇  . (96) 

With this, we can derive the pre-exponential factor as 

𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 = 𝜅 (

𝑘𝐵𝑇

ℎ
)

(𝑞𝑇𝑆
′ 𝒜⁄ )

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
= 𝜅 (

𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0(1−𝜃0)
−

1

𝜃0

(𝜃0 (1−𝜃0)⁄ )𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒−2𝑒

(
∆𝑆𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚

0

𝑅
)

=600 

𝜅 (
𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝜃0 (1−𝜃0)⁄ )𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒−2𝑒

(
𝑆𝑎𝑐𝑡,𝑚

0 −𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0

𝑅
)
 .         (97) 

We can, thus, identify 

(𝑁𝑇𝑆 𝒜⁄ )0(1−𝜃0)
−

1

𝜃0

(𝜃0 (1−𝜃0)⁄ )
𝑒

(
∆𝑆𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚

0

𝑅
)

= 𝑒2 (𝑞𝑇𝑆
′ 𝒜⁄ )

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
 .        (98) 

Again, as for the previous case, Eqs. (96) and (97) clearly show that when using thermodynamic data to assess the TS, the 

correct standard state needs being applied to calculate 𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎  from the entropy of activation. 605 

4.3 Adsorbate model comparison of desorption rate and pre-exponential factor 

Since, strictly speaking, the desorption rate law is representing a first-order process acting on the surface activity, it is also 

straightforward to understand that the desorption rate, when expressed as rate of change of activity per unit time is proportional 

to the surface activity, as shown in Fig. 6, independent of the adsorbate model. Thus, even when the surface coverage gets 

high, the activity based first-order desorption rate coefficient remains constant. The consequence of this becomes then directly 610 

apparent in Fig. 7, showing the desorption rate expressed as rate of change of surface concentration per unit area and unit time, 

as a function of the surface coverage. For the 2D ideal gas case, the linear relationship is maintained, i.e., the surface 

concentration-based desorption rate coefficient is constant, and thus independent of the surface coverage. In contrast, for the 

2D ideal lattice gas case, the desorption rate is rapidly increasing towards high surface coverages, clearly demonstrating the 

non-first order behavior of desorption when expressed in terms of surface concentration. This behavior is a consequence of the 615 

high configurational entropy at high coverages and naturally results from a consistent description of the surface activity. 

Therefore, the dependency of the desorption rate on coverage is not due to surface sites with different desorption energies, but 
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a consequence of the applied lattice gas adsorption model that entails a limited number of equivalent sites. In other words, the 

lifetime of an individual adsorbate molecule depends on the overall surface coverage, exerting shorter adsorbate lifetimes for 

greater surface coverages. Therefore, as also pointed out by Campbell et al. (2016), experimental desorption rate measurements 620 

need to be analyzed with care when deriving the desorption energy from measured desorption rates.  

The features of the rate law for desorption acting as a first order process on the surface activity become then also manifest 

in the time dependent decay of the surface coverage for the two adsorbate models. As expected for the 2D ideal gas case, where 

surface activity and surface coverage are proportional to each other, the first order and thus single exponential decay of the 

surface activity leads to a corresponding single exponential decay of the surface coverage, as shown in Fig. 8. In contrast, as 625 

demonstrated in Fig. 9, the single exponential decay of the surface activity of the 2D ideal lattice gas case leads to a non-

exponential decay of the surface coverage. This further emphasizes the need to carefully analyze experimental data of 

desorption rate measurements, especially if short time scales are considered. 

As discussed above, the pre-exponential factor is often assumed to be 𝐴𝑑𝑒𝑠 ≈ 1013 s-1. Figure 10 shows 𝐴𝑑𝑒𝑠 for both 

adsorbate models as a function of temperature. For the 2D ideal gas, 𝐴𝑑𝑒𝑠 displays a weak temperature dependency and, when 630 

approaching room temperature, 𝐴𝑑𝑒𝑠,2𝐷 is close to the typically applied value of 1013 s-1. For the 2D ideal lattice gas, 𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎  

is about 3 orders of magnitude larger and exhibits a stronger temperature dependency compared to the 2D ideal gas. The greater 

values for 𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎  can be understood in the following way. When going from a localized bound species (i.e., 2D ideal lattice 

gas) to a 2D ideal gas (TS), it is very likely that the ratio of partition functions is larger than one and ∆𝑆𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚
0 > 0. 

Hence, it can be expected that in these cases 𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎  > 1013 s-1, as demonstrated in Fig. 10. Even when ignoring internal 635 

rotations, the change in translational degrees of freedom between the 2D ideal lattice gas adsorbate and the 2D ideal gas of the 

TS, the configurational contribution to the 2D ideal lattice gas adsorbate leads to an increase in 𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎  > 1015 s-1 (if κ remains 

1). 

5. Rate of Adsorption 

Adsorption is treated as a physisorptive process but might exert a non-zero energy barrier 𝐸𝑏
0 for activated adsorption. We 640 

derive the adsorption rates of gas molecules transferring into the 2D ideal and 2D ideal lattice gas absorbates. The adsorption 

proceeds via the TS, which is treated as a 2D ideal gas, as in the case of desorption.  

When considered from the gas phase side, the equilibrium constant between the gas phase and the adsorbed state is given 

by the inverse ratio of activities compared to the case of desorption, as now the adsorbed state is the product: 

𝐾𝑎𝑑𝑠,𝑔,2𝐷
0 =

𝑎𝑎𝑑𝑠,2𝐷

𝑎𝑔
=

(𝑁𝑎𝑑𝑠 𝒜⁄ )

(𝑁𝑎𝑑𝑠 𝒜⁄ )
0

(𝑁𝑔 𝒱⁄ )

(𝑁𝑔 𝒱⁄ )
0

=

(𝒩𝑎𝑑𝑠)

(𝑁𝐴 𝒜𝑚
0⁄ )

(𝑁𝑔 𝒱⁄ )

(𝑁𝐴 𝒱𝑚
0⁄ )

≡
1

𝐾𝑑𝑒𝑠,2𝐷,𝑔
0          (99) 645 

and 
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𝐾𝑎𝑑𝑠,𝑔,𝑙𝑎𝑡𝑡
0 =

𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝑎𝑔
=

(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )

(𝑁𝑔 𝒱⁄ )

(𝑁𝑔 𝒱⁄ )
0

=

(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )

(𝑁𝑔 𝒱⁄ )

(𝑁𝐴 𝒱𝑚
0⁄ )

≡
1

𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔
0  .       (100) 

The relationship to the equilibrium constant of desorption holds irrespective of whether the adsorbed state is a 2D ideal gas or 

2D ideal lattice gas due to the reversible nature of the adsorption equilibrium. 

In general, the adsorption rate can be expressed as 650 

𝑅𝑎𝑑𝑠,2𝐷

𝒜
=

𝑑𝒩𝑎𝑑𝑠

𝑑𝑡
= −

𝑑𝒩𝑔

𝑑𝑡

𝒱

𝒜
= 𝑘𝑎𝑑𝑠𝒩𝑔

𝒱

𝒜
          (101) 

and  

𝑅𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝒜
=

𝑑𝒩𝑎𝑑𝑠

𝑑𝑡
=

𝑑𝜃

𝑑𝑡
𝒩𝑎𝑑𝑠,𝑚𝑎𝑥 = −

𝑑𝒩𝑔

𝑑𝑡

𝒱

𝒜
= 𝑘𝑎𝑑𝑠𝒩𝑔

𝒱

𝒜
        (102) 

with 
𝑑𝜃

𝑑𝑡
=

𝑘𝑎𝑑𝑠

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝒩𝑔

𝒱

𝒜
 ,           (103) 

where 𝑘𝑎𝑑𝑠 represents the first-order rate coefficient for adsorption (in units s-1), describing the rate of change of gas phase 655 

concentration or activity. Considering the rate expression in terms of gain of adsorbed molecules per unit area and time, the 

rate of loss from the gas phase needs to be multiplied by 
𝒱

𝒜
. Since adsorption proceeds via the TS that is assumed to be similar 

to a 2D ideal gas, 𝑘𝑎𝑑𝑠 is the same first-order rate coefficient for the adsorption into the 2D ideal gas and 2D ideal lattice gas 

adsorbate model. 

The rate of change of surface activity for the 2D ideal gas is given by 660 

𝑅𝑎𝑑𝑠,2𝐷
𝑎 =

𝑅𝑎𝑑𝑠,2𝐷

𝒜(𝑁𝑎𝑑𝑠,2𝐷 𝒜⁄ )
0 = 𝑘𝑎𝑑𝑠𝒩𝑔

𝒱

𝒜(𝑁𝑎𝑑𝑠,2𝐷 𝒜⁄ )
0 = 𝑘𝑎𝑑𝑠𝒩𝑔

𝒱(𝑁𝑔 𝒱⁄ )
0

𝒜(𝑁𝑎𝑑𝑠,2𝐷 𝒜⁄ )
0

(𝑁𝑔 𝒱⁄ )
0 = 𝑘𝑎𝑑𝑠

𝒩𝑔

(𝑁𝑔 𝒱⁄ )
0

𝒱(𝑁𝑔 𝒱⁄ )
0

𝒜(𝑁𝑎𝑑𝑠,2𝐷 𝒜⁄ )
0 =

𝑘𝑎𝑑𝑠𝑎𝑔
𝒱𝒜𝑚

0

𝒜𝒱𝑚
0 = 𝑘𝑎𝑑𝑠

𝑎 𝑎𝑔
𝒱𝒜𝑚

0

𝒜𝒱𝑚
0  ,          (104) 

and for the 2D ideal lattice gas by 

𝑅𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
𝑎 =

𝑑𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝑑𝑡
=

𝑑

𝑑𝑡

𝜃

(1−𝜃)

(1−𝜃0)

𝜃0 ≈
𝑑𝜃

𝑑𝑡

(1−𝜃0)

𝜃0 =
𝑘𝑎𝑑𝑠

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝒩𝑔

𝒱

𝒜

(1−𝜃0)

𝜃0 =
𝑘𝑎𝑑𝑠

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥

𝒩𝑔

(𝑁𝑔 𝒱⁄ )
0

𝒱(𝑁𝑔 𝒱⁄ )
0

𝒜

(1−𝜃0)

𝜃0 =

𝑘𝑎𝑑𝑠

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑎𝑔

𝒱

𝒜

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 =
𝑘𝑎𝑑𝑠

𝑎

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑎𝑔

𝒱

𝒜

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0  .       (105) 665 

We note that although 𝑘𝑎𝑑𝑠 is the same for both gas adsorbate models, 𝑅𝑎𝑑𝑠,2𝐷
𝑎  and 𝑅𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝑎  will differ, as evident from Eqs. 

(104) and (105), respectively and shown further below (Eqs. (126) and (127)). As outlined above and in the Supplement (S3.3), 

the activity of the 2D ideal lattice gas scales with 
(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )
. To provide an analytical solution using our definitions, in Eq. 

(105), we make the assumption  
𝑑

𝑑𝑡

𝜃

(1−𝜃)

(1−𝜃0)

𝜃0 ≈
𝑑𝜃

𝑑𝑡

(1−𝜃0)

𝜃0 , meaning that we consider small enough rates of change so that this 

condition is justified. Since 𝑘𝑎𝑑𝑠
𝑎  describes the decay of the gas phase activity, which is proportional to its concentration, we 670 

follow that 𝑘𝑎𝑑𝑠
𝑎 = 𝑘𝑎𝑑𝑠. In turn, the factor 

𝒱

𝒜
 needs to be normalized to the corresponding ratio of standard molar volume to 

surface area to convert from gas phase activity change to surface activity change, in the last expression of Eq. (105).   
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TS theory for adsorption is encompassing the same steps as that for desorption but starting from the gas phase side. 

Considered from the gas phase, the equilibrium constant between the gas phase and the TS for adsorption is related to the free 

energy change between the gas and the TS, each expressed with the corresponding standard molar partition functions, as 675 

defined by (Supplement Eqs. (193-199) 

𝐾𝑎𝑑𝑠,𝑔,𝑇𝑆
0 = 𝑒−∆𝐺𝑎𝑑𝑠,𝑔,𝑇𝑆,𝑚

0 𝑅𝑇⁄ =
𝑞𝑇𝑆,𝑚

0

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇 .         (106) 

Note that we treat the general case of activated adsorption here, meaning that the TS’s internal energy is elevated by the barrier 

height above the reference level (𝐸𝑏
0), leading to the corresponding Arrhenius term in Eq. (106). The equilibrium constant is 

also related to the ratio of activities (Supplement Eq. (5)): 680 

𝐾𝑎𝑑𝑠,𝑔,𝑇𝑆
0 = 𝑒−∆𝐺𝑎𝑑𝑠,𝑔,𝑇𝑆,𝑚

0 𝑅𝑇⁄ =
𝑎𝑇𝑆

𝑎𝑔
=

(𝑁𝑇𝑆 𝒜⁄ )

(𝑁𝑇𝑆 𝒜⁄ )
0

(𝑁𝑔 𝒱⁄ )

(𝑁𝑔 𝒱⁄ )
0

=

(𝒩𝑇𝑆)

(𝑁𝐴 𝒜𝑚
0⁄ )

(𝑁𝑔 𝒱⁄ )

(𝑁𝐴 𝒱𝑚
0⁄ )

 .       (107) 

As in the case of desorption, the adsorption rate can be obtained by assuming that the TS has the same finite width 𝑑 

across which the molecule moves with its mean thermal velocity in the direction orthogonal to the surface 

𝑅𝑎𝑑𝑠,2𝐷

𝒜
= 𝜅 (

𝑁𝑇𝑆

𝒜
)

(𝑘𝐵𝑇/2𝜋𝑚)1 2⁄

𝑑
 ,          (108) 

where 𝜅 is the same transmission coefficient defining the probability with which the activated complex proceeds to adsorption 685 

as that for desorption due to microscopic reversibility (Kolasinski, 2012). The partition function for the translational motion 

of the TS in the direction of adsorption is 

𝑞𝑇𝑆,𝑎𝑑𝑠 = (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )1 2⁄ 𝑑 .          (109) 

Solving this for d and inserting into Eq. (108) allows to express the adsorption rate as a function of this partition function:  

𝑅𝑎𝑑𝑠,2𝐷

𝒜
= 𝜅 (

𝑘𝐵𝑇

ℎ
) (

𝑁𝑇𝑆

𝒜
)

1

𝑞𝑇𝑆,𝑎𝑑𝑠
 .          (110) 690 

The surface concentration of the TS can be derived from the equilibrium (Eq. (107)) 

𝒩𝑇𝑆 =
𝑁𝑇𝑆

𝒜
=

𝑞𝑇𝑆,𝑚
0

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇
(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 𝒩𝑔 .          (111) 

Inserting Eq. (111) into Eq. (110) leads to 

𝑅𝑎𝑑𝑠,2𝐷

𝒜
= 𝜅 (

𝑘𝐵𝑇

ℎ
)

1

𝑞𝑇𝑆,𝑎𝑑𝑠

𝑞𝑇𝑆,𝑚
0

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇
(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 𝒩𝑔 .        (112) 

When defining ∆𝐺𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚
0  of adsorption as ∆𝐺𝑎𝑑𝑠,𝑔,𝑇𝑆,𝑚

0  (Supplement Eqs. (193) and (207)) minus the TS’s free energy 695 

associated with the motion along the adsorption coordinate, expressed by its molecular partition function, 𝑞𝑇𝑆,𝑎𝑑𝑠, we obtain 

𝑒−∆𝐺𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚
0 𝑅𝑇⁄ =

𝑒
−∆𝐺𝑎𝑑𝑠,𝑔,𝑇𝑆,𝑚

0 𝑅𝑇⁄

𝑞𝑇𝑆,𝑎𝑑𝑠
=

1

𝑞𝑇𝑆,𝑎𝑑𝑠

𝑞𝑇𝑆,𝑚
0

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇 .       (113) 

With this definition of ∆𝐺𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚
0 , we can express the adsorption rate as  
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𝑅𝑎𝑑𝑠,2𝐷

𝒜
= 𝜅 (

𝑘𝐵𝑇

ℎ
) 𝑒−∆𝐺𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄ (𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 𝒩𝑔 .        (114) 

When using the definition of the adsorption rate coefficient linking the loss rate from the gas phase with the gain of 700 

adsorbed species on the surface, i.e., 
𝑅𝑎𝑑𝑠,2𝐷

𝒜
= 𝑘𝑎𝑑𝑠𝒩𝑔

𝒱

𝒜
 , the adsorption rate coefficient becomes 

𝑘𝑎𝑑𝑠 = (
𝑘𝐵𝑇

ℎ
) 𝑒−∆𝐺𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄ (𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0

𝒜

𝒱
= 𝜅 (

𝑘𝐵𝑇

ℎ
)

1

𝑞𝑇𝑆,𝑎𝑑𝑠

𝑞𝑇𝑆,𝑚
0

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇
(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0

𝒜

𝒱
 .    (115) 

Defining 𝑞𝑇𝑆
0′

𝒜𝑚
0⁄  as the partition function for the TS after omitting motion in the direction of the reaction coordinate 

(Campbell et al., 2016), this leaves the partition function for a 2D ideal gas (Supplement Eqs. (60) and (118)): 

(
𝑞𝑇𝑆,𝑚

0

𝑞𝑇𝑆,𝑎𝑑𝑠
) = 𝑞𝑇𝑆,𝑚

0′
= 𝑞𝑇𝑆,2𝐷,𝑚

0 = 𝒜𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )2 2⁄  .       (116) 705 

Using Eq. (116) in Eq. (112), we obtain  

𝑅𝑎𝑑𝑠,2𝐷

𝒜
= 𝜅 (

𝑘𝐵𝑇

ℎ
)

𝑞𝑇𝑆,𝑚
0′

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇
(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 𝒩𝑔         (117) 

and identifying Eq. (117) with Eq. (104) yields 

𝑘𝑎𝑑𝑠 = 𝜅 (
𝑘𝐵𝑇

ℎ
)

𝑞𝑇𝑆,𝑚
0′

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇
(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0

𝒜

𝒱
 .         (118) 

This is the same result as in Eq. (115) when using thermodynamic quantities. 710 

We can convert the standard molar partition functions back to the molecular ones. For that, we consider that (
𝑁𝑇𝑆

𝒜
)

0

=

𝑛𝑇𝑆∙𝑁𝐴

𝒜0 =
𝑁𝐴

𝒜𝑚
0   and (

𝑁𝑔

𝒱
)

0

=
𝑛𝑔∙𝑁𝐴

𝒱0 =
𝑁𝐴

𝒱𝑚
0 , we obtain 

1

𝑞𝑇𝑆,𝑎𝑑𝑠

𝑞𝑇𝑆,𝑚
0

𝑞𝑔,𝑚
0

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0

𝒜

𝒱
=

𝑞𝑇𝑆,𝑚
0′

𝑞𝑔,𝑚
0

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0

𝒜

𝒱
=

𝒜𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

2 2⁄

𝒱𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )3 2⁄

𝑁𝐴
𝒜𝑚

0

𝑁𝐴
𝒱𝑚

0

𝒜

𝒱
=

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄

𝒜

𝒱
=

1

(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )1 2⁄

𝒜

𝒱
 .  (119) 

This yields 

𝑘𝑎𝑑𝑠 = 𝜅 (
𝑘𝐵𝑇

ℎ
)

1

(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )1 2⁄ 𝑒−
𝐸𝑏

0

𝑅𝑇
𝒜

𝒱
 .         (120) 715 

As in the case of desorption, we can compare the thermodynamic derivation of 𝑘𝑎𝑑𝑠 (left hand side below) with the one based 

on the partition functions (right hand side below):  

𝑘𝑎𝑑𝑠 = 𝜅 (
𝑘𝐵𝑇

ℎ
) 𝑒−∆𝐺𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄ (𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0

𝒜

𝒱
= 𝜅 (

𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
) 𝑒−

𝐸𝑏
0

𝑅𝑇
𝒜

𝒱
≡     

𝜅 (
𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 𝑒∆𝑆𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚

0 𝑅⁄ 𝑒−∆𝐻𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚
0 𝑅𝑇⁄ 𝒜

𝒱
= 𝜅 (

𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
) 𝑒−

𝐸𝑏
0

𝑅𝑇
𝒜

𝒱
 ,     (121) 

with Δ𝐻𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚
0 = −

1

2
𝑅𝑇+𝐸𝑏

0 (Supplement Eq. (195)), we obtain  720 

𝜅 (
𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 𝑒∆𝑆𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚

0 𝑅⁄ 𝑒1 2⁄ 𝑒−
𝐸𝑏

0

𝑅𝑇 = 𝜅 (
𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
) 𝑒−

𝐸𝑏
0

𝑅𝑇 .     
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𝜅 (
𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 𝑒∆𝑆𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚

0 𝑅⁄ 𝑒1 2⁄ = 𝜅 (
𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
) .       (122)  

In the case of adsorption, the Arrhenius term is only driven by the barrier height. Therefore, the pre-exponential factor for 

adsorption is (since 𝑘𝑎𝑑𝑠
𝑎 = 𝑘𝑎𝑑𝑠)  

𝐴𝑎𝑑𝑠,2𝐷 = 𝐴𝑎𝑑𝑠,2𝐷
𝑎 = 𝜅 (

𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
)

𝒜

𝒱
= 𝜅 (

𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 𝑒1 2⁄ 𝑒∆𝑆𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚

0 𝑅⁄ 𝒜

𝒱
= 𝜅 (

𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0

𝒜

𝒱
𝑒1 2⁄ 𝑒

(
𝑆𝑎𝑐𝑡,𝑚

0 −𝑆𝑔,𝑚
0

𝑅
)

 .725 

             

             (123) 

Thus, we can identify 

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 𝑒∆𝑆𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚

0 𝑅⁄ = (
𝑞𝑇𝑆

′ 𝒜⁄

𝑞𝑔 𝒱⁄
) 𝑒−1 2⁄  .         (124) 

This emphasizes the relationship between the entropy of activation and the ratio of the corresponding partition functions. Note 730 

that when neglecting vibrations, (
𝑞𝑇𝑆

′ 𝒜⁄

𝑞𝑔 𝒱⁄
) =

(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
2 2⁄

(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )3 2⁄ =
1

(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )1 2⁄ , which allows estimating the entropy of activation 

for adsorption. For the examples discussed here (see Table S1), ∆𝑆𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚
0  = -53.98 J K-1 mol-1. 

Thus, essentially, the gas loses one translational degree of freedom, and the rate of adsorption (vibrations neglected) can 

be written as 

𝑅𝑎𝑑𝑠,2𝐷

𝒜
= 𝑘𝑎𝑑𝑠𝒩𝑔

𝒱

𝒜
= 𝜅 (

𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
) 𝑒−

𝐸𝑏
0

𝑅𝑇𝒩𝑔
𝒜

𝒱

𝒱

𝒜
= 𝜅 (

𝑘𝐵𝑇

ℎ
)

ℎ

√2𝜋𝑚𝑘𝐵𝑇
𝑒−

𝐸𝑏
0

𝑅𝑇𝒩𝑔 =
𝑝

√2𝜋𝑚𝑘𝐵𝑇
𝜅𝑒−

𝐸𝑏
0

𝑅𝑇 .  (125) 735 

For the case considering activities, we obtain 

𝑅𝑎𝑑𝑠,2𝐷
𝑎 = 𝑘𝑎𝑑𝑠𝑎𝑔

𝒱𝒜𝑚
0

𝒜𝒱𝑚
0 = 𝜅 (

𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
) 𝑒−

𝐸𝑏
0

𝑅𝑇
𝒜

𝒱
𝑎𝑔

𝒱𝒜𝑚
0

𝒜𝒱𝑚
0 = 𝜅 (

𝑘𝐵𝑇

ℎ
)

ℎ

√2𝜋𝑚𝑘𝐵𝑇
𝑒−

𝐸𝑏
0

𝑅𝑇
𝒩𝑔

(𝑁𝑔 𝒱⁄ )
0

𝒜𝑚
0

𝒱𝑚
0 = 𝜅

𝑝

√2𝜋𝑚𝑘𝐵𝑇
𝑒−

𝐸𝑏
0

𝑅𝑇
𝒜𝑚

0

𝑁𝐴
  

             (126) 

For the case of the 2D ideal lattice gas we can write, using the same definition for 𝑘𝑎𝑑𝑠 

𝑅𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
𝑎 =

𝑘𝑎𝑑𝑠

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑎𝑔

𝒱

𝒜

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 = 𝜅 (
𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
) 𝑒−

𝐸𝑏
0

𝑅𝑇
𝒜

𝒱

1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑎𝑔

𝒱

𝒜

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 =740 

𝜅 (
𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
) 𝑒−

𝐸𝑏
0

𝑅𝑇
1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑎𝑔

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 = 𝜅 (
𝑘𝐵𝑇

ℎ
)

ℎ

√2𝜋𝑚𝑘𝐵𝑇
𝑒−

𝐸𝑏
0

𝑅𝑇
𝒩𝑔

(𝑁𝑔 𝒱⁄ )
0

1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 =

𝜅
𝑝

√2𝜋𝑚𝑘𝐵𝑇
𝑒−

𝐸𝑏
0

𝑅𝑇
1

(𝑁𝑔 𝒱⁄ )
0

1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 = 𝜅
𝑝

√2𝜋𝑚𝑘𝐵𝑇
𝑒−

𝐸𝑏
0

𝑅𝑇
1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥

(1−𝜃0)

𝜃0  .     (127) 

𝑝

√2𝜋𝑚𝑘𝐵𝑇
 represents the Hertz-Knudsen expression of the flux of molecules impinging on surface atoms. Thus, CTST is 

consistent with the collision rate multiplied with 𝜅 for the case that the activated complex associated with the TS is considered 

a 2D ideal gas, the barrier is negligible, and no internal vibrations are considered. 745 

As discussed in the previous section, the TS for adsorption is the same as that for desorption and is considered a 2D ideal 

gas. This means that the adsorptive flux, i.e., the adsorption rate in terms of gain of molecules per surface area and time, is 
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simply proportional to the gas phase concentration, independent of the adsorption model used to describe the final state of 

adsorption, as shown in Fig. 11. For the same reason, also the rate of change of surface activity is linearly related to the gas 

phase activity, as shown in Fig. 12. However, the meaning of the rate of change of surface activity is entirely different for the 750 

two adsorbate models, as discussed for the case of desorption. While for the 2D ideal gas model, the rate of change of surface 

activity is linearly related to the rate of change of surface coverage, for the 2D ideal lattice gas case, the same rate of change 

of surface activity is governed by a strongly non-linear relationship to the rate of change of surface coverage, thus, depending 

on the actual coverage. This explains the visible slight deviations between 𝑅𝑎𝑑𝑠,2𝐷
𝑎  and 𝑅𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝑎  in Fig. 12 at high gas phase 

activity values, reflecting in fact different rates of change of surface coverages. 755 

We can now look at the surface accommodation coefficient, 𝛼𝑠, which is operationally defined as the ratio between the 

adsorption rate and the gas-kinetic collision rate (Kolb et al., 2010;Ammann et al., 2013;Crowley et al., 2013) considering only 

physisorptive processes, not accounting for possibly more complex configurations involving already adsorbed molecules 

(Kisliuk, 1957;Tully, 1994;Campbell et al., 2016). The description of the adsorption rate follows as 

𝑅𝑎𝑑𝑠,2𝐷

𝒜
= 𝜅

𝑝

√2𝜋𝑚𝑘𝐵𝑇
= 𝒩𝑔𝜅

√𝑘𝐵𝑇

√2𝜋𝑚
= 𝒩𝑔𝜅

√8𝑘𝐵𝑇

4√𝜋𝑚
= 𝛼𝑠𝒩𝑔

𝜔

4
 ,       (128) 760 

where 𝜔 represents the thermal velocity of the gas species. Keeping with this definition, but putting in the more general 

expression for the adsorption rate based on TS theory, the interpretation of 𝛼𝑠 becomes different, as it is related to 

𝛼𝑠 =
𝜅(

𝑘𝐵𝑇

ℎ
)

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
𝑒

−
𝐸𝑏

0

𝑅𝑇𝒩𝑔

𝒩𝑔
𝜔

4

=
𝜅(

𝑘𝐵𝑇

ℎ
)

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
𝑒

−
𝐸𝑏

0

𝑅𝑇

(
𝑘𝐵𝑇

ℎ
)(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄

= 𝜅
𝑞𝑇𝑆

′ 𝒜⁄

𝑞𝑔 𝒱⁄
𝑒−

𝐸𝑏
0

𝑅𝑇(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )1 2⁄  .    (129) 

Therefore, 𝛼𝑠 =  𝜅 (and = 1, if 𝜅 = 1), if 
𝑞𝑇𝑆

′ 𝒜⁄

𝑞𝑔 𝒱⁄
= (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄  and 𝐸𝑏

0 = 0, but is different in the presence of a barrier 

or if other contributions are relevant in the partition functions of the activated complex associated with the TS or the gas phase 765 

species (such as internal vibrations or rotations). As mentioned above, the ratio of the partition functions is also related to the 

corresponding entropy of activation (i.e., non-zero if 𝛼𝑠 deviates from 𝜅). 

Figure 13 shows how 𝛼𝑠 depends on 𝐸𝑏
0 under the assumption of 𝜅 = 1 and 

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
= (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄  (see Table S1). 

Hence, 𝛼𝑠 depends exponentially on the activation energy of adsorption. A transmission coefficient 𝜅 < 1 will yield lower 𝛼𝑠 

values. If the TS is more constrained than the assumed 2D ideal gas, expressed by ∆𝑆𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚
0 = 𝑅 ln (

𝑞𝑇𝑆,2𝐷,𝑚
0

𝑒1 2⁄ 𝑞𝑔,𝑚
0 ) (Eqs. (124) 770 

and Supplement Eq. (197)), this will further lower 𝛼𝑠.   

6. Adsorption-Desorption Equilibrium 

We consider equilibrium between adsorption and desorption and demonstrate that this results in the proper equilibrium 

constants for gas adsorption into a 2D ideal gas and a 2D ideal lattice gas, proving that the CTST formulation of the rates leads 
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back to the equilibrium definition, from which we started off. We also show that this works both when using partition functions 775 

and thermodynamic expressions. Hence, the derivations of all thermodynamic functions are internally consistent. 

Considering the equilibrium, for the case that the adsorbed state is a 2D ideal gas, at low coverage: 

𝑅𝑎𝑑𝑠,2𝐷

𝒜
=

𝑅𝑑𝑒𝑠,2𝐷

𝒜
            

𝜅 (
𝑘𝐵𝑇

ℎ
)

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
𝑒−

𝐸𝑏
0

𝑅𝑇𝒩𝑔 = 𝜅 (
𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′

𝑞𝑎𝑑𝑠,2𝐷
) 𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝒩𝑎𝑑𝑠     

1 𝒜⁄

𝑞𝑔 𝒱⁄
𝒩𝑔 = (

1

𝑞𝑎𝑑𝑠,2𝐷
) 𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 𝒩𝑎𝑑𝑠          780 

𝒱

𝒜
𝒩𝑔 = (

𝑞𝑔

𝑞𝑎𝑑𝑠,2𝐷
) 𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 𝒩𝑎𝑑𝑠          

𝒩𝑎𝑑𝑠

𝒩𝑔
=

𝑞𝑎𝑑𝑠,2𝐷

𝑞𝑔

𝒱

𝒜
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇 = (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇 = 𝐾𝑙𝑖𝑛 .       (130) 

This is the same result as given in Eq. (31) and consistent with the relation between 𝐾𝑙𝑖𝑛  and the equilibrium constant. 

Performing the same derivation starting with the thermodynamic expressions is given in the Supplement (Eqs. (216-220)). 

For the case of the activity-based adsorption and desorption rates, we obtain 785 

𝑅𝑎𝑑𝑠,2𝐷
𝑎 = 𝑅𝑑𝑒𝑠,2𝐷

𝑎            

𝜅 (
𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
) 𝑒−

𝐸𝑏
0

𝑅𝑇
𝒜

𝒱
𝑎𝑔

𝒱𝒜𝑚
0

𝒜𝒱𝑚
0 = 𝜅 (

𝑘𝐵𝑇

ℎ
)

𝑞𝑇𝑆
′

𝑞𝑎𝑑𝑠,2𝐷
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝑎𝑎𝑑𝑠,2𝐷    

1 𝒜⁄

𝑞𝑔 𝒱⁄
𝑎𝑔

𝒜𝑚
0

𝒱𝑚
0 = (

1

𝑞𝑎𝑑𝑠,2𝐷
) 𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 𝑎𝑎𝑑𝑠,2𝐷        

𝒱

𝒜
𝑎𝑔

𝒜𝑚
0

𝒱𝑚
0 = (

𝑞𝑔

𝑞𝑎𝑑𝑠,2𝐷
) 𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 𝑎𝑎𝑑𝑠,2𝐷         

𝑎𝑎𝑑𝑠,2𝐷

𝑎𝑔
=

𝑞𝑎𝑑𝑠,2𝐷

𝑞𝑔

𝒱

𝒜
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇
𝒜𝑚

0

𝒱𝑚
0 = (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇
𝒜𝑚

0

𝒱𝑚
0 = 𝐾𝑙𝑖𝑛

𝒜𝑚
0

𝒱𝑚
0  .      (131) 790 

This is the same result as in Eqs. (130). The derivation using the thermodynamic expressions is outlined in the Supplement 

Eqs. (221-225). 

For the case when the adsorbed state on the surface is treated as a 2D ideal lattice gas using Eqs. (92), (102), and (121): 

𝑅𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝒜
=

𝑅𝑑𝑒𝑠,𝑙𝑎𝑡𝑡

𝒜
            

𝜅 (
𝑘𝐵𝑇

ℎ
)

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
𝑒−

𝐸𝑏
0

𝑅𝑇𝒩𝑔 = 𝜅 (
𝑘𝐵𝑇

ℎ
)

(
𝑞𝑇𝑆,𝑚

0′

𝑁𝐴
)

(𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡)
(𝑁𝑇𝑆 𝒜⁄ )0𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 (𝜃 (1 − 𝜃)⁄ ) ,       795 

with (
𝑞𝑇𝑆,𝑚

0′

𝑁𝐴
) (𝑁𝑇𝑆 𝒜⁄ )0 = (

𝑞𝑇𝑆,𝑚
0′

𝑁𝐴
)

𝑁𝐴

𝒜𝑚
0 =

𝑞𝑇𝑆,𝑚
0′

𝒜𝑚
0 =

𝑞𝑇𝑆
′

𝒜
 , we obtain 

𝜅 (
𝑘𝐵𝑇

ℎ
)

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
𝑒−

𝐸𝑏
0

𝑅𝑇𝒩𝑔 = 𝜅 (
𝑘𝐵𝑇

ℎ
)

(𝑞𝑇𝑆
′ 𝒜⁄ )

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 (𝜃 (1 − 𝜃)⁄ )     
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1

𝑞𝑔 𝒱⁄
𝒩𝑔 =

1

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 (𝜃 (1 − 𝜃)⁄ )        

(𝜃 (1−𝜃)⁄ )

𝒩𝑔
=

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝑞𝑔 𝒱⁄
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇 = (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−3 2⁄ 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇 = 𝐾𝐿𝑎𝑛𝑔       (132) 

This is the expected result outlined in Eq. (44). The derivation starting with the thermodynamic expressions is given in the 800 

Supplement Eqs. (226-230). 

For the case of the activity-based adsorption (Eq. (127)) and desorption rates (Eq. (86), we obtain 

𝑅𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
𝑎 = 𝑅𝑑𝑒𝑠,𝑙𝑎𝑡𝑡

𝑎           

𝜅 (
𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
) 𝑒−

𝐸𝑏
0

𝑅𝑇
1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑎𝑔

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 = 𝜅 (
𝑘𝐵𝑇

ℎ
)

(𝑞𝑇𝑆
′ 𝒜⁄ )

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡  

1

𝑞𝑔 𝒱⁄
𝑎𝑔

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 =
1

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡   805 

𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝑎𝑔
=

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝑞𝑔 𝒱⁄
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇
(𝑁𝑔 𝒱⁄ )

0
(1−𝜃0)

𝜃0

𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝑎𝑔
  

𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝑎𝑔
= (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−3 2⁄ 𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇
(𝑁𝑔 𝒱⁄ )

0
(1−𝜃0)

𝜃0 = 𝐾𝐿𝑎𝑛𝑔
(𝑁𝑔 𝒱⁄ )

0
(1−𝜃0)

𝜃0   

𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝑎𝑔

𝜃0

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)
=

(𝜃 (1−𝜃)⁄ )

𝒩𝑔
= 𝐾𝐿𝑎𝑛𝑔 .         (133) 

This results in the same relationship as in Eq. (132). The derivation starting with the thermodynamic expressions is given in 

the Supplement Eqs. (231-235). Thus, equating the adsorption and desorption rates, both derived based on TS theory, correctly 810 

reproduces the corresponding equilibrium constant. 

7. Derivation of Kinetic Parameters from the Equilibrium Constants 

In previous studies (Bartels-Rausch et al., 2005;Tabazadeh and Turco, 1993) equilibrium thermodynamic data or equilibrium 

coverage data have been used to constrain kinetic parameters of either adsorption or desorption. If 𝐾𝑎𝑑𝑠,𝑔,𝑙𝑎𝑡𝑡
0  or 𝐾𝑎𝑑𝑠,𝑔,2𝐷

0  are 

known as a function of temperature from measurements or extracted from fundamental thermodynamic data, the Arrhenius 815 

plot of its temperature dependence delivers ∆𝐻𝑎𝑑𝑠,𝑔,2𝐷
0  or ∆𝐻𝑑𝑒𝑠,2𝐷,𝑔

0  as a slope and ∆𝑆𝑎𝑑𝑠,𝑔,2𝐷
0  or ∆𝑆𝑑𝑒𝑠,2𝐷,𝑑

0  as an offset. 

For the case of an adsorbed 2D ideal gas, we can derive the pre-exponential factor from equilibrium, 𝑅𝑎𝑑𝑠,2𝐷
𝑎 = 𝑅𝑑𝑒𝑠,2𝐷

𝑎 , 

starting off with the molecular descriptions of respective rates (Eq. (131). In addition, we make use of 𝛼𝑠 and its relationship 

to microscopic properties (Eq. (129)) and the definition of 𝐴𝑑𝑒𝑠,2𝐷 obtained from the derivation of the desorption rate (Eq. 

(78)). By applying the thermodynamic equilibrium constant, we can then relate the microscopic picture to thermodynamic 820 

functions, obtaining 𝐴𝑑𝑒𝑠,2𝐷 under equilibrium conditions (the full derivation is given in Supplement Eq. (236)): 

𝜅 (
𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
) 𝑒−

𝐸𝑏
0

𝑅𝑇
𝒜

𝒱
𝑎𝑔

𝒱𝒜𝑚
0

𝒜𝒱𝑚
0 = 𝜅 (

𝑘𝐵𝑇

ℎ
)

𝑞𝑇𝑆
′

𝑞𝑎𝑑𝑠,2𝐷
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝑎𝑎𝑑𝑠,2𝐷  
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(
𝑘𝐵𝑇

ℎ
) 𝛼𝑠𝑎𝑔

𝒜𝑚
0

𝒱𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ = 𝐴𝑑𝑒𝑠,2𝐷𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝑎𝑎𝑑𝑠,2𝐷  

𝐴𝑑𝑒𝑠,2𝐷 = (
𝑘𝐵𝑇

ℎ
) 𝛼𝑠

𝒜𝑚
0

𝒱𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 𝑒−1/2𝑒

𝐸𝑏
0

𝑅𝑇𝑒∆𝑆𝑑𝑒𝑠,2𝐷,𝑔,𝑚
0 𝑅⁄

 .      (134)  

If the energy barrier 𝐸𝑏
0 is negligible, this simplifies to 825 

𝐴𝑑𝑒𝑠,2𝐷 = 𝛼𝑠𝑒ΔS𝑑𝑒𝑠,2𝐷,𝑔,𝑚
0 𝑅⁄ 𝑒−1 2⁄ (

𝒜𝑚
0

𝒱𝑚
0 ) (

𝑘𝐵𝑇

ℎ
) (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄  .      (135) 

𝐴𝑑𝑒𝑠,2𝐷 derived from equilibrium is the same result as for 𝐴𝑑𝑒𝑠,2𝐷 derived from desorption using TS theory (Eq. (78)). Thus, 

the pre-exponential factor of desorption can be calculated from the desorption entropy (ΔS𝑑𝑒𝑠,2𝐷,𝑔,𝑚
0 ) and from the known value 

of 𝛼𝑠 but only if the standard state, which has been used to obtain the entropy, is known. 

For the case of an adsorbed 2D ideal lattice gas, we can derive the pre-exponential factor from equilibrium, 𝑅𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
𝑎 =830 

𝑅𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎  (Eq. (133), in a similar ways as for the 2D ideal gas discussed above, using  𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡 from the derivation of the 

desorption rate (Eq. (97)) and 𝛼𝑠 (Eq. (129)) as (the full derivation is given in Supplement Eq. (244)) 

𝜅 (
𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
) 𝑒−

𝐸𝑏
0

𝑅𝑇
1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑎𝑔

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 = 𝜅 (
𝑘𝐵𝑇

ℎ
)

(𝑞𝑇𝑆
′ 𝒜⁄ )

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡  

𝜅 (
𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
) 𝑒−

𝐸𝑏
0

𝑅𝑇
1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑎𝑔

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 = 𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡  

𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 = 𝛼𝑠 (

𝑘𝐵𝑇

ℎ
) (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 𝑒−
5

2(1 − 𝜃0)−
1

𝜃0𝑒
𝐸𝑏

0

𝑅𝑇𝑒
∆𝑆𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚

0

𝑅  .   (136)   835 

If the energy barrier 𝐸𝑏
0 is negligible, this simplifies to 

𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 = 𝛼𝑠𝑒ΔS𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚

0 𝑅⁄ 𝑒−5 2⁄ (1−𝜃0)

𝜃0 (
1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
) (

𝑁𝐴

𝒱𝑚
0 ) (1 − 𝜃0)−1 𝜃0⁄ (

𝑘𝐵𝑇

ℎ
) (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ .  (137) 

𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎  derived from equilibrium is the same result as for 𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡

𝑎  derived from desorption using TS theory (Eq. (97)). 

As can be seen, the activity-based 𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎  does not depend on the surface coverage. However, the standard surface 

coverage 𝜃0, for which ΔS𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚
0  has been derived, must be known (similar to the case described in Eq. 97). Hence, the 840 

pre-exponential factor 𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡 has a strong non-linear dependence on the standard surface coverage. When the underlying 

standard surface coverages are not known, additional uncertainties are introduced. When deriving the desorption rate (Eq. 82), 

the dependence on surface coverage is accounted for.  

8. Implications for the Assessment of Desorption Energy and Rate and Pre-exponential Factor 

The thermodynamic derivations above indicate that the underlying adsorption model, i.e., 2D ideal gas or 2D ideal lattice 845 

gas, will have a significant impact on desorption rates and the pre-exponential factor and, thus, on the evaluation of 𝐸𝑑𝑒𝑠
0  and 

𝜏𝑑. This is particularly important for the case of the 2D ideal lattice gas model for which the desorption rate varies non-linearly 
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with surface coverage, i.e., proportional to (𝜃 (1 − 𝜃)⁄ ) (Eq. 82) since the surface activity is defined by 
(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )
 (Eq. 42). 

This implies that for same 𝐸𝑑𝑒𝑠
0 , 

𝑅𝑑𝑒𝑠

𝒜
 can vary significantly depending on adsorbate coverage. Vice versa, if the coverage is not 

well-known, derivation of 𝐸𝑑𝑒𝑠
0  from measured 

𝑅𝑑𝑒𝑠

𝒜
 is associated with large uncertainties.   850 

Figure 5 displays the variation of  
𝑅𝑑𝑒𝑠

𝒜
 for different 𝜃, covering a pristine surface to a fully occupied surface. As discussion 

of Fig. 7 alluded to (above), Fig. 5 demonstrates that the assumption of the underlying substrate model significantly impacts 

𝑅𝑑𝑒𝑠

𝒜
. The differences in 

𝑅𝑑𝑒𝑠

𝒜
 when applying a 2D ideal gas or a 2D ideal lattice gas are about 3 to 6 orders of magnitude over 

a typical 𝜃 range. Furthermore, variation of 
𝑅𝑑𝑒𝑠

𝒜
 for the 2D ideal lattice gas is greater with 𝜃 due to its non-linear dependence 

on 𝜃. The observed non-linearity of 
𝑅𝑑𝑒𝑠

𝒜
 of the 2D ideal lattice gas, being proportional to (𝜃 (1 − 𝜃)⁄ ), is a direct result of the 855 

non-linear increase of the configurational entropy (e.g., Eqs. (53) and (98)). Figure 5 implies that the different sensitivities of 

the two adsorbate models on surface coverages can result in large differences in experimentally derived desorption rates besides 

uncertainties in the pre-exponential factor and 𝐸𝑑𝑒𝑠
0 .  

As outlined above, Fig. 10 highlights how the underlying adsorbate model impacts the pre-exponential factor. If the actual 

adsorbate system more closely behaves as a 2D ideal lattice gas but is analyzed assuming a 2D ideal gas, significant 860 

uncertainties in 𝐴𝑑𝑒𝑠 can arise which, in turn, increase the uncertainty in the derivation of 𝐸𝑑𝑒𝑠
0  and estimation of the desorption 

lifetime.  

Figure 14 presents estimates of 𝜏𝑑 for given 𝐸𝑑𝑒𝑠
0  as a function of temperature when applying a 2D ideal gas and 2D ideal 

lattice gas adsorbate model. For both adsorbate models, the temperature sensitivity of 𝜏𝑑 increases with increasing 𝐸𝑑𝑒𝑠
0 . For 

given 𝜏𝑑 the difference in 𝐸𝑑𝑒𝑠
0 , when applying the different adsorbate models can range from 10 to 15 kJ mol-1, where larger 865 

differences occur at higher temperatures. Hence, when deriving 𝐸𝑑𝑒𝑠
0  from 𝜏𝑑  values, in absence of knowledge of the 

underlying adsorbate model, 𝐸𝑑𝑒𝑠
0  is likely uncertain by 10 to 15 kJ mol-1. Vice versa, the corresponding uncertainty in 𝜏𝑑 is 

up to about 3 orders of magnitude. As outlined in the introduction, for experimental studies where 𝜏𝑑 is coupled to the surface 

reaction rate, the first-order surface reaction rate could also be uncertain by up to 3 orders of magnitude.   

Figure 15 displays 𝐸𝑑𝑒𝑠
0  values derived from a variation of desorption rates applying a 2D ideal gas or 2D ideal lattice gas 870 

adsorbate model as a function of surface coverage 𝜃. For example, for 
𝑅𝑑𝑒𝑠

𝒜
 = 1 m-2 s-1, reflected by the uppermost red and blue 

curves, it is evident that the chosen adsorbate model results in significantly different 𝐸𝑑𝑒𝑠
0  values differing by at least 20 kJ 

mol-1. These results further support the importance of accurate knowledge of 𝜃.The 𝐸𝑑𝑒𝑠
0  values can vary by tens of kJ mol-1, 

if 𝜃 is incorrectly determined or assumed. For example, if the substrate surface is assumed to be pristine but in fact 𝜃 = 0.2, 

𝐸𝑑𝑒𝑠
0  can be overestimated by 10 – 20 kJ mol-1.   875 

Figures 5, 10, 14, and 15 highlight the potential uncertainties that arise by choice of the absorbate models for derivation 

of 𝐸𝑑𝑒𝑠
0 . In addition to those uncertainties, standard states applied in adsorption and desorption studies are often not known or 

well documented. This can lead to additional uncertainties as also outlined above. 𝐴𝑑𝑒𝑠 values shown in Fig. 10 will be the 
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same for different choices of standard states as long as they have been consistently applied to the entropic contributions 

∆𝑆𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 , ΔS𝑑𝑒𝑠,2𝐷,𝑔,𝑚

0 , ∆𝑆𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚
0 , and ∆𝑆𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚

0  (Supplement Eqs. (150), (121), (173), and (134), respectively) 880 

and within the equations for 𝐴𝑑𝑒𝑠 (Eqs.  (87), (134), (97), (136)). The standard molar volume, 𝒱𝑚
0  = 24.8 L mol-1 at 298 K and 

1000 hPa, is the typically applied parameter but one has to make sure to adjust this value to observational conditions, i.e., 

temperature and pressure, for both the entropic contribution and the derivation of the partition functions. The latter depends 

linearly on the molar volume (Supplement Eqs. (7) and (92)). The actual surface coverage and applied standard surface 

coverages are often less clear and furthermore, different standard states may have been chosen for the entropic contributions 885 

and experimental conditions. To further complicate matters, standard surface coverages can be defined applying 𝜃0 = 0.012 or 

0.5, which both have their advantages as outlined above. If the standard surface coverage for the entropic contribution is based 

on 𝜃0 = 0.012 but the remainder of thermodynamic functions on 𝜃0 = 0.5, 𝐴𝑑𝑒𝑠 will be erroneous and thus 𝐸𝑑𝑒𝑠
0  and 𝜏𝑑.  

9. Conclusions 

Reversible adsorption is a key process for any gas-condensed phase interaction, and particularly important when environmental 890 

interfaces are involved including aerosol particles. This study provides a comprehensive treatment of the classic and statistical 

thermodynamics of the adsorption and desorption processes considering transition state theory for two typically applied 

adsorbate models, the 2D ideal gas and the 2D ideal lattice gas which apply to solid or liquid substrate surfaces. We established 

thermodynamic and microscopic relationships for adsorption and desorption equilibrium constants, adsorption and desorption 

rates, first-order adsorption and desorption rate coefficients, and corresponding pre-exponential factors. These derivations 895 

allow the interpretation of thermodynamic functions such as equilibrium constants in terms of their molecular properties, as 

well as the calculation of explicit numeric expressions for the latter. This exercise demonstrates the importance of applied 

assumptions of adsorbate model and standard states when analyzing and interpreting adsorption and desorption processes, the 

latter being often ill-defined in experimental studies (Donaldson et al., 2012). The derivations allow for a microscopic 

interpretation of the surface accommodation coefficient including the entropic contribution. Our treatment demonstrates that 900 

the pre-exponential factor, when deriving the desorption lifetime from the desorption energy, can differ by orders of magnitude 

depending on the choice of adsorbate model. Clearly, such a difference yields similar effects on the desorption lifetime, and 

when used to estimate desorption energies (e.g., from interfacial residence times estimated from molecular dynamics 

simulations or from measured desorption rates) significant uncertainties in the desorption energy are incurred. Furthermore, 

uncertainties in surface coverage and assumptions in standard surface coverage can lead to significant changes in desorption 905 

rates and thus in evaluated desorption energies for the rather common case of a 2D ideal lattice gas. The objective of providing 

this comprehensive thermodynamic and microscopic treatment of the adsorption and desorption processes is to guide the 

theoretical and experimental assessments of adsorption and desorption rates, desorption energies and choice of standard states 

with implications for the corresponding desorption lifetimes. This in turn will improve, specifically, the analyses and 
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interpretation of surface layer reaction rates and surface-to-bulk transport, and thus, bulk mass accommodation. More 910 

generally, this provides a better basis for the prediction of gas-particle partitioning, multiphase chemical reactions, and the 

chemical evolution of atmospheric aerosol. 
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Figure 1. Potential energy curve for adsorption and desorption processes expressed by the heat of desorption, 𝛜𝐝𝐞𝐬
𝟎 . For activated 

adsorption and desorption processes an additional energy barrier, expressed by 𝛜𝐛
𝟎, must be overcome.  1080 
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Figure 2. Equilibrium adsorbate surface concentration as a function of gas phase concentration for the case of a 2D ideal gas (blue 

line) and 2D ideal lattice gas (red line). Applied 𝑬𝒅𝒆𝒔
𝟎  are 63 kJ mol-1 and 88 kJ mol-1, respectively. We assume a desorption process 

without additional barrier, 𝑬𝒃
𝟎 = 𝟎. Thermodynamic quantities for calculation are given in Table S1. 1085 
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 1095 

Figure 3. Equilibrium surface coverage as a function of gas phase concentration for the case of a 2D ideal gas (blue line) and 2D 

ideal lattice gas (red line). The data are the same as used for derivation of Fig. 2, but surface coverages are derived by normalization 

with maximum number of adsorption sites. Thermodynamic quantities and standard states necessary for calculation are given in 

Table S1. 
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Figure 4. Equilibrium surface activity as a function of gas phase activity for the case of a 2D ideal gas (blue line) and 2D ideal lattice 

gas (red line). The data are the same as used for derivation of Fig. 2. Thermodynamic quantities and standard states necessary for 

calculation are given in Table S1. 
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Figure 5. The change in the desorption rate for the assumption of a 2D ideal gas (solid lines) and  2D ideal lattice gas (dashed lines) 

are plotted as a function of adsorbate fractional surface coverage 𝛉 and variation of 𝑬𝒅𝒆𝒔
𝟎

 from 100 (bottom) to 10 kJ mol-1 (top) 

indicated by colored numbers. We assume a desorption process without additional barrier, 𝑬𝒃
𝟎 = 𝟎. Thermodynamic quantities and 1130 

standard states necessary for calculation are given in Table S1. 
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Figure 6. The activity-based desorption rate for the case of a 2D ideal gas (blue line, A) and 2D ideal lattice gas (red line, B). Applied 1145 

𝑬𝒅𝒆𝒔
𝟎  are 70 kJ mol-1 and 92 kJ mol-1, respectively. We assume a desorption process without additional barrier, 𝑬𝒃

𝟎 = 𝟎 . 

Thermodynamic quantities and standard states necessary for calculation are given in Table S1. 
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Figure 7. The desorption rate for the case of a 2D ideal gas (blue line) and 2D ideal lattice gas (red line). Applied 𝑬𝒅𝒆𝒔
𝟎  are 63 kJ mol-

1 and 88 kJ mol-1, respectively. We assume a desorption process without additional barrier, 𝑬𝒃
𝟎 = 𝟎. Thermodynamic quantities and 

standard states necessary for calculation are given in Table S1. 
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Figure 8. The decay of surface activity (A) and surface coverage (B) of the 2D ideal gas adsorbate as a function of time due to 

desorption. The applied 𝑬𝒅𝒆𝒔
𝟎  is 70 kJ mol-1 and the initial surface activity is 50. We assume a desorption process without additional 

barrier, 𝑬𝒃
𝟎 = 𝟎. Thermodynamic quantities and standard states necessary for calculation are given in Table S1. 
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Figure 9. The decay of surface activity (A) and surface coverage (B) of the 2D ideal lattice gas adsorbate as a function of time due to 

desorption. The applied 𝑬𝒅𝒆𝒔
𝟎  is 91 kJ mol-1 and the initial surface activity is 1500. We assume a desorption process without additional 1195 

barrier, 𝑬𝒃
𝟎 = 𝟎. Thermodynamic quantities and standard states necessary for calculation are given in Table S1. 
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 1200 

Figure 10. The pre-exponential factor 𝐀𝐝𝐞𝐬 as a function of temperature is plotted for the case of a 2D ideal gas (blue) and a 2D ideal 

lattice gas (red). Thermodynamic quantities and standard states necessary for calculation are given in Table S1. 
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 1220 

Figure 11. The adsorption rate for the case of a 2D ideal gas and 2D ideal lattice gas is depicted. We assume a non-activated 

adsorption process, 𝑬𝒃
𝟎 = 𝟎. Thermodynamic quantities and standard states necessary for calculation are given in Table S1. 
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Figure 12. The activity-based adsorption rates for the case of a 2D ideal gas (blue line) and 2D ideal lattice gas (red line) are depicted. 

We assume a non-activated adsorption process, 𝑬𝒃
𝟎 = 𝟎. Thermodynamic quantities and standard states necessary for calculation 

are given in Table S1. 1240 

 

 

 

 

 1245 

 

 

 

 

 1250 

 

 

 

 



50 

 

 1255 

 

Figure 13. The dependency of the mass accommodation coefficient, 𝜶𝒔, on the adsorption activation energy, 𝑬𝒃
𝟎. Thermodynamic 

quantities and standard states necessary for calculation are given in Table S1. 
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Figure 14. Estimates of  𝛕𝐝 as a function of temperature applying results from Fig. 3 Blue and red lines represent the 2D ideal gas 1275 

and 2D ideal lattice gas model, respectively. 𝑬𝒅𝒆𝒔
𝟎  varies from 0 to 100 kJ mol-1 in 5 kJ mol-1 steps from bottom to top and is indicated 

by numbers on lines. We assume a desorption process without additional barrier, 𝑬𝒃
𝟎 = 𝟎. Thermodynamic quantities and standard 

states necessary for calculation are given in Table S1. 
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Figure 15. Estimates of 𝑬𝒅𝒆𝒔
𝟎

 as a function of coverage for desorption rates from 1 m-2 s-1 to 1040 m-2 s-1 (from top to bottom and 1280 

indicated by colored numbers) for 𝑻 = 298 K. Blue and red lines indicate desorption model based on a 2D ideal gas and 2D ideal 

lattice gas, respectively. We assume a desorption process without additional barrier, 𝑬𝒃
𝟎 = 𝟎 . Thermodynamic quantities and 

standard states necessary for calculation are given in Table S1. 


