Supplement of

Improved gridded ammonia emission inventory in China

Baojie Li¹, Lei Chen¹, Weishou Shen¹, Jianbing Jin¹, Teng Wang², Pinya Wang¹, Yang Yang¹, and Hong Liao^{1*}

¹ Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China

² College of Oceanography, Hohai University, Nanjing, 210098, China

Corresponding author: Hong Liao (hongliao@nuist.edu.cn)

Number of tables: 3 Number of figures: 3

Table List

Table S1 Emission factor index for fertilizer application

Table S2 The parameters used in estimates of annual TAN excretion per cattle

Table S3 the EF and spatial allocation methods of NH3 emission sources

Figure list

Fig. S1 the spatial distribution of single-season rice, middle rice and early/late rice.

Fig. S2 Geographical distribution of NH3 emission from fertilizer application, livestock wastes, and others in mainland China in 2016.

Fig.S3 The distribution of NH3 VCDs simulated with the two inventories

Factor		Value	References
EF ₀	urea	17.4 % NH3-N	(Cai et al., 2002;
	ammonium bicarbonate	21.3% NH3-N	Dong et al., 2009;
	diammonium phosphate	7.3% NH3-N	Zhou et al., 2016;
	NPK compound fertilizer	5% NH3-N	Zhao et al., 2020)
	other	4% NH3-N	
Crop	Upland crops	-0.045	(Zhang et al., 2018)
	Flooded crops	0	
Method	Basal	-1.139	(Huang et al., 2012)
	Тор	0	
Soil pH	0.067×pH	H ² -0.69×pH+0.68	(Bouwman et al.,
			2002; Zhang et al.,
			2018)
Soil CEC	CEC ≤16	0.088	(Zhang et al., 2018)
	16 <cec≤24< td=""><td>0.012</td><td></td></cec≤24<>	0.012	
	24 <cec≤32< td=""><td>0.163</td><td></td></cec≤32<>	0.163	
	CEC>32	0	

Table S1 Emission factor index for fertilizer application

Note: for soil pH, a second-order function is applied to fit the segmental values given in (Bouwman et al., 2002; Zhang et al., 2018).

	Raising cycle	Excretion (kg/cattle/day)		Nitrogen content (%)		TAN (%)
		Urine	Excrement	Urine	Excrement	
beef cattle	365	10	20	0.9	0.38	60
dairy cow	365	19	40	0.9	0.38	60
goat	365	0.75	2.6	1.35	0.75	50
sheep	365	0.75	2.6	1.35	0.75	50
rabbit	55	0.3	0.15	0.15	1.72	45
norse/donkey/mule	365	6.5	15	1.4	0.2	60
SOW	365	5.7	2.1	0.4	0.34	70
fattening pig	75	3.2	1.5	0.4	0.34	70
camel	365	6.5	15	1.4	0.2	60
meat duck	55	-	0.1	-	1.1	70
meat goose	70	-	0.1	-	0.55	70
broilers	50	-	0.09	-	1.63	70
laying hen	365	-	0.12	-	1.63	70
laying duck	365	-	0.13	-	1.1	70

Table S2 The parameters used in estimates of annual TAN excretion per cattle

Category	Subcategory	EF	Spatial allocation
Transportation	light-duty gasoline vehicles	0.026 g/km	Road density ^a
	heavy-duty gasoline vehicles	0.028 g/km	
	light-duty diesel vehicles	0.004 g/km	
	heavy-duty diesel vehicles	0.017 g/km	
	motorcycles	0.007 g/km	
Residential &	human excrement	787 g/capita	Rural population ^b
commercial	indoor firewood combustion	1.3 g/kg	-
	indoor wheat burning	0.52 g/kg	-
	indoor rice burning	0.37 g/kg	-
	Indoor maize burning	0.68 g/kg	-
	domestic coal combustion	1 g/kg	Population ^b
	domestic oil combustion	120 g/10 ³ L	-
	domestic gas combustion	3203.8 g/10 ⁴ m ³	-
Industry	synthetic ammonia	787 g/t	Sub-national fuel data
	nitrogen fertilizers production	5000 g/t	disaggregation method using
	wastewater treatment	$30 \text{ g}/10^4 \text{ m}^3$	POI (SDMP) °
	waste landfill	0.0073 kg/kg CH4	-
	waste incineration	210 g/t	
	coal combustion	10 g/t	
	oil combustion	100 g/10 ³ L	
	gas combustion	512.6 g/10 ⁴ m ³	
Others	agricultural soil	1800 g/ha	Cropland ^d
	nitrogen-fixing plants (soybean)	1050 g/ha	Soybean harvest areas ^e
	nitrogen-fixing plants (peanuts)	1200 g/ha	Groundnut harvest areas ^e
	outdoor straw burning	0.53 g/kg	based on the gridded burned
			area in cropland ^f
	Forest fires	2.9 g/kg	Gridded burned areas in forest ^f
	Grassland fires	0.7 g/kg	Gridded burned areas in grass ^f

Table S3 the EF and spatial allocation methods of NH3 emission sources

^a The road networks were derived from the OpenStreet data (http://www.geofabrik.de).

^b The population data in 2016 were downloaded at https://landscan.ornl.gov/download.

^c Details about the DPOI allocation method were previously discussed (Li et al., 2019).

^d The cropland was derived from the Resource and Environment Science and Data Center.

(http://www.resdc.cn/data.aspx?DATAID=184).

^e The harvest areas of each crop were derived from the EarthStat dataset.

^f The gridded burned area data were determined by coupling the MCD64A1 and MCD14ML fire products based on previous studies (Li et al., 2018; Qiu et al., 2016).

Fig. S1. The spatial distribution of single-season rice, middle rice and early/late rice.

Fig. S2 Geographical distribution of NH3 emission from fertilizer application, livestock wastes, and others in mainland China (2016).

Fig. S3. The distribution of NH3 VCDs simulated with the two inventories.

References

- Bouwman, A., Boumans, L., and Batjes, N.: Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands, Global Biogeochemical Cycles, 16, 8-1-8-14, 2002.
- Cai, G. X., Chen, D. L., Ding, H., Pacholski, A., Fan, X. H., and Zhu, Z. L.: Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain, Nutrient Cycling in Agroecosystems, 63, 187-195, 10.1023/A:1021198724250, 2002.
- Dong, Y., Chen, C., Huang, C., Wang, H., Li, L., Dai, P., and Jia, J.: Anthropogenic emissions and distribution of ammonia over the Yangtze River Delta, Acta Scientiae Circumstantiae, 29, 1611-1617, 2009.
- Huang, X., Song, Y., Li, M. M., Li, J. F., Huo, Q., Cai, X. H., Zhu, T., Hu, M., and Zhang, H. S.: A highresolution ammonia emission inventory in China, Global Biogeochemical Cycles, 26, Artn Gb1030 10.1029/2011gb004161, 2012.
- Li, B., Wang, J., Wu, S., Jia, Z., Li, Y., Wang, T., and Zhou, S.: New Method for Improving Spatial Allocation Accuracy of Industrial Energy Consumption and Implications for Polycyclic Aromatic Hydrocarbon Emissions in China, Environmental Science & Technology, 53, 4326-4334, 10.1021/acs.est.8b06915, 2019.
- Li, B., Zhou, S., Wang, T., Sui, X., Jia, Z., Li, Y., Wang, J., and Wu, S.: An improved gridded polycyclic aromatic hydrocarbon emission inventory for the lower reaches of the Yangtze River Delta region from 2001 to 2015 using satellite data, Journal of hazardous materials, 360, 329-339, 2018.
- Qiu, X., Duan, L., Chai, F., Wang, S., Yu, Q., and Wang, S.: Deriving High-Resolution Emission Inventory of Open Biomass Burning in China based on Satellite Observations, Environmental science & technology, 50, 11779-11786, 2016.

- Zhang, L., Chen, Y. F., Zhao, Y. H., Henze, D. K., Zhu, L. Y., Song, Y., Paulot, F., Liu, X. J., Pan, Y. P., Lin, Y., and Huang, B. X.: Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates, Atmos Chem Phys, 18, 339-355, 10.5194/acp-18-339-2018, 2018.
- Zhao, Y., Yuan, M. C., Huang, X., Chen, F., and Zhang, J.: Quantification and evaluation of atmospheric ammonia emissions with different methods: a case study for the Yangtze River Delta region, China, Atmos Chem Phys, 20, 4275-4294, 10.5194/acp-20-4275-2020, 2020.
- Zhou, F., Ciais, P., Hayashi, K., Galloway, J., Kim, D. G., Yang, C. L., Li, S. Y., Liu, B., Shang, Z. Y., and Gao, S. S.: Re-estimating NH3 Emissions from Chinese Cropland by a New Nonlinear Model, Environ Sci Technol, 50, 564-572, 10.1021/acs.est.5b03156, 2016.