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Abstract. Atmospheric mineral dust has a rich tri-dimensional spatial and temporal structure that is poorly constrained in

forecasts and analyses when only column-integrated aerosol optical depth (AOD) is assimilated. At present, this is the case of

most operational global aerosol assimilation products. Aerosol vertical distributions obtained from space-borne lidars can be

assimilated in aerosol models, but questions about the extent of their benefit upon analyses and forecasts along with their con-

sistency with AOD assimilation remain unresolved. Our study thoroughly explores the added value of assimilating space-borne5

vertical dust profiles, with and without the joint assimilation of dust optical depth (DOD). We also discuss the consistency

in the assimilation of both sources of information and analyse the role of the smaller footprint of the space-borne lidar pro-

files upon the results. To that end, we have performed data assimilation experiments using dedicated dust observations for a

period of two months over Northern Africa, the Middle East and Europe. We assimilate DOD derived from Visible Infrared

Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-Orbiting Partnership (SUOMI-NPP) Deep Blue, and for the10

first time Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) based LIdar climatology of Vertical Aerosol Structure

for space-based lidar simulation studies (LIVAS) pure-dust extinction coefficient profiles on an aerosol model. The evaluation

is performed against independent ground-based DOD derived from AErosol RObotic NETwork (AERONET) Sun photome-

ters and ground-based lidar dust extinction profiles from the Cyprus Clouds Aerosol and Rain Experiment (CyCARE) and

PREparatory: does dust TriboElectrification affect our ClimaTe (Pre-TECT) field campaigns. Jointly assimilating LIVAS and15

Deep Blue data reduces the root mean square error (RMSE) in the DOD by 39% and in the dust extinction coefficient by

65% compared to a control simulation that excludes assimilation. We show that the assimilation of dust extinction coefficient

profiles provides a strong added value to the analyses and forecasts. When only Deep Blue data are assimilated the RMSE in

the DOD is reduced further, by 42%. However, when only LIVAS data are assimilated the RMSE in the dust extinction coef-
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ficient decreases by 72%, the largest improvement across experiments. We also show that the assimilation of dust extinction20

profiles yields better skill scores than the assimilation of DOD under equivalent sensor footprint. Our results demonstrate the

strong potential of future lidar space missions to improve desert dust forecasts, particularly if they foresee a depolarization

lidar channel to allow discriminating desert dust from other aerosol types.

1 Introduction

The spatial and temporal distribution of atmospheric aerosol can be optimally estimated by combining observations and nu-25

merical models using data assimilation (DA) techniques. The resulting fields, referred to as aerosol analyses, serve as initial

conditions for aerosol forecasting. Long-term and consistent analyses, so-called aerosol reanalyses, are useful for investigating

aerosol variability, trends, impacts and climate feedbacks, and they are produced with the same DA techniques (Benedetti et al.,

2009; Lynch et al., 2016; Randles et al., 2017; Yumimoto et al., 2017; Inness et al., 2019; Di Tomaso et al., 2021).

A key uncertainty in current models is the representation of the aerosol vertical distribution (Pérez et al., 2006; Koffi et al.,30

2016; Benedetti et al., 2018; Konsta et al., 2018). Most operational aerosol forecast systems rely on the assimilation of column–

integrated aerosol optical depth (AOD) from satellite-borne instruments (e.g. Xian et al., 2019). Consequently, the vertical

structure is mainly propagated from the numerical model and only slightly and indirectly from the assimilated observations. In

the last decade, a few studies have investigated the assimilation of vertical aerosol profiles from lidar instruments, both satellite

(e.g. Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP), Winker et al., 2010) and ground-based (e.g. European35

Aerosol Research Lidar Network (EARLINET), Pappalardo et al., 2014), showing the potential of vertical profiling to improve

the four-dimensional representation of aerosols in analyses (Sekiyama et al., 2010; Zhang et al., 2011; Wang et al., 2014;

Kahnert and Andersson, 2017; Cheng et al., 2019; El Amraoui et al., 2020) and forecasts (Zhang et al., 2011; Wang et al.,

2014). Difficulties preventing an effective assimilation of vertical profiles in operational settings include the poor coverage

of ground-based observations, the narrow footprint of satellite observations, potential inconsistencies with other assimilated40

observations, and underrepresented forecasting uncertainty in the vertical, among other.

Our study focuses on the assimilation of desert dust aerosol lidar observations around the two most prolific source regions

on Earth: Northern Africa and the Middle East. Dust models are subject to substantial uncertainties in the description of

lower boundary conditions relevant for dust emission, modelled wind speed, dust emission processes, vertical mixing, particle

properties and deposition (Huneeus et al., 2011; Kok et al., 2020; Klose et al., 2021). Thus combining modelling with dust45

observations through DA is a powerful method to increase the quality of emission estimates (Escribano et al., 2016, 2017) and

dust forecasts. We are specifically interested here on the impact of assimilating spaceborne lidar profiles upon dust forecasts.

Dust is the largest continental contributor to the global aerosol load and impacts marine (Jickells et al., 2005) and land bio-

geochemistry (Okin et al., 2004), radiative fluxes (DeMott et al., 2009; Kok et al., 2017; Marinou et al., 2019), human health

(Du et al., 2015) and economy (Kosmopoulos et al., 2018; Papagiannopoulos et al., 2020). Properly representing its vertical50

structure both within the planetary boundary layer over sources and in the free troposphere in the outflow areas is particularly

important to predict its long range transport and associated impacts (O’Sullivan et al., 2020). Despite this important role, the
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dust vertical structure in models and forecasts is poorly constrained by observations (Benedetti et al., 2014). So far, only lidar

measurements, either from space or from ground, can deliver vertical profiles of the atmospheric dust.

Our work involves both modelling and data assimilation aspects, along with the handling of observations and their un-55

certainty. We use the Multiscale Online Non-hydrostatic AtmospheRe CHemistry (MONARCH) model, formerly known as

NMMB/BSC-Dust (Pérez et al., 2011; Klose et al., 2021), enhanced with a Local Ensemble Transform Kalman Filter data

assimilation capability (Di Tomaso et al., 2017). MONARCH provides dust forecasts at the World Meteorological Organiza-

tion (WMO) Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS) Regional Centers for Northern

Africa, Middle East and Europe (http://sds-was.aemet.es/, last access 11 November 2021; http://dust.aemet.es/, last access 1160

November 2021) hosted by the Spanish Meteorological agency (AEMET) and the Barcelona Supercomputing Center (BSC).

We address the challenge of how to best express model uncertainty also in the vertical coordinate, and consequently in the dust

transport, generating an ensemble for MONARCH based on both meteorological and dust source perturbations. Rubin et al.

(2016) showed that combining meteorology and aerosol source ensembles produce sufficient spread in outflow regions that

positively impacts the results. Characterizing model uncertainty is key to effectively assimilate observations; spatial and mul-65

tivariate structures of the error background covariance determine the spread of observational information in space and across

variables, allowing for statistically consistent increments between neighbouring grid points, also along the vertical dimension.

The use of an ensemble-based data assimilation scheme, such as the one used in this work, allows for background covariances

to evolve with the forecast.

Assimilating dust in models is possible to the extent that there are dust-specific retrievals with suitable coverage, quality and70

uncertainty quantification. Progress has been made recently to provide dust products from satellite-borne spectroradiometers in

the visible (e.g., Pu and Ginoux, 2016; Zhou et al., 2020b, a), from the Infrared Atmospheric Sounding Interferometer (IASI)

(e.g., Capelle et al., 2018; Clarisse et al., 2019), from ground and satellite-based lidar instruments (Mamouri and Ansmann,

2014; Amiridis et al., 2015) or from combinations of reanalyses with satellite retrievals (Gkikas et al., 2021). In our study we

assimilate pixels with dust retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS) Deep Blue AOD product75

(Hsu et al., 2019), along with LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies (LIVAS)

pure-dust extinction coefficient profiles from CALIOP as described in Amiridis et al. (2013, 2015) and Marinou et al. (2017).

Finally our analyses and analysis-initialised forecasts are evaluated against independent observations, namely dust-filtered

AOD from ground-based AErosol RObotic NETwork (AERONET) observations and lidar dust extinction coefficient profiles

collected during the PREparatory: does dust TriboElectrification affect our ClimaTe (Pre-TECT, http://pre-tect.space.noa.gr,80

last access 11 November 2021) and Cyprus Clouds Aerosol and Rain Experiment (CyCARE, Radenz et al., 2017) campaigns

between the 19 and 23 of April 2017.

The paper is organized as follows. In the Sect. 2 we describe the data and methods employed in this study. In Sect. 3

we investigate the potential improvements in the representation of the dust vertical structure by assimilating dust dedicated

profiling information in a close-to-optimal data assimilation framework. We also assesses the overall benefit of applying con-85

straints on both the dust total column extinction and the dust extinction profile. Finally, we compare vertically-resolved versus
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column-integrated data assimilation under comparable temporal and spatial geographical sampling. Section 4 concludes the

paper highlighting the main results obtained.

2 Data and methods

We performed data assimilation experiments to evaluate the impact of assimilating satellite products of dust optical depth90

(DOD) and vertically-resolved dust extinction coefficient, either alone or in combination. These two datasets are described in

Sect. 2.1. The experiments were evaluated against independent ground-based Sun photometer and lidar observations that are

described in Sect. 2.2. The modelling and data assimilation systems, described in Sections 2.3 and 2.4, respectively, were

optimised in a number of aspects including the generation of ensemble perturbations, the spatial and temporal localisation that

creates a smooth limit upon the observation influence in the analysis fields, and the optical properties used in the observation95

operator. A description of the experiments and their evaluation are provided in Sect. 2.5

2.1 Assimilated observations

2.1.1 CALIOP-based LIVAS dataset

Pure-dust profiles assimilated in this study were derived from the global 3-D European Space Agency (ESA) LIVAS database

(Amiridis et al., 2013, 2015). LIVAS, developed based on multiyear CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder100

Satellite Observations, Winker et al., 2009) CALIOP observations, provides in its standard product, averaged profiles of aerosol

and cloud optical properties on a uniform 1° x 1° grid resolution, for the CALIPSO-defined aerosol and cloud subtype classes.

In this work, instead of using this standard 1° resolution LIVAS product, we use the pure-dust extinction coefficient produced

by the LIVAS algorithm at each overpass of CALIOP, in its vertical (60 m) and horizontal (100 x 330 m) native resolution.

The methodology of LIVAS to decouple the pure-dust backscatter coefficient component from the total aerosol mixture is105

based on the one-step POLIPHON technique (POlarization-LIdar PHOtometer Networking, Tesche et al., 2009), established

in the framework of EARLINET. It uses CALIOP Version 4 (V4) Level 2 (L2) aerosol profiles of backscatter coefficient

and particulate depolarization ratio products at 532 nm. Moreover, the procedure applies several quality-assurance procedures

(Tackett et al., 2018) and suitable geographically dependent dust lidar ratio conversion factors (e.g. 55 sr for Saharan Desert,

40 sr for Middle East) to obtain the atmospheric aerosol profiles of pure-dust extinction coefficient at 532 nm (Amiridis et al.,110

2013; Marinou et al., 2017; Proestakis et al., 2018) at CALIPSO per-orbit level, used in the present study.

Accordingly and prior to assimilation, the profiles of LIVAS pure-dust extinction coefficient at 532 nm were aggregated to

the horizontal resolution of the model. In the regridding process, error definitions and filtering of CALIOP profiles followed

procedures similar to Cheng et al. (2019). More specifically, Cheng et al. (2019) used CALIOP optical products under the

condition that at least 20 CALIOP L2 profiles were provided in each 2° x 2° model grid cells. Considering the finer model grid115

resolution of 0.66° x 0.66° of the present study –in an analogous approach to Cheng et al. (2019)– a threshold of at least 3

Quality Assured (QA) Cloud-Free (CF) CALIOP L2 profiles were set, achieving similar proportion of horizontal geographical
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coverage to Cheng et al. (2019). Similar was the filtering approach followed for the coefficient of variation (standard deviation

divided by mean) of the data prior to regridding, although less restrictive due to the smaller number of profiles and the higher

spatial resolution of the model grid. More specifically, only grid cells with coefficient of variation less than unity were used in120

the assimilation, while in Cheng et al. (2019) the corresponding threshold was set equal to 0.5.

In addition, in order to avoid spurious values in the assimilation process (e.g. unrealistic high values of extinction coefficient

at 532 nm arising from possible misclassification of clouds as aerosols), we discarded LIVAS dust extinction coefficients

larger than 10−3m−1. Errors in POLIPHON pure-dust extinction coefficient profiles are of the order of 15-25% (Ansmann

et al., 2019). In consequence and similarly to Cheng et al. (2019), input error statistics for the data assimilation routine were125

prescribed as the 20% of the value of the dust extinction coefficient. The corresponding uncertainties in the CALIOP-based

pure-dust product are extensively and in-depth analyzed in Marinou et al. (2017). An additional filter was applied to ensure

that the 60m vertical resolution observations cover at least half of each model layer vertical thickness. Model layer thickness

is defined by the model hybrid pressure-sigma coordinate its value is not homogeneous in the vertical: it varies between 16m

and 61m close to the surface depending on the topography, between about 140m and 750m at 6.5 km altitude, and between130

540m and 640m at 10 km height. Model layers and the corresponding LIVAS observations with less than 50% of vertical

coverage were omitted in the observation operator. The remaining observations were averaged and the associated uncertainty

was computed assuming a Gaussian correlation length of 1 km in the vertical coordinate for each model layer independently.

2.1.2 VIIRS Deep Blue dataset

The DOD at 550nm was extracted from the Deep Blue (DB) Level 2 product of the VIIRS instrument onboard the SUOMI-135

NPP satellite (Sayer et al., 2018; Hsu et al., 2019). The DB product provides total AOD at 550 nm with a global coverage daily.

Along with AOD, the DB product includes a flag with the aerosol type classification of the retrieval (namely dust, smoke,

high-altitude smoke, non-smoke fine-dominated, mixed, background and fine-mode dominated), and quality-assurance flags

over ocean and land from one (worst quality) to three (best quality). Hsu et al. (2019) highlight the improvements done in the

DB retrieval for dust aerosols, as the optical model was updated with non-spherical dust optical properties.140

The standard DB product is AOD. We used only pixels classified as “dust” aerosol type and with a quality assurance flag

equal to 3 over ocean and greater than or equal to 2 over land. The resulting DOD dataset was then interpolated to the model

grid and assigned an uncertainty of 0.2×DOD+0.05 following Sayer et al. (2019). Hereafter we use DDB to refer to this

filtered dust DB retrieval. We note that DDB is not necessarily a pure-dust AOD and may include contributions of other aerosols

types, although dust should be predominant particularly in Northern Africa and the Middle East.145

The large swath (30–40 km) of the VIIRS instrument can be a big plus for data assimilation. In contrast, CALIOP has a

horizontal footprint of 100m and a horizontal resolution of 333m. When comparing the assimilation from both instruments,

it is key to understand the role of these differences in spatial coverage. To respond to this fundamental question we prepared a

subset of DDB data, called hereafter DDBsubset, that contains the (regridded) DOD from DDB collocated with LIVAS. This

collocation is done at a daily resolution and in the horizontal model grid (which is the same horizontal grid of DBB and LIVAS150

after the processing described in the previous paragraphs). For each UTC day, we create a bi-dimensional binary mask whose
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values are set to valid only when the LIVAS dataset has a valid retrieval in at least one vertical level, for that UTC day. This

daily mask is applied to DDB to create DDBsubset.

2.2 Ground-based observations for evaluation

2.2.1 AERONET155

We used ground-based measurements for the evaluation. For DOD, we selected the group of AERONET stations (Holben et al.,

1998) used in the operational SDS-WAS verification. The list of stations is presented in Appendix A. We used the AERONET

Direct Sun product, version 3, level 2. The AOD was interpolated to 550nm and we assumed dust to be predominant when

Ångström exponents at 440–870 nm were smaller than 0.3 (Basart et al., 2009). In a similar fashion to the AOD filter used in

DDB, this filtered AERONET dataset is not a pure-dust AOD. Nevertheless, it is expected that the main aerosol type in the160

vertical column of this AERONET filtered dataset is dust, but it can be mixed with other types of aerosols (as for example

coarse sea spray).

2.2.2 Ground-based lidar CyCARE and Pre-TECT campaigns

The modeled vertical profiles of the dust extinction coefficient at 532nm were evaluated against measurements from three

ground-based lidars of the lidar network PollyNET (Baars et al., 2016; Engelmann et al., 2016) operated in the eastern Mediter-165

ranean during the CyCARE and the Pre-TECT experiment. These lidars were located at Finokalia, Crete, Greece (operated by

the National Observatory of Athens, NOA), Limassol, Cyprus (operated by the Leibniz Institute for Tropospheric Research,

TROPOS, in the frame of CyCARE) and Haifa, Israel (Althausen et al., 2019, operated by TROPOS). With these continuously

operating lidars, the vertical profiles of the particle backscatter coefficient at 355 nm, and 532nm, and 1064nm, the extinction

coefficient at 355 and 532nm, and the particle depolarization ratio at 355 and 532nm can be retrieved. Using the obtained170

particle backscatter coefficient, extinction coefficient and depolarization ratio at 532nm, the dust-only extinction coefficient

can be obtained as described in Mamouri and Ansmann (2014, 2017). With this method, the backscatter-related dust fraction

is calculated based on the known depolarization ratio of pure dust (31%) and the non-dust component (5%). Having the dust-

only backscatter coefficient, the dust-only extinction coefficient is determined by the use of the pure dust lidar ratio at 532nm

of 45 sr (Mamouri and Ansmann, 2016). The non-dust extinction coefficient is calculated similarly depending on the type of175

non-dust aerosol. Finally, a consistency check is performed by summing up the dust-only and non-dust extinction profiles and

comparing them to the total measured extinction coefficient. More details can be found in Urbanneck (2018).

In contrast to the estimated DOD from AERONET and DB AOD retrievals, which may be affected by other aerosols, the

PollyNET measurements can provide pure-dust retrievals (Tesche et al., 2009; Mamouri and Ansmann, 2017). For this reason,

we use here the lidar observations from CyCARE and Pre-TECT campaigns in the evaluation of our results.180
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2.3 MONARCH Model

To simulate the dust cycle, we used the Multiscale Online Nonhydrostatic AtmospheRe CHemistry (MONARCH) model

(Pérez et al., 2011; Haustein et al., 2012; Jorba et al., 2012; Badia et al., 2017; Di Tomaso et al., 2017; Klose et al., 2021).

MONARCH is a fully online integrated system for meso- to global-scale applications developed at the BSC. It uses the Nonhy-

drostatic Multiscale Model on the B-grid (NMMB, Janjic and Gall, 2012) as the meteorological driver and couples gas-phase185

and mass-based aerosol modules to describe the life cycle of atmospheric components. It uses the Autosubmit workflow man-

ager (Manubens-Gil et al., 2016), which is particularly useful for efficiently executing assimilation runs. The model provides

operational regional mineral dust forecasts at WMO SDS-WAS regional centers. It also contributes global aerosol forecasts

within the multi model ensemble of the International Cooperative for Aerosol Prediction (ICAP) initiative (Xian et al., 2019)

since 2012, and will soon integrate the Copernicus Atmosphere Monitoring Service (CAMS) – Air Quality Regional Production190

(https://www.regional.atmosphere.copernicus.eu, last access: 11 November 2021).

MONARCH contains comprehensive aerosol and chemistry packages, but in this work we only focus and compute mineral

dust aerosol. Dust is described using eight particle-size bins within 0.2–20 µm in diameter. The MONARCH dust module is

described in detail in Pérez et al. (2011) and Klose et al. (2021). MONARCH offers a diversity of mineral dust emission schemes

along with multiple configurations. As shown in Klose et al. (2021), the emission scheme and their specific configuration has195

a strong impact on the spatial and temporal behaviour of the simulated dust. Because we aim at showing the impact on the

forecast by assimilating two different types of observations and not to show the best of the forecasts, we preferred to avoid fine-

tuning and cherry-picking the best performing emission scheme and configuration for our study case. Instead, we computed

dust emissions by averaging the emissions produced by the four configurations listed in Table 1. All configurations used a

modified version of the dust emission scheme of Ginoux et al. (2001) with modifications described in Klose et al. (2021) that200

include the use of friction velocity instead of 10m wind speed, a dust-particle size independent threshold friction velocity

for particle entrainment taken as the minimum value of the threshold-function from Shao and Lu (2000), and an emitted size

distribution following Kok (2011). The entrainment threshold accounts for soil moisture using the correction from Belly (1964)

as described in Ginoux et al. (2001). Areas where dust emission is allowed are constrained by satellite observations, specifically

by the frequency of occurrence (FoO) of the Moderate Resolution Imaging Spectroradiometer (MODIS) DB DOD exceeding205

0.2 (Hsu et al., 2004; Ginoux et al., 2012). Dust can be emitted for areas in which FoO > 0.025 (Klose et al., 2021). The four

configurations differ with regard to the description of (a) the preferential dust sources used for scaling of the dust emission

flux and (b) vegetation and surface roughness effects. Configurations I and II used the MODIS FoO of DOD > 0.2 to scale

the dust emission flux obtained with the modified Ginoux et al. (2001) parameterization. Configurations III and IV used the

original topographic source mask from Ginoux et al. (2001) as the scaling function. To account for roughness elements on210

the land-surface, such as vegetation, rocks, or pebbles, configurations I and III used the drag partition parameterization from

Marticorena and Bergametti (1995) with corrections from King et al. (2005) in combination with a monthly climatology of

MODIS-derived leaf-area index (Myeni et al., 2015) and aerodynamic roughness length data for arid regions from Prigent et al.

(2012). In contrast, configurations II and IV utilized the drag partition parameterization from Raupach et al. (1993) together
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Table 1. Summary of the four model configurations used to create the multi-scheme dust emissions.

Config. Dust source mask/Scaling Drag partition Vegetation/Roughness

I MODIS FoO/MODIS FoO Marticorena and Bergametti (1995) MODIS LAI/Prigent et al. (2012)

II MODIS FoO/MODIS FoO Raupach et al. (1993) Guerschman et al. (2015)

III MODIS FoO/Topo. Sources Marticorena and Bergametti (1995) MODIS LAI/Prigent et al. (2012)

IV MODIS FoO/Topo. Sources Raupach et al. (1993) Guerschman et al. (2015)

with a monthly climatology of photosynthetic and non-photosynthetic vegetation cover data from Guerschman et al. (2015)215

(Klose et al., 2021). The drag partition corrections were applied to the threshold friction velocity for particle entrainment.

2.4 Data assimilation

MONARCH is coupled to a Local Ensemble Transform Kalman Filter (LETKF, Hunt et al., 2007). The LETKF implementation

used in this study was built upon the implementation from Miyoshi and Yamane (2007), Schutgens et al. (2010), and Di Tomaso

et al. (2017). We used the 4D-LETKF configuration of this code with an assimilation window and forecast length of 24 hours220

(starting at 0 UTC) and with hourly outputs. In this LETKF implementation, the observations had been compared to the model

simulated equivalent observations with collocation in time and space, and then concatenated to construct the observation and

the simulated observation vectors. An ensemble of MONARCH runs is used to estimate the error covariance matrix of the prior

at the observations’ times and locations. We used a Gaussian localisation with horizontal scale of 6 grid cells (around 435 km

in our model configuration), vertical scale of 1 model level and temporal scale of 12 hours. Unlike Di Tomaso et al. (2017) or225

Cheng et al. (2019), we computed the analysis every hour instead of only at 0 UTC. With this configuration, the 4D-LETKF

acts as a Kalman smoother that effectively localises the influence of the observations in time, and therefore produces better

quality analyses throughout the 24-hour assimilation window. This choice is advantageous when the assimilated observations

are temporally distributed along the assimilation window like in the case of LIVAS with daytime and nighttime profiles, or

when the observations are more representative of local conditions as is the case of extinction coefficients compared to column-230

integrated AOD values. In comparison with Di Tomaso et al. (2017) and Cheng et al. (2019), the Kalman Smoother choice

described above should provide the same analyses at 0 UTC as the filtering option. Therefore, the analyses-initialised forecasts

are identical with both approaches.

A key ingredient in the data assimilation algorithm is the representation of model uncertainty, which in an ensemble-based

scheme, like ours, had been derived from the model ensemble. We have generated the MONARCH ensemble by perturbing dust235

emissions and by using an ensemble of meteorological initial and boundary conditions analyses (Global Ensemble Forecast

System (GEFS), Zhou et al., 2017). The model ensemble was constructed with 20 members, concordant with the 20 GEFS

ensemble members. The dust emissions in the model (Sect. 2.3) were perturbed by multiplicative factors that were extracted

from a random Gaussian distribution with a spatial correlation of 250 km, a mean of unity and a standard deviation of 0.4.
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In all cases we assumed that the observational errors were uncorrelated, i.e., the observational error covariance matrix was a240

diagonal matrix.

2.5 Experiment description and evaluation

We describe in Sect. 2.1 the three datasets used in the assimilation: DDB, DDBsubset and LIVAS. Using a fixed configura-

tion of the model and the data assimilation scheme parameters (Sections 2.3 and 2.4), we designed and ran five experiments

assimilating combinations of the three datasets.245

The first experiment, named eLIVAS, assimilated the pure-dust extinction coefficient from the regridded LIVAS dataset

(Sect. 2.1.1). A second experiment, named eDDB, assimilated the DOD from the DDB dataset (Sect. 2.1.2). The third experi-

ment, named eDDBsubset, assimilated the DDBsubset dataset (Sect. 2.1.2). The fourth, named eLIVAS+DDBsubset, assimi-

lated the LIVAS and DDBsubset datasets, and the fifth, named eLIVAS+DDB, assimilated the LIVAS and DDB datasets. For

the sake of clarity, we have excluded DDBsubset experiments until Sect. 3.3. Therefore, until Sect. 3.3, we will focus on results250

of eLIVAS, eDDB and eLIVAS+DDB experiments.

We ran our data assimilation experiments over a regional domain centred at 20° E in longitude and 30° N in latitude, which

covers North Africa, the Middle East and Europe (e.g. Fig. 1). The model was set up with a rotated latitude-longitude grid with

0.66° resolution at the center of the grid, 40 vertical layers, and hourly output of dust concentrations for the 8 size bins. The dust

extinction coefficient and DOD was computed with software provided by Gasteiger and Wiegner (2018). We have assumed255

spheroidal dust particles with the axis ratio distribution shown in Table 2 of Koepke et al. (2015) and the OPAC refractive index

for dust (e.g. 1.53 + 0.0055i for 550 nm) as in Koepke et al. (2015).

We performed the five data assimilation experiments between March and April 2017. A 14-month spinup was run without

assimilation to properly initialise the soil moisture content. We also ran a control experiment over the period of study, con-

sisting of an ensemble forecast without data assimilation. For each of the five data assimilation experiments (eLIVAS, eDDB,260

eDDBsubset, eLIVAS+DDBsubset and eLIVAS+DDB), we obtained two types of simulation outputs: analyses and forecasts.

We produced ensemble forecasts with a forecast length of 24 hours, initialised with the last timestep of the analyses of

the day before (at 0 UTC in our 24-hour assimilation window). Forecasts and observations along with their prescribed error

were the input for the data assimilation scheme, which computed the 4D mass concentration dust field analyses within the

assimilation window. Therefore, for a given day, forecasts can carry the observational information assimilated from the days265

before, but analyses can, in addition, carry the observational information of that given day. In contrast, the control experiment

omits the assimilation of dust information.

When comparing the model against observations, the model was always collocated in space and time with the valid ob-

servations. In the case of ground-based lidar observations, the model is integrated in time over the measurement window.

To summarise the comparison between model and observations, we have computed six scores. Five of the six scores use the270

model ensemble mean, and one of the scores uses the full ensemble. Given a set of N pairs of model ensemble mean values
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{mi}i=1...N and matched observation {ri}i=1...N , we use :

Mean Bias [MB] =
1

N

N∑
i=1

mi− ri ,

Mean Fractional Bias [MFB] =
2

N

N∑
i=1

mi− ri
mi + ri

,275

Pearson correlation coefficient [ρ] =
∑N

i=1(mi−m)(ri− r)√∑N
i=1(mi−m)2

√∑N
i=1(ri− r)2

,

Mean Fractional Error [MFE] =
2

N

N∑
i=1

∣∣∣∣mi− ri
mi + ri

∣∣∣∣ ,
280

Root Mean Square Error [RMSE] =

√√√√ 1

N

N∑
i=1

(mi− ri)2 ,

where m and r are the average of the model and observations, respectively. We also included the mean over the number of

observations of the Continuous Ranked Probability Score (CRPS, Hersbach, 2000, and references therein), which is computed

for each observation ri and model ensemble mj
i , j = 1 . . .M as:

CRPSi =

∞∫
−∞

[Pi(x)−Pri(x)]
2
dx ,285

where Pi is the cumulative distribution function of the ensemble, which is approximated empirically by the M ensemble

members, and Pri the cumulative distribution function of the observation ri, computed as Pri(x) =H(x−ri), where H is the

Heaviside step function.

3 Results and discussion

We first discuss the internal consistency of the data assimilation system in Sect. 3.1 by comparing analyses and forecasts with290

the assimilated data. We then present the evaluation against ground-based measurements from Sun photometers and lidars in

Sect. 3.2. We finish this Section with a comparison between the experiments (Sect. 3.3).

3.1 Consistency and cross-comparison checks with satellite products

We cross-compared the model simulations (control, forecasts and analyses) with the two main assimilated observational

datasets. Consistency can be checked when analyses are compared with an observational dataset used for the assimilation295

(e.g., when DDB DOD is compared to analyses from the eDDB or eLIVAS+DDB experiments). This verification step provides

a sanity check for the data assimilation process. When the datasets are not assimilated (e.g., when DDB DOD is compared to
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analyses from the eLIVAS experiment), the comparison is then performed with independent satellite observations. Forecasts

are initialised from analyses, thus forecast scores (i.e. error metrics calculated for the forecast fields) can also be considered,

up to a certain degree, as an evaluation of the forecast quality, even though the reference observations and the forecast cannot300

be assumed to be completely independent in this case.

Figure 1. DOD from DDB and model simulations between 19 and 23 of April 2017 for the control and eLIVAS experiment. First four

columns show the DOD from DDB (left) and three model simulations of DOD collocated with DDB: control experiment, forecast and

analysis from the eLIVAS experiment. The last column shows the analyses daily average without collocation with DDB. Each row represents

a different day.

A showcase of the eLIVAS experiment is presented in Fig. 1. Here we show the DDB DOD and the control, forecast and

analysis DOD for selected days in April 2017, where it is possible to identify a dust plume over the Eastern Mediterranean that

was captured by the CyCARE and Pre-TECT campaigns (Sect. 3.2).

In contrast to the control run, which overestimates DOD, the analyses and forecasts are in better agreement with DDB both305

in terms of overall DOD values and spatial distribution. In this experiment, DDB DOD was not assimilated, thus the qualitative

improvement of the analysis compared to the control run indicates that, despite the relatively low spatial coverage of LIVAS, its
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assimilation can positively impact the spatial representation in the analysis. Improvements where observations are not available,

mainly due to the narrow satellite footprint of CALIOP, are explained by the spatial spread of the observational information

through the background error covariance matrix.310

Figure 2. Averaged DOD from the control run and DDB during the whole study period. The first panel from the top shows the average of

the control run DOD. The second panel shows the average of the control run DOD in the pixels collocated with DDB. The third panel shows

the average of the DDB DOD. The fourth panel shows the average difference between the control run and the DDB DOD.

Average maps of DOD are shown in Figures 2 and 3. Compared to the DDB DOD, the control run shows a large overestima-

tion of DOD over the Sahara and an underestimation elsewhere (Fig. 2). Figure 2 also shows relatively large values of DOD in

the DDB panel over North Atlantic that are not simulated in the control run. The first two rows of Fig. 3 show that the analyses

have, in general, lower DOD values than the forecasts, which also have lower DOD values than the control experiment. Third

row of Fig. 3 shows the average difference between forecasts and analyses. In this row, there is a common decrease of DOD315

values close to the Bodélé depression after assimilation. Experiments eDDB and eLIVAS+DDB show increasing DOD in the

eastern part of the domain in the analyses. Averaged differences of the simulations with respect to DDB are shown in the last

two rows of Fig. 3. As expected, these differences are smaller in the eDDB and eLIVAS+DDB experiments because the DDB

dataset is assimilated in these two experiments.

Figure 4 shows the average values of the assimilated LIVAS pure-dust extinction coefficient profiles compared with collo-320

cated model-derived dust extinction profiles for the full domain and the four regions presented in Fig. B1. The model systemati-

cally overestimates the dust extinction coefficient below 7 km in the analyses of experiments excluding LIVAS assimilation and

in the forecasts, including experiments with LIVAS assimilation. In contrast, analyses with LIVAS assimilation underestimate

the dust extinction coefficient below 7 km. The altitude of the maximum values and shape of the dust extinction coefficient
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Figure 3. Averaged DOD from the experiments and differences with the DDB DOD during the whole study period. Experiments listed in

Sect. 2.5 are represented in columns. The first and second rows show the average DOD for the forecast and analysis experiments respectively.

The third row shows the difference between average analyses and forecasts. Collocated differences between the forecasts and the DDB DOD

averages are shown in the fourth row. The last row shows the difference between the analyses and the DDB DOD averages.
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Figure 4. Collocated average dust extinction coefficients from model experiments and LIVAS assimilated observations in the 4D domain.

The left column shows the mean extinction coefficient profiles in m−1. The middle column shows the mean extinction profiles but normalised

such that the vertical integration of each profile in the panel equals one. The right column shows the relative difference between the mean

value of each experiment and the control run. Each row represent a different geographical domain defined in Fig. B1, from top to bottom:

full domain, East Sahara, West Sahara, Mediterranean and Arabian Peninsula.
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is well captured by the model in all regions except the Mediterranean (middle column of Fig. 4), where the mean values are325

relatively small. Relative changes in the shape of the dust extinction coefficient compared to the control experiment are shown

in the right column of Fig. 4. On average, experiments that assimilate LIVAS (i.e., eLIVAS, eLIVAS+DDB) show stronger

decrease in the extinction coefficient than eDDB. Analyses from eLIVAS and eLIVAS+DDB also show large decreases below

3 km of altitude over the Sahara and the Arabian Peninsula. The relative changes in the dust extinction coefficient of anal-

yses and forecasts from eLIVAS and eLIVAS+DDB are larger above 3 km, compared to eDDB. The different shapes of the330

forecasts and analyses from eLIVAS and eLIVAS+DDB (right column of Fig. 4) indicate that close to the surface, the dust

extinction profile is largely influenced by the model forward simulations (and the associated dust emissions), rather than by the

assimilated information. In contrast, in the upper part of the atmosphere the assimilation of LIVAS data adds information to the

analyses that is propagated in time by the subsequent forecast cycles. This effect is not as noticeable in eDDB. The relatively

flat curves associated to eDDB show that the shape of simulated dust vertical profile is mainly propagated from the forward335

model.

The control run and the three selected assimilation experiments were also quantitatively evaluated against the LIVAS dust

extinction coefficients and the DDB DOD using the scores described in Sect. 2. When evaluated against LIVAS (left column of

Fig. 5), the control run shows a positive mean bias that decreases in the forecasts from all the assimilation experiments. When

LIVAS is assimilated either with or without DDB, the analysis is negatively biased. The MFB is positive for all experiments,340

and its absolute value slightly decreases with the assimilation. The negative mean bias of eLIVAS and eLIVAS+DDB analyses

suggests that the assimilation tends to decrease rather than increase mass. Small mixing ratios have a smaller spread in the

ensemble than the larger ones because the mass mixing ratio (the control vector in the DA) is bounded by zero. This may favour

the decrease of mass for large DOD or extinction coefficient values, but not for small values. Amend this behaviour could

require, for example, applying non-linear transformations to the control vector and/or to the observation operator, which is345

beyond the scope of this work. As expected, the correlation coefficients obtained for the analyses from experiments assimilating

LIVAS are significantly higher than those from the control run. However, the impact of the LIVAS assimilation is limited in

the forecasts. Experiment eDDB slightly improve the correlation in the analyses but not in the forecasts. The MFE of analyses

and forecasts is similar or smaller for the three assimilation experiments than for the control experiment. The RMSE and CRPS

decrease similarly for the all the forecasts. As expected, the RMSE and CRPS of eLIVAS and eLIVAS+DDB analyses show350

smaller values. It is also worth noting that the RMSE and CRPS of eDDB analyses decrease despite not assimilating LIVAS.

When evaluated against DDB DOD (right column of Fig. 5) the bias is negative for all experiments and products, and it

is even becoming larger with assimilation. The opposite sign in the mean bias of the control run depending on the reference

dataset suggests a potential inconsistency between DDB DOD and LIVAS. We note that none of the datasets have been bias-

corrected. Inconsistencies may be related to the different quantities retrieved (DOD versus extinction coefficient), each one355

with its own uncertainties. By construction the DDB DOD (Sect. 2.1.2) may tend to be positively biased because although

the selected scenes are mostly affected by dust, there will be always some contamination by other aerosols in the atmospheric

column (see for example the relatively large DDB DOD values over North Atlantic in Fig. 2). On the other side, the low

sensitivity of CALIOP to thin layers (Kar et al., 2018) or the signal attenuation in CALIOP measurements when the dust load
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Figure 5. Verification scores against LIVAS dust extinction coefficient in the left column, scores against DDB DOD dataset in the right

column. Scores of the control run are shown in green, forecasts in red, and analyses in blue. On the left column, panels of Model Mean,

Mean Bias, RMSE, and Mean CRPS have units of m−1.
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is large could also play a role in the obtained biases. When comparing with DDB DOD, the correlation coefficient is larger360

for both forecasts and analyses when DDB is assimilated (eDDB and eLIVAS+DDB), while the improvement of this score is

smaller for eLIVAS. The analyses show a better correlation coefficient with respect to DDB than the forecasts, and both show

a better behaviour than the control run for all the experiments. The three error scores (MFE, RMSE and CRPS) differ across

two distinct groups of experiments. These errors increase in eLIVAS both for the forecast and analyses with respect to the

control run. In contrast, the other two experiments (eDDB and eLIVAS+DDB) show a decrease in these error scores both for365

the forecasts and analyses. The latter is expected as the scores are computed taking the DDB as the reference.

In summary, the results of the cross-comparison checks are consistent with the assimilated observations used in each ex-

periment. Also, when LIVAS is used as the reference dataset, all experiments improve their scores after assimilation both for

forecasts and analyses. The comparison shows mixed results when the reference dataset is DDB.

3.2 Evaluation against ground-based measurements370

Figure 6 presents the scores for each experiment when evaluated against dust-filtered AOD at 550 nm from AERONET stations

(Appendix A). We acknowledge that the filter used for creating this AERONET DOD dataset (Ångström exponent less than

0.3) can bias our analysis towards large values of DOD. The left column of Fig. 6 shows the scores when all the filtered

observations are taken into account (2681 observations), while the other three columns show the scores in North Africa (1394

observations), the Mediterranean and southern Europe (1029 observations) and the Middle East (258 observations). The list of375

stations used for each set of scores is listed in Appendix A and it is based on the list of stations used for operational verification

of the SDS-WAS forecasts.

The bias of the control run is positive, which contrasts with the negative bias resulting from the comparison with DDB

(Fig. 5). While the different spatial and temporal localisations used in the comparison may play an important role in this

difference, an additional explanation is that the dust filter in the DDB dataset is less conservative and provides on average larger380

DOD values due at least partly to the presence of other aerosols. The high positive bias of the control run for all AERONET

stations decreases in absolute terms in all the experiments after assimilation, consistent with the systematic decrease in the

simulated DOD shown in the first row of Fig. 5. Forecast and analyses from experiments where LIVAS was assimilated

(eLIVAS and eLIVAS+DDB) show a stronger negative bias and MFB than eDDB, notably in the Mediterranean and southern

Europe (a subset of 39% of the all AERONET observations used here) and Middle East panels (9% of the all AERONET385

observations used here).

The correlation coefficient increases in all assimilation experiements compared with the control for North Africa and the

Mediterranean, particularly in the analyses but also in the forecasts. Experiment eDDB shows higher correlations. Over Middle

East, with only 258 observations, the correlation coefficient is very low but still positive. Over North Africa, all the experiments

show smaller errors (MFE, RMSE, CRPS) in comparison with the control run. With the exception of eLIVAS, all the analyses390

have smaller errors than the forecasts and –similarly to the correlation coefficient– the experiments where DDB DOD was

assimilated show better scores in their analyses.
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Figure 6. Verification scores against DOD filtered from AERONET AOD observations.
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Figure 7. Simulated and measured dust extinction coefficient during the CyCARE and Pre-TECT campaigns by PollyNET lidars. The figure

contains three groups (for the three measurement sites) with four panels each. The first panel of each group shows the DOD evolution

estimated from the lidar measurements (black dots, equal to the vertical integration of the dust extinction coefficient profiles), the AOD

without dust filtering for the AERONET station (colored dots), the DOD of the control experiment (green line), the DOD from the forecasts

(dashed lines) and analyses (continuous lines) for the three selected assimilation experiments. The second row of each group shows the

vertical profiles of the measured dust extinction coefficient. The third row of each group shows dust extinction coefficient from the control

run (in green) and the forecasts (dashed lines). The fourth row of each group shows the dust extinction coefficient from the analyses. The

scale for all the dust extinction coefficient profiles is shown on the right side of the second panel in each group.
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As introduced in Sect. 2, we used lidar retrievals of pure-dust profiles for the evaluation of the experiments. The evaluation

was conducted for the dust event above the eastern Mediterranean between 19 to 24 April 2017, whose extent and dynamics

can be observed in the right column of Fig. 1.395

We compared our five experiments with the dust extinction coefficient provided by these lidars. Figure 7 shows the com-

parison between the lidar measurement in the three sites, the control run, the forecasts and analyses from three experiments

(eLIVAS, eDDB, eLIVAS+DDB), and the AOD from AERONET sites close to the lidar instruments, without filtering by

Ångström exponent. Rows 1, 5 and 9 of Fig. 7 show the integrated dust extinction coefficient for lidar measurements and

model runs, and the AOD from AERONET instruments close to these sites. The control run is overestimated in the three sites400

and both analyses and forecast show values closer to the AERONET AOD and the lidar integrated DOD. The three experi-

ments capture the timing and the magnitude of the dust event. Qualitatively, eDDB overestimates the AOD and lidar-integrated

measurements, eLIVAS+DDB is closer to AERONET AOD measurements and eLIVAS is closer to the lidar-integrated DOD.

The control run not only overestimates the dust profile but also underestimates the height of the maximum values in the plume

(e.g. on Limassol panel, the 21 and 22 of April). For forecasts and analyses, the experiments where LIVAS was assimilated405

(eLIVAS and eLIVAS+DDB) are able to decrease the dust concentration in the lower layers (below 2.5 km), making the shape

of the profiles similar to the observed ones. The eDDB profiles do not show this feature.

The overall quantitative evaluation is shown in Fig. 8. These scores have been computed by concatenating all the pairs of

observed and simulated extinction coefficients in a vector, without distinguishing among profiles on the computation. In general

terms, both bias scores are smaller for eLIVAS and eLIVAS+DDB than for eDDB. The correlation coefficient is weakly affected410

by the assimilation in all experiments and the MFE is slightly smaller for experiments where LIVAS was assimilated. RMSE

and CRPS behave similarly, with improvement for all the experiments compared to the control run, particularly for those where

LIVAS was assimilated.

We have computed the evaluation scores also for each of the available profiles (Fig. 7), which are summarised in Fig. 9. The

assimilation performance was split in two groups. The first group is characterised by low values of measured dust extinction415

coefficient (non-shaded columns in Fig. 9) where the dust plume cannot be easily identified in Fig. 7. A second group of

profiles corresponds to high dust extinction coefficients (green-shaded columns in Fig. 9). For these profiles, it is possible to

visually identify in Fig. 7 the altitude and shape of the dust plume. We have averaged these scores of individual profiles in

the last three columns of Fig. 9. In Fig. 9, the mean all column shows the average of the scores of all the profiles; the mean

high column shows the average of the scores of the profiles with strong dust extinction coefficients (i.e., green-shaded columns420

of this figure); and the mean low column shows the average of the scores of the profiles with small values of measured dust

extinction coefficients (non-shaded columns in Fig. 9). These last three columns in Fig. 9 are also shown in Table 2. We note

that scores of Fig. 8 and the last three columns of Fig. 9 are computed differently, In the former, we have concatenated all the

profiles and computed the scores, while in the latter, we have computed the scores for individual profiles and then averaged

their values. This methodological difference impacts, for example, the values of the correlation coefficient and RMSE when425

comparing the mean all values of Table 2 with those of Fig. 8.
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Figure 8. Verification scores against ground-based PollyNET lidar dust extinction coefficients from the CyCARE and Pre-TECT campaign.

Panels of Model Mean, Mean Bias, RMSE, and Mean CRPS have units of m−1.
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Figure 9. Verification scores of the model analyses for the dust extinction coefficient profiles against measurements of PollyNET lidars of

Fig. 7. Mean Bias, RMSE and CRPS have units of m−1. Profiles with high values of extinction are shown with a green shade. The last three

columns show averages of the scores for the non-shaded profiles (mean low), for the shaded profiles (mean high) and for all profiles (mean

all). The areas of the squares are proportional to their values (in colors).
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For the group of profiles with small values of dust extinction coefficient (mean low in Fig. 9) the absolute scores (Mean

Bias, RMSE and CRPS) are small because simulated and observed values are also small, but they do not improve after the

assimilation. Similarly, the normalized scores (MFE and MFB) and the correlation coefficient do not improve. The group

of profiles with high dust extinction coefficients (green-shaded columns in Fig. 9) generally show better normalised scores430

than the group with low dust values. With the exception of the correlation coefficient, all the scores in this group improved

after assimilation. In this mean high group the Mean Bias drastically decreased when LIVAS was assimilated (eLIVAS and

eLIVAS+DDB). Similarly, MFB, MFE, RMSE and CRPS improved with LIVAS assimilation. The correlation coefficient does

not improve with assimilation, but the degradation of this score in all experiments with respect to the control run remains below

5% of the control run value. Overall, when dust extinction is large, all analyses improved in all scores with the exception of the435

correlation coefficient. While improvements are enhanced when LIVAS is assimilated, they are still non-negligible for eDDB.

All in all, despite the sparse spatial coverage of LIVAS compared to DDB, this evaluation shows that dust extinction profiles

are best constrained in experiments where LIVAS is assimilated.

Table 2. Values of the last three columns of Fig. 9.

Score Group control eLIVAS eDDB eLIVAS+DDB

Mean Bias (×106) mean all 21.91 -0.29 12.30 3.97

mean high 40.03 -1.69 19.17 6.19

mean low 3.79 1.11 5.42 1.74

MFB mean all 1.02 0.55 0.90 0.71

mean high 0.98 0.25 0.76 0.48

mean low 1.05 0.85 1.03 0.94

ρ mean all 0.51 0.50 0.50 0.52

mean high 0.81 0.81 0.77 0.80

mean low 0.20 0.19 0.23 0.24

MFE mean all 1.35 1.18 1.27 1.19

mean high 1.06 0.80 0.89 0.79

mean low 1.63 1.55 1.64 1.58

RMSE (×106) mean all 29.59 9.03 19.46 11.21

mean high 52.35 14.54 29.16 18.43

mean low 6.82 3.53 9.76 4.00

Mean CRPS (×106) mean all 12.51 4.70 7.84 4.92

mean high 22.42 8.05 11.98 8.22

mean low 2.59 1.35 3.70 1.62
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Figure 10. Bi-dimensional histograms of the difference between analyses and the control run DOD. Transposed plots in the figure are

symmetrical with respect to the 1:1 line. Color scale shows the counts of analysis minus control in a box of ∆DOD = 0.37, that is, 151 bins

between -2.8 and 2.8. Please note the logarithmic scale of the counts.
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3.3 Consistency between column and profile assimilation and the role of a narrow satellite footprint

Along with the eDBB, eLIVAS and eLIVAS+DDB experiments shown in the previous sections, we have performed the same440

analyses with the DDBsubset dataset, namely eDDBsubset and eLIVAS+DDBsubset. We recall from Sect. 2.1.2 that DBBsub-

set contains the DBB DOD, but only when it is collocated with LIVAS. We use here this dataset for studying the impact of

assimilating vertically-resolved dust observations, along with the impact of the different fields of view of the measurements

upon our analyses.

We have included the verification scores in Fig. C1. This figure is equivalent to Figures 5, 6 and 8 but with the addition445

of eDDBsubset and eLIVAS+DDBsubset experiments. Figure C1 shows that, as expected, the skill scores of eDDBsubset

are qualitatively analogous those of eDDB, but the magnitude of the change with respect to the control is smaller. The better

scores of eDBB over eDDBsubset underline the importance of the horizontal coverage of the observations in our assimilation.

Similarly, eLIVAS+DDBsubset reach scores close to those of eLIVAS. This indicates that the impact of the LIVAS assimilated

observations is more important than that of DDBsubset in the eLIVAS+eDDBsubset scores.450

More interestingly is the comparison of eLIVAS and eDDBsubset in Fig. C1. They have a similar horizontal coverage and

eLIVAS performed better than eDDBsubset when evaluating against the vertical profiles of PollyNET. However, the eLIVAS

scores are worse than those of eDDBsubset for the comparisons with DBB DOD and some (but not all) of the scores in the

AERONET DOD panel of Fig. C1. We argue that a direct comparison among experiment analyses can further help elucidating

the differences in the performance between the two experiments.455

Although DDBsubset was designed to have a similar horizontal and temporal coverage than LIVAS, a direct comparison

between the eDDBsubset and eLIVAS experiments should also take into account that (i) LIVAS provides direct observational

information in the vertical coordinate, while DDBsubset does not; (ii) the vertical influence of LIVAS information is only partial

if the column is not complete, in contrast to the DDB DOD that is propagated to the whole column; (iii) DDB only provides data

during the afternoon overpass (about 13:30 LT), while LIVAS provides data during afternoon and night overpasses. Nighttime460

profiles have better quality, and given the assimilation cycle design and the temporal localisation applied, they should influence

the 0 UTC analyses more than the afternoon overpasses, with more impact over the forecast and subsequent analyses.

It is possible to compare the experiments by inspecting the histograms of differences between the analyses and the control

run. We have computed these differences for DOD in Fig. 10 and for dust extinction coefficient in Fig. 11. Figure 10 shows

bi-dimensional histograms of the DOD differences for the five experiments. The 1:1 line indicates that respective analyses pro-465

duce the same differences with the control run, i.e. they are equal. Points in quadrants I and III indicate that both experiments

increase and decrease, respectively, the DOD values at the same locations and times, which is as a sign of consistency. It can be

seen that the (eDDB, eLIVAS+DDB) panel shows less deviation with respect to the 1:1 line than the (eLIVAS, eLIVAS+DDB)

case. This indicates that most of the impact of the observations in the eLIVAS+DDB experiments comes from DDB rather

than from LIVAS, which is consistent with the scores presented in previous sections. A similar result is found when com-470

paring (eLIVAS+DDBsubset, eLIVAS) with (eLIVAS+DDBsubset, eDDBsubset). In this case, eLIVAS+DDBsubset is closer

to eLIVAS rather than eDDBsubset. Because the datasets have a similar horizontal coverage, we conclude that either LIVAS
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add more information to the analyses than the DOD from DDBsubset, or the nighttime overpass of CALIOP has a stronger

influence on the 0 UTC analyses, which is also propagated to the forecasts. Similarities between (eLIVAS+DDB, eLIVAS)

and (eLIVAS+DDB, eDDBsubset) suggest that the LIVAS assimilation is less important than the DDB assimilation in the475

eLIVAS+DDB case, because of the smaller observational coverage. A relatively large spread can be noticed in the (eLIVAS,

eDDB) panel and to a lesser extent in the (eLIVAS, eDDBsubset) panel.

The spread in the (eDDBsubset, eDDB) panel is associated with the smaller coverage of DDBsubset. In this panel, most

values lie around zero in the eDDBsubset axis, which is directly related the reduced amount of assimilated data. A small

quantity of values (around the 6% of this panel) are in quadrants II and IV, meaning that the increments with respect to480

the control DOD of the eDDBsubset and eDDB analyses are of different sign. A possible explanation is a potentially poor

estimation of the terms outside the diagonal of the background error covariance matrix, as they should spread consistently (or

at least in the same direction) the DDBsubset observational influence to the remaining pixels covered by the full DDB dataset.

Bi-dimensional histograms of the differences in dust extinction coefficient between analyses and the control run experiment

are shown in Fig. 11. In general terms, this figures shows similar, but less clear features than the DOD in Fig. 10. Notable485

differences are in the row comparing eDDBsubset with the other experiments, where the values in the panels do not show the

clear correlation that appears in the DOD case. This indicates that the shape of the dust profiles in the experiments assimilating

LIVAS substantially differ from those assimilating DDB. This is supported also by the eLIVAS+DDB panels, where the larger

influence of DDB over LIVAS observations shown for DOD in Fig. 10 is less clear for the extinction coefficient. As we show

in Sect. 3.2, the assimilation of LIVAS data (either in eLIVAS or eLIVAS+DDB) can produce more accurate dust profiles.490

This demonstrates that the assimilation of vertically-resolved pure-dust extinction coefficients can effectively improve the dust

vertical distribution in forecasts and analyses.

4 Conclusions

We performed, analysed, and evaluated model experiments assimilating spaceborne dust extinction coefficient profiles and

DOD over a two-month period over Northern Africa, the Middle East and Europe. We filtered the AOD observations from495

VIIRS DB to obtain a DOD dataset, and we have used for the first time the CALIPSO-based LIVAS pure-dust dataset in a data

assimilation framework. In most cases, the assimilation of these products (and their combination) is beneficial for analyses and

forecasts.

Experiments that assimilate DDB yield better DOD error scores than those that assimilate only LIVAS when evaluated

against AERONET. However, the assimilation of only LIVAS can still achieve significant improvements on these DOD scores.500

We evaluated the potential improvements in the representation of the dust vertical profile using a handful of high-quality

ground-based lidar pure-dust extinction coefficient measurements performed during the CyCARE and Pre-TECT experimental

campaigns in the Mediterranean. The assimilation of LIVAS leads to a better representation of the dust extinction coefficient

profiles than the assimilation of DDB alone. Jointly assimilating DDB and LIVAS yields the second-best scores for both the

DOD and the dust extinction coefficient profile, which proves their suitability for dust forecast applications.505
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Figure 11. Similar to Fig. 10 but for the dust extinction coefficient. The width of the bins is 4.63× 10−5 m−1.

27



We have also focused on the limitations of the narrow footprint of LIVAS compared with the large swath of DDB, which

reduces the observational influence on the analyses. Yet, the impact of the vertically-resolved information provided by LIVAS

is significant, and with a similar coverage it produces even a larger impact on the analyses than the assimilation of DOD.

Our findings strongly support the conclusions of Cheng et al. (2019) in that the assimilation of aerosol profiles can improve

their vertical representation in models. We additionally show that the vertical profiles of dust extinction coefficient can be510

constrained by assimilating the LIVAS product. We are aware of the limitations of this study due to the limited availability of

ground-based PollyXT lidar measurements. We are looking forward to the publication of ground-based pure-dust lidar datasets

from the version 3 of the NASA Micro-Pulse Lidar Network (MPLNET) and EARLINET, that would be very useful for a long

term assimilation and evaluation of simulated dust extinction profiles from model forecasts and analyses. Our work shows the

value of space-borne polarization lidars for improving desert dust forecasts and analyses. As such, future satellite missions with515

combined extinction and depolarization capability, such as the Earth Cloud Aerosol and Radiation Explorer (EarthCARE), are

expected not only to further contribute to desert dust research, but also to operational forecasts if real-time products are made

available.

Code and data availability. LIVAS pure-dust products are available upon request from Eleni Marinou (elmarinou@noa.gr), Vassilis Amiridis

(vamoir@noa.gr) and Emmanuel Proestakis (proestakis@noa.gr). PollyNET Finokalia data are available upon request from Eleni Marinou520

(elmarinou@noa.gr) and Vassilis Amiridis (vamoir@noa.gr). The SUOMI-NPP/VIIRS Deep Blue Aerosol L2 6-Min Swath 6 km was ac-

quired from the Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC), located in

the Goddard Space Flight Center in Greenbelt, Maryland (https://ladsweb.nascom.nasa.gov/, last access 11 November 2021). GEFS data was

acquired from the NOAA National Centers for Environmental Information (https://www.ncdc.noaa.gov/, last access: 11 November 2021).

MONARCH source code is available at https://earth.bsc.es/gitlab/es/monarch (last access: 11 November 2021).525

Appendix A: Aeronet sites

List of AERONET sites used in Sect. 3.2. The value in parenthesis indicate the number of observations used for each station.

Mediterranean (1029): AgiaMarina_Xyliatou (2), Aras_de_los_Olmos (7), Badajoz (11), Barcelona (4), Ben_Salem (27),

CUT-TEPAK (49), Cabo_da_Roca (55), Cairo_EMA_2 (70), Carpentras (5), Coruna (15), Eforie (2), Eilat (121), El_Arenosillo

(45), Ersa (5), Evora (29), FORTH_CRETE (12), Finokalia-FKL (19), Galata_Platform (4), Gloria (2), Gozo (19), Granada530

(34), IMAA_Potenza (1), IMS-METU-ERDEMLI (29), LAQUILA_Coppito (1), Lamezia_Terme (24), Lampedusa (17), Lecce_University

(20), Madrid (4), Medenine-IRA (84), Messina (4), Modena (1), Montsec (2), Murcia (7), Napoli_CeSMA (4), OHP_OBSERVATOIRE

(5), Palencia (3), Palma_de_Mallorca (11), Rome_Tor_Vergata (9), SEDE_BOKER (99), Tabernas_PSA-DLR (41), Tech-

nion_Haifa_IL (49), Tizi_Ouzou (10), Toulon (2), Toulouse_MF (2), Weizmann_Institute (61), Zaragoza (2).

North Africa (1394): Banizoumbou (123), Capo_Verde (106), Dakar (349), El_Farafra (95), IER_Cinzana (163), Ilorin (47),535

LAMTO-STATION (50), Saada (80), Santa_Cruz_Tenerife (124), Tamanrasset_INM (257).

Middle East (258): IASBS (17), KAUST_Campus (97), Masdar_Institute (70), Mezaira (74).
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Appendix B: Regions for LIVAS collocation

We present in Fig. B1 the definition of regions used in Fig. 4.

Figure B1. Definition of regions of Fig. 4. Mediterranean region is shown in pink, Sahara West in blue, Sahara East in red, and Arabia in

cyan.

Appendix C: Scores of eDDBsubset and eLIVAS+DDBsubset540

We present in Fig. C1 the scores for the five experiments listed in Sect. 2.5
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