

Response to the Editor's comments

Editor's Evaluations

The authors have reasonably addressed the comments of the two anonymous referees and they have improved the language and grammar of the main text, but additional improvement is needed as indicated below. More important, as explained in detail below, there are some serious problems with the Main text of this manuscript and there also alterations and corrections needed in both the Main text and Supporting information. Consequently, substantial revisions are needed before the manuscript can be published in ACP.

Response: Thanks for the editorial review to improve the quality of this paper. Following the Editor's recommendation, we have carefully made corrections and revised the main text as well as supporting information. Our responses to all comments made by the Editor are given below. Please refer to the revised MS, in which changes are highlighted in yellow.

Main text:

1. Comment: Water-soluble organic carbon (WSOC) is mentioned for the first time in line 551. No information is given on how WSOC was obtained, although this information is definitely needed; it should be described within Methods. Furthermore, it should be discussed within the text what fraction of the organic carbon (OC) was WSOC.

Response: Following the Editor's suggestion, we have added the WSOC analysis procedure in the method section. We also added the WSOC fraction in OC in the revised MS. Please see lines 186-195 and 571-580.

2. Comment: I have serious problems with the authors' application of PMF. Their number of samples (21 as mentioned in line 128) is insufficient for a PMF analysis. Henry et al. state on page 1512 of their seminal 1984 paper (full reference: Henry, R.C., Lewis, C.W., Hopke, P.K., Williamson, H.J, 1984. Review of receptor model fundamentals. *Atmos. Environ.* 18, 1507-1515) that, in order for a multivariate receptor model to be acceptable, the number of samples N should be larger than $30 + (V + 3)/2$, with V being the number of variables. As V is 20 (as can be seen in Figure 7), this means that the number of samples in the authors' sample set should be larger than 42. It is only 21 and thus only half the needed number. Furthermore, many researchers suggest to have at least 50 samples (and some even 100) for PMF; see also G. P. Norris et al., "EPA Positive Matrix Factorization (PMF) 5.0

Fundamentals and User Guide", April 2014, in which there is written on page 10: "PMF is often used on speciated PM_{2.5} data sets with 10 to 20 species over 100 samples". Consequently, I very strongly recommend to remove section 3.5 and Figure 7 from the manuscript unless the authors can come up with convincing arguments to retain them.

Response: We comply with the Editor's view. The numbers of samples are less ($n = 21$) as each TSP sample was collected for 10–14 days to get enough signals for the radiocarbon measurements. We have removed PMF analysis result (section 3.5, Figure 7) in the revised MS.

3. **Comment:** Lines 94-95: This statement is in clear contradiction with lines 88-90 where it says that monoterpenes account for 11% of the monoterpene emissions. It looks like the authors misinterpreted what is written in Griffin et al. (1999); it says in Table 3 of the latter reference that α -pinene accounts for 35% of the global monoterpene emissions.

Response: We are sorry for this mistake. This sentence has been rephrased in the revised MS. Please see lines 94-95.

4. **Comment:** Abbreviations and acronyms should be defined (written full-out) when first used. Consequently, on line 186, "TC and EC" should be replaced by "total carbon (TC) and elemental carbon (EC) and on line 187 "total carbon (TC)" should be replaced by "TC". WSOC, first mentioned in line 551, is not defined within the text, but it should be in the section on the measurement of WSOC; see my comment 1 above.

Response: According to the Editor's suggestion, we have made these corrections. Please see lines 187, 193, and 196-197 in the revised MS.

Alterations and corrections:

Comment: Line 39: Replace "the Gosan" by "Gosan".

Response: Replaced. Please see line 39 in the revised MS.

Comment: Line 71: Replace "primarily" by "primary".

Response: Replaced. Please see line 70 in the revised MS.

Comment: Line 99: Replace "Korean" by "the Korean".

Response: Replaced. Please see line 99 in the revised MS.

Comment: Line 163: Replace "Sigmaaldrich" by "Sigma-Aldrich".

Response: Replaced. Please see line 163 in the revised MS.

Comment: Line 187: Replace "in TSP samples were analyzed" by "in the TSP samples were determined".

Response: Replaced. Please see line 197 in the revised MS.

Comment: Line 193: Replace "isolated it" by "isolated".

Response: Replaced. Please see line 203 in the revised MS.

Comment: Line 197: Replace "using Swiss" by "using the Swiss".

Response: Replaced. Please see line 207 in the revised MS.

Comment: Line 198: Replace "MICDAS" by "MICADAS".

Response: Replaced. Please see line 208 in the revised MS.

Comment: Line 226: Replace "in spring" by "in the spring".

Response: Replaced. Please see line 236 in the revised MS.

Comment: Line 233: Replace "spring" by "the spring".

Response: Replaced. Please see line 243 in the revised MS.

Comment: Line 237: Replace "continental" by "the continental".

Response: Replaced. Please see lines 246-247 in the revised MS.

Comment: Lines 253 and 273: Replace "and Russian" by "and the Russian".

Response: Replaced. Please see lines 263 and 283 in the revised MS.

Comment: Lines 261, 507, 595, 596, 605, 714, and 1127 (within Table 1): Replace "monoterpene SOA" by "monoterpene-SOA".

Response: Replaced. Please see lines 271, 518, 583, 584, 593, 702, and Table 1 in the revised MS.

Comment: Line 278: Replace "similar" by "the similar".

Response: Replaced. Please see line 288 in the revised MS.

Comment: Line 285: Replace "anhydrosugars" by "the anhydrosugars".

Response: Replaced. Please see line 295 in the revised MS.

Comment: Line 287: Replace "fungal" by "the fungal".

Response: Replaced. Please see line 297 in the revised MS.

Comment: Line 288: Replace "spring" by "the spring".

Response: Replaced. Please see line 298 in the revised MS.

Comment: Line 300: Replace "similar" by "a similar".

Response: Replaced. Please see lines 310-311 in the revised MS.

Comment: Line 306: Replace "from other" by "from that of the other".

Response: Replaced. Please see line 316 in the revised MS.

Comment: Line 311: Replace "in other" by "in the other".

Response: Replaced. Please see line 322 in the revised MS.

Comment: Line 321: "Sheesley et al., 2003" is missing in the Reference list.

Response: Added in the revised MS. Please see in the Reference list.

Comment: Line 332: Replace "of atmospheric" by "of the atmospheric".

Response: Replaced. Please see line 343 in the revised MS.

Comment: Line 338: Replace "sum of" by "sum of the".

Response: Replaced. Please see line 349 in the revised MS.

Comment: Lines 343, 480, 488, and 1127 (within Table 1): Replace "isoprene SOA" by "isoprene-SOA".

Response: Replaced. Please see lines 354, 491, 499, and Table 1 in the revised MS.

Comment: Line 347: Replace "in Gosan samples (Table 1). Total" by "in the Gosan samples (Table 1). The total".

Response: Replaced. Please see line 358 in the revised MS.

Comment: Line 351: Replace "somewhat" by "a somewhat".

Response: Replaced. Please see line 362 in the revised MS.

Comment: Line 367: Replace "Molecular" by "molecular".

Response: Replaced. Please see line 378 in the revised MS.

Comment: Line 380: Replace "that air" by "that the air".

Response: Replaced. Please see line 391 in the revised MS.

Comment: Line 383: Replace "KOS: 979" by "KOS979".

Response: Replaced. Please see line 394 in the revised MS.

Comment: Line 385: Replace "masses are" by "masses were".

Response: Replaced. Please see line 396 in the revised MS.

Comment: Line 419: Replace "of latter" by "of the latter".

Response: Replaced. Please see line 430 in the revised MS.

Comment: Line 427: Replace "and fossil-/nonfossil" by "and the fossil-/nonfossil".

Response: Replaced. Please see line 438 in the revised MS.

Comment: Line 431: Replace "found the" by "found that the".

Response: Replaced. Please see line 442 in the revised MS.

Comment: Line 432: Replace "and somewhat" by "and are somewhat".

Response: Replaced. Please see line 443 in the revised MS.

Comment: Line 443: Replace "fact that" by "fact that the" and replace "from the" by "ratio from the".

Response: Replaced. Please see line 454 in the revised MS.

Comment: Line 444: Replace "than hardwood" by "than from hardwood".

Response: Replaced. Please see line 455 in the revised MS.

Comment: Line 448: Replace "with hardwood" by "with those from hardwood".

Response: Replaced. Please see line 459 in the revised MS.

Comment: Line 450: Replace "than pine" by "ratios than those of pine" and replace "is on the lower side than" by "ratio is on the lower side than for".

Response: Replaced. Please see lines 461 and 462 in the revised MS.

Comment: Line 453: Replace "and, this" by "and this".

Response: Replaced. Please see line 464 in the revised MS.

Comment: Line 478: Replace "showed significant" by "showed a significant".

Response: Replaced. Please see line 489 in the revised MS.

Comment: Line 491: Replace "contrary," by "contrary, the".

Response: Replaced. Please see line 502 in the revised MS.

Comment: Line 493: Replace "with air" by "with the air".

Response: Replaced. Please see line 504 in the revised MS.

Comment: Lines 528 and 545: Replace "monoterpene" by "monoterpenes".

Response: Following the Editor's suggestion, this section has been removed.

Comment: Line 530: Replace "loaded by" by "loaded by the".

Response: This section has been removed.

Comment: Line 548: Replace "PMF" by "The PMF".

Response: This section has been removed.

Comment: Line 580: Replace "Contributions" by "The contributions".

Response: Replaced. Please see line 559 in the revised MS.

Comment: Line 581: Replace "lower than" by "lower than those of".

Response: Replaced. Please see line 560 in the revised MS.

Comment: Line 586: Replace "highest" by "the highest".

Response: Replaced. Please see line 565 in the revised MS.

Comment: Line 588: Replace "to carbonaceous" by "to the carbonaceous".

Response: Replaced. Please see line 567 in the revised MS.

Comment: Line 589: Replace "was occurred" by "occurred".

Response: Replaced. Please see line 568 in the revised MS.

Comment: Line 601: "Kleindienst et al. (2007)" is missing in the Reference list.

Response: Added. Please see in the Reference list.

Comment: Line 606: Replace "isoprene" by "that of isoprene-SOA".

Response: Replaced. Please see line 594 in the revised MS.

Comment: Line 623: Replace "showed poor" by "showed a poor".

Response: Replaced. Please see line 611 in the revised MS.

Comment: Line 624: Replace "but significant" by "but a significant".

Response: Replaced. Please see line 612 in the revised MS.

Comment: Line 628: Lev was already defined in line 420; it should not be defined again; thus replace "Levoglucosan (Lev)" by "Lev".

Response: Replaced. Please see line 616 in the revised MS.

Comment: Lines 639 and 652: Replace "in Gosan" by "in the Gosan".

Response: Replaced. Please see lines 627 and 640 and in the revised MS.

Comment: Line 658: Replace "Jun'2013" by "June 2013".

Response: Replaced. Please see line 646 in the revised MS.

Comment: Line 677: Replace "likely being" by "likely".

Response: Replaced. Please see line 665 in the revised MS.

Comment: Lines 691-692: Replace "P-value" by "p-value".

Response: Replaced. Please see lines 679-680 in the revised MS.

Comment: Lines 695-696: It should be specified whether this is 2012a or 2012b.

Response: Corrected. Please see line 684 in the revised MS.

Comment: Line 724: Replace "; however, our observations are" by ", our observations".

Response: Replaced. Please see line 712 in the revised MS.

Comment: Line 866: Replace "L., and" by "L. and".

Response: Replaced. Please see line 860 in the revised MS.

Comment: Line 960: Replace "Tec.," by "Technol.,".

Response: Replaced. Please see line 964 in the revised MS.

Comment: Lines 995-1006: "Simoneit et al., 1999" should come before "Simoneit et al., 2004a".

Response: Replaced. Please see lines 1003-1014 in the revised MS.

Comment: Line 131, within Table 2: Replace "MGA/MLTs" by "2-MGA/2-MLTs".

Response: Replaced. Please see Table 2 in the revised MS.

Supporting information, alterations and corrections:

Comment: Lines 38-39: The unit for the arrival height should be specified.

Response: Added. Please see line 38 in the supporting information.

Comment: Line 75: Replace "isoprene SOA" by "isoprene-SOA" and replace "monoterpene SOA" by "monoterpene-SOA".

Response: Replaced. Please see line 75 in the supporting information.

Comment: Lines 85-87: In the ordinate of Figure S5b and in line 87, replace "P+P/MBTCA" by "P/MBTCA".

Response: Corrected. Please see line 87 and Figure S5b in the supporting information.

1 **Regional heterogeneities in the emission of airborne primary sugar
2 compounds and biogenic secondary organic aerosols in the East Asian
3 outflow: Evidence for coal combustion as a source of levoglucosan**

5 **M. Mozammel Haque^{1,2,3}, Yanlin Zhang^{1,2*} Srinivas Bikkina⁴, Meehye Lee⁵, and Kimitaka
6 Kawamura^{3,4*}**

7
8 ¹*Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and
9 Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing,
10 210044, China*

11 ²*School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing
12 210044, China*

13 ³*Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan*

14 ⁴*Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan*

15 ⁵*Department of Earth and Environmental Sciences, Korea University, Anam-dong, Sungbuk-gu, Seoul
16 136-701, South Korea*

27 *Corresponding author

28 E-mail: dryanlinzhang@outlook.com (Yan-Lin Zhang)

29 E-mail: kkawamura@isc.chubu.ac.jp (Kimitaka Kawamura)

31 **ABSTRACT**

32 Biomass burning (BB) significantly influences the chemical composition of organic aerosols
33 (OA) in the East Asian outflow. Source apportionment of BB-derived OA is an influential
34 factor for understanding their regional emissions, which is crucial for reducing uncertainties
35 in their projected climate and health-effects. We analyzed here three different classes of
36 atmospheric sugar compounds (anhydrosugars, primary sugars, and sugar alcohols) and two
37 types of biogenic secondary organic aerosol (BSOA) tracers (isoprene- and monoterpane
38 derived SOA products) in a year-long collected total suspended particulate matter (TSP) from
39 an island-based receptor site in South Korea, **Gosan**. We investigate seasonal variations in the
40 source-emissions of BB-derived OA using mass concentrations of anhydrosugars and
41 radiocarbon (^{14}C -) isotopic composition of organic carbon (OC) and elemental carbon (EC) in
42 ambient aerosols. Levoglucosan (*Lev*) is the most abundant anhydrosugar, followed by
43 galactosan (*Gal*) and mannosan (*Man*). Strong correlations of *Lev* with *Gal* and *Man*, along
44 with their ratios (*Lev/Gal*: 6.65 ± 2.26 ; *Lev/Man*: 15.1 ± 6.76) indicate the contribution from
45 hardwood burning emissions. The seasonal trends revealed that the BB impact is more
46 pronounced in winter and fall, as evidenced by the high concentrations of anhydrosugars.
47 Likewise, significant correlations among three primary sugars (i.e., glucose, fructose, and
48 sucrose) emphasized the contribution of airborne pollen. The primary sugars showed higher
49 concentrations in spring/summer than winter/fall. The fungal spore tracer compounds (i.e.,
50 arabitol, mannitol, and erythritol) correlated well with trehalose (i.e., a proxy for soil organic
51 carbon), suggesting the origin from airborne fungal spores and soil microbes in the East
52 Asian outflow. These sugar alcohols peaked in summer, followed by spring/fall and winter.
53 Monoterpene-derived SOA tracers were most abundant compared to isoprene-SOA tracers.
54 Both BSOA tracers were dominant in summer, followed by fall, spring, and winter. **The**
55 **source apportionment based on multiple linear regressions and diagnostic mass ratios**
56 **together revealed that BB emission mostly contributed from hardwood and crop-residue**
57 **burning.** We also found significant positive linear relationships of ^{14}C -based nonfossil- and
58 fossil-derived organic carbon fractions with *Lev-C* along with the comparable regression
59 slopes, suggesting the importance of BB and coal combustion sources in the East Asian
60 outflow.

61

62 **Keywords:** Biomass burning tracers, primary biological aerosol particles, biogenic SOA
63 tracers, radiocarbon-based source apportionment, organic aerosols, East Asian outflow

64 **1. Introduction**

65 Organic aerosols (OA), which account for a major fraction of up to 50% of airborne total
66 suspended particulate matter, have considerable effects on regional and global climate by
67 absorbing or scattering sunlight (Kanakidou et al., 2005). However, the climate effects of OA
68 are involved with large uncertainties due to our limited understanding of the contributing
69 sources. OA can be derived from both primary emissions and secondarily formed species.
70 Sugars are an important group of water-soluble, primary organic compounds whose
71 concentrations are significant in atmospheric aerosols over the continent (Jia and Fraser,
72 2011; Fu et al., 2008; Yttri et al., 2007; Graham et al., 2003). Anhydrosugars such as
73 levoglucosan, galactosan, and mannosan are the key tracers of biomass burning (BB)
74 emissions (Simoneit, 2002). Sugar alcohols, along with glucose, trehalose and sucrose are
75 mostly originated from primary biological particles such as fungal spores, pollen, bacteria,
76 and viruses, and vegetative debris (Graham et al., 2003; Simoneit et al., 2004a; Bauer et al.,
77 2008; Deguillaume et al., 2008). Primary sugars and sugar alcohols are predominantly
78 present in the coarse mode aerosols, accounting for 0.5-10% of atmospheric aerosol carbon
79 matter (Yttri et al., 2007; Pio et al., 2008).

80 Secondary organic aerosol (SOA) is a large fraction of OA, while there were only
81 limited studies about the key factors controlling SOA formation. The SOA formation
82 significantly increased with the enhancement of the ambient aerosol mass (Liu et al., 2018).
83 SOA is formed by both homogenous and heterogeneous reactions of volatile organic
84 compounds (VOCs) in the atmosphere (Surratt et al., 2010; Robinson et al., 2007; Claeys et
85 al., 2004). On a global estimation, biogenic VOCs (BVOCs) such as isoprene, monoterpenes
86 (e.g., α/β -pinene), and sesquiterpenes (e.g., β -caryophyllene) are one order of magnitude
87 higher than those of anthropogenic VOCs (e.g., toluene) (Guenther et al., 2006). The global
88 emissions of annual BVOCs were estimated to be 1150 TgC yr⁻¹, accounting for 44%
89 isoprene and 11% monoterpenes (Guenther et al., 1995). Isoprene is highly reactive and
90 promptly reacts with oxidants such as O₃, OH, and NO_x in the atmosphere to form SOA
91 (Kroll et al., 2005, 2006; Ng et al., 2008; Surratt et al., 2010; Bikkina et al., 2021), estimated
92 to be 19.2 TgC yr⁻¹, consisting of ~70% of the total SOA budget (Heald et al., 2008).
93 Monoterpenes are important sources of biogenic secondary organic aerosol (BSOA),
94 considering α -pinene as major species, accounting for ~35% of the global monoterpenes
95 emissions (Griffin et al., 1999).

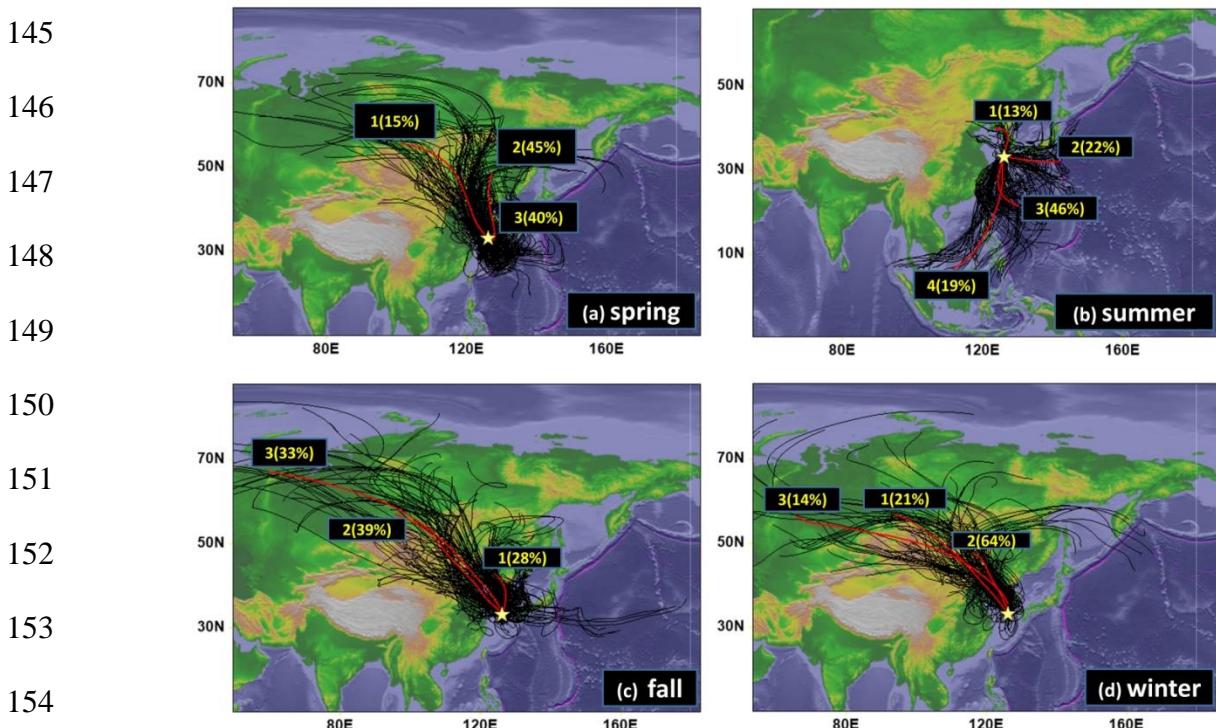
96 Anthropogenic activities such as coal and biofuel combustion over East Asia,
97 including China, are responsible for the vast emission of OA (Huebert et al., 2003; Zhang et

98 al., 2016). Understanding the ambient levels OA in the East Asian outflow is crucial for
99 assessing their regional climatic effects. As part of this effort, the Korean Climate
100 Observatory at Gosan (KCOG), a super site located in South Korea, is an ideal location for
101 investigating the atmospheric outflow characteristics from East Asia (Fu et al., 2010a; Kundu
102 et al., 2010; Ramanathan et al., 2007; Kawamura et al., 2004; Arimoto et al., 1996). For
103 instance, primary OA associated with soil/desert dust in East Asia, along with forest fires in
104 Siberia/northeastern China, are transported over Gosan in spring (Wang et al., 2009a). BSOA
105 during long-range transport from the continent and Open Ocean, as well as local vegetation,
106 can significantly contribute to Gosan aerosols. Although these investigations were carried out
107 almost a decade ago, no such observations are available in contemporary times from Gosan.
108 Here, we attempt to understand the current states of East Asian OA using both the molecular
109 marker approach and radiocarbon data of carbonaceous components.

110 The KCOG, located on the western side of Jeju Island adjacent to the Yellow Sea and
111 the East China Sea, is facing the Asian continent but is isolated from public areas of the
112 island (Kawamura et al., 2004). Simoneit et al. (2004b) have documented during the ACE-
113 Asia campaign that OA from the BB and fossil fuel combustion sources are transported along
114 with desert dust to the KCOG during continental outflow. An intensive campaign was
115 organized at the KCOG during spring 2005 to observe the physical properties of East Asian
116 aerosols while two dust events were detected (Nakajima et al., 2007). Here, we focus on the
117 characterization of airborne anhydrosugars, primary sugars, sugar alcohols, and BSOA
118 tracers from the KCOG. Gosan is influenced by the continental outflow from East Asia
119 during winter, spring and fall, whereas the site is influenced by the maritime air masses from
120 the Pacific Ocean and other marginal seas. This makes the KCOG ideal for characterizing the
121 regional heterogeneities in the emissions of organic compounds in the East Asian outflow
122 based on the TSP samples collected during April 2013-April 2014.

123 **2. Methods**

124 **2.1. Aerosol sampling and prevailing meteorology**


125 Total suspended particles (TSP) were collected on pre-combusted (450°C for 6 h) quartz fiber
126 filters (20 cm × 25 cm, Pallflex) at the KCOG (33.17 °N, 126.10 °E, see Figure 1), South
127 Korea. To get enough signal for the radiocarbon measurements, each TSP sample was
128 collected for 10–14 days from April 2013 to April 2014. Twenty-one samples were collected
129 using a high-volume air sampler (Kimoto AS-810, ~65 m³ h⁻¹) installed on the rooftop of a
130 trailer house (~3 m above the ground). After the collection, aerosol filters were transferred to
131 a pre-combusted (450°C for 6 h) glass jar (150 mL) equipped with a Teflon-lined screw cap

132 and transported to the laboratory in Sapporo. These TSP samples were stored in a dark
133 freezer room at -20°C until the analysis. Three field blank filters were also collected during
134 the campaign.

135 The ambient temperatures at the Gosan site were on average 6.9°C in winter, 14.1°C
136 in spring, 27.0°C in summer, and 17.1°C in fall. Likewise, the average relative humidity was
137 found to be highest in summer (71.3%), followed by spring (64.9%), fall (63.5%), and winter
138 (54.7%). Gosan is influenced by the pollution sources in East Asia during winter as well as
139 other transition periods (spring and fall) due to the prevailing westerlies. In contrast, winds in
140 summer blew mostly from the western North Pacific (WNP) by the easterly winds. The
141 spring season is, in particular, important for the transport of mineral dust mixed with polluted
142 OA to Gosan (Kundu et al., 2010).

143

144

155 **Figure 1.** Cluster analysis of backward air mass trajectories over Gosan (indicated by a star
156 symbol) for the TSP collected during (a) spring, (b) summer, (c) fall, and (d) winter seasons.

157

158 **2.2. Extraction and analysis of organic compounds**

159 Approximately 3.14 cm² filter cuts were extracted with dichloromethane/methanol (2:1; v/v).
160 The extracts were concentrated using a rotary evaporator under vacuum and then blown down
161 to near dryness with pure nitrogen gas. The dried residues were subsequently reacted with N,

162 O-bis(trimethylsilyl)trifluoroacetamide containing 1% trimethylchlorosilane (BSTFA+1%
163 TMCS, SUPELCO[®], Sigma-Aldrich[®]) and pyridine at 70 °C for 3 h to derive OH and COOH
164 groups of polar organic compounds to trimethylsilyl ethers and esters, respectively. After the
165 derivatization followed by the addition of a known amount of internal standard solution
166 (Tridecane; 1.43 ng L⁻¹ in n-hexane), the derivatized extracts were injected onto a gas
167 chromatograph (Hewlett-Packard model 6890 GC) coupled to a mass spectrometer (Hewlett-
168 Packard model 5973, MSD) (GC-MS). More details on the quantification of polar organic
169 compounds using GC-MS are described in Haque et al. (2019).

170 The target compounds (anhydrosugars, primary sugars, sugar alcohols, and BSOA
171 tracers) were separated on a DB-5MS fused silica capillary column (30 m x 0.25 mm i.d., 0.5
172 µm film thickness) using helium as a carrier gas at a flow rate of 1.0 ml min⁻¹. The GC oven
173 temperature was programmed from 50°C for 2 min and then increased from 50 to 120°C at
174 30°C min⁻¹ and to 300°C at 6°C min⁻¹ with a final isotherm hold at 300°C for 16 min. The
175 sample was injected in a splitless mode with the injector temperature at 280°C. The MS was
176 operated at 70 eV and scanned from 50 to 650 Da on an electron impact (EI) mode. Mass
177 spectral data were acquired and processed using the Chemstation software. The organic
178 compounds were identified individually by comparison with retention times and mass spectra
179 of authentic standards and NIST library and literature data of mass fragmentation patterns
180 (Medeiros and Simoneit, 2007). For assessing the recoveries, ~100-200 ng of the standard
181 solution was spiked on the blank filter and analyzed as a real sample. Overall, the average
182 recoveries were found to be 80-104% for target compounds. The field and laboratory blank
183 filters (n = 3) were also analyzed by the same procedures as a real sample. Target compounds
184 were not found in the field blanks. The analytical errors based on concentrations by replicate
185 sample analyses (n = 3) were less than 15%.

186 **2.3. Carbon fractions analysis**

187 Organic carbon (OC) and elemental carbon (EC) were analyzed using a thermal-optical
188 transmittance method with a Sunset Laboratory carbon analyzer following the NIOSH
189 protocol (Birch and Cary, 1996), and detailed procedures were given elsewhere (Zhang et al.,
190 2016). Furthermore, a portion of 2.54 cm² of each sample filter was extracted with 15 mL
191 ultrapure water (resistivity > 18.2 MΩcm, Sartorius arium 611 UV) with ultrasonication for
192 30 min. The water extracts were then filtered through a membrane disc filter for water-
193 soluble organic carbon (WSOC) analysis by a total organic carbon (TOC) analyzer
194 (Shimadzu, TOC-Vcsh) (Boreddy et al., 2018). The concentrations of WSOC were corrected
195 by field blanks. The analytical errors in the triplicate analyses were less than 5% for WSOC.

196 **2.4. Radiocarbon isotopic composition of total carbon (TC) and EC**

197 The concentrations of TC in the TSP samples were determined using an elemental analyzer.
198 For the radiocarbon isotopic composition ($\Delta^{14}\text{C}$), the aerosol filter punches were exposed for
199 ~12 h to HCl fumes in a vacuum desiccator. Subsequently, these filters were analyzed for
200 $\Delta^{14}\text{C}$ on a modified elemental analyzer coupled via a gas interface to Accelerator Mass
201 Spectrometer Mini Carbon Dating System (MICADAS) at the University of Bern,
202 Switzerland (Salazar et al., 2015). The evolved CO_2 of TC from the elemental analyzer was
203 passed through a moisture trap (Sicapent, Merck) and isolated from other residual gasses
204 using a temperature-controlled zeolite trap. The purified CO_2 was introduced through a gas
205 interface system to MICADAS, where $^{14}\text{C}/^{12}\text{C}$ ratios are measured according to the analytical
206 procedures detailed in Zhang et al. (2016). Likewise, the evolved CO_2 of elemental carbon
207 from the Sunset Lab OC/EC analyzer using the Swiss 4S protocol (Zhang et al., 2012), was
208 directed to the MICADAS and measured for the $^{14}\text{C}/^{12}\text{C}$ ratio relative to standard calibration
209 gas. These results were expressed as fractions of modern carbon (f_M) by normalizing with a
210 $\delta^{13}\text{C}$ value of the reference standard in the year 1950 (−25‰) according to Stuiver and Polach
211 (1997) for the fractionation effects. The $f_M(\text{OC})$ can be estimated by using the $f_M(\text{TC})$ and
212 $f_M(\text{EC})$ in an isotope mass balance equation (Zhang et al., 2015). Additionally, we estimated
213 the relative contributions of OC and EC from the nonfossil and fossil sources ($f_{\text{nonfossil}}$ and
214 f_{fossil} , respectively) using the following equations.

215 $f_{\text{nonfossil-OC}} = f_M(\text{OC-sample})/f_M(\text{OC-ref}); f_M(\text{OC-ref}) \approx 1.07 \pm 0.04$ (1)

216 $f_{\text{nonfossil-EC}} = f_M(\text{EC-sample})/f_M(\text{EC-ref}); f_M(\text{EC-ref}) \approx 1.10 \pm 0.05$ (2)

217 $f_{\text{fossil-OC}} = 1 - f_{\text{nonfossil-OC}}$ (3)

218 $f_{\text{fossil-EC}} = 1 - f_{\text{nonfossil-EC}}$ (4)

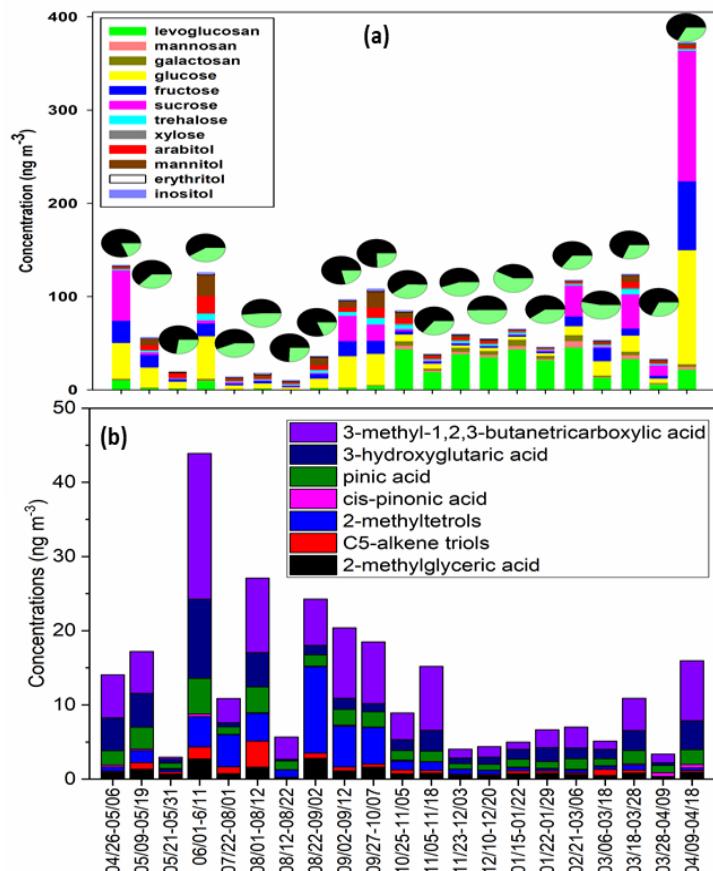
219 The reference values of OC and EC were obtained from Mohn et al. (2008). Using
220 the fractions of $f_{\text{fossil-OC}}$ and $f_{\text{nonfossil-OC}}$, we can, therefore, estimate the mass concentration of
221 ambient organic carbon (OC-ambient) from fossil and nonfossil sources ($\text{OC}_{\text{fossil}}$ and
222 $\text{OC}_{\text{nonfossil}}$, respectively).

223 $\text{OC}_{\text{nonfossil}} = f_{\text{nonfossil-OC}} \times [\text{OC}]_{\text{ambient}}$ (5)

224 $\text{OC}_{\text{fossil}} = f_{\text{fossil-OC}} \times [\text{OC}]_{\text{ambient}}$ (6)

225 More details on the radiocarbon isotopic composition data over Gosan were reported
226 elsewhere (Zhang et al., 2016).

227 **3. Results and discussion**


228 **3.1. Trajectory and cluster analysis**

229 Backward air mass trajectories are useful for assessing the impact of local versus regional
230 source emissions over Gosan. Seven-day isentropic backward air mass trajectories were
231 computed using the hybrid single-particle Lagrangian integrated trajectory model (HYSPLIT,
232 version 4: [Stein et al., 2015](#)) over the KCOG for the sampling period using the
233 meteorological datasets of the Global Data Assimilation System (GDAS) network. The
234 trajectory endpoint files from the HYSPLIT model were further used for the cluster analysis
235 using the Trajstat package (Wang et al., 2009b) for all four seasons (Figure 1). Although
236 cluster analysis revealed the predominance of continental transport **in the spring**, fall, and
237 winter seasons, the air masses over the KCOG in summer mostly originated from the WNP.
238 Since spring is a transition of winds switching from westerlies to easterlies, Gosan is likely
239 influenced by the long-range transport of dust, pollution, and sea-salt aerosols.

240 The vertical mixing of pollutants within the boundary layer height also plays an
241 important role in controlling the strength of continental outflow alongside regional
242 meteorology. For instance, the mixing height of air parcels from the HYSPLIT model is
243 mostly confined to 1000 m in winter but somewhat increased towards **the spring** and fall
244 seasons (Figure S1). This vertical enhancement in the boundary layer height facilitates the
245 transport of mineral dust particles from the arid and semiarid regions in East Asia along with
246 urban pollutants to Gosan in spring and fall compared to winter. However, the strength of **the**
247 **continental** outflow somewhat depends on several factors, including source emissions,
248 meteorology, and mixing height of air parcels.

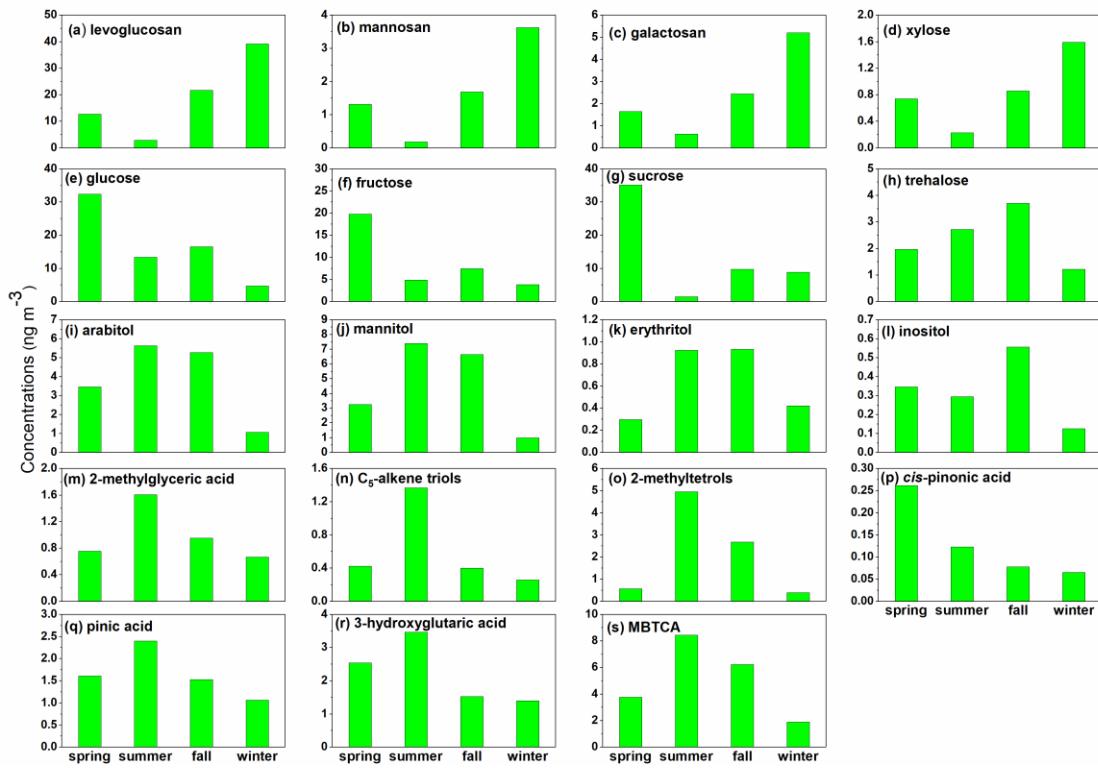
249 Gosan is influenced by three types of air masses in spring (Figure 1a), from the
250 Mongolian Desert (cluster 1: 15%), North China (cluster 2: 45%), and from the Yellow Sea
251 (cluster 3: 40%). In contrast, the easterlies from the WNP in summer mostly influenced the
252 composition of TSP over the KCOG. This inference is based on the cluster analysis for
253 summer samples (Figure 1b), which showed four regimes, including transport from the Sea of
254 Japan (cluster 1: 13%), WNP (cluster 2: 22%), South China Sea (cluster 3: 46%), and East
255 China Sea (cluster 4: 19%). In contrast, cluster analysis revealed three major transport
256 regimes from East Asia in fall and winter (Figure 1c-d). However, there are subtle differences
257 that exist between winter and fall in terms of influence from nearby versus distant pollution
258 sources. For instance, long-range transport of air masses from west Mongolia (cluster 1:
259 21%) and the Russian Far East (cluster 3: 14%) exerted a weak influence on the TSP sampled
260 over Gosan in winter. Besides, we observed a somewhat larger impact of air masses from the
261 North China Plain over Gosan (cluster 2: 64%) in winter. In contrast, Gosan is less influenced

262 by air masses originating from the North China Plain, contributing ~28% (cluster 1) than
263 those from Mongolia (cluster 2: 39%) and the Russian Far East (cluster 3: 33%) in fall.
264 Therefore, the impact of East Asian outflow is stronger in winter than in spring and fall.
265
266

267
268 **Figure 2.** (a) Cumulative concentration levels of anhydrosugars, primary sugars, and sugar
269 alcohols (i.e., represented by bars), and depicting the contributions of nonfossil (green color)
270 and fossil (black color) organic carbon (i.e., pie charts), (b) Cumulative concentration levels
271 of isoprene- and monoterpane-SOA tracers in each TSP sample collected over Gosan.

272
273 **3.2. Temporal and seasonal variability of sugars**
274 The temporal/seasonal trends of sugar compounds over the KCOG provide useful
275 information on the emission strengths of various sources in the East Asian outflow. All three
276 anhydrosugars showed similar temporal and seasonal trends with higher concentrations in
277 winter and fall than spring and summer (Figures 2a and S2). As levoglucosan and other two
278 anhydrosugars (mannosan and galactosan) are the pyrolysis products of
279 cellulose/hemicellulose, their higher concentrations along with an increase in nonfossil

fraction of OC (Figure 2a; pie charts) in TSP from winter and fall revealed the impact of BB emissions. The MODIS satellite-based fire counts (Figure S1) together with cluster analysis in winter and fall (Figure 1) have revealed an influence of active BB emissions in the North China Plain, Mongolia, and the Russian Far East. The temporal trends of glucose, fructose, and sucrose exhibited less variability throughout the sampling period; however, we observed a slight increase in their concentration towards spring/summer (Figure 2a). Glucose and fructose have origins from leaf fragments and pollen species (Fu et al., 2012a). Sucrose is a potential tracer for airborne pollen (Fu et al., 2012a) and late spring/early summer is often regarded as a season of “pollen-allergies”. Therefore, the similar temporal trends of glucose and fructose with sucrose indicate their common source, pollens (Figure 2a). Since glucose, fructose, and sucrose showed moderately significant correlations ($R^2 = 0.44-0.48$, $p < 0.01$) with levoglucosan in winter, it is somewhat possible that BB source emission could also influence the concentrations of these saccharides in this season (Haque et al., 2019; Fu et al., 2008).


BB also contributes to xylose and, hence, the temporal variability of xylose is mimicking that of the anhydrosugars. Trehalose is a primary sugar and a useful tracer for organic carbon associated with soil dust particles (Fu et al., 2012a). The temporal variability of trehalose closely resembled that of the fungal spore tracers (arabitol, mannitol, and erythritol), showing high concentrations in the spring, summer, and fall seasons (Figures 2a and S2) (Zhu et al., 2015a; Fu et al., 2012a). The KCOG is under the influence of a large-scale advection of mineral dust from East Asia to the WNP during these three seasons (Tyagi et al., 2017; Huebert et al., 2003). The mineral dust transport from East Asia to the WNP can be traced by the high concentrations of non-sea-salt Ca^{2+} in the TSP samples from Gosan (Arimoto et al., 1996). Similar temporal trends of trehalose and nss- Ca^{2+} , particularly in spring samples (Figure S3), suggest that the abundance of OA specific to fungal spores over Gosan is likely associated with the Kosa (Asian dust) events.

The major sources of arabitol and mannitol are airborne fungal spores (Bauer et al., 2008), accompanying detritus from mature leaves (Pashynska et al., 2002). Heald and Spracklen (2009) reported that mannitol and arabitol are considerably associated with terrestrial biosphere activity. Inositol is largely derived from the developing leaves in summer (Pashynska et al., 2002) and BB in winter (Fu et al., 2010b). Zhu et al. (2015b) found a similar seasonal behavior of inositol with those of other sugar alcohols with the predominance in summer, associated with microbial activities in local forests from Okinawa. Inositol showed a moderately significant correlation with levoglucosan ($R^2 = 0.33$, $p < 0.01$)

314 in winter; however, there were no positive linear relationships between levoglucosan and
315 other sugar alcohols, implying a partial emission of inositol from the BB during winter in
316 Gosan aerosols. Therefore, the temporal variability of inositol differs **from that of the other**
317 sugar alcohols (Figure S2). The sources of sugar compounds are further discussed in section
318 3.4.

319 The seasonally averaged concentrations of all the anhydrosugars and xylose are
320 higher in winter/fall than spring/summer (Figure 3a-d), possibly due to a greater influence of
321 long-range transport from East Asia. In contrast, glucose, fructose, and sucrose peaked in
322 spring but decreased **in the other seasons** (Figure 3e-g), mainly because of the contribution of
323 airborne pollen. Trehalose showed higher concentrations in fall and summer, followed by
324 spring and winter (Figure 3h). Arabitol, mannitol, and erythritol showed higher
325 concentrations in summer/fall than in winter and spring (Figure 3i-k). This seasonal trend is
326 consistent with those of soil-derived fungal spores. This feature is consistent with earlier
327 observations from a remote oceanic island in the WNP (Okinawa) during the impact of East
328 Asian outflow (Zhu et al., 2015a). The seasonally averaged mass concentrations of inositol
329 are highest in spring, followed by summer, fall, and winter (Figure 3l). Overall, the molecular
330 compositions of anhydrosugars showed the predominance of levoglucosan followed by
331 galactosan and mannosan (Figure S4). Galactosan is more abundant in crop-residue burning
332 emissions than mannosan (Engling et al., 2009; Sheesley et al., 2003). It is very much likely
333 that the impact of crop-residue burning emissions in East Asia over Gosan is more prominent
334 in winter/spring. Such high abundances of galactosan over mannosan were found in the North
335 China Plain (Fu et al., 2008) and in the Indo-Gangetic Plain outflow sampled over the Bay of
336 Bengal (Bikkina et al., 2019). Although the temporal variability of primary sugars in the TSP
337 samples from Gosan showed a characteristic peak of glucose and sucrose (Figure 2a), the
338 seasonally averaged distributions are different (Figure S4). The molecular distributions of
339 sugar alcohols are characterized by high loadings of arabitol and mannitol, followed by
340 erythritol and inositol (Figure S4).

341

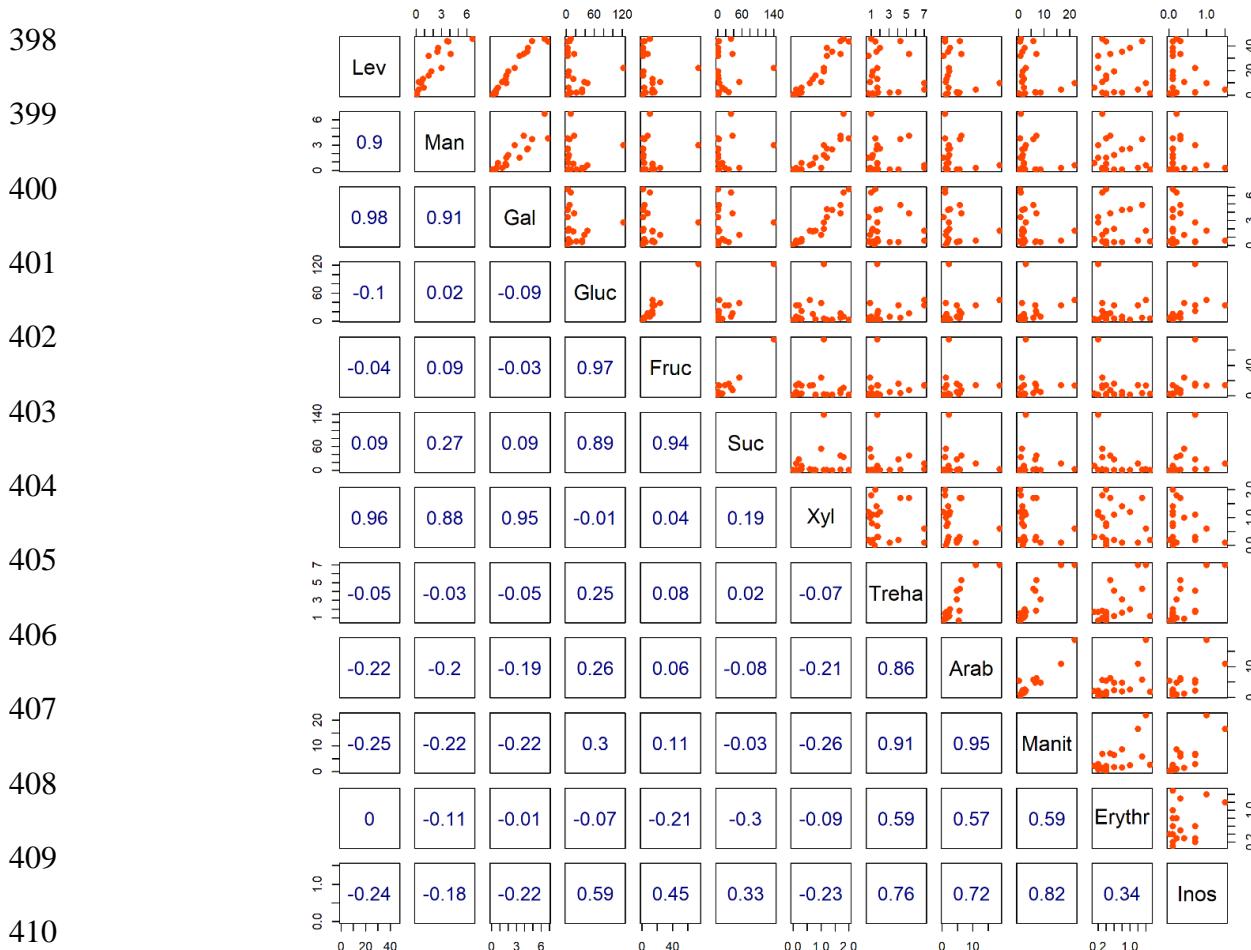
342

343 **Figure 3.** Seasonal variability of the atmospheric levels of sugar compounds and BSOA
 344 tracers in TSP samples from Gosan during April 2013-April 2014.

345

346 3.3. Temporal and seasonal variability of BSOA tracers

347 We identified six isoprene-SOA tracers such as 2-methylglyceric acid (2-MGA), three C₅-
 348 alkene triols, and two 2-methyltetrols (2-methylthreitol and 2-methylerythritol) (2-MTs) in
 349 Gosan aerosol samples (Table 1). The sum of the isoprene-SOA tracers ranged from 0.35 to
 350 15.1 ng m⁻³ (avg. 3.69 ng m⁻³) with the predominance of 2-MTs (avg. 2.09 ng m⁻³). 2-MGA is
 351 the second most abundant isoprene-SOA tracer (avg. 0.99 ng m⁻³), a high-generation product
 352 probably formed by further photooxidation of methacrolein and methacrylic acid. A similar
 353 molecular composition was observed over the North Pacific and California Coast (Fu et al.,
 354 2011). All the isoprene-SOA tracers exhibited similar temporal variations with higher
 355 concentrations in the summer/spring months compared to autumn and winter (Figure 2b).
 356 Conversely, four monoterpene-SOA tracers, i.e., *cis*-pinonic acid, pinic acid, 3-
 357 hydroxyglutaric acid (3-HGA), and 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), were
 358 detected in the Gosan samples (Table 1). The total concentrations of monoterpene-SOA
 359 tracers were found to be 1.65 to 35.5 ng m⁻³ (avg. 9.24 ng m⁻³) with a high concentration of
 360 MBTCA (avg. 5.11 ng m⁻³). All the monoterpene-SOA tracers showed similar temporal
 361 trends with high values in summer/spring periods than autumn/winter (Figure 2b).


362 Nevertheless, *cis*-pinonic acid was ascribed a somewhat different temporal variability with
363 other monoterpene-SOA tracers. It is likely that *cis*-pinonic acid might be further photo-
364 oxidized to form MBTCA (Szmigielski et al., 2007).

365 The seasonal average of isoprene-SOA tracers showed high concentrations in
366 summer, followed by spring/fall and winter (Figure 3m-o). One key feature of the data
367 presented here is that two fall samples (KOS984; 2-12 September and KOS986; 27
368 September to 07 October) exhibited high concentrations for 2-MTs over Gosan (Figure 2b).
369 We presumed that local vegetation might contribute significantly to the formation of 2-MTs
370 as it is a first-generation product. Moreover, 2-MTs can be derived from the open ocean
371 under low NO_x conditions (Hu et al., 2013). 3-HGA and pinic acid showed somewhat higher
372 concentrations in summer/spring than fall/winter due to the growing vegetation (Figure 3q-r).
373 *Cis*-pinonic acid was more abundant in spring compared to summer (Figure 3p) because of its
374 photo-degradation, as discussed above. In contrast, MBTCA was dominant in summer/fall
375 than spring/winter (Figure 3s). Here, the formation of MBTCA could be enhanced in fall
376 during atmospheric transport from East Asia. The molecular distributions of isoprene-SOA
377 tracers were characterized by a high loading of 2-MTs, followed by 2-MGA and C₅-alkene
378 triols in all seasons (Figure S4). The molecular composition of monoterpene-SOA tracers was
379 dominated by MBTCA, followed by 3-HGA, pinic acid, and *cis*-pinonic acid in all seasons
380 (Figure S4). Overall, BSOA tracers were found to be most abundant in summer, followed by
381 fall, spring, and winter (Table 1). Interestingly, it is likely that secondary OA undergoes
382 much faster cycling than the primary sugar compounds, considering the feasibility of
383 photooxidation. This would mean a slight underestimation of BSOA over the KCOG in the
384 East Asian outflow and, hence, their atmospheric abundances over Gosan reflect a lower
385 limit.

386 Kang et al. (2018b) reported that monoterpene-SOA tracers were more abundant than
387 isoprene-SOA tracers in spring-summer over the East China Sea, which is consistent with this
388 study. Although the mass budget calculations showed that isoprene and monoterpenes are
389 largely emitted by terrestrial plants; however, the open ocean can also contribute to isoprene
390 and monoterpenes significantly (Conte et al., 2020; Shaw et al., 2010; Broadgate et al., 1997).
391 Air mass back trajectory and cluster analysis (Figure 1) implied that the air masses mostly
392 originated from the ocean during summer. This means the open ocean significantly
393 contributed to isoprene-SOA production. However, terrestrial sources from the continent also
394 substantially enhanced the formation of BSOA. For example, one sample (KOS979; 1-11

395 June 2013) during summer showed the highest loading of BSOA tracers (Figure 2b) when air
396 masses were transported from the continent (Zhang et al., 2016).

397

411 **Figure 4.** Multiple linear regression (MLR) analysis of airborne sugar compounds in TSP
412 collected over Gosan.

413

414 **3.4. Source apportionment- regression analysis and diagnostic ratios**

415 Anhydrosugars strongly correlated with xylose (Figure 4), suggesting their common source as
416 BB emission in East Asia. Fu et al. (2012a) analyzed pollen from different tree species (*e.g.*,
417 White birch, Chinese willow, Peking willow, Sugi, Hinoki), which are enriched in sucrose
418 ($182\text{-}37,300 \mu\text{g g}^{-1}$), glucose ($378\text{-}3601 \mu\text{g g}^{-1}$) and fructose ($162\text{-}1813 \mu\text{g g}^{-1}$). In our
419 samples, sucrose strongly correlated with glucose and fructose (Figure 4), suggesting their
420 origin from plant-derived airborne pollen. Likewise, a strong correlation was found between
421 arabitol and mannitol, indicating a mutual origin from a similar type of fungal spores (Zhu et
422 al., 2015a; Fu et al., 2012a; Bauer et al., 2008; Yttri et al., 2007). Bauer et al. (2008) ascribed

423 weak correlations between arabitol and mannitol to the diverse nature of ambient fungal
424 spores. Furthermore, both sugar alcohols correlated well with trehalose, a tracer for soil
425 organic carbon (Fu et al., 2012a). This observation suggests their common origin from soil
426 organic matter associated with fungal spores. Erythritol also originates from fungal spores;
427 however, its abundance is affected by the atmospheric aging process. Kessler et al. (2010)
428 reported that erythritol is degraded during long-range transport in 12.7 days. Consequently,
429 arabitol and mannitol were moderately correlated with erythritol in the Gosan samples due to
430 the degradation of the latter sugar alcohol in the East Asian outflow.

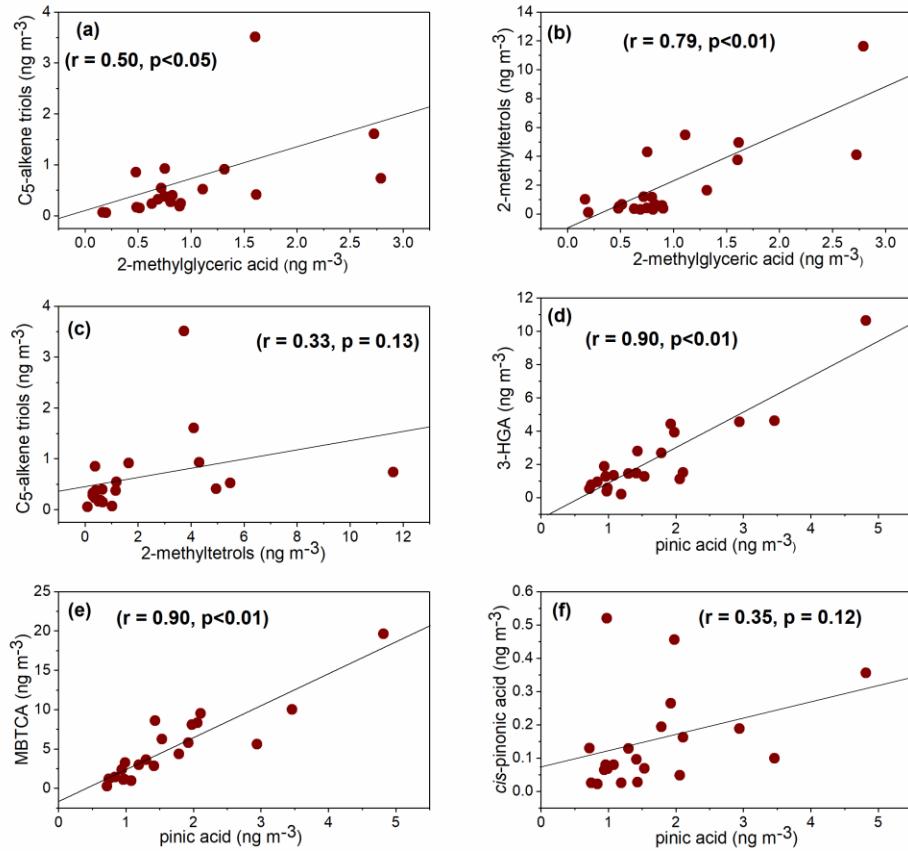
431 The linear relationship of levoglucosan (*Lev*) with mannosan (*Man*), galactosan (*Gal*),
432 and nss- K^+ provide useful information on the type of BB emissions (hardwood, softwood, or
433 crop-residue). Ratios of *Lev/Man* and *Lev/(Man + Gal)* can be useful to distinguish BB and
434 coal combustion contributions. The average ratios of *Lev/Man* (15.1 ± 6.76) and *Lev/(Man +*
435 *Gal)* (4.27 ± 1.23) in Gosan aerosols are much closer to those from wood burning and coal
436 combustion sources emissions, respectively (Yan et al., 2018). It reveals that *Lev* could
437 originate from both biomass and coal burning source emissions, which is consistent with the
438 linear relationship between *Lev-C* and the fossil-/nonfossil carbon fraction (section 3.6).
439 Furthermore, different types of biomass are characterized by distinct *Lev/Man* ratios. For
440 instance, *Lev/Man* ratios from the softwood burning emissions (3-10) differ from those of
441 hardwood (15-25) and crop-residues (>40) (Singh et al., 2017; Schmidl et al., 2008a, b; Fu et
442 al., 2008; Engling et al., 2006, 2009; Fine et al., 2001, 2004). We found that the *Lev/Man*
443 ratios (Table 2) over the KCOG overlap between seasons and are somewhat close to that of
444 hardwood burning emissions in northern China, Mongolia, and the Russian Far East, as
445 corroborated by the backward air mass trajectories and MODIS fire counts (Figures 1 and
446 S1). Besides, *Lev/K⁺* and *Man/Gal* ratios in summer differ from those of other seasons (Table
447 2). Cheng et al. (2013) have apportioned qualitatively the source contributions of
448 anhydrosugars over a receptor site based on the comparison of *Lev/K⁺* and *Lev/Man* ratios in
449 aerosols to those from various sources profiles compiled from the literature. This approach of
450 using the mass ratios of *Lev/Man* and *Lev/K⁺* has been proven useful for deciphering the
451 difference in BB-derived OA (Bikkina et al., 2019).

452 Here, we adopted this methodology to ascertain the likely contributing sources of
453 anhydrosugars, which are BB tracers from different seasons (Figure 5). This source
454 apportionment relies on the fact that the *Lev/K⁺* ratio from the softwood burning (10-1000) is
455 higher than from hardwood (1-100) (Fine et al., 2004). In contrast, *Lev/Man* ratios for
456 softwood are lower than those of hardwood burning (10-100) (Fine et al., 2004). Likewise,

457 the *Lev/Man* and *Lev/K⁺* ratios from grasses and crop-residues are 10-100 and 0.01-1.0,
 458 respectively (Bikkina et al., 2019). On a similar note, the *Lev/K⁺* ratios from the burning of
 459 pine needles (0.1-1.0) somewhat overlap with those from hardwood burning emissions but
 460 are characterized by distinct *Lev/Man* ratios (Bikkina et al., 2019). The burning of dead
 461 leaves (duff) showed higher *Lev/K⁺* ratios than those of pine needles and grasses, but their
 462 *Lev/Man* ratio is on the lower side than for the former biomass type and the softwood burning
 463 emissions. However, *Lev* is more susceptible to degradation by photooxidation with OH
 464 radicals during atmospheric transport (half-life: <2.2 days) (Hennigan et al., 2010) and this
 465 would cause lower abundances of this anhydrosugar. Hence, the hardwood *Lev/K⁺* ratios
 466 could slightly shift downwards. Therefore, caution is required while interpreting the ambient
 467 data from a receptor site (Bikkina et al., 2019). Overlapping the seasonal data on this scatter
 468 plot of *Lev/K⁺* versus *Lev/Man* (Figure 5) clearly revealed a mixed contribution of burning of
 469 hardwood and crop-residue in the East Asian outflow. It should be noted that the
 470 photooxidation process during atmospheric transport is also applicable for low concentrations
 471 and poor correlations of other primary saccharides.

472

473



482 **Figure 5.** Scatter plot of levoglucosan/ K^+ versus levoglucosan/mannosan ratios in TSP
 483 collected over Gosan during April 2013-April 2014. The data for Siberian forest fires and
 484 burning leaves were adopted from Sullivan et al. (2008).

485

486 The correlation coefficients and diagnostic ratios of BSOA tracers specify their source
487 origin or formation pathway. Nevertheless, atmospheric stability or reactivity of BSOA
488 tracers through the photooxidation during long-range transport may bias the correlation
489 coefficients in Gosan aerosols. 2-MGA showed a significant correlation with 2-MTs ($r =$
490 0.79, $p < 0.01$) and C₅-alkene triols ($r = 0.50$, $p < 0.05$) (Figure 6a-b), suggesting their similar
491 formation pathway or common sources of isoprene-SOA tracers. However, a poor correlation
492 coefficient between 2-MTs and C₅-alkene triols ($r = 0.33$, $p = 0.13$) (Figure 6c) indicates their
493 different formation process over the Gosan atmosphere. Wang et al. (2005) documented that
494 polyols are formed from isoprene through diepoxy derivatives, which further convert into 2-
495 MTs by acid-catalyzed hydrolysis. On the other hand, C₅-alkene triols are produced from the
496 precursor of hydroxyperoxy radicals that are initially derived from isoprene through
497 rearrangement reactions (Surratt et al., 2006). It can be noted that the formation mechanisms
498 of 2-MGA and 2-MTs are different while depending on the NO_x concentrations (Surratt et al.,
499 2010). Thus, the ratio of 2-MGA/2-MTs attributes to the influence of NO_x on isoprene-SOA
500 formation. We found a low ratio of 2-MGA/2-MTs (0.67) (Figure S5a, Table 2) in summer,
501 implying enhancement of 2-MTs formation over the open ocean due to the low-NO_x
502 environment in the ocean atmosphere. On the contrary, the 2-MGA/2-MTs ratios for other
503 seasons were >1.0 (Figure S5a, Table 2), indicating an elevated formation of 2-MGA through
504 continental high NO_x condition, which is consistent with the air masses back trajectory.

505

506

507 **Figure 6.** Pearson linear correlation coefficient analysis of BSOA tracers in Gosan TSP
 508 aerosols during April 2013-April 2014.

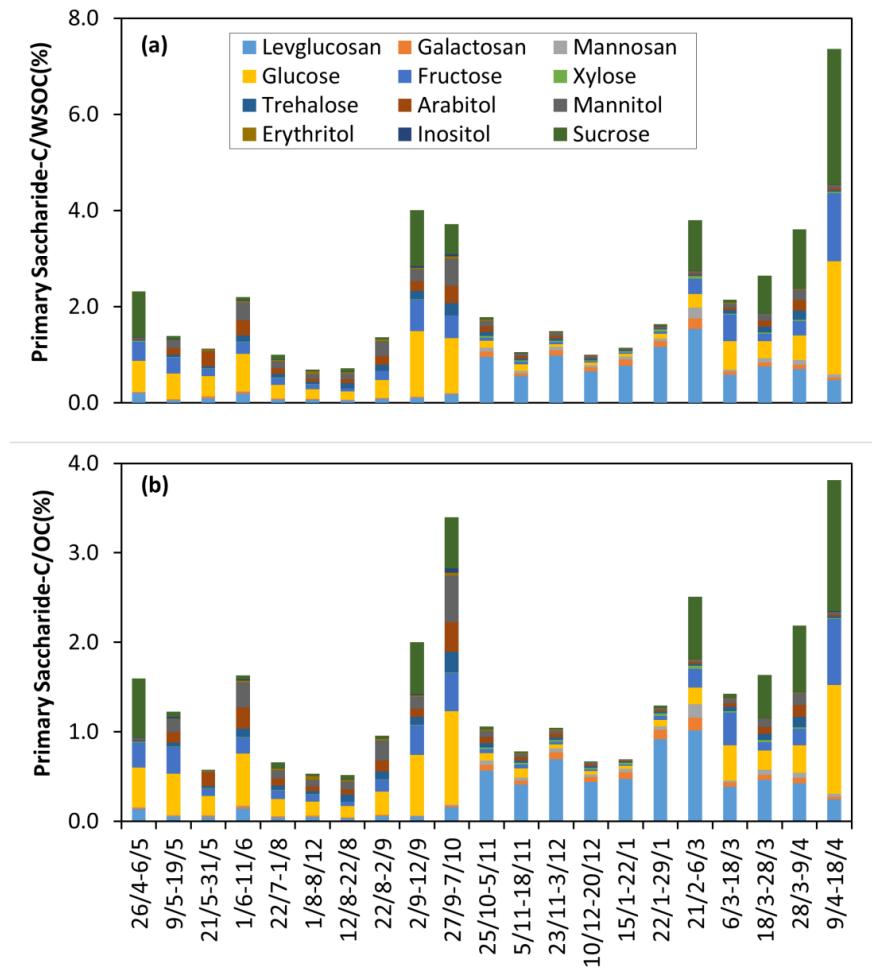
509

510 *Cis*-pinonic acid showed a weak correlation with pinic acid ($r = 0.35, p = 0.12$)
 511 (Figure 6f), suggesting that different atmospheric reactivity of *cis*-pinonic/pinic acids during
 512 transport would cause such poor correlation. In contrast, pinic acid exhibited a strong positive
 513 linear correlation with 3-HGA ($r = 0.90, p < 0.01$) and MBTCA ($r = 0.90, p < 0.01$) (Figure 6d-e),
 514 implying their similar sources. It should be noted that the formation processes of pinic acid,
 515 3-HGA, and MBTCA are different because pinic acid is a first-generation product, and 3-
 516 HGA and MBTCA are high-generation products (Claeys et al., 2007; Müller et al., 2012;
 517 Szmigielski et al., 2007). The ratio of *cis*-pinonic acid + pinic acid to MBTCA (P/M) is used
 518 to evaluate the aging of **monoterpene-SOA**.

519 A low P/M ratio suggests the transformation of *cis*-pinonic and pinic acids to
 520 MBTCA and thus relatively aged monoterpene-SOA, whereas a high ratio reflects relatively
 521 fresh monoterpene-SOA (Gómez-González et al., 2012; Ding et al., 2014). Gómez-González
 522 et al. (2012) reported aged monoterpene-SOA (P/M = 0.84) from a Belgian forest site while
 523 fresh chamber-produced α -pinene-SOA tracers showed P/M ratios of 1.51 to 3.21 (Offenberg

524 et al., 2007). The average ratio of P/M in this study showed 0.62 with the low value in
525 summer (Figure S5b, Table 2), which is lower than those of Guangzhou (fresh monoterpenes-
526 SOA; 28.9) while the air masses originated from southern China (Ding et al., 2014). This
527 observation indicates that monoterpenes SOA have undergone substantial aging during
528 transport to Gosan, particularly in summer when extensive photochemical oxidation occurred
529 due to the high temperature and intense solar radiation.

530 **3.5. Relative abundances in WSOC and OC**


531 Levoglucosan is the most abundant anhydrosugar, contributing 0.05-1.54% of WSOC and
532 0.03-1.02% of OC. Likewise, sucrose, glucose, and fructose were more abundant primary
533 sugars, contributing 0.01-2.83%, 0.03-1.22%, and 0.02-0.74% of WSOC, respectively.
534 Contributions of the three primary sugars varied from 0.05% to 3.41% of OC. Arabitol and
535 mannitol are the most abundant sugar alcohols, whose contribution to WSOC and OC ranged
536 from 0.02% to 0.93% and 0.01% to 0.85%, respectively. Figure 7 depicts the contribution of
537 sugar compounds to WSOC and OC in TSP collected over Gosan during the study period.
538 We also compared the atmospheric abundances of sugar compounds from Gosan with the
539 literature data (Table 3). This comparison revealed the less influence of BB tracer compounds
540 (i.e., anhydrosugar levels) over Gosan, a factor of 5-10 times lower than those reported for
541 the BB-influenced source regions in China and East Asia (Fu et al., 2012b; Kang et al.,
542 2018a; Wang and Kawamura, 2005; Wang et al., 2012). However, the levels of anhydrosugar
543 over Gosan are higher than those observed over the remote Canadian High Arctic site (Fu et
544 al., 2009a). In contrast, Gosan is characterized by high concentrations of primary sugars
545 compared to other remote sampling sites in Table 3. This is because of the overwhelming
546 contribution of primary sugars associated with soil dust particles over Gosan during the East
547 Asian outflow. Such high loadings of primary sugars were observed from other remote island
548 receptor sites in the WNP (Okinawa) during the spring season (Zhu et al., 2015a). Likewise,
549 the concentrations of sugar alcohols from Gosan are similar to those from other receptor sites
550 influenced by the East Asian outflow (Verma et al., 2018; Zhu et al., 2015a).

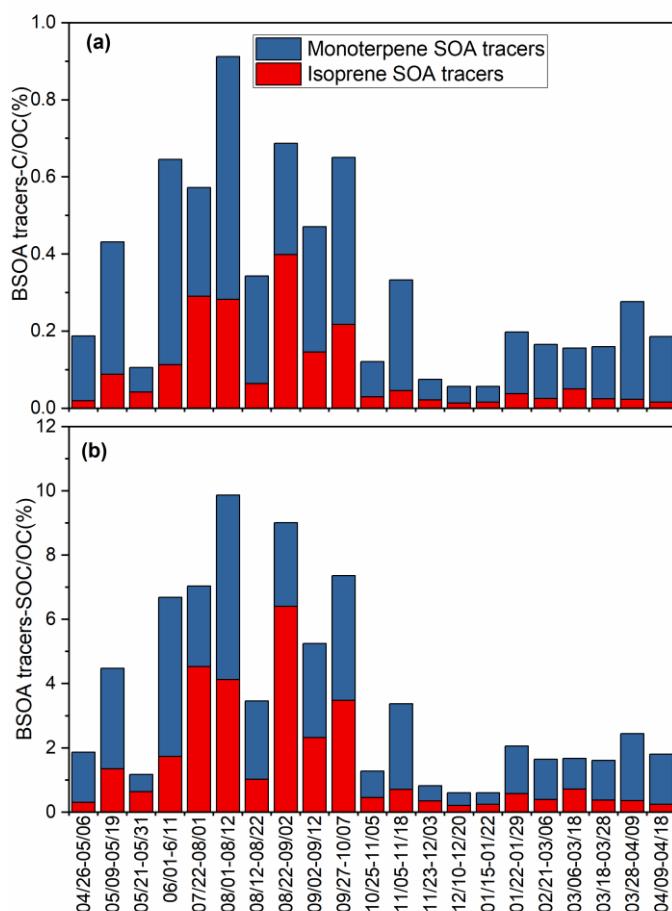
551

552

553

554

555


556 **Figure 7.** Contribution of primary saccharide-C in (a) WSOC(%) and (b) OC(%) in TSP
557 collected over Gosan during April 2013-April 2014.

558

559 The Contributions of isoprene-SOA tracers to ambient OC (0.01-0.40%, avg. 0.09%)
560 and WSOC (0.02-0.57%, 0.13%) were lower than those of monoterpene-derived SOA (0.04-
561 0.63%, 0.23% for OC and 0.06-0.82%, 0.33% for WSOC). The contributions of isoprene
562 oxidation products to OC and WSOC were found to be highest in summer (0.23% and 0.32%,
563 respectively), followed by fall (0.09% and 0.13%), spring (0.04% and 0.06%), and winter
564 (0.02% and 0.03%). Likewise, the contributions of monoterpene-SOA products to aerosol OC
565 and WSOC exhibited the highest value in summer (0.40% and 0.55%, respectively), followed
566 by fall (0.24% and 0.35%), spring (0.18% and 0.27%), and winter (0.10% and 0.14%). We
567 found that the contribution of BSOA products to the carbonaceous components was twice in
568 summer (Figure 8, Table 2). This means BSOA formation occurred in summer to a greater
569 extent due to the intensive BVOCs emission with key factors of meteorological parameters
570 (higher temperature and radiation), i.e., higher concentrations of ozone, and other oxidizing

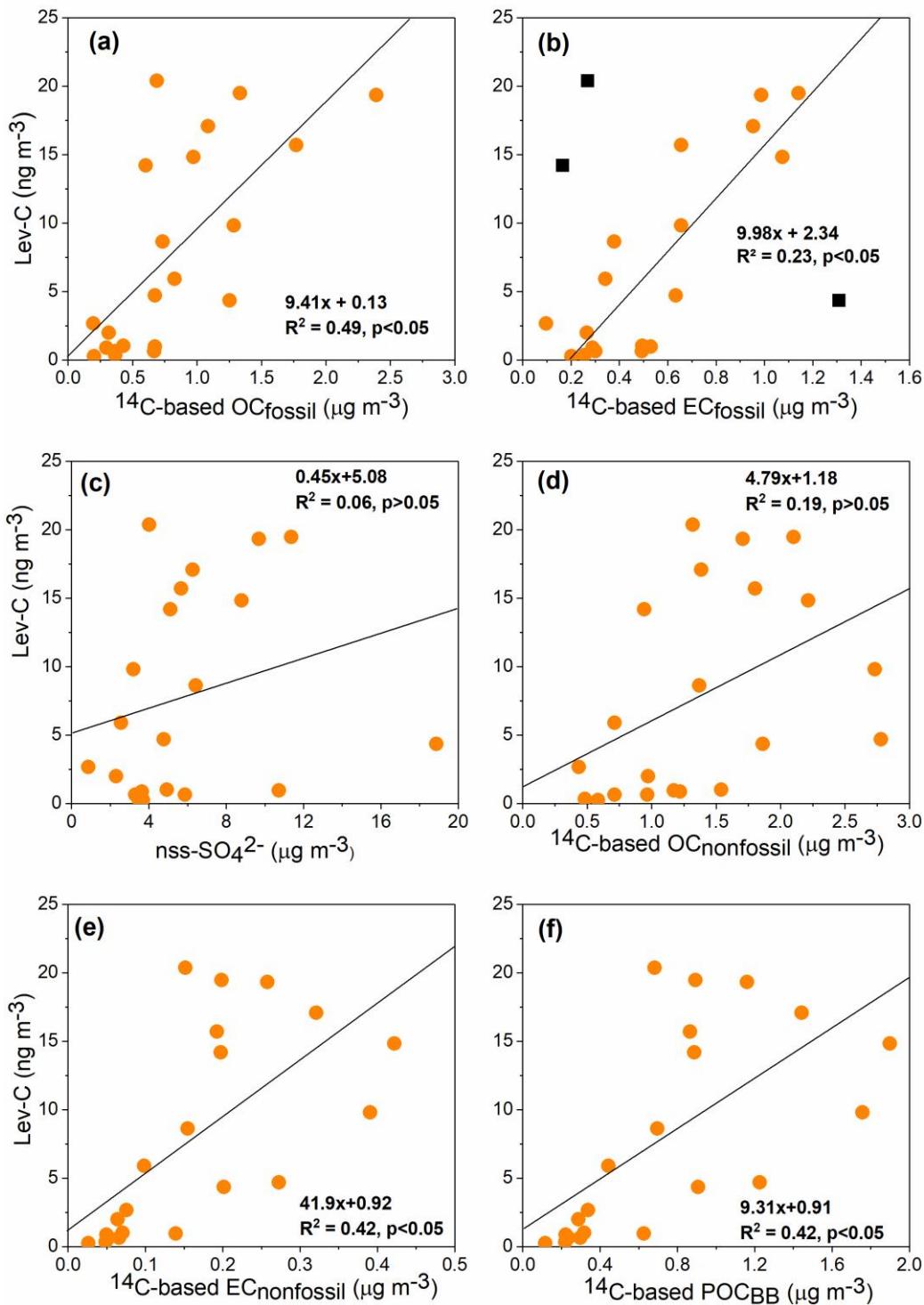
571 agents (NO_x , OH , etc.). It should be pointed out that the fraction of WSOC in OC
 572 (WSOC/OC) is often prone to photochemical aging and, hence, contributes to SOA. More
 573 specifically, the WSOC/OC > 0.4 over a receptor site indicates aged aerosols with a
 574 significant SOA contribution (Haque et al., 2019; Boreddy et al., 2018). In our study, the
 575 average WSOC/OC ratio was observed 0.68 with the highest in summer (0.72), although
 576 subtle difference exhibited in winter/autumn (> 0.68), implying the presence of aged OA over
 577 the KCOG. Such higher abundances of SOA over Gosan during transport from East Asia is
 578 mainly due to photochemical aging of anthropogenic (fossil fuel/biomass combustion)
 579 emissions. Huang et al. (2014) reported significant SOA formation from the fossil
 580 fuel/biomass combustion precursor VOCs in winter over China.

581

582

583 **Figure 8.** Contribution of (a) isoprene- and monoterpane-SOA tracers-C in ambient OC(%)
 584 and (b) isoprene- and monoterpane-SOA tracers-SOC in ambient OC(%) in Gosan aerosol
 585 samples during April 2013-April 2014.

586


587 We estimated secondary organic carbon (SOC) derived from isoprene and
588 monoterpenes, using the measured values of BSOA tracers and following the SOA tracer-
589 based method first proposed by Kleindienst et al. (2007). A summary of the estimated SOC is
590 provided in Table 2. The contribution of isoprene to SOC was calculated 2.26 to 97.4 ngC m⁻
591 ³ (avg. 23.7 ngC m⁻³), accounting for 1.45% of OC and 35.5% of total BSOC with the
592 predominance in summer (3.56% and 46.6% for OC and SOC, respectively). The estimation
593 of monoterpane-SOA to SOC (avg. 40.1 ngC m⁻³) was observed around two times higher than
594 that of isoprene-SOA (Table 2). Interestingly, the contribution of monoterpane-derived SOC
595 to ambient OC (3.65%) was dominant in summer, but monoterpane SOC to total SOC
596 (72.1%) was most abundant in spring (Figure 8b). The seasonal distributions of biogenic
597 SOC (Table 2) implied that a substantial amount of SOC was formed from monoterpenes in
598 spring. The estimated biogenic SOC at the KCOG is almost one order of magnitude lower
599 than those from other continental sites in China urban areas (e.g., Pearl River Delta: 446 ngC
600 m⁻³) (Ding et al., 2012). However, the estimated biogenic SOC load from the KCOG is much
601 higher than that reported from a remote site in the Canadian High Arctic (Alert: 9.4 ngC m⁻³)
602 (Fu et al., 2009b) and comparable with over the East China Sea (Kang et al., 2018b).

603 It should be noted that concentrations of SOA tracers cannot always provide the
604 actual contribution of the biogenic source to ambient organic aerosol mass. For example,
605 loadings of monoterpane-SOA tracers were lower in sample KOS999 (28 March - 9 April
606 2014) (3.02 ng m⁻³) compared to sample KOS1000 (9 - 18 April 2014) (14.4 ng m⁻³), whereas
607 the estimated contribution of SOC to ambient OC showed an opposite trend (KOS999:
608 2.08%; KOS1000: 1.56%). This result demonstrates that the estimation of SOC is an
609 important factor in evaluating the contribution of BSOA to organic aerosol mass. We
610 calculated biogenic OC using radiocarbon (¹⁴C) data following the method proposed by
611 Szidat et al. (2006). Biogenic OC showed a poor correlation with biogenic SOC ($r = 0.36$, $p =$
612 0.09) but a significant linear relationship with primary sugars (i.e., glucose, fructose and
613 sucrose) ($r = 0.54$, $p < 0.5$), suggesting that primary bioaerosols from plant-derived airborne
614 pollen dictate on biogenic OC over Gosan.

615 **3.6. Significance of fossil fuel as a source for levoglucosan**

616 The ambient *Lev* levels showed a significant linear relationship with the OC_{fossil}, suggesting
617 the fossil source contribution of this molecular marker (Figure 9a). However, such a
618 significant correlation was not evident between OC_{fossil} and other major sugar compounds.
619 Until recently, *Lev* has been thought to originate primarily from the hemicellulose/cellulose
620 pyrolysis of vegetation and, hence, can be employed as a powerful tracer for biomass smoke

621 particles (Fraser and Lakshmanan, 2000; Simoneit et al., 1999). Nevertheless, residential
622 coals (*e.g.*, lignite and bituminous coal) have been shown to contain high concentrations of
623 ‘*Lev*’ but also emit traces of *Man and Gal* (Kourtchev et al., 2011; Fabbri et al., 2008).
624 Recently, Yan et al. (2018) found a significant linear relationship between the ^{14}C -based
625 fossil fraction of WSOC and *Lev-C* in the aerosols generated from coal combustion and the
626 ambient aerosol samples. Therefore, the prevailing linear relationship between $\text{OC}_{\text{fossil}}$ and
627 *Lev-C* in the Gosan samples (Figure 9a) is likely due to a common source contribution from
628 coal combustion in East Asia.

630 **Figure 9.** Linear regression analysis between levoglucosan in terms of their carbon content
 631 (*Lev-C*) and ^{14}C -based mass concentrations of (a) organic carbon and (b) elemental carbon of
 632 fossil origin ($\text{OC}_{\text{fossil}}$ and $\text{EC}_{\text{fossil}}$, respectively), (c) nss-SO_4^{2-} , (d) nonfossil derived organic
 633 carbon ($\text{OC}_{\text{nonfossil}}$), (e) nonfossil derived elemental carbon ($\text{EC}_{\text{nonfossil}}$), and (f) biomass
 634 burning derived primary OC (POC_{BB}) in TSP collected over Gosan during April 2013-April
 635 2014. In panel (b), the squares represent three outliers (i.e., samples with rather high and low
 636 *Lev/EC* ratios; please see text for more details).

637 The slope of the linear regression between *Lev-C* and OC_{fossil} (0.0094 ; Figure 9a) is
638 higher than those documented for the coal combustion source in China ($\sim 0.004 \pm 0.007$) (Yan
639 et al., 2018). Moreover, *Lev-C* moderately correlated with the EC_{fossil} with the regression
640 slope (~ 0.01) in the Gosan samples (Figure 9b), being comparable to that observed for the
641 coal combustion in China (0.044 ± 0.076) (Yan et al., 2018). It should be noted that excluding
642 the three outliers as shown in Figure 9b (black square), *Lev-C* showed a stronger correlation
643 with EC_{fossil} ($R^2 = 0.74$, $p < 0.05$). Of these, two outliers in winter (KOS995: 22-29 January
644 2014; KOS996: 21 February - 3 March 2014) have higher *Lev-C* levels over that of EC_{fossil} ,
645 when air mass trajectories showed the impact of BB emissions in the North China Plain. In
646 contrast, the third outlier in summer (KOS979: 1-11 June 2013) has a lower *Lev-C/EC_{fossil}*,
647 while air parcels transported from nearby cities in China, Korea, and Japan, thus, have more
648 contribution from vehicular emissions. Overall, both the regression slopes are, thus, the
649 representative nature of *Lev-C/OC_{fossil}* and *Lev-C/EC_{fossil}* in the East Asian outflow. *Lev-C* and
650 $nss-SO_4^{2-}$ exhibited a poor correlation (Figure 9c), although both were transported from East
651 Asia.

652 *Lev-C* exhibited a rather weak correlation with $OC_{nonfossil}$ ($R^2 = 0.19$) than that with
653 $EC_{nonfossil}$ ($R^2 = 0.42$) over Gosan during the study period (Figure 9d-e). This could be likely
654 because $OC_{nonfossil}$ has contributions from the BB and the secondary formation process or the
655 primary biogenic sources. The contribution of primary OC generated from BB (POC_{BB}) to
656 $OC_{nonfossil}$ was taken from Zhang et al. (2016). In their study, the ^{14}C -based $EC_{nonfossil}$ levels
657 were scaled by a factor to constrain the POC_{BB} (Zhang et al., 2016). Here the conversion
658 factor is '4.5' (range: 3-10), which is a median value representing the primary OC/EC ratio
659 from BB emissions ((POC/EC)_{BB}).

$$POC_{BB} = EC_{nonfossil} \times (POC/EC)_{BB} \quad (7)$$

660 *Lev-C* showed a somewhat improved linear correlation with POC_{BB} than with the $OC_{nonfossil}$
661 (Figure 9f). It is apparent from Figure 9 that the regression slopes are comparable, indicating
662 their contribution to *Lev* from both coal combustion and BB emissions over Gosan. The
663 prevailing weak linear relationship (moderate correlation) of *Lev* with nonfossil and fossil
664 carbon fractions is likely the result of photo-degradation of *Lev* during atmospheric transport.
665 This result would mean that the higher atmospheric abundance of *Lev* and its pronounced
666 linear relationships with the nonfossil and fossil carbon fractions implies a much stronger
667 impact of both source emissions in East Asia during the continental outflow in winter and
668 spring.

670 Overall, we present a new finding on the contribution of coal combustion sources in East
671 Asia in controlling the atmospheric levels of *Lev* apart from the traditional biomass/biofuel
672 burning emissions. This is based on the prevailing linear relationship between the
673 radiocarbon based nonfossil-EC and *Lev* in the year-round TSP samples collected from the
674 KCOG site in Jeju Island. The Gosan supersite is the best location to understand how the
675 chemical composition of source-emissions from East Asia affects the outflow regions in
676 winter and spring. Recent studies have highlighted the potential contribution of *Lev* from
677 residential coal combustion in China (Yan et al., 2018), with estimated annual emission of
678 ~2.2 Gg of *Lev* from domestic coal combustion (Wu et al., 2021). Given this background
679 information, the prevailing significant linear relationship between *Lev* and nonfossil-EC (p-
680 value < 0.05) over the KCOG clearly emphasizes the need for reconsideration of the previous
681 assessments on the impact of BB in East Asian outflow to the WNP. Additionally, this
682 dataset is further compared with the molecular distributions and relative abundances of
683 organic tracers in the TSP samples collected over Gosan during 2001, a decade ago (Fu et al.,
684 2012a). This comparison allows us to better understand the regional changes in the emission
685 sources (e.g., fugitive dust, BB, and fossil-fuel combustion) on a decadal basis.

686 4. Conclusions

687 We investigated seasonal variations of primary organic components such as anhydrosugars,
688 primary sugars, and sugar alcohols and biogenic secondary organic aerosol (BSOA) tracers
689 (isoprene- and monoterpane-derived SOA products) in ambient aerosols from Gosan, Jeju
690 Island. Among the detected sugar compounds, levoglucosan was dominant in winter/fall,
691 whereas glucose and sucrose were more abundant in spring/summer. The seasonal trends
692 documented that BB impact is more significant in winter/fall and the primary bioaerosol
693 particles are important in spring/summer. Diagnostic ratios of levoglucosan, galactosan, and
694 mannosan reflect that emissions from BB are mostly dominated by hardwood. The significant
695 linear relationship of sucrose with glucose and fructose suggests their origin from airborne
696 pollen. On a similar note, trehalose showed a significant positive correlation with arabitol,
697 mannitol, and erythritol, implying their contribution from airborne fungal spores and soil
698 microbes over the KCOG.

699 Distributions of biogenic SOA tracers were characterized by a predominance of
700 monoterpane- than isoprene-derived oxidation products in Gosan aerosols. The BSOA tracers
701 were formed in summer to a greater extent, followed by fall/spring and then winter. The low
702 ratio of *cis*-pinonic acid + pinic acid to MBTCA (P/M) demonstrated that monoterpane-SOA

703 was relatively aged over Gosan aerosols. The estimated secondary organic carbon (SOC)
704 with the predominance in summer shows that substantial BSOA formation occurred in
705 summer due to favorable meteorological conditions. The backward air mass trajectories and
706 source apportionment studies entirely demonstrated that **emission from East Asia**
707 significantly dominates the ambient OA mass over KCOG. Interestingly, levoglucosan-C
708 exhibited a significant positive correlation with nonfossil and fossil organic carbon fractions,
709 along with the comparable regression slopes. This result reveals that BB and coal (lignite)
710 combustion both are prominent sources for levoglucosan in the East Asian outflow.

711 Although there is some evidence that levoglucosan could originate from the
712 combustion of brown coals (*e.g.*, lignite) in China, **our observations** from the KCOG
713 (receptor site) also hinted at the fossil source contribution of this molecular marker in the
714 regional influx of the East Asian outflow. Therefore, attribution of ambient levoglucosan
715 levels over the WNP to the impact of BB emission may cause large uncertainty.

716 **Data availability**

717 The data used in this paper are available upon request from the corresponding author.

718 **Author contributions**

719 KK and YLZ designed the research. ML collected the aerosol samples. MMH and SB
720 performed the analysis of aerosol samples. MMH wrote the paper under the guidance of YLZ
721 and KK. All authors were actively involved in the discussion of the paper.

722 **Competing interests**

723 The authors declare that they have no conflict of interest.

724 **Acknowledgments**

725 We acknowledge the financial supports of the Japan Society for the Promotion of Science
726 (JSPS) through Grant-in-Aid No. 24221001 and the National Natural Science Foundation of
727 China (Grant No 41977305).

728

729

730 **References**

731 Arimoto, R., Duce, R. A., Savoie, D. L., Prospero, J. M., Talbot, R., Cullen, J. D., Tomza, U.,
732 Lewis, N. F., and Ray, B. J.: Relationships among aerosol constituents from Asia and the
733 North Pacific during PEM-West A, *J. Geophys. Res. Atmos.*, 101, 2011-2023,
734 <https://doi.org/10.1029/95JD01071>, 1996.

735 Athanasopoulou, E., Tombrou, M., Russell, A. G., Karanasiou, A., Eleftheriadis, K., and
736 Dandou, A.: Implementation of road and soil dust emission parameterizations in the
737 aerosol model CAMx: Applications over the greater Athens urban area affected by natural
738 sources, *J. Geophys. Res.*, 115, D17301, <https://doi.org/10.1029/2009JD013207>, 2010.

739 Bauer, H., Claeys, M., Vermeylen, R., Schueller, E., Weinke, G., Berger, A., and Puxbaum,
740 H.: Arabitol and mannitol as tracers for the quantification of airborne fungal spores,
741 *Atmos. Environ.*, 42, 588–593, 2008.

742 Bikkina, S., Haque, M. M., Sarin, M., and Kawamura, K.: Tracing the relative significance of
743 primary versus secondary organic aerosols from biomass burning plumes over coastal
744 ocean using sugar compounds and stable carbon isotopes, *ACS Earth Space Chem.*, 3,
745 1471–1484, <https://doi.org/10.1021/acsearthspacechem.9b00140>, 2019.

746 Bikkina, S., Kawamura, K., Sakamoto, Y., and Hirokawa, J: Low molecular weight
747 dicarboxylic acids, oxocarboxylic acids and α -dicarbonyls as ozonolysis products of
748 isoprene: Implication for the gaseous-phase formation of secondary organic aerosols, *Sci.*
749 *Total Environ.*, 769, 144472, <https://doi.org/10.1016/j.scitotenv.2020.144472>, 2021.

750 Brahney, J., Ballantyne, A. P., Sievers, C., and Neff, J. C.: Increasing Ca^{2+} deposition in the
751 western US: The role of mineral aerosols, *Aeolian Res.*, 10, 77–87, 2013.

752 Birch, M. E., and Cary, R. A.: Elemental carbon-based method for monitoring occupational
753 exposures to particulate diesel exhaust, *Aerosol Sci. Technol.*, 25 (3), 221–241, 1996.

754 Boreddy, S. K. R., Haque, M. M., and Kawamura, K.: Long term (2001–2012) trends of
755 carbonaceous aerosols from a remote island in the western North Pacific: an outflow
756 region of Asian pollutants, *Atmos. Chem. Phys.*, 18, 1291–1306,
757 <https://doi.org/10.5194/acp-18-1291-2018>, 2018.

758 Broadgate, W. J., Liss, P. S., and Penkett, S. A.: Seasonal emissions of isoprene and other
759 reactive hydrocarbon gases from the ocean, *Geophys. Res. Lett.*, 24, 2675–2678,
760 <https://doi.org/10.1029/97GL02736>, 1997.

761 Cheng, Y., Engling, G., He, K.-B., Duan, F.-K., Ma, Y.-L., Du, Z.-Y., Liu, J.-M., Zheng, M.,
762 and Weber, R. J.: Biomass burning contribution to Beijing aerosol, *Atmos. Chem. Phys.*,
763 13, 7765–7781, 2013.

764 Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J.,
765 Guyon, P., Andreae, M. O., Artaxo, P., and Maenhaut, W.: Formation of secondary
766 organic aerosols through photooxidation of isoprene, *Science*, 303(5661), 1173–1176,
767 2004.

768 Claeys, M., Szmigelski, R., Kourtchev, I., van der Veken, P., Vermeylen, R., Maenhaut, W.,
769 Jaoui, M., Kleindienst, T. E., Lewandowski, M., Offenberg, J., and Edney, E. O.:
770 Hydroxydicarboxylic acids: Markers for secondary organic aerosol from the
771 photooxidation of α -pinene, *Environ. Sci. Technol.*, 41(5), 1628–1634, 2007.

772 Conte, L., Szopa, S., Aumont, O., Gros, V., and Bopp, L.: Sources and sinks of isoprene in
773 the global open ocean: Simulated patterns and emissions to the atmosphere, *J. Geophys.*
774 *Res. Ocean.*, 9, e2019JC015946, <https://doi.org/10.1029/2019JC015946>, 2020.

775 Deguillaume, L., Leriche, M., Amato, P., Ariya, P. A., Delort, A.-M., Pöschl, U.,
776 Chaumerliac, N., Bauer, H., Flossmann, A. I., and Morris, C. E.: Microbiology and
777 atmospheric processes: chemical interactions of primary biological aerosols,
778 *Biogeosciences*, 5, 1073–1084, 2008.

779 Ding, X., Wang, X. M., Gao, B., Fu, X. X., He, Q. F., Zhao, X. Y., Yu, J. Z., and Zheng, M.:
780 Tracer-based estimation of secondary organic carbon in the Pearl River Delta, south
781 China, *J. Geophys. Res. Atmos.*, 117, D05313, <https://doi.org/10.1029/2011JD016596>,
782 2012.

783 Ding, X., He, Q. F., Shen, R. Q., Yu, Q. Q., and Wang, X. M.: Spatial distributions of
784 secondary organic aerosols from isoprene, monoterpenes, β -caryophyllene, and aromatics
785 over China during summer, *J. Geophys. Res.*, 119, 11877–11891,
786 <https://doi.org/10.1002/2014JD021748>, 2014.

787 Engling, G., Carrico, C. M., Kreidenweis, S. M., Collett, J. L., Day, D. E., Malm, W. C.,
788 Lincoln, E., Hao, W. M., Iinuma, Y., and Herrmann, H.: Determination of levoglucosan
789 in biomass combustion aerosol by high-performance anion-exchange chromatography
790 with pulsed amperometric detection, *Atmos. Environ.*, 40, S299–S311, 2006.

791 Engling, G., Lee, J. J., Tsai, Y. W., Lung, S. C. C., Chou, C. C. K., and Chan, C. Y.: Size-
792 resolved anhydrosugar composition in smoke aerosol from controlled field burning of rice
793 straw, *Aerosol Sci. Technol.*, 43(7), 662–672,
794 <https://doi.org/10.1080/02786820902825113>, 2009.

795 Fabbri, D., Marynowski, L., Fabianska, M. J., Zaton, M., and Simoneit, B. R. T.: Levoglucosan and other cellulose markers in pyrolysates of miocene lignites: Geochemical and environmental implications, *Environ. Sci. Technol.*, 42(8), 2957–2963,
796 <https://doi.org/10.1021/Es7021472>, 2008.

797 Fine, P. M., Cass, G. R., and Simoneit, B. R. T.: Chemical characterization of fine particle
798 emissions from fireplace combustion of woods grown in the northeastern United States,
799 *Environ. Sci. Technol.*, 35(13), 2665–2675, 2001.

800 Fine, P. M., Cass, G. R., and Simoneit, B. R. T.: Chemical characterization of fine particle
801 emissions from the fireplace combustion of wood types grown in the Midwestern and
802 Western United States, *Environ. Eng. Sci.*, 21(3), 387–409, 2004.

803 Fraser, M. P. and Lakshmanan, K.: Using levoglucosan as a molecular marker for the long-
804 range transport of biomass combustion aerosols, *Environ. Sci. Technol.*, 34(21), 4560–
805 4564, <https://doi.org/10.1021/es991229l>, 2000.

806 Fu, P., Kawamura, K., Kanaya, Y., and Wang, Z.: Contributions of biogenic volatile organic
807 compounds to the formation of secondary organic aerosols over Mt. Tai, Central East
808 China, *Atmos. Environ.*, 44, 4817–4826, <https://doi.org/10.1016/j.atmosenv.2010.08.040>,
809 2010a.

810 Fu, P., Kawamura, K., Kobayashi, M., and Simoneit, B. R. T.: Seasonal variations of sugars
811 in atmospheric particulate matter from Gosan, Jeju Island: Significant contributions of
812 airborne pollen and Asian dust in spring, *Atmos. Environ.*, 55, 234–239,
813 <https://doi.org/10.1016/j.atmosenv.2012.02.061>, 2012a.

814 Fu, P. Q., Kawamura, K., Okuzawa, K., Aggarwal, S. G., Wang, G., Kanaya, Y., and Wang,
815 Z.: Organic molecular compositions and temporal variations of summertime mountain
816 aerosols over Mt. Tai, North China Plain, *J. Geophys. Res. Atmos.*, 113, D1910,
817 <https://doi.org/10.1029/2008JD009900>, 2008.

818 Fu, P. Q., Kawamura, K., and Barrie, L. A.: Photochemical and other sources of organic
819 compounds in the Canadian high Arctic aerosol pollution during winter-spring, *Environ.*
820 *Sci. Technol.*, 43(2), 286–292, 2009a.

821 Fu, P. Q., Kawamura, K., Chen, J., and Barrie, L. A.: Isoprene, monoterpane, and
822 sesquiterpene oxidation products in the high Arctic aerosols during late winter to early
823 summer, *Environ. Sci. Technol.*, 43(11), 4022–4028, 2009b.

824

825

826 Fu, P. Q., Kawamura, K., Pavuluri, C. M., Swaminathan, T., and Chen, J.: Molecular
827 characterization of urban organic aerosol in tropical India: contributions of primary
828 emissions and secondary photooxidation, *Atmos. Chem. Phys.*, 10(6), 2663–2689, 2010b.

829 Fu, P. Q., Kawamura, K., and Miura, K.: Molecular characterization of marine organic
830 aerosols collected during a round-the-world cruise, *J. Geophys. Res.*, 116, D13302,
831 <https://doi.org/10.1029/2011jd015604>, 2011.

832 Fu, P. Q., Kawamura, K., Chen, J., Li, J., Sun, Y. L., Liu, Y., Tachibana, E., Aggarwal, S. G.,
833 Okuzawa, K., Tanimoto, H., Kanaya, Y., and Wang, Z. F.: Diurnal variations of organic
834 molecular tracers and stable carbon isotopic composition in atmospheric aerosols over
835 Mt. Tai in the North China Plain: an influence of biomass burning, *Atmos. Chem. Phys.*,
836 12(18), 8359–8375, <https://doi.org/10.5194/acp-12-8359-2012>, 2012b.

837 Gómez-González, Y., Wang, W., Vermeylen, R., Chi, X., Neirynck, J., Janssens, I. A.,
838 Maenhaut, W., and Claeys, M.: Chemical characterisation of atmospheric aerosols during
839 a 2007 summer field campaign at Brasschaat, Belgium: Sources and source processes of
840 biogenic secondary organic aerosol, *Atmos. Chem. Phys.*, 12, 125–138,
841 <https://doi.org/10.5194/acp-12-125-2012>, 2012.

842 Graham, B., Guyon, P., Taylor, P. E., Artaxo, P., Maenhaut, W., Golvsky, M. M., Flagan, R.
843 C., and Andreae, M. O.: Organic compounds present in the natural Amazonian aerosol:
844 Characterization by gas chromatography-mass spectrometry, *J. Geophys. Res. Atmos.*,
845 108, D24, 4766, <https://doi.org/10.1029/2003JD003990>, 2003.

846 Griffin, R. J., Cocker, D. R., Seinfeld, J. H., and Dabdub, D.: Estimate of global atmospheric
847 organic aerosol from oxidation of biogenic hydrocarbons, *Geophys. Res. Lett.*, 26, 2721–
848 2724, 1999.

849 Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P.,
850 Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B. R. S., Tallamraju, R.,
851 Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compound
852 emissions, *J. Geophys. Res.*, 100(D5), 8873–8892, 1995.

853 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of
854 global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and
855 Aerosols from Nature), *Atmos. Chem. Phys.*, 6, 3181–3210, 2006.

856 Haque, M. M., Kawamura, K., Deshmukh, D. K., Fang, C., Song, W., Mengying, B., and
857 Zhang, Y. L.: Characterization of organic aerosols from a Chinese megacity during
858 winter: Predominance of fossil fuel combustion, *Atmos. Chem. Phys.*, 19, 5147–5164,
859 <https://doi.org/10.5194/acp-19-5147-2019>, 2019.

860 Heald, C. L. and Spracklen, D. V.: Atmospheric budget of primary biological aerosol
861 particles from fungal spores, *Geophys. Res. Lett.*, 36, L09806,
862 <https://doi.org/10.1029/2009GL037493>, 2009.

863 Heald, C. L., Henze, D. K., Horowitz, L. W., Feddema, J., Lamarque, J. F., Guenther, A.,
864 Hess, P. G., Vitt, F., Seinfeld, J. H., Goldstein, A. H., and Fung, I.: Predicted change in
865 global secondary organic aerosol concentrations in response to future climate, emissions,
866 and land use change, *J. Geophys. Res.*, 113(D5), <https://doi.org/10.1029/2007jd009092>,
867 2008.

868 Hennigan, C. J., Sullivan, A. P., Collett, J. L., and Robinson, A. L.: Levoglucosan stability in
869 biomass burning particles exposed to hydroxyl radicals, *Geophys. Res. Lett.*, 37,
870 <https://doi.org/10.1029/2010GL043088>, 2010.

871 Hu, Q. H., Xie, Z. Q., Wang, X. M., Kang, H., He, Q. F., and Zhang, P.: Secondary organic
872 aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to
873 Antarctic, *Sci. Rep.*, 3, 3119, <https://doi.org/10.1038/srep02280>, 2013.

874 Huang, R. J., Zhang, Y.-L., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R.,
875 Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A.,
876 Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-
877 Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Prêt,
878 A. S. H.: High secondary aerosol contribution to particulate pollution during haze events
879 in China, *Nature*, 514, 218–222, <https://doi.org/10.1038/nature13774>, 2014.

880 Huebert, B. J., Bates, T., Russell, P. B., Shi, G. Y., Kim, Y. J., Kawamura, K., Carmichael,
881 G., and Nakajima, T.: An overview of ACE-Asia: Strategies for quantifying the
882 relationships between Asian aerosols and their climatic impacts, *J. Geophys. Res. Atmos.*,
883 108(D23), 8633, <https://doi.org/10.1029/2003JD003550>, 2003.

884 Jia, Y. L. and Fraser, M.: Characterization of saccharides in size-fractionated ambient
885 particulate matter and aerosol sources: The contribution of primary biological aerosol
886 particles (PBAPs) and soil to ambient particulate matter, *Environ. Sci. Technol.*, 45(3),
887 930–936, <https://doi.org/10.1021/es103104e>, 2011.

888 Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van
889 Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P.,
890 Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L.,
891 Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global
892 climate modelling: a review, *Atmos. Chem. Phys.*, 5, 1053–1123, 2005.

893 Kang, M., Ren, L., Ren, H., Zhao, Y., Kawamura, K., Zhang, H., Wei, L., Sun, Y., Wang, Z.,
894 and Fu, P.: Primary biogenic and anthropogenic sources of organic aerosols in Beijing,
895 China: Insights from saccharides and n-alkanes, *Environ. Pollut.*, 243, 1579–1587,
896 <https://doi.org/10.1016/j.envpol.2018.09.118>, 2018a.

897 Kang, M., Fu, P., Kawamura, K., Yang, F., Zhang, H., Zang, Z., Ren, H., Ren, L., Zhao, Y.,
898 Sun, Y., and Wang, Z.: Characterization of biogenic primary and secondary organic
899 aerosols in the marine atmosphere over the East China Sea, *Atmos. Chem. Phys.*, 19,
900 13947–13967, <https://doi.org/10.5194/acp-18-13947-2018>, 2018b.

901 Kawamura, K., Kobayashi, M., Tsubonuma, N., Mochida, M., Watanabe, T., and Lee, M.:
902 Organic and inorganic compositions of marine aerosols from East Asia: Seasonal
903 variations of water-soluble dicarboxylic acids, major ions, total carbon and nitrogen, and
904 stable C and N isotopic composition, in geochemical investigations in earth and space
905 science: A Tribute to Isaac R. Kaplan, edited by R. J. Hill, J. Leventhal, Z. Aizenshtat, M.
906 J. Baedecker, G. Claypool, R. Eganhouse, M. Goldhaber, and K. Peters, pp. 243–265, The
907 Geochemical Society, 2004.

908 Kessler, S. H., Smith, J. D., Che, D. L., Worsnop, D. R., Wilson, K. R., and Kroll, J. H.:
909 Chemical sinks of organic aerosol: Kinetics and products of the heterogeneous oxidation
910 of erythritol and levoglucosan, *Environ. Sci. Technol.*, 44(18), 7005–7010,
911 <https://doi.org/10.1021/Es101465m>, 2010.

912 Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Lewis, C. W., Bhave, P.
913 V., and Edney, E. O.: Estimates of the contributions of biogenic and anthropogenic
914 hydrocarbons to secondary organic aerosol at a southeastern US location, *Atmos.*
915 *Environ.*, 41, 8288–8300, 2007.

916 Kourtchev, I., Hellebust, S., Bell, J. M., O'Connor, I. P., Healy, R. M., Allanic, A., Healy, D.,
917 Wenger, J. C., and Sodeau, J. R.: The use of polar organic compounds to estimate the
918 contribution of domestic solid fuel combustion and biogenic sources to ambient levels of
919 organic carbon and PM_{2.5} in Cork Harbour, Ireland, *Sci. Total Environ.*, 11, 2143-2155,
920 <https://doi.org/10.1016/j.scitotenv.2011.02.027>, 2011.

921 Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H.: Secondary organic
922 aerosol formation from isoprene photooxidation under high-NO_x conditions, *Geophys.*
923 *Res. Lett.*, 32(18), L18808, <https://doi.org/10.1029/2005gl023637>, 2005.

924 Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H.: Secondary organic
925 aerosol formation from isoprene photooxidation, *Environ. Sci. Technol.*, 40, 1869–1877,
926 2006.

927 Kundu, S., Kawamura, K., and Lee, M.: Seasonal variations of diacids, ketoacids, and α -
928 dicarbonyls in aerosols at Gosan, Jeju Island, South Korea: Implications for sources,
929 formation, and degradation during long-range transport, *J. Geophys. Res.*, 115, D19307,
930 <https://doi.org/10.1029/2010jd013973>, 2010.

931 Lewis, D. H. and Smith, D. C.: Sugar alcohols (polyols) in fungi and green plants: 1.
932 Distributions, physiology and metabolism, *New Phytol.*, 66, 143–184, 1967.

933 Liu, J., Chu, B., Chen, T., Liu, C., Wang, L., Bao, X., and He, H.: Secondary organic aerosol
934 formation from ambient air at an urban site in Beijing: Effects of OH exposure and
935 precursor concentrations, *Environ. Sci. Technol.*, 52, 6834-6841,
936 <https://doi.org/10.1021/acs.est.7b05701>, 2018.

937 Medeiros, P. M. and Simoneit, B. R. T.: Analysis of sugars in environmental samples by gas
938 chromatography-mass spectrometry, *J. Chromatogr. A*, 1141(2), 271–278,
939 <https://doi.org/10.1016/j.chroma.2006.12.017>, 2007.

940 Medeiros, P. M., Conte, M. H., Weber, J. C., and Simoneit, B. R. T.: Sugars as source
941 indicators of biogenic organic carbon in aerosols collected above the Howland
942 Experimental Forest, Maine, *Atmos. Environ.*, 40(9), 1694–1705, 2006.

943 Mohn, J., Szidat, S., Fellner, J., Rechberger, H., Quartier, R., Buchmann, B., and
944 Emmenegger, L.: Determination of biogenic and fossil CO₂ emitted by waste incineration
945 based on ¹⁴CO₂ and mass balances, *Bioresour. Technol.*, 99, 6471-6479,
946 <https://doi.org/10.1016/j.biortech.2007.11.042>, 2008.

947 Müller, L., Reinnig, M. C., Naumann, K. H., Saathoff, H., Mentel, T. F., Donahue, N. M.,
948 and Hoffmann, T.: Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase
949 oxidation of pinonic acid - A mass spectrometric study of SOA aging, *Atmos. Chem.*
950 *Phys.*, 12, 1483-1496, <https://doi.org/10.5194/acp-12-1483-2012>, 2012.

951 Nakajima, T., Yoon, S. C., Ramanathan, V., Shi, G. Y., Takemura, T., Higurashi, A.,
952 Takamura, T., Aoki, K., Sohn, B. J., Kim, S. W., Tsuruta, H., Sugimoto, N., Shimizu, A.,
953 Tanimoto, H., Sawa, Y., Lin, N. H., Lee, C. T., Goto, D., and Schutgens, N.: Overview of
954 the atmospheric brown cloud east Asian regional experiment 2005 and a study of the

955 aerosol direct radiative forcing in east Asia, *J. Geophys. Res. Atmos.*, 112, D24S91,
956 <https://doi.org/10.1029/2007JD009009>, 2007.

957 Ng, N. L., Kwan, A. J., Surratt, J. D., Chan, A. W. H., Chhabra, P. S., Sorooshian, A., Pye, H.
958 O. T., Crounse, J. D., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary
959 organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO₃),
960 *Atmos. Chem. Phys.*, 8(14), 4117–4140, 2008.

961 Offenberg, J., Lewis, C., Lewandowski, M., Jaoui, M., Kleindienst, T. E., and Edney, E. O.:
962 Contributions of toluene and α -pinene to SOA formed in an irradiated toluene/r-
963 pinene/NO_x/air mixture: Comparison of results using ¹⁴C content and SOA organic tracer
964 methods, *Environ. Sci. Technol.*, 41, 3972–3976, 2007.

965 Pashynska, V., Vermeylen, R., Vas, G., Maenhaut, W., and Claeys, M.: Development of a gas
966 chromatographic/ion trap mass spectrometric method for the determination of
967 levoglucosan and saccharidic compounds in atmospheric aerosols. Application to urban
968 aerosols, *J. Mass Spectrom.*, 37(12), 1249–1257, 2002.

969 Pio, C., Legrand, M., Alves, C. A., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H.,
970 Sánchez-Ochoa, A., and Gelencsér, A.: Chemical composition of atmospheric aerosols
971 during the 2003 summer intense forest fire period, *Atmos. Environ.*, 42, 7530–7543,
972 2008.

973 Ramanathan, V., Li, F., Ramana, M. V., Praveen, P. S., Kim, D., Corrigan, C. E., Nguyen, H.,
974 Stone, E. A., Schauer, J. J., Carmichael, G. R., Adhikary, B., and Yoon, S. C.: Atmospheric brown clouds: Hemispherical and regional variations in long-range
975 transport, absorption, and radiative forcing, *J. Geophys. Res. Atmos.*, 112, D22S21,
976 <https://doi.org/10.1029/2006JD008124>, 2007.

977 Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M.,
978 Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking organic aerosols:
979 Semivolatile emissions and photochemical aging, *Science*, 315, 1259–1262, 2007.

980 Salazar, G., Zhang, Y. L., Agrios, K., and Szidat, S.: Development of a method for fast and
981 automatic radiocarbon measurement of aerosol samples by online coupling of an
982 elemental analyzer with a MICADAS AMS, *Nucl. Instruments Methods Phys. Res. Sect.*
983 B Beam Interact. with Mater. Atoms, 361, 163–167,
984 <https://doi.org/10.1016/j.nimb.2015.03.051>, 2015.

985 Schmidl, C., Marr, I. L., Caseiro, A., Kotianova, P., Berner, A., Bauer, H., Kasper-Giebl, A.,
986 and Puxbaum, H.: Chemical characterisation of fine particle emissions from wood stove
987 combustion of common woods growing in mid-European Alpine regions, *Atmos.*
988 *Environ.*, 42, 126–141, 2008a.

989 Schmidl, C., Bauer, H., Dattler, A., Hitzenberger, R., Weissenboeck, G., Marr, I. L., and
990 Puxbaum, H.: Chemical characterisation of particle emissions from burning leaves,
991 *Atmos. Environ.*, 42(40), 9070–9079, <https://doi.org/10.1016/J.Atmosenv.2008.09.010>,
992 2008b.

993 Shaw, S. L., Gantt, B., and Meskhidze, N.: Production and emissions of marine isoprene and
994 monoterpenes: A Review, *Adv. Meteorol.*, 2010, 408696,
995 <https://doi.org/10.1155/2010/408696>, 2010.

996 Sheesley, R. J., Schauer, J. J., Chowdhury, Z., Cass, G. R., and Simoneit, B. R. T.:
997 Characterization of organic aerosols emitted from the combustion of biomass indigenous

999 to South Asia, *J. Geophys. Res.*, 108 (D9), 4285, <https://doi.org/10.1029/2002JD002981>,
1000 2003.

1001 Simoneit, B. R. T.: Biomass burning-a review of organic tracers for smoke from incomplete
1002 combustion, *Appl. Geochem.*, 17, 129–162, 2002.

1003 Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P.,
1004 Rogge, W. F., and Cass, G. R.: Levoglucosan, a tracer for cellulose in biomass burning
1005 and atmospheric particles, *Atmos. Environ.*, 33(2), 173–182,
1006 [https://doi.org/10.1016/S1352-2310\(98\)00145-9](https://doi.org/10.1016/S1352-2310(98)00145-9), 1999.

1007 Simoneit, B. R. T., Elias, V. O., Kobayashi, M., Kawamura, K., Rushdi, A. I., Medeiros, P.
1008 M., Rogge, W. F., and Didyk, B. M.: Sugars-dominant water-soluble organic compounds
1009 in soils and characterization as tracers in atmospheric particulate matter, *Environ. Sci.
1010 Technol.*, 38(22), 5939–5949, 2004a.

1011 Simoneit, B. R. T., Kobayashi, M., Mochida, M., Kawamura, K., Lee, M., Lim, H-J., Turpin,
1012 B. J., and Komazaki, Y.: Composition and major sources of organic compounds of
1013 aerosol particulate matter sampled during the ACE-Asia campaign, *J. Geophys. Res.*,
1014 109(D19), D19S10, <https://doi.org/10.1029/2004jd004598>, 2004b.

1015 Singh, N., Mhawish, A., Deboudt, K., Singh, R. S., and Banerjee, T.: Organic aerosols over
1016 Indo-Gangetic Plain: Sources, distributions and climatic implications, *Atmos. Environ.*,
1017 157, 59-74, <https://doi.org/10.1016/j.atmosenv.2017.03.008>, 2017.

1018 Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.:
1019 Noaa's hysplit atmospheric transport and dispersion modeling system, *Bull. Am.
1020 Meteorol. Soc.*, 96, 2059-2077, <https://doi.org/10.1175/BAMS-D-14-00110.1>, 2015.

1021 Stuiver, M. and Polach, H. A.: Discussion: Reporting of ^{14}C data, *Radiocarbon*, 19(3),
1022 355–363, 1997.

1023 Sullivan, A. P., Holden, A. S., Patterson, L. A., McMeeking, G. R., Kreidenweis, S. M.,
1024 Malm, W. C., Hao, W. M., Wold, C. E., and Collett, Jr., J. L.: A method for smoke
1025 marker measurements and its potential application for determining the contribution of
1026 biomass burning from wildfires and prescribed fires to ambient PM_{2.5} organic carbon, *J.
1027 Geophys. Res.*, 113, D22302, <https://doi.org/10.1029/2008JD010216>, 2008.

1028 Surratt, J. D., Murphy, S. M., Kroll, J. H., Ng, N. L., Hildebrandt, L., Sorooshian, A.,
1029 Szmigielski, R., Vermeylen, R., Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld, J.
1030 H.: Chemical composition of secondary organic aerosol formed from the photooxidation
1031 of isoprene, *J. Phys. Chem. A*, 110(31), 9665–9690, 2006.

1032 Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M. N., Loza, C. L., Kwan, A. J.,
1033 Hersey, S. P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.: Reactive intermediates
1034 revealed in secondary organic aerosol formation from isoprene, *Proc. Natl. Acad. Sci.
1035 USA*, 107(15), 6640–6645, 2010.

1036 Szidat, S., Jenk, T. M., Synal, H. A., Kalberer, M., Wacker, L., Hajdas, I., Kasper-Giebl, A.,
1037 and Baltensperger, U.: Contributions of fossil fuel, biomass-burning, and biogenic
1038 emissions to carbonaceous aerosols in Zurich as traced by ^{14}C , *J. Geophys. Res. Atmos.*,
1039 111, D07206, <https://doi.org/10.1029/2005JD006590>, 2006.

1040 Szmigielski, R., Surratt, J. D., Gómez-González, G., Van der Veken, P., Kourtchev, I.,
1041 Vermeylen, R., Blockhuys, F., Jaoui, M., Kleindienst, T. E., Lewandowski, M.,
1042 Offenberg, J. H., Edney, E. O., Seinfeld, J. H., Maenhaut, W., and Claeys, M.: 3-Methyl-

1043 1,2,3-butanetricarboxylic acid: An atmospheric tracer for terpene secondary organic
1044 aerosol, *Geophys. Res. Lett.*, 34, L24811, <https://doi.org/10.1029/2007GL031338>, 2007.

1045 Theodosi, C., Panagiotopoulos, C., Nouara, A., Zarmpas, P., Nicolaou, P., Violaki, K.,
1046 Kanakidou, M., Sempéré, R., and Mihalopoulos, N.: Sugars in atmospheric aerosols over
1047 the Eastern Mediterranean, *Prog. Oceanogr.*, 163, Special Issue: SI, 70-81,
1048 <https://doi.org/10.1016/j.pocean.2017.09.001>, 2018.

1049 Tyagi, P., Kawamura, K., Kariya, T., Bikkina, S., Fu, P., and Lee, M.: Tracing atmospheric
1050 transport of soil microorganisms and higher plant waxes in the East Asian outflow to the
1051 North Pacific Rim by using hydroxy fatty acids: Year-round observations at Gosan, Jeju
1052 Island, *J. Geophys. Res.*, 122, 4112-4131, <https://doi.org/10.1002/2016JD025496>, 2017.

1053 Verma, S. K., Kawamura, K., Chen, J., Fu, P., and Zhu, C.: Thirteen years of observations on
1054 biomass burning organic tracers over Chichijima Island in the western North Pacific: An
1055 outflow region of Asian aerosols, *J. Geophys. Res.*, 120, 4155-4168,
1056 <https://doi.org/10.1002/2014JD022224>, 2015.

1057 Verma, S. K., Kawamura, K., Chen, J., and Fu, P.: Thirteen years of observations on primary
1058 sugars and sugar alcohols over remote Chichijima Island in the western North Pacific,
1059 *Atmos. Chem. Phys.*, 18, 81-101, <https://doi.org/10.5194/acp-18-81-2018>, 2018.

1060 Wang, G. and Kawamura, K.: Molecular characteristics of urban organic aerosols from
1061 Nanjing: A case study of a mega-city in China, *Environ. Sci. Technol.*, 39(19), 7430–
1062 7438, 2005.

1063 Wang, G. H., Kawamura, K., and Lee, M.: Comparison of organic compositions in dust storm
1064 and normal aerosol samples collected at Gosan, Jeju Island, during spring 2005, *Atmos.*
1065 *Environ.*, 43(2), 219–227, <https://doi.org/10.1016/J.Atmosenv.2008.09.046>, 2009a.

1066 **Wang, G. H., Li, J. J., Cheng, C. L., Zhou, B. H., Xie, M. J., Hu, S. Y., Meng, J. J., Sun,**
1067 **T., Ren, Y. Q., Cao, J. J., Liu, S. X., Zhang, T., and Zhao, Z. Z.**: Observation of
1068 atmospheric aerosols at Mt. Hua and Mt. Tai in central and east China during spring
1069 2009-Part 2: Impact of dust storm on organic aerosol composition and size distribution,
1070 *Atmos. Chem. Phys.*, 12(9), 4065–4080, 2012.

1071 Wang, W., Kourtchev, I., Graham, B., Cafmeyer, J., Maenhaut, W., and Claeys, M.:
1072 Characterization of oxygenated derivatives of isoprene related to 2-methyltetrosols in
1073 Amazonian aerosols using trimethylsilylation and gas chromatography/ion trap mass
1074 spectrometry, *Rapid Commun. Mass Spectrom.*, 19, 1343–1351, 2005.

1075 Wang, Y. Q., Zhang, X. Y., and Draxler, R. R.: TrajStat: GIS-based software that uses
1076 various trajectory statistical analysis methods to identify potential sources from long-term
1077 air pollution measurement data, *Environ. Model. Softw.*, 24, 938-939,
1078 <https://doi.org/10.1016/j.envsoft.2009.01.004>, 2009b.

1079 Wu, J., Kong, S., Zeng, X., Cheng, Y., Yan, Q., Zheng, H., Yan, Y., Zheng, S., Liu, D.,
1080 Zhang, X., Fu, P., Wang, S., and Qi, S.: First high-resolution emission inventory of
1081 levoglucosan for biomass burning and non-biomass burning sources in China, *Environ.*
1082 *Sci. Technol.*, 55, 3, 1497–1507, 2021.

1083 Yan, C., Zheng, M., Sullivan, A. P., Shen, G., Chen, Y., Wang, S., Zhao, B., Cai, S.,
1084 Desyaterik, Y., Li, X., Zhou, T., Gustafsson, Ö., and Collett, J. L.: Residential coal
1085 combustion as a source of levoglucosan in China, *Environ. Sci. Technol.*, 52, 3, 1665–
1086 1674, <https://doi.org/10.1021/acs.est.7b05858>, 2018.

1087 Yttri, K. E., Dye, C., and Kiss, G.: Ambient aerosol concentrations of sugars and sugar-
1088 alcohols at four different sites in Norway, *Atmos. Chem. Phys.*, 7, 4267–4279, 2007.

1089 Zangrando, R., Barbaro, E., Kirchgeorg, T., Vecchiato, M., Scalabrin, E., Radaelli, M.,
1090 Đorđević, D., Barbante, C., and Gambaro, A.: Five primary sources of organic aerosols in
1091 the urban atmosphere of Belgrade (Serbia), *Sci. Total Environ.*, 571, 1441-1453,
1092 <https://doi.org/10.1016/j.scitotenv.2016.06.188>, 2016.

1093 Zhang, Y. L., Perron, N., Ciobanu, V. G., Zotter, P., Minguillón, M. C., Wacker, L., Prévôt,
1094 A. S. H., Baltensperger, U., and Szidat, S.: On the isolation of OC and EC and the optimal
1095 strategy of radiocarbon-based source apportionment of carbonaceous aerosols, *Atmos.*
1096 *Chem. Phys.*, 12, 10841-10856, <https://doi.org/10.5194/acp-12-10841-2012>, 2012.

1097 Zhang, Y. L., Huang, R. J., El Haddad, I., Ho, K. F., Cao, J. J., Han, Y., Zotter, P., Bozzetti,
1098 C., Daellenbach, K. R., Canonaco, F., Slowik, J. G., Salazar, G., Schwikowski, M.,
1099 Schnelle-Kreis, J., Abbaszade, G., Zimmermann, R., Baltensperger, U., Prévôt, A. S. H.,
1100 and Szidat, S.: Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese
1101 cities during the extreme winter haze episode of 2013, *Atmos. Chem. Phys.*, 15(3), 1299-
1102 1312, <https://doi.org/10.5194/acp-15-1299-2015>, 2015.

1103 Zhang, Y. L., Kawamura, K., Agrios, K., Lee, M., Salazar, G., and Szidat, S.: Fossil and
1104 nonfossil sources of organic and elemental carbon aerosols in the outflow from Northeast
1105 China, *Environ. Sci. Technol.*, 50, 6284-6292, <https://doi.org/10.1021/acs.est.6b00351>,
1106 2016.

1107 Zhu, C., Kawamura, K., and Kunwar, B.: Effect of biomass burning over the western North
1108 Pacific Rim: wintertime maxima of anhydrosugars in ambient aerosols from Okinawa.,
1109 *Atmos. Chem. Phys.*, 15, 1959–1973, <https://doi.org/10.5194/acp-15-1959-2015>, 2015a.

1110 Zhu, C., Kawamura, K., and Kunwar, B.: Organic tracers of primary biological aerosol
1111 particles at subtropical Okinawa island in the western North pacific rim, *J. Geophys. Res.*,
1112 120, 5504-5523, <https://doi.org/10.1002/2015JD023611>, 2015b.

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123 **Table 1.** Concentrations of identified sugar compounds and BSOA tracers (ng m⁻³) in the atmospheric
 1124 aerosol samples from Gosan.

Species	Annual	Summer	Fall	Winter	Spring
	Avg. ^a ± S.D. ^b Min. ^c , Max. ^d	Avg. ± S.D. Min., Max.			
Anhydrosugars					
Levoglucosan (Lev)	17.6 ± 16.8 0.60, 45.9	2.92 ± 3.89 0.60, 9.81	21.7 ± 19.0 2.30, 43.9	39.2 ± 6.60 32.0, 45.9	12.7 ± 11.6 1.45, 33.4
Mannosan (Man)	1.57 ± 1.82 0.05, 6.74	0.18 ± 0.24 0.05, 0.61	1.69 ± 1.49 0.13, 3.66	3.63 ± 2.28 1.47, 6.74	1.31 ± 1.57 0.08, 4.08
Galactosan (Gal)	2.28 ± 2.10 0.14, 6.78	0.64 ± 0.68 0.14, 1.82	2.45 ± 2.13 0.35, 4.92	5.21 ± 1.64 3.40, 6.78	1.65 ± 1.26 0.50, 3.88
Primary Sugars					
Glucose	18.8 ± 27.1 2.45, 122	13.4 ± 18.2 2.45, 45.6	16.5 ± 15.7 2.68, 33.6	4.74 ± 3.14 2.88, 9.44	32.4 ± 41.1 4.87, 122
Fructose	10.3 ± 15.9 0.97, 74.0	4.90 ± 5.15 0.97, 13.7	7.48 ± 6.99 1.71, 16.2	3.82 ± 4.45 1.56, 10.5	19.8 ± 25.0 2.69, 74.0
Sucrose	16.1 ± 32.2 0.26, 140	1.46 ± 1.05 0.68, 3.28	9.74 ± 12.1 0.76, 27.2	8.87 ± 16.3 0.42, 33.3	35.1 ± 50.5 0.26, 140
Trehalose	2.42 ± 1.97 0.65, 7.03	2.72 ± 2.53 0.97, 6.98	3.71 ± 2.29 1.18, 7.03	1.21 ± 0.42 0.72, 1.63	1.98 ± 1.55 0.65, 5.33
Xylose	0.81 ± 0.65 0.04, 2.03	0.23 ± 0.23 0.04, 0.63	0.86 ± 0.68 0.14, 1.70	1.59 ± 0.37 1.21, 2.03	0.74 ± 0.55 0.16, 1.68
Sugar alcohols					
Arabitol	3.96 ± 4.24 0.47, 18.7	5.64 ± 7.46 1.20, 18.7	5.27 ± 3.51 2.27, 10.9	1.06 ± 0.60 0.47, 1.91	3.47 ± 2.19 1.18, 6.30
Mannitol	4.61 ± 5.54 0.25, 22.0	7.39 ± 8.65 1.71, 22.0	6.64 ± 6.03 1.69, 16.7	0.99 ± 0.45 0.55, 1.60	3.24 ± 2.67 0.25, 7.03
Erythritol	0.62 ± 0.43 0.12, 1.52	0.92 ± 0.53 0.42, 1.52	0.93 ± 0.33 0.55, 1.27	0.42 ± 0.27 0.16, 0.80	0.30 ± 0.12 0.12, 0.48
Inositol	0.34 ± 0.39 0.04, 1.53	0.29 ± 0.41 0.08, 1.03	0.56 ± 0.60 0.10, 1.53	0.13 ± 0.07 0.08, 0.23	0.35 ± 0.28 0.04, 0.73
Isoprene-SOA tracers					
2-MGA	0.99 ± 0.70 0.17, 2.79	1.61 ± 1.17 0.17, 2.79	0.95 ± 0.43 0.51, 1.61	0.67 ± 0.14 0.49, 0.81	0.76 ± 0.35 0.20, 1.32
Σ2-MLTs	1.04 ± 1.40 0.05, 5.81	2.48 ± 1.98 0.51, 5.81	1.34 ± 1.16 0.33, 2.74	0.20 ± 0.05 0.15, 0.26	0.29 ± 0.25 0.05, 0.82
ΣC5-alkene triols	0.20 ± 0.25 0.02, 1.17	0.46 ± 0.44 0.02, 1.17	0.13 ± 0.05 0.05, 0.18	0.09 ± 0.03 0.05, 0.13	0.14 ± 0.11 0.02, 0.30
Monoterpene-SOA tracers					
<i>cis</i> -pinonic acid	0.15 ± 0.14 0.02, 0.52	0.12 ± 0.13 0.03, 0.36	0.08 ± 0.06 0.02, 0.16	0.07 ± 0.03 0.02, 0.10	0.26 ± 0.17 0.08, 0.52
pinic acid	1.67 ± 1.01 0.72, 4.81	2.40 ± 1.67 0.99, 4.81	1.53 ± 0.57 0.75, 2.11	1.07 ± 0.25 0.84, 1.42	1.61 ± 0.78 0.72, 2.94
3-HGA	2.30 ± 2.38 0.19, 10.6	3.46 ± 4.39 0.19, 10.6	1.52 ± 0.77 0.76, 2.79	1.40 ± 0.39 0.94, 1.88	2.54 ± 1.83 0.38, 4.57
MBTCA	5.11 ± 4.54 0.29, 19.6	8.44 ± 6.88 3.00, 19.6	6.24 ± 3.64 1.17, 9.49	1.90 ± 0.85 0.97, 2.83	3.77 ± 2.96 0.29, 8.08

^aAverage, ^bStandard deviation, ^cMinimum, ^dMaximum. 2-MGA: 2-methylglyceric acid, 2-MLTs: 2-methyltetrols, 3-HGA: 3-hydroxyglutaric acid, MBTCA: 3-methyl-1,2,3-butanetricarboxylic acid.

Table 2. Statistical summary of diagnostic ratios and carbonaceous components contribution in Gosan aerosols.

Species	Annual	Summer	Fall	Winter	Spring
	Avg. ^a ± S.D. ^b Min. ^c , Max. ^d	Avg. ± S.D. Min., Max.			
Diagnostic ratios					
Lev/Man	15.1 ± 6.76 6.81, 31.3	17.1 ± 8.21 8.58, 28.4	13.7 ± 2.51 11.1, 17.3	13.5 ± 6.24 6.81, 21.7	15.4 ± 8.76 6.98, 31.3
Man/Gal	0.55 ± 0.32 0.10, 1.07	0.28 ± 0.13 0.10, 0.42	0.64 ± 0.20 0.37, 0.90	0.66 ± 0.27 0.43, 1.05	0.61 ± 0.43 0.16, 1.07
Lev/(Man + Gal)	4.27 ± 1.23 2.18, 6.56	3.12 ± 0.78 2.18, 4.03	5.08 ± 0.32 4.71, 5.51	4.85 ± 1.35 3.49, 6.56	4.17 ± 1.33 2.50, 6.45
Lev/K ⁺ × 10 ⁻²	5.73 ± 5.65 0.65, 23.2	1.00 ± 0.52 0.65, 1.91	3.94 ± 2.51 1.26, 6.30	12.3 ± 7.87 6.42, 23.2	6.65 ± 4.48 1.77, 15.3
Lev/OC × 10 ⁻²	0.73 ± 0.66 0.08, 2.29	0.14 ± 0.10 0.08, 0.31	0.84 ± 0.61 0.12, 1.56	1.60 ± 0.67 0.99, 2.29	0.56 ± 0.40 0.11, 1.05
Lev/WSOC × 10 ⁻²	1.09 ± 0.97 0.10, 3.46	0.20 ± 0.13 0.10, 0.42	1.25 ± 0.94 0.23, 2.21	2.33 ± 0.90 1.48, 3.46	0.92 ± 0.65 0.13, 1.69
2-MGA/2-MLTs	2.18 ± 1.59 0.33, 5.40	0.67 ± 0.43 0.33, 1.33	1.04 ± 0.49 0.41, 1.55	3.60 ± 1.43 1.90, 5.40	3.27 ± 1.17 1.60, 4.75
^e P/MBTCA	0.62 ± 0.61 0.17, 5.90	3.22 ± 0.62 2.47, 3.89	3.62 ± 1.67 1.52, 5.90	1.68 ± 0.64 0.83, 2.38	1.73 ± 1.07 0.34, 3.32
Carbonaceous components					
Isoprene derived SOC ($\mu\text{gC m}^{-3}$)	23.7 ± 23.9 2.26, 97.4	51.0 ± 32.4 8.08, 97.4	25.9 ± 17.9 8.54, 45.7	8.52 ± 1.07 7.46, 9.87	11.3 ± 6.80 2.26, 24.9
Isoprene SOC to OC (%)	1.45 ± 1.74 0.21, 6.40	3.56 ± 2.18 1.03, 6.40	1.46 ± 1.38 0.35, 3.48	0.35 ± 0.17 0.21, 0.57	0.57 ± 0.38 0.24, 1.35
Isoprene SOC to total SOC (%)	35.5 ± 15.5 13.5, 71.1	46.6 ± 20.3 26.0, 71.1	38.1 ± 10.4 21.1, 47.3	31.6 ± 7.05 24.0, 39.7	27.9 ± 15.5 13.5, 54.0
Monoterpene SOC ($\mu\text{gC m}^{-3}$)	40.1 ± 33.3 7.18, 154	62.7 ± 56.5 19.2, 154	40.7 ± 20.0 11.8, 57.7	19.3 ± 5.61 14.0, 25.2	35.5 ± 23.5 7.18, 62.7
Monoterpene SOC to OC (%)	2.0 ± 1.47 0.37, 5.74	3.65 ± 1.58 2.44, 5.74	2.15 ± 1.45 0.48, 3.88	0.87 ± 0.58 0.37, 1.48	1.58 ± 0.84 0.54, 3.13
Monoterpene SOC to total SOC (%)	64.5 ± 15.5 28.9, 86.5	53.4 ± 20.3 28.9, 74.0	61.9 ± 10.4 52.7, 78.9	68.4 ± 7.05 60.3, 76.1	72.1 ± 15.5 46.0, 86.5

^eP: *cis*-pinonic acid + pinic acid

Table 3. Comparisons of the mean concentration (ng m⁻³) of anhydrosugars, sugar, and sugar alcohols in Gosan aerosols with those from different sites around the world.

Sampling sites	Sampling type	Sampling time	Anhydro-sugars	Primary sugars	Sugar alcohols	References
Gosan, South Korea	TSP	Summer	3.74	22.8	14.3	This study
		Fall	25.9	38.3	13.4	
		Winter	48.0	20.2	2.60	
		Spring	15.7	90.0	7.36	
Chennai, India	PM ₁₀	Summer	127	15.5	7.44	Fu et al., 2010b
		Winter	134	11.4	4.81	
Mt. Tai, China	TSP	Summer (June)	224	61.1	125	Fu et al., 2012b
Alert, Canada	TSP	Winter	0.32	1.14	0.25	Fu et al., 2009a
		Spring	0.02	0.18	0.36	
Okinawa, western North Pacific	TSP	Summer	0.93	73.5	62.9	Zhu et al., 2015a, b
		Autumn	2.58	56.0	30.7	
		Winter	6.04	34.4	6.03	
		Spring	3.44	101	31.2	
Chichijima, western North Pacific	TSP	Summer	0.32	32.8	38.6	Verma et al., 2015, 2018
		Autumn	0.85	22.0	35.1	
		Winter	2.40	14.2	3.93	
		Spring	0.94	24.2	15.5	
Mt. Hua, China (Non-dust storm)	PM ₁₀	April	57.8	92.5	22.4	Wang et al., 2012
Mt. Hua, China (Dust storm)	PM ₁₀	April	44.5	162	25.7	Wang et al., 2012
Nanjing, China	PM _{2.5}	Summer	151 (Lev)	59.3	11.8	Wang and Kawamura, 2005
		Winter	268 (Lev)	42.3	13.4	
Beijing, China	PM_{2.5}	Summer	14.5	6.63	3.31	Kang et al., 2018a
		Autumn	129	17.2	13.7	
		Winter	254	41.5	17.8	
		Spring	81.4	33.9	12.3	
Belgrade, Serbia	TSP	Autumn	425 (Lev)	116	98.4	Zangrando et al., 2016
Maine, USA	PM ₁	May-October	13.9	28	8.31	Medeiros et al., 2006
Crete, Greece	PM ₁₀	Year-round	14.4	32.3	6.53	Theodosi et al., 2018

1131 Supporting information for
1132 **Regional heterogeneities in the emission of airborne primary sugar**
1133 **compounds and biogenic secondary organic aerosols in the East Asian**
1134 **outflow: Evidence for coal combustion as a source of levoglucosan**

1135

1136 **Md. Mozammel Haque^{1,2,3}, Yanlin Zhang^{1,2*} Srinivas Bikkina⁴, Meehye Lee⁵, and Kimitaka**
1137 **Kawamura^{3,4*}**

1138

1139 ¹*Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and*
1140 *Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing,*
1141 *210044, China*

1142 ²*School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing*
1143 *210044, China*

1144 ³*Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan*

1145 ⁴*Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan*

1146 ⁵*Department of Earth and Environmental Sciences, Korea University, Anam-dong, Sungbuk-gu, Seoul*
1147 *136-701, South Korea*

1148

1149

1150

1151

1152

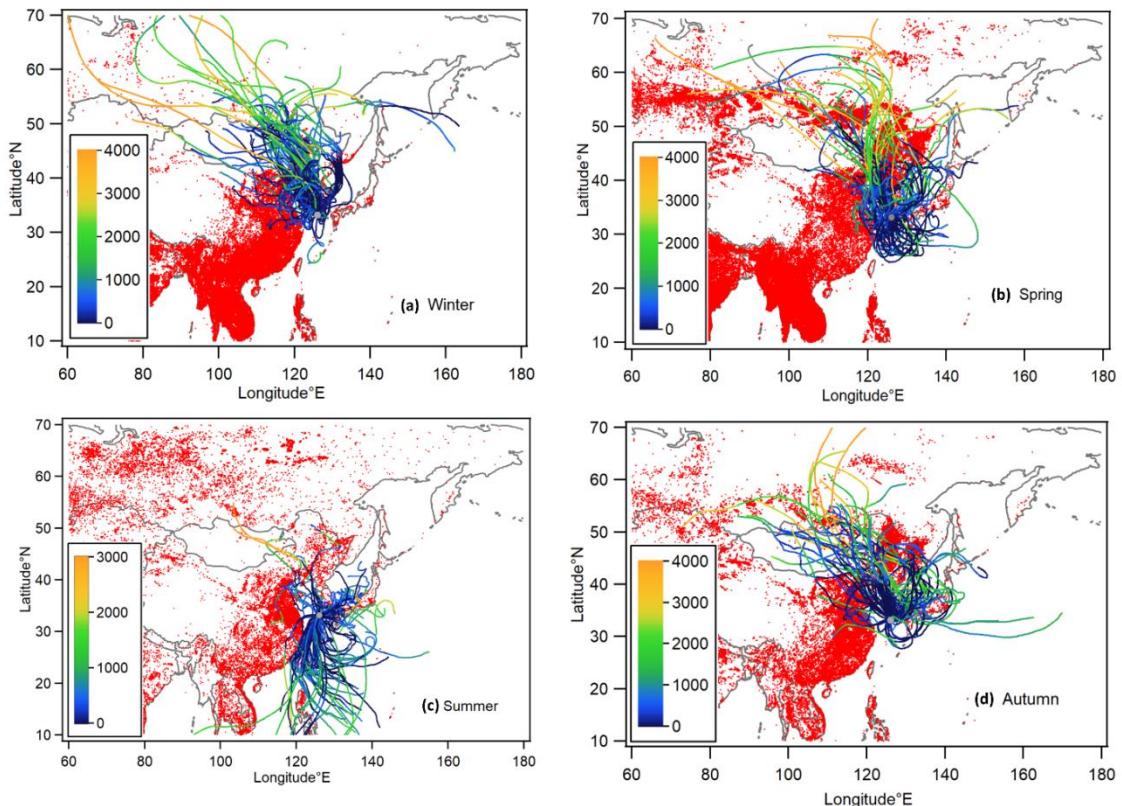
1153

1154

1155

1156

1157

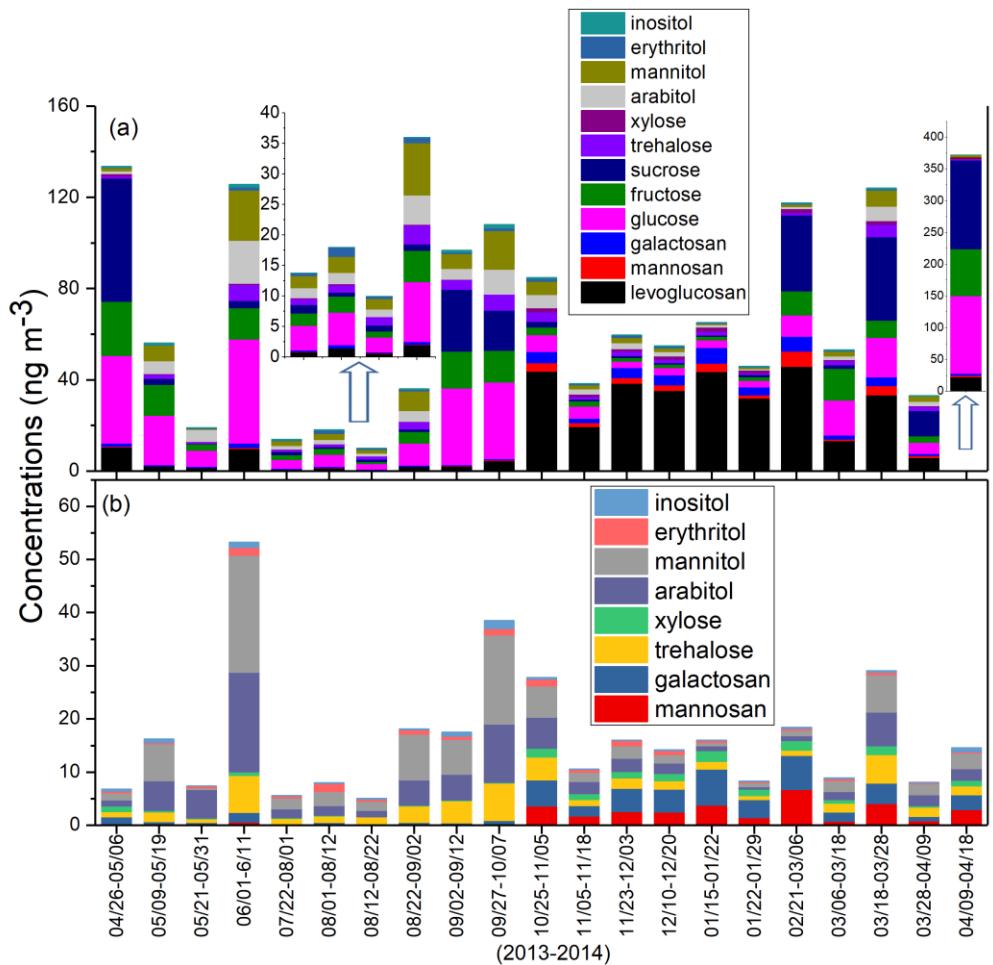

1158

1159

1160

1161

1162
1163
1164
1165
1166
1167

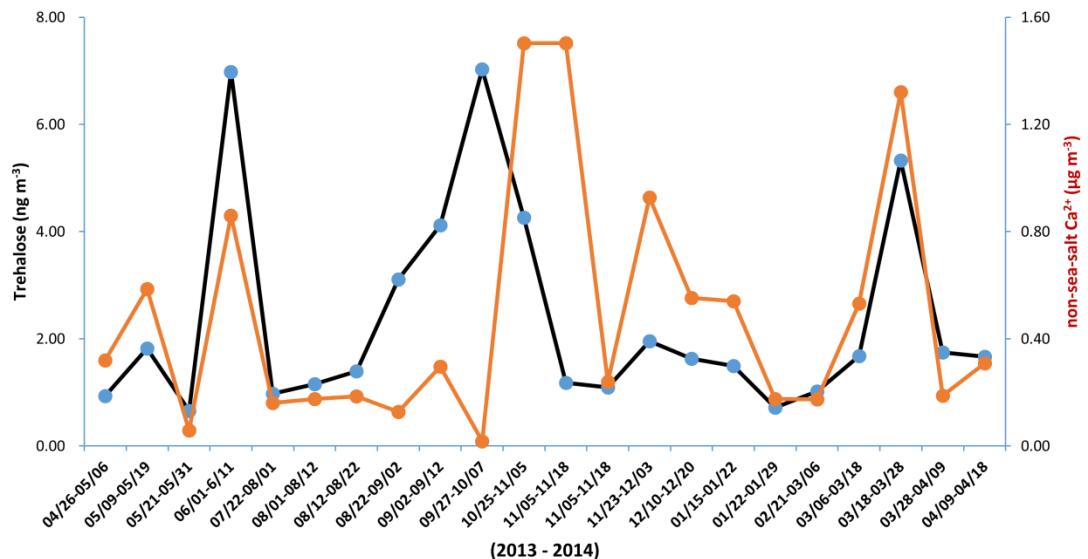

1168 **Figure S1.** HYSPLIT-based backward air mass trajectories as a function of arrival height (m) (see
1169 color bar in each panel) and MODIS-firecounts for the TSP collected over Gosan according the four
1170 seasons, (a) winter, (b) spring, (c) summer, and (d) autumn.

1171
1172
1173
1174
1175
1176
1177
1178
1179

1180

1181

1182


1183

1184 **Figure S2.** Time series of the concentrations of anhydrosugars, primary sugars, and sugar alcohols
1185 during the period of study in Gosan.

1186

1187

1188

1189

1190 **Figure S3.** Temporal variability of mass concentrations of trehalose and non-sea-salt Ca^{2+} in TSP
1191 collected over Gosan during April 2013-April 2014.

1192

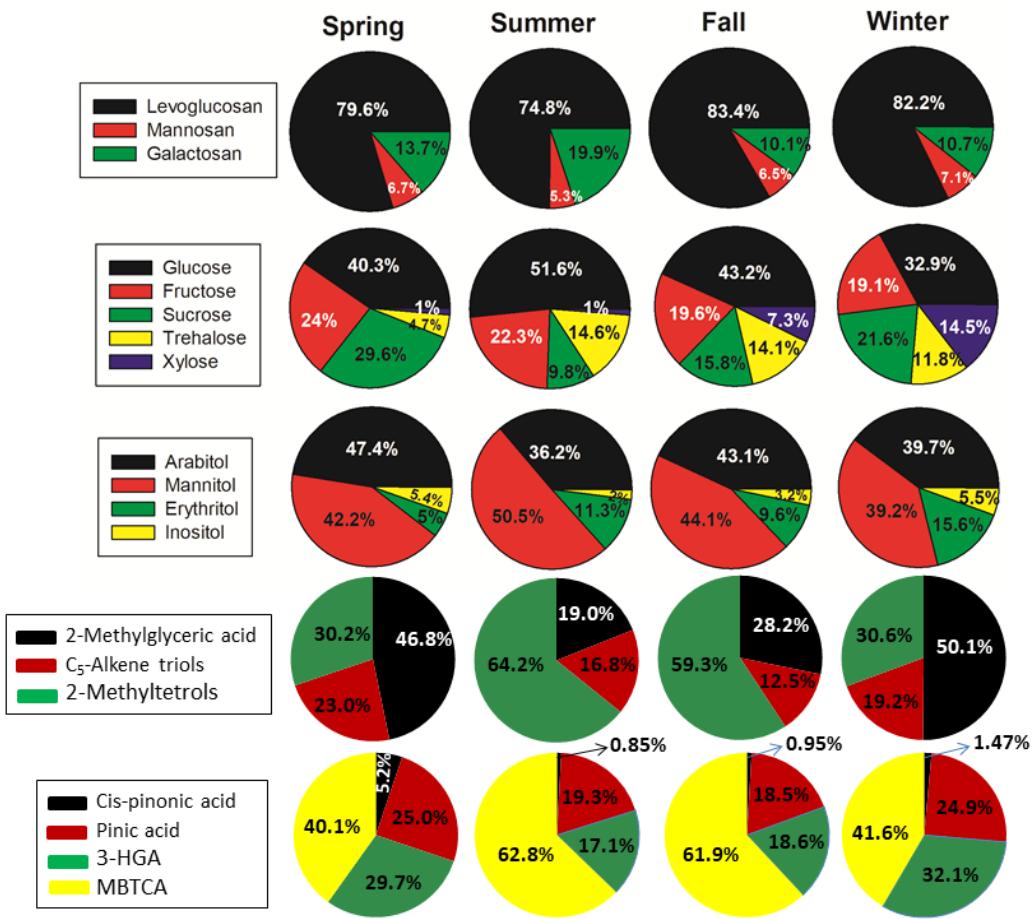
1193

1194

1195

1196

1197


1198

1199

1200

1201

1202

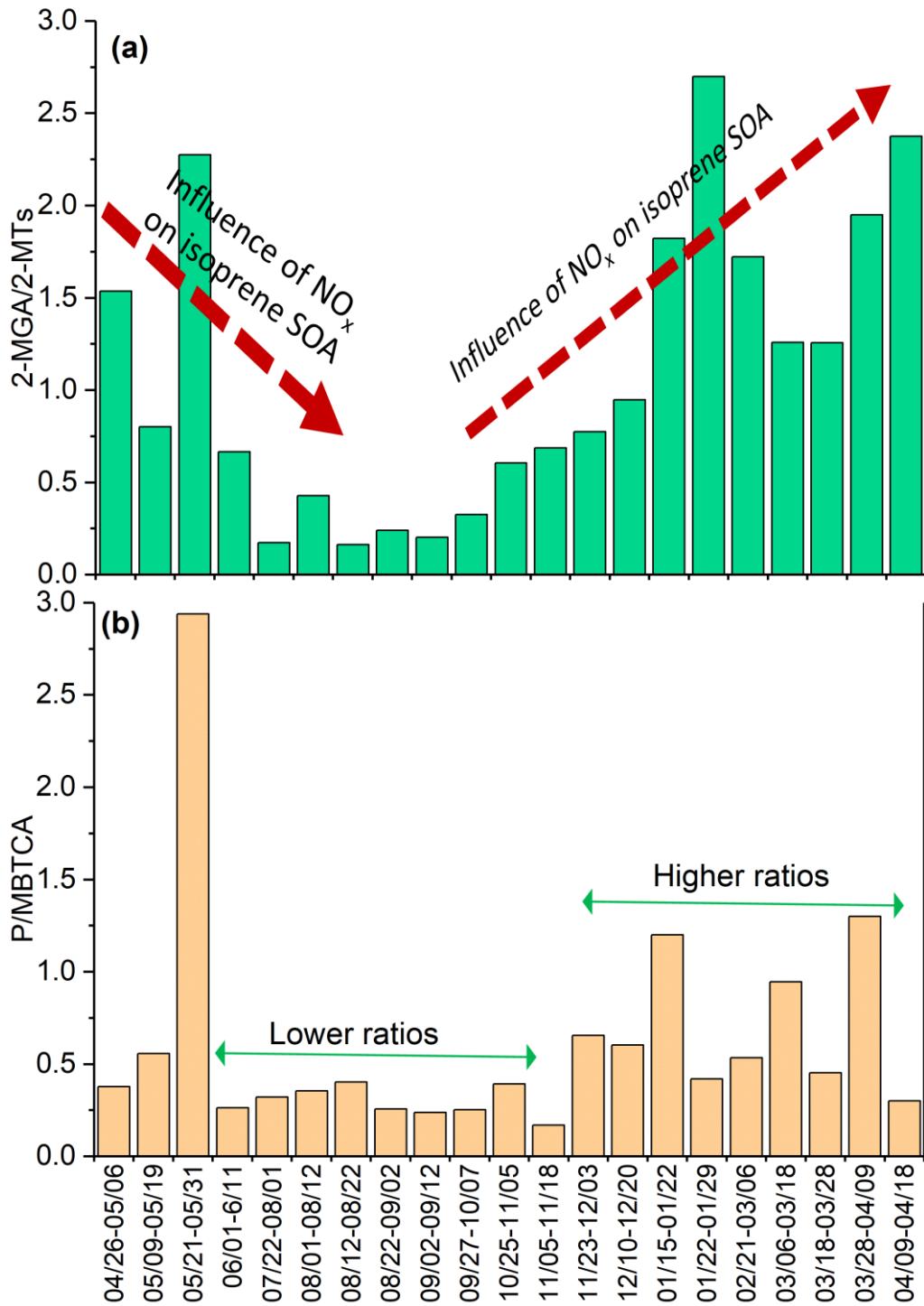
1203

1204 **Figure S4.** Seasonal variability of molecular distributions of anhydrosugars, primary sugars, sugar
 1205 alcohols, isoprene-SOA tracers and monoterpane-SOA tracers in their total mass concentration of
 1206 respective group-types in TSP samples collected over Gosan during April 2013-April 2014.

1207

1208

1209


1210

1211

1212

1213

1214

1215

1216 **Figure S5.** Diagnostic ratios of 2-methylglyceric acid/2-methyltetros (2-MGA/2-MTs) and *cis*-
 1217 pinonic acid+pinic acid/3-methyl-1,2,3-butanetricarboxylic acid (P/MBTCA) in Gosan TSP samples
 1218 collected during April 2013-April 2014.

1219