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Abstract. Atmospheric mineral dust has a rich tri-dimensional spatial and temporal structure that is poorly constrained in
forecasts and analyses when only column-integrated aerosol optical depth (AOD) is assimilated. At present, this is the case of
most operational global aerosol assimilation products. Aerosol vertical distributions obtained from space-borne lidars can be
assimilated in aerosol models, but questions about the extent of their benefit upon analyses and forecasts along with their con-
sistency with AOD assimilation remain unresolved. Our study thoroughly explores the added value of assimilating space-borne
vertical dust profiles, with and without the joint assimilation of dust optical depth (DOD). We also discuss the consistency in
the assimilation of both sources of information and analyse the role of the smaller footprint of the space-borne lidar profiles
upon the results. To that end, we have performed data assimilation experiments using dedicated dust observations for a period

of two months over Northern Africa, the Middle East and Europe. We assimilate DOD derived from VHRS/Visible Infrared

Imaging Radiometer Suite (VIRS) onboard Suomi National Polar-Orbiting Partnership (SUOMI-NPP) Deep Blue, and for
the first time EALIOP-based-EFVASCloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) based Lidar climatology
of Vertical Aerosol Structure for space-based lidar simulation studies (LIVAS) pure-dust extinction coefficient profiles on an
aerosol model. The evaluation is performed against independent ground-based DOD derived from AERONETF-AErosol RObotic
NETwork (AERONET) Sun photometers and ground-based lidar dust extinction profiles from field-ecampaigns(EyCAREand

the Cyprus Clouds Aerosol and Rain Experiment (CyCARE) and PREparatory: does dust TriboElectrification affect our
ClimaTe (Pre-TECT) field campaigns. Jointly assimilating LIVAS and Deep Blue data reduces the root mean square error

(RMSE) in the DOD by 39% and in the dust extinction coefficient by 65% compared to a control simulation that excludes
assimilation. We show that the assimilation of dust extinction coefficient profiles provides a strong added value to the analyses

and forecasts. When only Deep Blue data are assimilated the RMSE in the DOD is reduced further, by 42%. However, when
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only LIVAS data are assimilated the RMSE in the dust extinction coefficient decreases by 72%, the largest improvement across
experiments. We also show that the assimilation of dust extinction profiles yields better skill scores than the assimilation of
DOD under equivalent sensor footprint. Our results demonstrate the strong potential of future lidar space missions to improve
desert dust forecasts, particularly if they foresee a depolarization lidar channel to allow discriminating desert dust from other

aerosol types.

1 Introduction

The spatial and temporal distribution of atmospheric aerosol can be optimally estimated by combining observations and nu-
merical models using data assimilation (DA) techniques. The resulting fields, referred to as aerosol analyses, serve as initial
conditions for aerosol forecasting. Long-term and consistent analyses, so-called aerosol reanalyses, are useful for investigating
aerosol variability, trends, impacts and climate feedbacks, and they are produced with the same DA techniques (Benedetti et al.,
2009; Lynch et al., 2016; Randles et al., 2017; Yumimoto et al., 2017; Inness et al., 2019; Di Tomaso et al., 2021).

A key uncertainty in current models is the representation of the aerosol vertical distribution (Pérez et al., 2006; Koffi et al.,
2016; Benedetti et al., 2018; Konsta et al., 2018). Most operational aerosol forecast systems rely on the assimilation of column—
integrated aerosol optical depth (AOD) from satellite-borne instruments (e.g. Xian et al., 2019). Consequently, the vertical
structure is mainly propagated from the numerical model and only slightly and indirectly from the assimilated observations. In

the last decade, a few studies have investigated the assimilation of vertical aerosol profiles from EHDAR-lidar instruments, both

satellite (e-g—CALIOR-Winker-etal5204H0)(e.g. Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP), Winker et al., 2010

and ground-based {e-g- EAREINET, Pappalarde-etal;2044)(e.g. European Aerosol Research Lidar Network (EARLINET), Pappalardo e
, showing the potential of vertical profiling to improve the four-dimensional representation of aerosols in analyses (Sekiyama-et-al52010:7l

Sekiyama et al., 2010; Zhang et al., 2011; Wang et al., 2014; Kahnert and Andersson, 2017; Cheng et al., 2019; El Amraoui et al., 2020

and forecasts (Zhang et al., 2011; Wang et al., 2014). Difficulties preventing an effective assimilation of vertical profiles in oper-

ational settings include the poor coverage of ground-based observations, the narrow footprint of satellite observations, potential
inconsistencies with other assimilated observations, and underrepresented forecasting uncertainty in the vertical, among other.

Our study focuses on the assimilation of desert dust aerosol lidar observations around the two most prolific source regions
on Earth: Northern Africa and the Middle East. Dust models are subject to substantial uncertainties in the description of
lower boundary conditions relevant for dust emission, modelled wind speed, dust emission processes, vertical mixing, particle
properties and deposition (Huneeus et al., 2011; Kok et al., 2020; Klose et al., 2021). Thus combining modelling with dust
observations through DA is a powerful method to increase the quality of emission estimates (Escribano et al., 2016, 2017) and
dust forecasts. We are specifically interested here on the impact of assimilating spaceborne lidar profiles upon dust forecasts.
Dust is the largest continental contributor to the global aerosol load and impacts marine (Jickells et al., 2005) and land bio-
geochemistry (Okin et al., 2004), radiative fluxes (DeMott et al., 2009; Kok et al., 2017; Marinou et al., 2019), human health
(Du et al., 2015) and economy (Kosmopoulos et al., 2018; Papagiannopoulos et al., 2020). Properly representing its vertical

structure both within the planetary boundary layer over sources and in the free troposphere in the outflow areas is particularly
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important to predict its long range transport and associated impacts (O’Sullivan et al., 2020). Despite this important role, the
dust vertical structure in models and forecasts is poorly constrained by observations (Benedetti et al., 2014). So far, only lidar
measurements, either from space or from ground, can deliver vertical profiles of the dustloadatmospheric dust.

Our work involves both modelling and data assimilation aspects, along with the handling of observations and their un-
certainty. We use the Multiscale Online Non-hydrostatic AtmospheRe CHemistry (MONARCH) model, formerly known as
NMMB/BSC-Dust (Pérez et al., 2011; Klose et al., 2021), enhanced with a Local Ensemble Transform Kalman Filter data
assimilation capability (Di Tomaso et al., 2017). MONARCH provides dust forecasts at the WMO-World Meteorological
Organization (WMO) Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS) Regional Centers for
Northern Africa, Middle East and Europe (http://sds-was.aemet.es/, last access 11 November 2021; http://dust.aemet.es/, last
access 11 November 2021) hosted by the the-Spanish Meteorological agency (AEMET) and the Barcelona Supercomput-
ing Center (BSC). We address the challenge of how to best express model uncertainty also in the vertical coordinate, and
consequently in the dust transport, generating an ensemble for MONARCH based on both meteorological and dust source
perturbations. Rubin et al. (2016) showed that combining meteorology and aerosol source ensembles produce sufficient spread
in outflow regions that positively impacts the results. Characterizing model uncertainty is key to effectively assimilate observa-
tions; spatial and multivariate structures of the error background covariance determine the spread of observational information
in space and across variables, allowing for statistically consistent increments between neighbouring grid points, also along
the vertical dimension. The use of an ensemble-based data assimilation scheme, such as the one used in this work, allows for
background covariances to evolve with the forecast.

Assimilating dust in models is possible to the extent that there are dust-specific retrievals with suitable coverage, quality and
uncertainty quantification. Progress has been made recently to provide dust products from satellite-borne spectroradiometers in

the visible

from the Infrared Atmospheric Sounding Interferometer (IAS]) (e.g., Capelle et al., 2018; Clarisse et al., 2019), from ground

and satellite-based lidar instruments (Mamouri and Ansmann, 2014; Amiridis et al., 2015) or from combinations of reanalyses

with satellite retrievals (Gkikas et al., 2021). In our study we assimilate pixels with dust retrievals from the VHRS-Visible

Infrared Imaging Radiometer Suite (VIIRS) Deep Blue AOD product (Hsu et al., 2019), along with EFVAS-LIdar climatolo

of Vertical Aerosol Structure for space-based lidar simulation studies (LIVAS) pure-dust extinction coefficient profiles from
CAEIPSO-CALIOP as described in Amiridis et al. (2013, 2015) and Marinou et al. (2017). Dust-is-irregularty-shaped—Yet

—Finally our analyses and

analysis-initialised forecasts are evaluated against independent observations, namely dust-filtered AOD from ground-based

AERONET-observations-and-EIHDAR-AErosol RObotic NETwork (AERONET) observations and lidar dust extinction coeffi-

cient profiles collected during the Pre-FECT-(Oand-CyCARE(Radenzetal;2047)-PREparatory: does dust TriboElectrification
affect our ClimaTe (Pre-TECT, http://pre-tect.space.noa.gr, last access 11 November 2021) and Cyprus Clouds Aerosol and
Rain Experiment (CyCARE, Radenz et al., 2017) campaigns between the 19 and 23 of April 2017.

., Pu and Ginoux, 2016; Zhou et al., 2020
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The paper is organized as follows. In the SeetionSect. 2 we describe the data and methods employed in this study;inecluding

90 the-evaluation-are-deseribed-in-Seetion-2:5—tn-Seetion, In Sect. 3 we investigate the potential improvements in the representa-
tion of the dust vertical structure by assimilating dust dedicated profiling information in a close-to-optimal data assimilation
framework. We also assesses the overall benefit of applying constraints on both the dust total column extinction and the dust
extinction profile. Finally, we compare vertically-resolved ws-versus column-integrated data assimilation under comparable

temporal and spatial geographical sampling. Section 4 concludes the paper highlighting the main results obtained.

95 2 Data and methods

We performed data assimilation experiments to evaluate the impact of assimilating satellite products of BPOB-dust optical depth
(DOD) and vertically-resolved dust extinction coefficient, either alone or in combination. These two datasets are described in
SeetionSect. 2.1. The experiments were evaluated against independent ground-based Sun photometer and lidar observations
that are described in SeetionSect. 2.2.

100 The modelling and data assimilation systems, described in Sections 2.3 and 2.4, respectively, were optimised in a number
of aspects including the generation of ensemble perturbations, the spatial and temporal localisation that creates a smooth limit
upon the observation influence in the analysis fields, and the optical properties used in the observation operator. A description

of the experiments and their evaluation are provided in SeetionSect. 2.5
2.1 Assimilated observations

105 2.1.1 CALIOP-based LIVAS dataset

Pure-dust profiles assimilated in this study were derived from the global 3-D ESA-EIVAS-database(Ildar-climatology-of Vertical- Aerosel-S
European Space Agency (ESA) LIVAS database (Amiridis et al., 2013, 2015). LIVAS, developed based on multiyear CALIPSO
(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations, Winker et al., 2009) CALIOP (Cleud—AerosolHidarwith

Orthogonal-Pelarization)-observations, provides in its standard product, averaged profiles of aerosol and cloud optical prop-
110 erties on a uniform 1°x+>x 1° grid resolution, for the CALIPSO-defined aerosol and cloud subtype classes. In this work,
instead of using this standard 1° resolution LIVAS product, we use the pure-dust extinction coefficient produced by the LIVAS
algorithm at each overpass of CALIOP, in its vertical (60.m) and horizontal (100 x 330 m) native resolution. The methodology

of LIVAS to decouple the pure-dust backscatter coefficient component from the total aerosol mixture is based on the one-step
POLIPHON technique (POlarization-LIdar PHOtometer Networking, Tesche et al., 2009), established in the framework of
115 EARLINET(Eu i i

. It uses CALIOP Version 4 (V4) Level 2 (L2) aerosol profiles of backscatter coefficient and particulate depolarization ratio

products at 532 nm. Moreover, the procedure applies several quality-assurance procedures (Tackett et al., 2018) and suitable
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geographically dependent dust lidar ratio conversion factors (e.g. 55 sr for Saharan Desert, 40 sr for Middle East) to obtain
the atmospheric aerosol profiles of pure-dust extinction coefficient at 532 nm (Amiridis et al., 2013; Marinou et al., 2017,
Proestakis et al., 2018) at CALIPSO per-orbit level, used in the present study.

Accordingly 5-and prior to assimilation, the profiles of LIVAS pure-dust extinction coefficient at 532 nm were aggregated to
the horizontal resolution of the model. In the regridding process, error definitions and filtering of CALIOP profiles followed
procedures similar to Cheng et al. (2019). More specifically, Cheng et al. (2019) used CALIOP optical products under the
condition that at least 20 EALHPSO-CALIOP L2 profiles were provided in each 2° x 2° model grid cells. Considering the finer
model grid resolution of 0.66° x 0.66° of the present study s-in—in an analogous approach to Cheng et al. (2019);— a threshold
of at least 3 Quality Assured (QA) Cloud-Free (CF) CALIPSO-CALIOP L2 profiles were set, achieving similar proportion
of horizontal geographical coverage to Cheng et al. (2019). Similar was the filtering approach followed for the coefficient
of variation (standard deviation divided by mean) of the data prior to regridding, although less restrictive due to the smaller
number of profiles and the higher spatial resolution of the model grid. More specifically, only grid cells with coefficient of
variation less than unity were used in the assimilation, while in Cheng et al. (2019) the corresponding threshold was set equal
to 0.5.

In addition, in order to avoid spurious values in the assimilation process (e.g. unrealistic high values of extinction coefficient
at 532 nm arising from possible misclassification of clouds as aerosols), we discarded LIVAS dust extinction coefficients
larger than 10~3m~!. Errors in POLIPHON pure-dust extinction coefficient profiles are of the order of 15-25% (Ansmann
et al., 2019). In consequence and similarly to Cheng et al. (2019), input error statistics for the data assimilation routine were
prescribed as the 20% of the value of the dust extinction coefficient. The corresponding uncertainties in the CAEIPSO-based
CALIOP-based pure-dust product are extensively and in-depth analyzed in Marinou et al. (2017). The-number-of-ingested

i ssimilation-is-S i i te—22-An additional filter was applied to ensure that the 60-meter

60m vertical resolution observations cover at least half of each model layer vertical thickness. Model layer thickness is defined

by the model hybrid pressure-sigma coordinate its value is not homogeneous in the vertical: it varies between 16 m and 61 m

close to the surface depending on the topography, between about 140 m and 750 m at 6.5 km altitude, and between 540 m and
640 m at 10 km height. Model layers and the corresponding LIVAS observations with less than 50% of vertical coverage were

omitted in the observation operator. The remaining observations were averaged and the associated uncertainty was computed

assuming a Gaussian correlation length of 1 km in the vertical coordinate for each model layer independently.
yitd 5 . —
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2.1.2 VIIRS Deep Blue dataset

The DOD at 550 nm was extracted from the Deep Blue (DB) Level 2 product of the VIIRS instrument onboard the SUOMI-
NPP satellite (Sayer et al., 2018; Hsu et al., 2019). The DB product provides total AOD at 550 nm with a global coverage daily.
Along with AOD, the DB product includes a flag with the aerosol type classification of the retrieval (namely dust, smoke,
high-altitude smoke, non-smoke fine-dominated, mixed, background and fine-mode dominated), and quality-assurance flags
over ocean and land from one (worst quality) to three (best quality). Hsu et al. (2019) highlight the improvements done in the
DB retrieval for dust aerosols, as the optical model was updated with non-spherical dust optical properties.

The standard DB product is AOD. We used only pixels classified as “dust” aerosol type and with a quality assurance flag
equal to 3 over ocean and greater than or equal to 2 over land. The resulting DOD dataset was then interpolated to the model
grid and assigned an uncertainty of 0.2 x DOD + 0.05 following Sayer et al. (2019). Hereafter we use DDB to refer to this
filtered dust DB retrieval. The-number-of- DD B-retrievals-assimilated-in-this-study-is-shown-in-the-Jeft panel-of Fig—22-We note
that DDB is not necessarily a pure-dust AOD and may include contributions of other aerosols types, although dust should be
predominant particularly in Northern Africa and the Middle East.

The large swath (30—40km) of the VIIRS instrument can be a big plus for data assimilation. In contrast, CALIOP has a
horizontal footprint of 100 m and a horizontal resolution of 333 m. When comparing the assimilation from both instruments,
it is key to understand the role of these differences in spatial coverage. To respond to this fundamental question ;-we prepared
a subset of DDB data, consisting-of pixels-with- DDBB-retrievals-but-only-wherecalled hereafter DDBsubset, that contains the
each UTC day, we create a bi-dimensional binary mask whose values are set to valid only when the LIVAS dataset has a valid
retrieval in at least one vertical levelfor-every-, for that UTC day. This dataset-of DOD-is-ealled-hereafter-DDBsubset-and-the
create DDBsubset.

2.2 Ground-based observations for evaluation
2.2.1 AERONET

We used ground-based measurements for the evaluation. For DOD, we selected the group of AERONET stations (Holben
et al., 1998) used in the operational SDS-WAS verification. The list of stations is presented in SeetionAppendix A. We used
the AERONET Direct Sun product, version 3, level 2. The AOD was interpolated to 550 nm and we assumed dust to be
predominant when Angstrom exponents at 440-870 nm were smaller than 0.3 (Basart et al., 2009). In a similar fashion to the
AOD filter used in DDB, this filtered AERONET dataset is not a pure-dust AOD. Nevertheless, it is expected that the main
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aerosol type in the vertical column of this AERONET filtered dataset is dust, but it can be mixed with other types of aerosols

(as for example coarse sea spray).
2.2.2 Ground-based lidar CyCARE and Pre-TECT campaigns

The modeled vertical profiles of the dust extinction coefficient at 532 nm were evaluated against measurements from three
ground-based lidars of the lidar network PollyNET (Baars et al., 2016; Engelmann et al., 2016) operated in the eastern Mediter-
ranean during the S S sel—+ ai i Y als CyCARE and the Pre-TECT
experiment(). These lidars were located at Finokalia, Crete, Greece (operated by the National Observatory of Athens, NOA),
Limassol, Cyprus (operated by FREGPOS-the Leibniz Institute for Tropospheric Research, TROPOS, in the frame of CyCARE)
and Haifa, Israel (Althausen et al., 2019, operated by TROPOS). With these continuously operating lidars, the vertical profiles
of the particle backscatter coefficient at 355 nm, and 532 nm, and 1064 nm, the extinction coefficient at 355 and 532 nm, and
the particle depolarization ratio at 355 and 532 nm can be retrieved. Using the obtained particle backscatter coefficient, extinc-
tion coefficient and depolarization ratio at 532 nm, the dust-only extinction coefficient can be obtained as described in Mamouri
and Ansmann (2014, 2017). With this method, the backscatter-related dust fraction is calculated based on the known depolar-
ization ratio of pure dust (31%) and the non-dust component (5%). Having the dust-only backscatter coefficient, the dust-only
extinction coefficient is determined by the use of the pure dust lidar ratio at 532 nm of 45 sr Mamouri-and-Ansmann{(2046)
(Mamouri and Ansmann, 2016). The non-dust extinction coefficient is calculated similarly depending on the type of non-dust
aerosol. Finally, a consistency check is performed by summing up the dust-only and non-dust extinction profiles and comparing
them to the total measured extinction coefficient. More details can be found in Urbanneck (2018).

In contrast to the estimated DOD from AERONET and DB AOD retrievals, which may be affected by other aerosols, the
PollyNET measurements can provide pure-dust retrievals (Tesche et al., 2009; Mamouri and Ansmann, 2017). For this reason,

we use here the lidar observations from CyCARE and Pre-TECT campaigns in the evaluation of our results.
2.3 MONARCH Model

To simulate the dust cycle, we used the Multiscale Online Nonhydrostatic AtmospheRe CHemistry (MONARCH) model (Pérez
etal., 2011; Haustein et al., 2012; Jorba et al., 2012; Badia et al., 2017; Di Tomaso et al., 2017; Klose et al., 2021). MONARCH
is a fully online integrated system for meso- to global-scale applications developed at the Bareelona-Supercomputing-Center
BSE)BSC. It uses the Nonhydrostatic Multiscale Model on the B-grid (NMMB, Janjic and Gall, 2012) as the meteoro-
logical driver and couples gas-phase and mass-based aerosol modules to describe the life cycle of atmospheric compo-
nents. It uses the Autosubmit workflow manager (Manubens-Gil et al., 2016), which is particularly useful for efficiently
executing assimilation runs. The model provides operational regional mineral dust forecasts at WMO SDS-WAS regional
centerst;—);—sinee—2042-. It also _contributes global aerosol forecasts within the multi model ensemble of ICAP-initiative

aanetal;2619the International Cooperative for Aerosol Prediction (ICAP) initiative (Xian et al., 2019) since 2012, and
will soon integrate the CAMS—Copernicus Atmosphere Monitoring Service (CAMS) — Air Quality Regional Production

(https://www.regional.atmosphere.copernicus.eu, last access: 11 November 2021).
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Table 1. Summary of the four model configurations used to create the multi-scheme dust emissions.

Config.  Dust source mask/Scaling Drag partition Vegetation/Roughness
I MODIS FoO/MODIS FoO Marticorena and Bergametti (1995) MODIS LAI/Prigent et al. (2012)
11 MODIS FoO/MODIS FoO Raupach et al. (1993) Guerschman et al. (2015)
I MODIS FoO/Topo. Sources ~ Marticorena and Bergametti (1995) MODIS LAI/Prigent et al. (2012)
v MODIS FoO/Topo. Sources  Raupach et al. (1993) Guerschman et al. (2015)

MONARCH contains comprehensive aerosol and chemistry packages, but in this work we only focus and compute min-
eral dust aerosol. Dust is described using eight particle-size bins within 0.2-20 um in diameter. The MONARCH dust module
is described in detail in Pérez et al. (2011) and Klose et al. (2021). MONARCH offers a diversity of mineral dust emission

schemes along with multiple configurations. Ferthis—stady-As shown in Klose et al. (2021), the emission scheme and their
specific configuration has a strong impact on the spatial and temporal behaviour of the simulated dust. Because we aim at
showing the impact on the forecast by assimilating two different types of observations and not to show the best of the forecasts

we preferred to avoid fine-tuning and cherry-picking the best performing emission scheme and configuration for our stud
case. Instead, we computed dust emissions by averaging the emission-emissions produced by the four configurations listed in

Table 1. All configurations used a modified version of the dust emission scheme of Ginoux et al. (2001) with modifications
described in Klose et al. (2021) that include the use of friction velocity instead of 10 m wind speed, a dust-particle size indepen-
dent threshold friction velocity for particle entrainment taken as the minimum value of the threshold-function from Shao and
Lu (2000), and an emitted size distribution following Kok (2011). The entrainment threshold accounts for soil moisture using
the correction from Belly (1964) as described in Ginoux et al. (2001). Areas where dust emission is allowed are constrained
by satellite observations, specifically by the frequency of occurrence (FoO) of the Moderate Resolution Imaging Spectrora-
diometer (MODIS) DB DOD exceeding 0.2 (Hsu et al., 2004; Ginoux et al., 2012). Dust can be emitted for areas in which FoO
> 0.025 (Klose et al., 2021). The four configurations differ with regard to the description of (a) the preferential dust sources
used for scaling of the dust emission flux and (b) vegetation and surface roughness effects. Configurations I and II used the
MODIS FoO of DOD > 0.2 to scale the dust emission flux obtained with the modified Ginoux et al. (2001) parameterization.
Configurations III and IV used the original topographic source mask from Ginoux et al. (2001) as the scaling function. To ac-
count for roughness elements on the land-surface, such as vegetation, rocks, or pebbles, configurations I and III used the drag
partition parameterization from Marticorena and Bergametti (1995) with corrections from King et al. (2005) in combination
with a monthly climatology of MODIS-derived leaf-area index (Myeni et al., 2015) and aerodynamic roughness length data
for arid regions from Prigent et al. (2012). In contrast, configurations II and IV utilized the drag partition parameterization
from Raupach et al. (1993) together with a monthly climatology of photosynthetic and non-photosynthetic vegetation cover
data from Guerschman et al. (2015) (Klose et al., 2021). The drag partition corrections were applied to the threshold friction

velocity for particle entrainment.
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2.4 Data assimilation

MONARCH is coupled to a Local Ensemble Transform Kalman Filter (LETKF, Hunt et al., 2007). The LETKF implementation
used in this study was built upon the implementation from Miyoshi and Yamane (2007), Schutgens et al. (2010), and Di Tomaso
et al. (2017). We used the 4D-LETKF configuration of this code with an assimilation window and forecast length of 24 hours
(starting at 0 UTC) and with hourly outputs. In this LETKF implementation, the observations had been compared to the model
simulated equivalent observations with collocation in time and space, and then concatenated to construct the observation and
the simulated observation {prier)-vectors. An ensemble of MONARCH runs is used to estimate the error covariance matrix
of the prior at the observations’ times and locations. We used a Gaussian localisation with horizontal scale of 6 grid cells
(around 435 km in our model configuration), vertical scale of 1 model level and temporal scale of 12 hours. Unlike Di Tomaso
et al. (2017) or Cheng et al. (2019), we computed the analysis every hour instead of only at 0 UTC. With this configuration,
the 4D-LETKF acts as a Kalman smoother that effectively localises the influence of the observations in time, and therefore
produces better quality analyses throughout the 24-hour assimilation window. This choice is advantageous when the assimilated
observations are temporally distributed along the assimilation window like in the case of LIVAS with daytime and nighttime
profiles, or when the observations are more representative of local conditions as is the case of extinction coefficients compared
to column-integrated AOD values. In comparison with Di Tomaso et al. (2017) and Cheng et al. (2019), the Kalman Smoother
choice described above should provide the same analyses at 0 UTC as the filtering option. Therefore, the analyses-initialised
forecasts are identical with both approaches.

A key ingredient in the data assimilation algorithm is the representation of model uncertainty, which in an ensemble-based
scheme, like ours, had been derived from the model ensemble. We have generated the MONARCH ensemble by perturbing
dust emissions and by using an ensemble of meteorological initial and boundary conditions analyses (GEES:—7Zhou-et-al5 2047
(Global Ensemble Forecast System (GEFS), Zhou et al., 2017). The model ensemble was constructed with 20 members, con-
cordant with the 20 GEFS ensemble members. The dust emissions in the model (SeetienSect. 2.3) were perturbed by multi-
plicative factors that were extracted from a random Gaussian distribution with a spatial correlation of 250 km, a mean of unity
and a standard deviation of 0.4. In all cases we assumed that the observational errors were uncorrelated, i.e., the observational

error covariance matrix was a diagonal matrix.
2.5 Experiment description and evaluation

We describe in SeetionSect. 2.1 the three datasets used in the assimilation: DDB, DDBsubset and LIVAS. Using a fixed
configuration of the model and the data assimilation scheme parameters (Sections 2.3 and 2.4), we designed and ran five
experiments assimilating combinations of the three datasets.

The first experiment, named eLIVAS, assimilated the pure-dust extinction coefficient from the regridded LIVAS dataset
(SeetienSect. 2.1.1). A second experiment, named eDDB, assimilated the DOD from the DDB dataset (SeetionSect. 2.1.2).
The third experiment, named eDDBsubset, assimilated the DDBsubset dataset (SeetionSect. 2.1.2). The fourth, named eLI-
VAS+DDBsubset, assimilated the LIVAS and DDBsubset datasets, and the fifth, named eLIVAS+DDB, assimilated the LIVAS
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and DDB datasets. For the sake of clarity, we have excluded DDBsubset experiments until Sect. 3.3. Therefore, until Sect. 3.3
we will focus on results of eLIVAS, eDDB and eLIVAS+DDB experiments.

We ran our data assimilation experiments over a regional domain centred at 20° E in longitude and 30° N in latitude, which
covers North Africa, the Middle East and Europe (e.g. Fig. 1). The model was set up with a rotated latitude-longitude grid with
0.66° resolution at the center of the grid, 40 vertical sigma-layers, and hourly output of dust concentrations for the 8 size bins.
The dust extinction coefficient and DOD were-was computed with software provided by Gasteiger and Wiegner (2018). We
have assumed spheroidal dust particles with the axis ratio distribution shown in Table 2 of Koepke et al. (2015) and the OPAC
refractive index for dust (e.g. 1.53 + 0.0055: for 550 nm) as in Koepke et al. (2015).

We performed the five data assimilation experiments between March and April 2017. A 14-month spinup was run without
assimilation to properly initialise the soil moisture content. We also ran a control experiment over the period of study, con-
sisting of an ensemble forecast without data assimilation. For each of the five data assimilation experiments (eLIVAS, eDDB,
eDDBsubset, eLIVAS+DDBsubset and eLIVAS+DDB), we obtained two types of simulation outputs: analyses and forecasts.

We produced ensemble forecasts with a forecast length of 24 hours, initialised with the last timestep of the analyses of
the day before (at 0 UTC in our 24-hour assimilation window). Forecasts and observations along with their prescribed error
were the input for the data assimilation scheme, which computed the 4D mass concentration dust field analyses within the
assimilation window. Therefore, for a given day, forecasts can carry the observational information assimilated from the days
before, but analyses can, in addition, carry the observational information of that given day. In contrast, the control experiment
omits the assimilation of dust information.

When comparing the model against observations, the model was always collocated in space and time with the valid ob-
servations. In the case of ground-based lidar observations, the model is integrated in time over the measurement window. To
summarise the comparison between model and observations, we have computed six scores. Five eut-of the six scores use the
model ensemble mean, and one of the scores uses the full ensemble. Given a set of IV pairs of model ensemble mean values

{m;};=1...n and matched observation {r;};=1.. n, we use :

N
1
Mean Bias [MB] = N Z

2 —Ti
Mean Fractional Bias [MFB] = —
ean Fractional Bias [MFB] = Z it

Z]'i1(mi —m)(ri —T)
@z— (m;

\/ Sy (ri—7)
9
Mean Fractional Error [MFE] = ~ E »

Pearson correlation coefficient [p] =

)

ml—i—rZ

N
1
Root Mean Square Error [RMSE] = N Z;(mz
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where m and 7 are the average of the model and observations, respectively. We also included the mean over the number of
observations of the Continuous Ranked Probability Score (CRPS, Hersbach, 2000, and references therein), which is computed

for each observation r; and model ensemble mf ,j=1...M as:

CRPS; = / [Py(x) — P, ()] dx
where P; is the cumulative distribution function of the ensemble, which is approximated empirically by the M ensemble
members, and P,, the cumulative distribution function of the observation r;, computed as P, (x) = H(xz —r;), where H is the

Heaviside step function.

3 Results and discussion

We first discuss the internal consistency of the data assimilation system in SeetionSect. 3.1 by comparing analyses and forecasts

with the assimilated data. We then present the evaluation against ground-based measurements from Sun photometers and lidars

in SeetionSect. 3.2. We finish this Section with a comparison between the experiments (Sect. 3.3).

3.1 Consistency and cross-comparison checks with satellite products

We cross-compared the model simulations (control, forecasts and analyses) with the two main assimilated observational
datasets. Consistency can be checked when analyses are compared with an observational dataset used for the assimilation
(e.g., when DDB DOD are-is compared to analyses from the eDDB or eLIVAS+DDB experiments). This verification step
provides a sanity check for the data assimilation process. When the datasets are not assimilated (e.g., when DDB DOD are
is compared to analyses from the eLIVAS experiment), the comparison is then performed with independent satellite observa-
tions. Forecasts are initialised from analyses, thus forecast scores (i.e. error metrics calculated for the forecast fields) can also
be considered, up to a certain degree, as an evaluation of the forecast quality, even though the reference observations and the
forecast cannot be assumed to be completely independent in this case.

A showcase of the eLIVAS experiment is presented in Fig. 1. Here we show the DDB DOD and the control, forecast and
analysis DOD for selected days in April 2017, where it is possible to identify a dust plume over the Eastern Mediterranean that
was captured by the CyCARE and Pre-TECT campaigns (SeetionSect. 3.2).

In contrast to the control run, which overestimates DOD, the analyses and forecasts are in better agreement with DDB both
in terms of overall DOD values and spatial distribution. In this experiment, DDB DOD were-was not assimilated, thus the
qualitative improvement of the analysis compared to the control run indicates that, despite the relatively low spatial coverage
of LIVAS, its assimilation can positively impact the spatial representation in the analysis. Improvements where observations are
not available, mainly due to the narrow satellite footprint of CALIOP, are explained by the spatial spread of the observational

information through the background error covariance matrix.
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Figure 1. DOD from DDB and model simulations between 19 and 23 of April 2017 for the control and eLIVAS experiment. First four
columns show the DOD from DDB (left) and three model simulations of DOD collocated with DDB: control experiment, forecast and
analysis from the eLIVAS experiment. The last column shows the analyses daily average without collocation with DDB. Each row represents

a different day.

Average maps of DOD are shown in Figures 2 and 3. Compared to the DDB DOD, the control run shows a large overestima-
tion of DOD over the Sahara and an underestimation elsewhere (Fig. 2). Figure 2 also shows relatively large values of DOD in
the DDB panel over North Atlantic that are not simulated in the control run. The first two rows of Fig. 3 show that the analyses
have, in general, lower DOD values than the forecasts, which also have lower DOD values than the control experiment. Third
row of Fig. 3 shows the average difference between forecasts and analyses. In this row, there is a common decrease of DOD
values close to the Bodélé depression after assimilationand-enty—. Experiments eDDB and eLIVAS+DDB show increasing
DOD in the eastern part of the domain in the analyses. The-impact-of-the-assimilation-of-observations-istarger-in-the e EIVAS
than-the-eDDBsubsetexperiments-Averaged differences of the simulations with respect to DDB are shown in the last two rows
of Fig. 3. As expected, these differences are smaller in the eDDB and eLIVAS+DDB experiments because the DDB dataset is

assimilated in these two experiments.
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Figure 2. Averaged DOD from the control run and DDB during the whole study period. The first panel from the top shows the average of
the control run DOD. The second panel shows the average of the control run DOD in the pixels collocated with DDB. The third panel shows
the average of the DDB DOD. The fourth panel shows the average difference between the control run and the DDB DOD.

Figure 4 shows the average values of the assimilated LIVAS pure-dust extinction coefficient profiles compared with col-
located model-derived dust extinction profiles for the full domain and the four regions presented in Fig. B1. The model sys-
tematically overestimates the dust extinction coefficient below 7km-km in the analyses of experiments excluding LIVAS as-
similation and in the forecasts, including experiments with LIVAS assimilation. In contrast, analyses with LIVAS assimilation
underestimate the dust extinction coefficient below 7 km. The altitude of the maximum values and shape of the dust extinction
coefficient is well captured by the model in all regions except the Mediterranean (middle column of Fig. 4), where the mean val-
ues are relatively small. Relative changes in the shape of the dust extinction coefficient compared to the control experiment are
shown in the right column of Fig. 4. On average, experiments that assimilate LIVAS and-DBB-(i.e., eLIVAS, eLIVAS+DDBand
eEFVAS+DBDBsubset) show stronger decrease in the extinction coefficient than therest-ofexperimentseDDB. Analyses from
eLIVAS and eLIVAS+DDB also show large decreases below 3 km of altitude over the Sahara and the Arabian Peninsula. The
relative changes in the dust extinction coefficient of analyses and forecasts from eLIVAS and eLIVAS+DDB are larger above
3km, compared to experiments—that-exclidelIVAS-assimilationeDDB. The different shapes of the forecasts and analyses
from eLIVAS and eLIVAS+DDB (right column of Fig. 4) indicate that close to the surface, the dust extinction profile is largely
influenced by the model forward simulations (and the associated dust emissions), rather than by the assimilated information. In

contrast, in the upper part of the atmosphere the assimilation of LIVAS data adds information to the analyses that is propagated

in time by the subsequent forecast cycles. This effect is not as noticeable in experimentsexctuding EHVAS-asstmitationeDDB.
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Figure 3. Averaged DOD from the experiments and differences with the DDB DOD during the whole study period. Experiments listed in

SeetionSect. 2.5 are represented in columns. The first and second rows show the average DOD for the forecast and analysis experiments

respectively. The third row shows the difference between average analyses and forecasts. Collocated differences between the forecasts and

the DDB DOD averages are shown in the fourth row. The last row shows the difference between the analyses and the DDB DOD averages.
14



10000 4 1 1
__ 8000 - . 1
ce
@ — . 4 -
e e 6000
§_§ 4000 - . 8
—_
T
< 2000 - . .
O il T T ] T T L T T T
10000 4 1 b
o 8000 . 1
aEe
&< 6000 1 1
@©
52 4000 1 1
S£
f=
2000 - 1 1
0 ; j , : — —
10000 4 1 1
. 8000 - . .
3E
=, 6000 - 1 ]
53 4000 1 1 4
£E
<
Y= 2000 - . 1
O R T T h T T L T I.- T
10000 4 1
L]
) < J . 8000 - 1
i i %E 6000 . - i
2 00 y j tg
° e 22 4000 - . 1 -
10000 ) F g E
5E o { =% 20001 - 1
%é 4000 ’\ }
A% 20001 \ /1 0+ 7 _
. [‘ L; T T T T T T T
— 10000 ]
5= 8000 o
3% 6000 g —_ 8000 - -
22 4000 I S
B2 2000 \ / &= 6000 T H
0 - % g
7 <2 4000 1 :
ps Z
/ { { 2000 1
b i L
0 = A 0 I T T I T T T T T
10000 Y] Q /u /b. Q > /b‘ Q
T 8000 7 { N J 0/ S 94’) Q‘f)
g5 om0 ‘ AR £ A
3 I 3 N 1 ,‘v‘p “ (exp-control)/control
= 2000 N ext. coef.
. L norm. ext. coef.
o > > ° > > O\
& 5‘“ 4 (exp-controngntrol
o ot norm. ext. coet. — LIVAS —— eLIVAS analysis eLIVAS+DDB forecast
Lvas eDDBsubset forecast eLIVAS +DDBsubset fygecas —— control eDDB forecast —— eLIVAS+DDB analysis
— contral eDDBsubset analysis cLIVAS +DDBsubset anys
| i s . a0 anatyse einaso0a anaves \J| eLIVAS forecast eDDB analysis

Figure 4. Collocated average dust extinction coefficients from model experiments and LIVAS assimilated observations in the 4D domain.
The left column shows the mean extinction coefficient profiles in m . The middle column shows the mean extinction profiles but normalised
such that the vertical integration of each profile in the panel equals one. The right column shows the relative difference between the mean
value of each experiment and the control run. Each row represent a different geographical domain defined in Fig. B1, from top to bottom:

full domain, East Sahara, West Sahara, Mediterranean and Arabian Peninsula.
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360 The relatively flat curves associated to eDDB and-eDDBsubset-show that the shape of simulated dust vertical profile is mainly

propagated from the forward model.
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Figure 5. Verification scores against LIVAS dust extinction coefficient in the left column, scores against DDB DOD dataset in the right
column. Scores of the control run are shown in green, forecasts in red, and analyses in blue. On the left column, panels of Model Mean,

Mean Bias, RMSE, and Mean CRPS have units of m ™!,

The control run and the five-three selected assimilation experiments were also quantitatively evaluated against the LIVAS
dust extinction coefficients and the DDB DOD using the scores described in SeetionSect. 2. When evaluated against LIVAS
(left column of Fig. 5), the control run shows a positive mean bias that decreases in the forecasts from all the assimilation exper-

365 iments. When LIVAS is assimilated either with or without DDB, the analysis is negatively biased. The MFB is positive for all
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experiments, and its absolute value slightly decreases with the assimilation. The negative mean bias of eLIVAS ;e EHIVAS+DDB
and eLIVAS+PBDBsubset-DDB analyses suggests that the assimilation tends to decrease rather than increase mass. Small mix-
ing ratios have a smaller spread in the ensemble than the larger ones because the mass mixing ratio (the control vector in the
DA) is bounded by zero. This may favour the decrease of mass for large DOD or extinction coefficient values, but not for small
values. Amend this behaviour could require, for example, applying non-linear transformations to the control vector and/or to
the observation operator, which is beyond the scope of this work. As expected, the correlation coefficients obtained for the
analyses from experiments assimilating LIVAS are significantly higher than those from the control run. However, the impact
of the LIVAS assimilation is limited in the forecasts. ExperimentseDDB-and-eDDBsubset Experiment eDDB slightly improve
the correlation in the analyses but not in the forecasts. The MFE of analyses and forecasts is similar or smaller for the five-three
assimilation experiments than for the control experiment. The RMSE and CRPS decrease similarly for the all the forecasts. As
expected, the RMSE and CRPS of eLIVAS eEVAS+BDB-and eLIVAS+BbBsubset- DDB analyses show smaller values. It is
also worth noting that the RMSE and CRPS of eDDB and-eDDBsubset-analyses decrease despite not assimilating LIVAS.

When evaluated against DDB DOD (right column of Fig. 5) the bias is negative for all experiments and products, and it
is even becoming larger with assimilation. The opposite sign in the mean bias of the control run depending on the reference
dataset suggests a potential inconsistency between DDB DOD and LIVAS. We note that none of the datasets have been bias-
corrected. Inconsistencies may be related to the different quantities retrieved (DOD versus extinction coefficient), each one with
its own uncertainties. By construction the DDB DOD (Seetiondect. 2.1.2) may tend to be positively biased because although
the selected scenes are mostly affected by dust, there will be always some contamination by other aerosols in the atmospheric
column (see for example the relatively large DDB DOD values over North Atlantic in Fig. 2). On the other side, the low
sensitivity of CALIOP to thin layers (Kar et al., 2018) or the signal attenuation in CALIOP measurements when the dust load
is large could also play a role in the obtained biases. When comparing with DDB DOD, the correlation coefficient is larger
for both forecasts and analyses when the-full-set-ef-DDB is assimilated (eDDB and eLIVAS+DDB), while the improvement of
this score is smaller for eLIVAS;-eDDBsubset, e EIVAS+DDBsubset. The analyses show a better correlation coefficient with
respect to DDB than the forecasts, and both show a better behaviour than the control run for all the experiments. The three
error scores (MFE, RMSE and CRPS) differ across two distinct groups of experiments. These errors increase in eLIVAS and
eEFVAS+DBDBsubset-both for the forecast and analyses with respect to the control run. In contrast, the three-ether-other two
experiments (eDDB ;-and eLIVAS+DDBand-eDbBsubset) show a decrease in these error scores both for the forecasts and
analyses. The latter is expected as the scores are computed taking the DDB as the reference.

In summary, the results of the cross-comparison checks are consistent with the assimilated observations used in each ex-
periment. Also, when LIVAS is used as the reference dataset, all experiments improve their scores after assimilation both for

forecasts and analyses. However-the-The comparison shows mixed results when the reference dataset is DDB.
3.2 Evaluation against ground-based measurements

Figure 6 presents the scores for each experiment when evaluated against dust-filtered AOD at 550 nm from AERONET stations
(SeettenAppendix A). We acknowledge that the filter used for creating this AERONET DOD dataset (Angstrém exponent less
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Figure 6. Verification scores against DOD filtered from AERONET AOD observations.
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than 0.3) can bias our analysis towards large values of DOD. The left column of Fig. 6 shows the scores when all the filtered
observations are taken into account (2681 observations), while the other three columns show the scores in North Africa (1394
observations), the Mediterranean and southern Europe (1029 observations) and the Middle East (258 observations). The list of
stations used for each set of scores is listed in SeetionAppendix A and it is based on the list of stations used for operational
verification of the SDS-WAS forecastst).

The bias of the control run is positive, which contrasts with the negative bias resulting from the comparison with DDB
(Fig. 5). While the different spatial and temporal localisations used in the comparison may play an important role in this
difference, an additional explanation is that the dust filter in the DDB dataset is less conservative and provides on average larger
DOD values due at least partly to the presence of other aerosols. The high positive bias of the control run for all AERONET
stations decreases in absolute terms in all the experiments after assimilation, consistent with the systematic decrease in the
simulated DOD shown in the first row of Fig. 5. Forecast and analyses from experiments where LIVAS was assimilated
(eLIVAS eEIVAS+DDBsubset-and eLIVAS+DDB) show a stronger negative bias and MFB than experiments—where-only

e - stbset);¢DDB, notably in the Mediterranean and southern Europe (a subset of 39% of

the all AERONET observations used here) and Middle East panels (9% of the all AERONET observations used here).

The correlation coefficient increases in all assimilation experiements compared with the control for North Africa and the

Mediterranean, particularly in the analyses but also in the forecasts. Experiments—where-the-full DPB-DOD-is-assimilated
{eDBBeEIVAS+DDB)shew-Experiment eDDB shows higher correlations. Over Middle East, with only 258 observations,

the correlation coefficient is very low but still positive. Over North Africa, all the experiments show smaller errors (MFE,
RMSE, CRPS) in comparison with the control run. With the exception of eLIVAS, all the analyses have smaller errors than
the forecasts and —similarly to the correlation coefficient— the experiments where thefall-DDB DOD was assimilated show
better scores in their analyses.

As introduced in SeetionSect. 2, we used lidar retrievals of pure-dust profiles for the evaluation of the experiments. The

evaluation was conducted for the dust event above the eastern Mediterranean between 19 to 24 April 2017, whose extent and
dynamics can be observed in the right column of Fig. 1.

We compared our five experiments with the dust extinction coefficient provided by these lidars. Figure 7 shows the compar-
ison between the lidar measurement in the three sites, the control run, the forecasts and analyses from three experiments (eLI-
VAS, eDDB, eLIVAS+DDB), and the AOD from AERONET sites close to the lidar instruments, without filtering by Angstrém
exponent. Rows 1, 5 and 9 of Fig. 7 show the integrated dust extinction coefficient for lidar measurements and model runs,
and the AOD from AERONET instruments close to these stationssites. The control run is overestimated in the three sites and
both analyses and forecast show values closer to the AERONET AOD and the lidar integrated DOD. The three experiments
capture the timing and the magnitude of the dust event. Qualitatively, eDDB overestimates the AOD and lidar-integrated mea-
surements, eLIVAS+DDB is closer to AERONET AOD measurements and eLIVAS is closer to the lidar-integrated DOD. The
control run not only overestimates the dust profile but also underestimates the height of the maximum values in the plume (e.g.

on Limassol panel, the 21 and 22 of April). For forecasts and analyses, the experiments where LIVAS were-was assimilated
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Figure 7. Simulated and measured dust extinction coefficient during the CyCARE and Pre-TECT campaigns by PollyNET lidars. The figure
contains three groups (for the three measurement sites) with four panels each. The first panel of each group shows the DOD evolution
estimated from the lidar measurements (black dots, equal to the vertical integration of the dust extinction coefficient profiles), the AOD
without dust filtering for the AERONET station (colored dots), the DOD of the control experiment (green line), the DOD from the forecasts
(dashed lines) and analyses (continuous lines) for the three selected assimilation experiments. The second row of each group shows the
vertical profiles of the measured dust extinction coefficient. The third row of each group shows dust extinction coefficient from the control
run (in green) and the forecasts (dashed lines). The fourth row of each group shows the dust extinction coefficient from the analyses. The

scale for all the dust extinction coefficient profiles is shown on the right side of the second panel in each group.

(eLIVAS and eLIVAS+DDB) are able to decrease the dust concentration in the lower layers (below 2.5 km), making the shape

of the profiles similar to the observed ones. The eDDB profiles do not show this feature.

The overall quantitative evaluation is shown in Fig. 8. These scores have been computed by concatenating all the pairs of

observed and simulated extinction coefficients in a vector, without distinguishing among profiles on the computation. In general
terms, both bias scores are smaller for eLIVAS eEIVAS+BBBsubset-and eLIVAS+DDB than for eDDBand-eBBBsubset. The

correlation coefficient is weakly affected by the assimilation in all experiments and the MFE is slightly smaller for experiments
where LIVAS were-was assimilated. RMSE and CRPS behave similarly, with improvement for all the experiments compared to

the control run, particularly for those where LIVAS was w
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Figure 8. Verification scores against ground-based PollyNET lidar dust extinction coefficients from the CyCARE and Pre-TECT campaign.

Panels of Model Mean, Mean Bias, RMSE, and Mean CRPS have units of m ™.
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with-only DOP-assimilated.

We have computed the evaluation scores also for each of the available profiles (Fig. 7), which are summarised in Fig. 9. The
assimilation performance was split in two groups. The first group is characterised by low values of measured dust extinction
coefficient (non-shaded columns in Fig. 9) where the dust plume cannot be easily identified in Fig. 7. A second group of profiles
corresponds to high dust extinction coefficients (green-shaded columns in Fig. 9). For these profiles, it is possible to visually

identify in Fig. 7 the altitude and shape of the dust plume.

in the last three columns of Fig. 9

e— In Fig. 9,
the mean all column shows the average of the scores of all the profiles; the mean high column shows the average of the scores
of the profiles with strong dust extinction coefficients (i.e., green-shaded columns of this figure); and the mean low column

shows the average of the scores of the profiles with small values of measured dust extinction coefficients (non-shaded columns

in Fig. 9). These last three columns in Fig. 9 are also shown in Table 2. We note that this-methodelogical-difference-between
scores of Fig, 8 and the last three columns of Fig. 9
are computed differently, In the former, we have concatenated all the profiles and computed the scores, while in the latter, we

have computed the scores for individual profiles and then averaged their values. This methodological difference impacts, for
example, the mean-atl values of the correlation coefficient and RMSE when comparing the mean all values of Table 2 differ

from-these-in-with those of Fig. 8.

For the group of profiles with small values of dust extinction coefficient (mean low in Fig. 9) the absolute scores (Mean
Bias, RMSE and CRPS) are small because simulated and observed values are also small, but they do not improve with-after
the assimilation. Similarly, the normalized scores (MFE and MFB) and the correlation coefficient do not improve. The group
of profiles with high dust extinction coefficients (green-shaded columns in Fig. 9) generally show better normalised scores
than the group with low dust values. With the exception of the correlation coefficient, all the scores in this group improved
after assimilation. In this mean high group the Mean Bias drastically decreased when LIVAS were-was assimilated (eLIVAS
eEIVAS+DDBBsubset-and eLIVAS+DDB). Similarly, MFB, MFE, RMSE and CRPS improved with LIVAS assimilation. The
correlation coefficient does not improve with assimilation, but the degradation of this score in all experiments with respect to
the control run remains below 5% of the control run value. Overall, when dust extinction is large, all analyses improved in all
scores with the exception of the correlation coefficient. While improvements are enhanced when LIVAS is assimilated, they
are still non-negligible for eDDBand-eDDBBsubset-

. Allin all, despite the sparse spatial coverage of LIVAS compared to DDB, this evaluation shows that dust extinction profiles

are best constrained in experiments where LIVAS is assimilated.
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Figure 9. Verification scores of the model analyses for the dust extinction coefficient profiles against measurements of PollyNET lidars of
Fig. 7. Mean Bias, RMSE and CRPS have units of m ™. Profiles with high values of extinction are shown with a green shade. The last three
columns show averages of the scores for the non-shaded profiles (mean low), for the shaded profiles (mean high) and for all profiles (mean

all). The areas of the squares are proportional to their values (in colors).
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Table 2. Values of the last three columns of Fig. 9.

Score group-Group  control  eLIVAS  ebBbBsubseteDDB  eLIVAS+BbBubseteLFVAS+DDB
Mean Bias (x10°) mean all 21.91 -0.29 +5-08-12.30 0:563.97
mean high 40.03 -1.69 25:74-19.17 -0:06-6.19
mean low 3.79 1.11 442542 +18-1.74
MFB mean all 1.02 0.55 0:93-0.90 0:58-0.71
mean high 0.98 0.25 0:85-0.76 0:30-0.48
mean low 1.05 0.85 +02-1.03 0:87-0.94
p mean all 0.51 0.50 0:49-0.50 0:510.52
mean high 0.81 0.81 0:78-0.77 0:81+0.80
mean low 0.20 0.19 ©0:26-0.23 0:26-0.24
MFE mean all 1.35 1.18 +36-1.27 +171.19
mean high 1.06 0.80 0:95-0.89 0.79 6-79-
mean low 1.63 1.55 1.64 +64-156-1.58
RMSE (x10°) mean all 29.59 9.03 22:1+4-19.46 9:08-11.21
mean high 52.35 14.54 36-13-29.16 14-66-18.43
mean low 6.82 3.53 &16-9.76 3:564.00
Mean CRPS (x10°) mean all 12.51 4.70 914-7.84 4:55-4.92
mean high 2242 8.05 +5:22-11.98 F73-8.22
mean low 2.59 1.35 3-05-3.70 +37-1.62

3.3 Consistency between column and profile assimilation and the role of a narrow satellite footprint

Along with the eDBB, eLIVAS and eLIVAS+DDB experiments shown in the previous sections, we have performed the
same analyses with the DDBsubset dataset. namely eDDBsubset and eLIVAS+DDBsubset. We recall from Sect. 2.1.2 that
DBBsubset contains the DBB DOD, but only when it is collocated with LIVAS. We use here this dataset for studying the impact
of assimilating vertically-resolved dust observations, along with the impact of the different fields of view of the measurements
upon our analyses.

We have included the verification scores in Fig. CI. This figure is equivalent to Figures 5, 6 and 8 but with the addition of
eDDBsubset and eLIVAS+DDBsubset experiments. Figure Cl shows that, as expected, the skill scores of eDDBsubset are
qualitatively analogous those of eDDB, but the magnitude of the change with respect to the control is smaller. The better scores

of eDBB over eDDBsubset underline the importance of the horizontal coverage of the observations in our assimilation. We

atse-show-that-Similarly, eLIVAS
thatDDBsubset reach scores close to those of eLIVAS. This indicates that the impact of the LIVAS assimilated observations is
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Figure 10. Bi-dimensional histograms of the difference between analyses and the control run DOD. Transposed plots in the figure are
symmetrical with respect to the 1:1 line. Color scale shows the counts of analysis minus control in a box of ADOD = 0.37, that is, 151 bins

between -2.8 and 2.8. Please note the logarithmic scale of the counts.
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more important than that of DDBsubset in the eLIVAS
Hewever,-we-obtained-mixed-results-when-comparing-eDDBsubset scores.
More interestingly is the comparison of eLIVAS and eDDBsubset ;+which-in Fig. C1. They have a similar horizontal coverage

+and eLIVAS performed better than eDDBsubset when evaluating against PottyNET;-but-this-was-notnecessarily-true-in-the

comparison-against DOD—Therefore;we-the vertical profiles of PollyNET. However, the eLIVAS scores are worse than those

of eDDBsubset for the comparisons with DBB DOD and some (but not all) of the scores in the AERONET DOD panel of
Fig. C1. We argue that a direct comparison among experiment analyses can further help elucidating the impact-of-assimilating

analysesdifferences in the performance between the two experiments.
Although DDBsubset was designed to have a similar horizontal and temporal coverage than LIVAS, a direct comparison

between the eDDBsubset and eLIVAS experiments should also take into account that (i) LIVAS provides direct observational
information in the vertical coordinate, while DDBsubset does not; (ii) the vertical influence of LIVAS information is only partial
if the column is not complete, in contrast to the DDB DOD that is propagated to the whole column; (iii) DDB only provides data
during the afternoon overpass (about 13:30 LT), while LIVAS provides data during afternoon and night overpasses. Nighttime
profiles have better quality, and given the assimilation cycle design and the temporal localisation applied, they should influence
the 0 UTC analyses more than daily-afternoon—-ateng-with-the afternoon overpasses, with more impact over the forecast and
subsequent analyses.

It is possible to compare the experiments by inspecting the histograms of differences between the analyses and the control
run. We have computed these differences for DOD in Fig. 10 and for dust extinction coefficient in Fig. 11. Figure 10 shows
bi-dimensional histograms of the DOD differences for the five experiments. The 1:1 line indicates that respective analyses pro-
duce the same differences with the control run, i.e. they are equal. Points in quadrants I and III indicate that both experiments
increase and decrease, respectively, the DOD values at the same locations and times, which is as a sign of consistency. It can be
seen that the (eDDB, eLIVAS+DDB) panel shows less deviation with respect to the 1:1 line than the (eLIVAS, eLIVAS+DDB)
case. This indicates that most of the impact of the observations in the eLIVAS+DDB experiments comes from DDB rather
than from LIVAS, which is consistent with the scores presented in previous sections. A similar result is found when com-
paring (eLIVAS+DDBsubset, eLIVAS) with (eLIVAS+DDBsubset, eDDBsubset). In this case, eLIVAS+DDBsubset is closer
to eLIVAS rather than eDDBsubset. Because the datasets have a similar horizontal coverage, we conclude that either LIVAS
add more information to the analyses than the DOD from DDBsubset, or the nighttime overpass of CALIOP has a stronger
influence on the 0 UTC analyses, which is also propagated to the forecasts. Similarities between (eLIVAS+DDB, eLLIVAS)
and (eLIVAS+DDB, eDDBsubset) suggest that the LIVAS assimilation is less important than the DDB assimilation in the
eLIVAS+DDB case, because of the smaller observational coverage. A relatively large spread can be noticed in the (eLIVAS,
eDDB) panel and to a lesser extent in the (eLIVAS, eBBB-subseteDDBsubset) panel.

The spread in the (eDDBsubset, eDDB) panel is associated with the smaller coverage of DDBsubset. In this panel, most
values lie around zero in the eDDBsubset axis, which is directly related the reduced amount of assimilated data. A small

quantity of values (around the 6% of this panel) are in quadrants II and IV, meaning that the increments with respect to
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the control DOD of the eDDBsubset and eDDB analyses are of different sign. A possible explanation is a potentially poor
estimation of the terms outside the diagonal of the background error covariance matrix, as they should spread consistently (or

at least in the same direction) the DDBsubset observational influence to the remaining pixels covered by the full DDB dataset.
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Figure 11. Similar to Fig. 10 but for the dust extinction coefficient. The width of the bins is 4.63 x 1075 m ™.

Bi-dimensional histograms of the differences in dust extinction coefficient between analyses and the control run experiment
are shown in Fig. 11. In general terms, this figures shows similar, but less clear features than the DOD in Fig. 10. Notable
differences are in the row comparing eDDBsubset with the other experiments, where the values in the panels do not show the

clear correlation that appears in the DOD case. This indicates that the shape of the dust profiles in the experiments assimilating
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LIVAS substantially differ from those assimilating DDB. This is supported also by the eLIVAS+DDB panels, where the larger
influence of DDB over LIVAS observations shown for DOD in Fig. 10 is less clear for the extinction coefficient. As we show
in Seetion2-2:25ect. 3.2, the assimilation of LIVAS data (either in eLIVAS or eLIVAS+DDB) can produce more accurate dust
profiles. This demonstrates that the assimilation of vertically-resolved dust-pure-dust extinction coefficients can effectively

improve the dust vertical distribution in forecasts and analyses.

4 Conclusions

We performed, analysed, and evaluated model experiments assimilating spaceborne dust extinction coefficient profiles and
DOD over a two-month period over Northern Africa, the Middle East and Europe. We filtered the AOD observations from
VIIRS DB to obtain a DOD dataset, and we have used for the first time the CALIPSO-based LIVAS pure-dust dataset in a data
assimilation framework. In most cases, the assimilation of these products (and their combination) is beneficial for analyses and
forecasts.

Experiments that assimilate DDB yield better DOD error scores than those that assimilate only LIVAS when evaluated
against AERONET. However, the assimilation of only LIVAS can still achieve significant improvements on these DOD scores.

We evaluated the potential improvements in the representation of the dust vertical profile using a handful of high-quality
ground-based lidar pure-dust extinction coefficient measurements performed during the CyCARE and Pre-TECT experimental
campaigns in the Mediterranean. The assimilation of LIVAS leads to a better representation of the dust extinction coefficient
profiles than the assimilation of DDB alone. Jointly assimilating DDB and LIVAS yields the second-best scores for both the
DOD and the dust extinction coefficient profile, which proves their suitability for dust forecast applications.

We have also focused on the limitations of the narrow footprint of LIVAS compared with the large swath of DDB, which
reduces the observational influence on the analyses. Yet, the impact of the vertically-resolved information provided by LIVAS
is significant, and with a similar coverage it produces even a larger impact on the analyses than the assimilation of DOD.

Our findings strongly support the conclusions of Cheng et al. (2019) in that the assimilation of aerosol profiles can improve
their vertical representation in models. We additionally show that the vertical profiles of dust extinction coefficient can be
constrained by assimilating the LIVAS product. We are aware of the limitations of this study due to the limited availability of
ground-based PollyXT lidar measurements. We are looking forward to the publication of ground-based pure-dust lidar datasets
from EAREINET-and-MPENET(the version 3 jof the NASA Micro-Pulse Lidar Network (MPLNET) and EARLINET, that
would be very useful for a long term assimilation and evaluation of simulated dust extinction profiles from model forecasts
and analyses. Our work shows the value of space-borne polarization lidars for improving desert dust forecasts and analyses.
As such, future satellite missions with combined extinction and depolarization capability, such as Earth€AREthe Earth Cloud
Aerosol and Radiation Explorer (EarthCARE), are expected not only to further contribute to desert dust research, but also to

operational forecasts if real-time products are made available.
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565 Code and data availability. LIVAS pure-dust products are available upon request from Eleni Marinou (elmarinou@noa.gr), Vassilis Amiridis
(vamoir@noa.gr) and Emmanuel Proestakis (proestakis@noa.gr). PollyNET Finokalia data are available upon request from Eleni Marinou
(elmarinou@noa.gr) and Vassilis Amiridis (vamoir@noa.gr). The SUOMI-NPP/VIIRS Deep Blue Aerosol L2 6-Min Swath 6 km was ac-
quired from the Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC), located in
the Goddard Space Flight Center in Greenbelt, Maryland (https://ladsweb.nascom.nasa.gov/, last access 11 November 2021). GEFS data was

570 acquired from the NOAA National Centers for Environmental Information (https://www.ncdc.noaa.gov/, last access: 11 November 2021).

MONARCH source code is available at https://earth.bsc.es/gitlab/es/monarch (last access: 11 November 2021).

Appendix A: Aeronet sites

List of AERONET sites used in SeetienSect. 3.2. The value in parenthesis indicate the number of observations used for each
station.
575 Mediterranean-Mediterranean (1029):
AgiaMarina_Xyliatou (2), Aras_de_los_Olmos (7), Badajoz (11), Barcelona (4), Ben_Salem (27), CUT-TEPAK (49), Cabo_da_Roca
(55), Cairo_EMA_2 (70), Carpentras (5), Coruna (15), Eforie (2), Eilat (121), El_Arenosillo (45), Ersa (5), Evora (29),
FORTH_CRETE (12), Finokalia-FKL (19), Galata_Platform (4), Gloria (2), Gozo (19), Granada (34), IMAA_Potenza (1),
IMS-METU-ERDEMLI (29), LAQUILA_Coppito (1), Lamezia_Terme (24), Lampedusa (17), Lecce_University (20), Madrid
580 (4), Medenine-IRA (84), Messina (4), Modena (1), Montsec (2), Murcia (7), Napoli_CeSMA (4), OHP_OBSERVATOIRE
(5), Palencia (3), Palma_de_Mallorca (11), Rome_Tor_Vergata (9), SEDE_BOKER (99), Tabernas_PSA-DLR (41), Tech-
nion_Haifa_IL (49), Tizi_Ouzou (10), Toulon (2), Toulouse_MF (2), Weizmann_Institute (61), Zaragoza (2).
Nerth-Afriea-North Africa (1394):
Banizoumbou (123), Capo_Verde (106), Dakar (349), El_Farafra (95), IER_Cinzana (163), Ilorin (47), LAMTO-STATION
585 (50), Saada (80), Santa_Cruz_Tenerife (124), Tamanrasset_INM (257).
Middle-East-Middle East (258):
TASBS (17), KAUST_Campus (97), Masdar_Institute (70), Mezaira (74).

Appendix B: Regions for LIVAS collocation

We present in Fig. B1 the definition of regions used in Fig. 4.

500 Appendix C: Scores of eDDBsubset and eLIVAS+DDBsubset

We present in Fig. C1 the scores for the five experiments listed in Sect. 2.5
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Figure B1. Definition of regions of Fig. 4. Mediterranean region is shown in pink, Sahara West in blue, Sahara East in red, and Arabia in

cyan.
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Figure C1. Scores of the full set of five experiments. Similar to Figures 5, 6 and 8, but with the addition of eDDBsubset and

eLIVAS+DDBsubset.
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