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Abstract. Lung deposited surface area (LDSA) has been considered to be a better metric to explain nanoparticle toxicity 17 

instead of the commonly used particulate mass concentration. LDSA concentrations can be obtained either by direct 18 

measurements or by calculation based on the empirical lung deposition model and measurements of particle size distribution. 19 

However, the LDSA or size distribution measurements are neither compulsory nor regulated by the government. As a result, 20 

LDSA data are often scarce spatially and temporally. In light of this, we develop a novel statistical model, named input-21 

adaptive mixed-effects (IAME) model, to estimate LDSA based on other already existing measurements of air pollutant 22 

variables and meteorological conditions. During the measurement period in 2017–2018, we retrieved LDSA data measured by 23 

Pegasor AQ Urban and other variables at a street canyon (SC, average LDSA = 19.7±11.3 µm2 cm–3) site and an urban 24 

background (UB, average LDSA = 11.2±7.1 µm2 cm–3) site in Helsinki, Finland. For the continuous estimation of LDSA, 25 

IAME model is automatised to select the best combination of input variables, including a maximum of three fixed effect 26 

variables and three time indictors as random effect variables. Altogether, 696 sub-models were generated and ranked by the 27 

coefficient of determination (𝑅2), mean absolute error (𝑀𝐴𝐸) and centred root-mean-square differences (𝑐𝑅𝑀𝑆𝐷) in order. At 28 

the SC site, the LDSA concentrations were best estimated by mass concentration of particle of diameters smaller than 2.5 µm 29 

(PM2.5), total particle number concentration (PNC) and black carbon (BC), all of which are closely connected with the vehicular 30 

emissions. At the UB site the LDSA concentrations were found to be correlated with PM2.5, BC and carbon monoxide (CO). 31 

The accuracy of the overall model was better at the SC site (𝑅2 = 0.80, 𝑀𝐴𝐸 = 3.7 µm2 cm–3) than at the UB site (𝑅2 = 0.77, 32 

𝑀𝐴𝐸 = 2.3 µm2 cm–3) plausibly because the LDSA source was more tightly controlled by the close-by vehicular emission 33 

source. The results also demonstrate that the additional adjustment by taking random effects into account improves the 34 

sensitivity and the accuracy of the fixed effect model. Due to its adaptive input selection and inclusion of random effects, 35 

IAME could fill up missing data or even serve as a network of virtual sensors to complement the measurements at reference 36 

stations.  37 

1 Introduction 38 

Particulate matter is one of the key components determining urban air pollution. Particulate matter can be described by a 39 

combination of varying concentration (number, surface area and mass) and chemical composition. The mass concentrations of 40 

particulate matter are dominated by large particles whereas the number concentrations are governed by sub-micron particles 41 

(particle diameter (dp) <1 μm), particularly ultrafine particles (UFP, dp< 0.1 μm) (e.g. Petäjä et al., 2007; Rönkkö et al., 2017; 42 
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Zhou et al., 2020). Particulate matter of varying sizes, carrying various harmful substances, have been known for playing a 43 

major role in adverse health effects (Dockery et al., 1993; Oberdorster, 2012; Shiraiwa et al., 2017) in particular to respiratory 44 

system. A particle could be deposited in lung airways upon inhalation (Oberdörster et al., 2005) through three main 45 

mechanisms: inertial impaction, gravitational sedimentation and Brownian diffusion. Interception, and electrostatic forces are 46 

to a lesser extent. An airborne particle might be inhaled either through nasal or oral passage and enter the respiratory tract. 47 

Coarser particles (5–30 μm) are usually partly deposited in the head airway by the inertial impaction mechanism because they 48 

cannot follow the air streamline. Some finer particles (1–5 μm) are deposited in the tracheobronchial region, mainly through 49 

gravitational sedimentation while some are removed by mucociliary clearance (Gupta and Xie, 2018). The remaining sub-50 

micron particles diffuse by Brownian motion and penetrate deeply into the alveolar region, which is considered to be the most 51 

vulnerable section in lungs because removal mechanisms might be insufficient (Gupta and Xie, 2018). Inhaled particulate 52 

matter could also function as a carrier, or as a transport vector, for many viruses, including the SARS-CoV-2 virus (COVID-53 

19, Prather et al., 2020), which is responsible for the pandemic recently declared by the World Health Organization (WHO). 54 

Particulate matter may, therefore, increase the effectiveness of the virus spread in the aerosol as it creates a microenvironment 55 

suitable for its persistence (Liu et al., 2018a) . Regular exposure to particulate matter increases the chance to suffer from acute 56 

and chronic diseases (Brown et al., 2001; Oberdörster et al., 2005), and the susceptibility and severity of the COVID-19 57 

patients’ symptoms (Fennelly, 2020). In light of this, besides commonly monitored particulate matter number concentration 58 

and mass concentration, the surface area of a particle is also an important factor when considering the harmfulness of 59 

particulate matter (Duffin et al., 2002). In particular, the total surface area of particles which are deposited in alveolar section 60 

of human lungs, known as Lung Deposited Surface Area (LDSA), is of the greatest concern because in vitro nanoparticle 61 

toxicity has been demonstrated to be better explained when the lung burden was expressed as total particle surface area instead 62 

of atmospheric particulate matter mass (e.g. Brown et al., 2001; Oberdorster, 2012; Schmid and Stoeger, 2016).  63 

 64 

LDSA can be considered as an intermediary parameter between particle mass and particle number concentration as it cannot 65 

be simply inferred from either of those parameters. Moreover, due to the various deposition efficiency with respect to particle 66 

sizes, the quantification of LDSA is not simple. Conventionally, LDSA concentrations can be retrieved by (1) derivation from 67 

particle size distribution with a deposition model or (2) direct measurements. 68 

 69 

By fitting experimental lung deposition data on human beings, empirical deposition models are developed with the use of the 70 

lung deposition model modified by Yeh and Schum (1980). Examples include the International Commission on Radiological 71 

Protection (ICRP) Human Respiratory Tract Model (ICRP, 1994), the NCRP model (NCRP, 1997) and Multiple Path Particle 72 

Dosimetry (MPPD) model (Anjilvel and Asgharian, 1995). Different conceptual particle deposition models vary primarily 73 

with respect to lung morphometry and mathematical modelling techniques, rather than by using different deposition equations. 74 

The three whole lung deposition models define regions of the human lungs (head airway, tracheobronchial and alveolar) for 75 

any combination of particle size and breathing pattern (Hofmann, 2009). Among all models, single-path models, such as ICRP 76 

model, are often used over multiple-path models due to their simplicity and their applicability to an average path without 77 

requiring detailed knowledge of the branching structure of lungs. Owing to a higher potential health risk, LDSA in alveolar 78 

region is often of greatest concern and it can be calculated by summing up the products of the surface concentration across 79 

particle size spectrum and their corresponding deposition efficiency based on the selected deposition model. 80 

 81 

Apart from numerical computation method, LDSA could also be measured by accredited instruments. LDSA concentration in 82 

many urban environments is mainly driven by the particles smaller than 400 nm (Asbach et al., 2009; Kuuluvainen et al., 83 

2016), generated vastly by anthropogenic sources such as vehicular exhaust emissions (Karjalainen et al., 2016) and residential 84 

wood combustion (Tissari, 2008) which typically produce large amount of small particles. The impact of larger particles (>400 85 
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nm) might be significant due to regional background in very polluted cities (e.g. Delhi, Salo et al., 2021a) or very low-quality 86 

residential burning in detached housing areas (e.g. HMA, Pirjola et al., 2017). These small particles cannot be measured 87 

precisely with methods relying solely on optical detection (e.g. no artificial growing of particles) as the light scattering intensity 88 

of these particles is weak (Kulkarni et al., 2011). Hence alternative approaches are required. One approach is filter sampling 89 

of aerosolised material followed by gas adsorption method (e.g. Lebouf et al., 2011). Another more common approach is using 90 

a diffusion charging based technique where particles are charged with a unipolar corona charger (Fissan et al., 2006). This 91 

method enables measurement of ultrafine particles and, more specifically, the LDSA concentration with good accuracy (Todea 92 

et al., 2015) and stable performance in long term measurements (Rostedt et al., 2014). Nanoparticle Surface Area Monitor 93 

(NSAM) has been used for decades (e.g. Asbach et al., 2009; Hama et al., 2017; Kiriya et al., 2017; Hennig et al., 2018), and 94 

several other instruments and sensors, including DiSCmini, Testo Inc. (e.g. Eeftens et al., 2016; Habre et al., 2018) and 95 

Partector, Naneos Ltd. (e.g. Cheristanidis et al., 2020), and Pegasor AQ Urban, Pegasor Ltd. (e.g. Kuuluvainen et al., 2018; 96 

Kuula et al., 2020), using similar measuring techniques, are developed later on. Recently, this diffusion charging based LDSA 97 

measurement has been combined with electrical cascade impactor method, which enables high time resolution measurements 98 

of particle LDSA size distributions (Lepistö et al., 2020). Using these instruments in campaigns and continuous measurements, 99 

LDSA concentrations and size distribution measurements in various environments have been reported across the globe in the 100 

past decade (Table 1). When comparing LDSA concentrations measured by different instruments, it should be noted that the 101 

instruments’ limitation should be taken into account in experimental LDSA studies, which will be further discussion in Sect. 102 

2.2. 103 

 104 

Although each of these methods is capable of measuring aerosol surface area concentrations, the corresponding uncertainties 105 

(Asbach et al., 2017) and cost hinder the widespread use in monitoring networks. Even though the instruments are available, 106 

missing data often takes place due to instruments maintenance and data corruption. Kuula et al. (2020) demonstrated high 107 

correlations of measured LDSA concentrations with black carbon (BC) and nitrogen oxide (NOx) under certain circumstances. 108 

Traffic activities have been observed to be significant source contribution to the LDSA concentrations (Järvinen et al., 2015). 109 

A clear correlation was also found between the emission factors of exhaust plume BC and LDSA in on-road studies for city 110 

buses (e.g. Järvinen et al., 2019). These highly correlating relationships provide good grounds for estimating LDSA 111 

concentrations and short-term trends by the other pollutants measured at the same site with the use of data mining-based 112 

approach as statistical models. Data mining-based approach exploits statistical or machine learning techniques to detect 113 

patterns between predictors and dependent variables in the time series data. They do not demand in-depth understanding of air 114 

pollutant dynamics, but evaluation by experts is still required to determine whether the models work properly. Simple yet 115 

apprehensible models, such as multiple linear regression (MLR, e.g. Fernández-Guisuraga et al., 2016) and generalized 116 

additive models (GAM, e.g. Chen et al., 2019), are commonly utilised as white-box models in air pollutant proxy studies. 117 

Furthermore, more sophisticated machine learning black-box models, such as artificial neural network (ANN, e.g. Cabaneros 118 

et al., 2019; Zaidan et al., 2019), nonlinear autoregressive network with exogenous inputs (NARX, Zaidan et al., 2020) and 119 

support vector regression (SVR, e.g. Fung et al., 2021), have been intensively investigated in recent years. They work better 120 

in terms of accuracy; however, they provide limited transparency and accountability regarding the outcomes (Rudin, 2019; 121 

Fung et al., 2021).  122 

 123 

Apart from model structures, the criteria of selecting variables in multipollutant datasets for model development have received 124 

considerable attention over the years, and a large number of methods have been proposed (Miller, 2002). Traditional methods, 125 

like stepwise procedures, which is a combination of forward selection and backward elimination (e.g. Liu et al., 2018b; Chen 126 

et al., 2019), can be unstable because it uses restricted search through the space of potential models, which eventually causes 127 

inherent problem of multiple hypothesis testing (Breiman, 1996; Faraway, 2014). Another approach named regularization has 128 
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emerged as a successful method to reduce the data dimension in an automated way, yet deal poorly with multi-collinear 129 

variables, for example Least Absolute Shrinkage and Selection Operator (LASSO, e.g. Fung et al., 2021; Šimić et al., 2020), 130 

ridge regression (e.g. Chen et al., 2019) and  ELASTINET (e.g. Chen et al., 2019). Criterion-based procedures, which choose 131 

the best predictor variables according to some criteria (e.g. coefficient of determination, residual, etc), are sensitive to outliers 132 

and influential points, but involve a wider search and compare models in a preferable manner. Examples are best subset 133 

regression (e.g. Chen et al., 2019), input adaptive proxy (e.g. Fung et al., 2020; Fung et al., 2021), etc. Hastie et al. (2020) 134 

compared some of the models using the three approaches and concluded that no single feature selection method uniformly 135 

outweighs the others. Despite the extensive research of feature selection methods, the inclusion of random effects together 136 

with the fixed effects as linear mixed-effects (LME) model has received little attention (e.g. Font et al., 2019; Tong et al., 137 

2020) in air pollution research, let alone LDSA study in particular. This inclusion of random effects could acknowledge a 138 

possible effect coming from a factor where specific and fixed values are not of interest. 139 

 140 

In this study, we combine the use of criterion-based feature selection method and the inclusion of random effects, and develop 141 

a novel input-adaptive mixed effects (IAME) model to estimate alveolar LDSA concentrations, which is the first study of this 142 

context to our best knowledge. The description of LDSA measurements and the techniques of IAME model are outlined in 143 

Sect. 2 and 3, respectively. Section 4 presents the characteristics of alveolar LDSA, including its seasonal variability, weekend 144 

effect and diurnal pattern, in four types of environments. We also aim to investigate the correlation with other air pollutants. 145 

In Sect. 5, we evaluate the performance of the IAME proxy (LDSAIAME) with the measured alveolar LDSA by Pegasor AQ 146 

Urban (LDSAPegasor), ICRP lung deposition model derived LDSA (LDSAICRP) and another modelled alveolar LDSA by IAP 147 

(LDSAIAP) as well as the benefits and implication of this alveolar LDSA model. It should be noted that this study discusses 148 

LDSA in alveolar region, unless stated otherwise. 149 

2 Measurement description 150 

2.1 Measurement sites 151 

We retrieved aerosol, gaseous and meteorological data from two types of measurement sites, i.e., street canyon (SC, 2017–152 

2018) and urban background (UB, 2017–May 2018), in Helsinki Metropolitan Area (HMA) described in more detail below. 153 

Data from detached housing (DH, 2017) and regional background (RB, 2017) sites were also included in the study to provide 154 

comparison and data from the background concentrations. Situated on a relatively flat land at the coast of Gulf of Finland, 155 

HMA has land area of 715 km2 and population of about 1.13 million inhabitants. Helsinki can be classified as continental or 156 

marine climate depending on the air flows and the pressure system. Figure S1 and Table S1 show the detailed site description. 157 

Street canyon site (SC): Mäkelänkatu urban supersite is operated by the Helsinki Region Environmental Services Authority 158 

(HSY, Kuuluvainen et al., 2018). The station is located at 3 km from the city centre in a street canyon in the immediate vicinity 159 

to one of the main roads leading to downtown Helsinki. The street, with speed limit of 50 km h−1, consists of six lanes and two 160 

tramlines. The annual mean traffic volume in 2018 per workday was 28 100 vehicles, 11% of which were recorded as the 161 

heavy duty vehicles. The traffic loads are especially high during rush hours at 8 a.m. and 5 p.m. (Figure S2). The street canyon 162 

of width of 42 m is surrounded by rows of buildings of 17 m high, which weaken the dispersion process of the direct vehicular 163 

emissions. All the inlets for the measuring devices are positioned approximately at a height of 4 m from the ground level. 164 

Urban background site (UB): The Station for Measuring Ecosystem-Atmosphere Relations III (SMEAR III, Järvi et al., 165 

2009) in Kumpula, situated on a rocky hill at 26 m above sea level, is about 4 km northeast from the Helsinki centre. The 166 

surroundings of this urban background station are heterogeneous, constituting of residential buildings, small roads, parking 167 

lots, patchy forest and low vegetation from different direction. One main road (45 000 vehicles per workday) is located at the 168 

distance of 150 m east from the site. Trace gases and meteorological conditions are measured at a height of 4 m and 32 m, 169 
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respectively, at a triangular lattice tower while aerosol measurements are conducted inside a container approximately 4 m 170 

above the ground. The site is co-operated by Finnish Meteorological Institute (FMI) and the University of Helsinki (UHEL). 171 

Detached housing site (DH): Three measurement stations, Rekola (DH1), Itä-Hakkila (DH2) and Hiekkaharju (DH3), were 172 

chosen since they represent a sub-urban residential area surrounded by detached houses. These sites are mainly affected by the 173 

wood combustion emissions from residential activities, especially in cold weather conditions. Emissions from traffic source 174 

also account for a small portion of the whole pollution. It is estimated that 90 % of the households burn wood to warm up 175 

houses and saunas, less than 2 % of which use wood burning as the main heating source in detached houses in HMA (Hellén 176 

et al., 2017).  177 

Regional background site (RB): The RB site is located about 23 km away from the Helsinki city centre at Luukki, surrounded 178 

by a wooded outdoor recreational area right at the edge of the Greater Helsinki golf course. The measuring station is in an 179 

open place away from busy traffic routes and large point sources. As a result, this site can represent background concentration 180 

levels outside the urban area without any main local sources. 181 

2.2 Instruments 182 

LDSA measurements: The sensor unit and the core of the Pegasor AQ Urban is practically another instrument called a Pegasor 183 

PPS-M sensor (Pegasor Ltd., Finland) originally designed for automotive exhaust emission measurements (e.g. Maricq, 2013; 184 

Amanatidis et al., 2017). The operation of the sensor is based on diffusion charging of particles and the measurement of electric 185 

current without the collection of particles. The diffusion charging of particles is carried out by a corona-ionized flow that is 186 

mixed with the ambient sample air in an ejector diluter inside the sensor. The sampling lines and the sensor unit are heated 187 

40℃ above the ambient temperature (1) to dry the aerosol sample, (2) to prevent interference from humidity, and (3) to prevent 188 

any water condensation inside the sensor. The performance of the Pegasor PPS-M sensors for long-term ambient measurements 189 

has been improved after they were tested in Helsinki (Järvinen et al., 2015) and Beijing (Dal Maso et al., 2016). The suggestions 190 

have been considered for the design of the current form of the Pegasor AQ Urban in this study.  191 

The Pegasor AQ Urban (dimension: 320 mm×250 mm×1000 mm), which consists of a weatherproof cover, clean air supply, 192 

and the abovementioned Pegasor PPS-M sensor, has been designed such that its response to LDSA is not to be subjected to 193 

meteorological fluctuation for outdoor operation. Kuuluvainen et al. (2016) used two Pegasor AQ Urban devices during a 2 194 

week period at an urban street canyon and an urban background measurement station in Helsinki, Finland whereas Kuula et 195 

al. (2019) later used instrument in a 3 month long campaign at the same urban street canyon station. These studies demonstrated 196 

that the output signal of the Pegasor AQ Urban correlated well with other devices measuring LDSA concentrations such as the 197 

Partector and DiSCmini. Kuula et al. (2020) further validated the accuracy and stability of Pegasor AQ Urban at the street 198 

canyon station by comparing the measured values of one full year with DMPS reference instruments (R2 = 0.90, RMSE = 4.1 199 

µm2 cm–3). The instrument is optimized to measure the alveolar LDSA concentrations of particles in ~10–400 nm size range. 200 

Pegasor AQ Urban tends to underestimate LDSA of particle larger than about 400 nm. In typical urban environments, most of 201 

the particles from local combustion sources are in the size below the threshold (Kuuluvainen et al., 2016; Pirjola et al., 2017). 202 

However, the impact of larger particles (>400 nm) to alveolar LDSA might be significant, for example a recent study on LDSA 203 

concentrations in polluted urban environment in India observed high LDSA contribution from relatively large accumulation 204 

mode particles although the experiment was conducted in close proximity of traffic (Salo et al., 2021a) and in mining 205 

environment the mineral dust and other pollutants being typically in larger particle sizes can also contribute to the LDSA 206 

concentrations (Salo et al., 2021b). In HMA, the impact of >400 nm might also be significant during PM2.5 long-range transport 207 

episodes or when there are many particles from very low-quality residential burning in detached housing areas (Pirjola et al., 208 

2017). 209 

Aerosol measurements: Differential mobility particle sizer (DMPS) in combination of a differential mobility analyser (DMA) 210 

and a condensation particle counter (CPC) measures aerosol size distribution (Kulkarni et al., 2011). Vienna DMA and 211 
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Airmodus A20 CPC (measurements of particle size range 6–800 nm) are used at the SC site while a twin DMPS (Hauke-type 212 

DMA and TSI Model 3025 CPC + Hauke-type DMA and TSI Model 3010 CPC, merged particle size range 3–1000 nm) are 213 

used at the UB site. Both instruments make use of the bipolar charging of aerosol particles, followed by classification of 214 

particles into size classes according to their electrical equivalent mobility. In addition to particle size distribution, total particle 215 

number concentration (PNC, in cm−3) is calculated by summation. Particle mass concentration of diameter less than 2.5 µm 216 

(PM2.5, in µg m−3) and less than 10 µm (PM10, in µg m−3) are measured continuously with ambient particulate monitor TEOM 217 

1405 at the SC site and TEOM 1405-D at the UB site. Black carbon (BC, in µg m−3) mass concentration is measured by a 218 

multi-angle absorption photometer (MAAP) Thermo Scientific 5012 with a PM1 inlet. The measured absorbance is converted 219 

to BC mass concentration by using a fixed 6.6 m2 g−1 mass absorption coefficient at wavelength of 637 nm. PM2.5, PM10 and 220 

BC are recorded in µg m−3. 221 

Ancillary measurements: Trace gas concentrations (in ppb), including nitrogen oxide (NO), nitrogen dioxide (NO2), their 222 

sum nitrogen oxide (NOx), ozone (O3) and carbon monoxide (CO) are determined with a suite of gas analysers. In addition, 223 

supporting meteorological variables, including air temperature (Temp), relative humidity (RH), air pressure (P), wind speed 224 

(WS), wind direction (WD) and photosynthetically active radiation (PAR), are measured at SC and UB. Figure S3 show the 225 

meteorological conditions during the measurement period. A list of variables collected is shown in Table S2. 226 

3. Method 227 

3.1 Data pre-processing 228 

The collected data was quality checked by the corresponding operating organisation, HSY, FMI and UHEL. No additional 229 

pre-processing was done for general analysis. For proxy development, outliers were detected using the interquartile range 230 

(IQR) rule, which is applicable for non-Gaussian distribution sample. We calculated the cut-off for outliers as 2 times the IQR, 231 

subtracted this cut-off from the 25th percentile and added it to the 75th percentile to give the actual limits on the data. We 232 

applied a natural logarithm transformation to all the skewed-distributed aerosol and trace gases measurements in order to keep 233 

the distribution of each parameter following a normal distribution. Since wind direction is a circular variable, it is resolved 234 

into North-South (WD–N) and East-West (WD–E) vector components by trigonometric functions. 235 

3.2 Size-fractionated lung deposited surface area (LDSAICRP) 236 

Alveolar deposition fraction (𝐷𝐹𝐴𝐿) as a function of particle size with the unit density is determined with the ICRP Human 237 

Respiratory Tract Model by the following equation (ICRP, 1994).  238 

𝐷𝐹𝐴𝐿 = (
0.0155

𝑑𝑝

) (exp (−0.416(ln 𝑑𝑝 + 2.84)
2

) + 19.11 exp (−0.482(ln 𝑑𝑝 − 1.362)
2

)) 
(1), 

where 𝑑𝑝 is the aerodynamic diameter (µm) of spherical particles with the unit density (1 g cm−3). The equation is determined 239 

in two parts with respect to the two different peaks in the deposition curve in Figure 1. The peak near the size of 20 nm can be 240 

approximated to represent the Brownian deposition, whereas the peak between 1 µm and 2 µm represents the inertial 241 

deposition. From the particle number size distribution, we calculated the particle surface area distribution assuming each 242 

particle is monodisperse sphere of standard density at standard conditions. By Eq. (1), a deposition factor for each particle size 243 

bin (26 size bins at SC and 49 at UB) were calculated. Size-fractionated LDSA was then computed by multiplying the surface 244 

area concentration with 𝐷𝐹𝐴𝐿  in the corresponding size class. Total LDSA calculated by the ICRP lung model (LDSAICRP) can 245 

be obtained by summing up the all the size-fractionated LDSA values. In this study, the alveolar LDSAICRP was calculated 246 

based on DMPS measurements in SC and UB. Thus, while the alveolar LDSA measured by Pegasor (LDSAPegasor) represent 247 

the ~10–400 nm size range, the alveolar LDSAICRP represent 6–800 nm and 3–1000 nm size range in SC and UB, respectively. 248 
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3.3 Novel Input-adaptive mixed-effects (IAME) model 249 

Input-adaptive mixed-effects (IAME) model is a combination of input-adaptive proxy (IAP) and linear mixed-effects (LME) 250 

model. IAP was first introduced by Fung et al. (2020) and has been demonstrated reliable and flexible to fill up missing values 251 

by taking input variables adaptively with robust ordinary least square regression models. IAP has been able to estimate BC 252 

concentration by other air quality indicators with a satisfactory performance in two different categorised urban environments, 253 

street canyon (adjusted 𝑅2 = 0.86–0.94) and urban background (adjusted 𝑅2 = 0.74–0.91). Some models outperformed IAP in 254 

accuracy performance, but its transparent model structure and ability to impute missing values still make it a preferred option 255 

as a virtual sensor (Fung et al., 2021).  256 

 257 

In this study, we primarily stick to the strength to select input variables adaptively with the introduction of mixed effects. The 258 

mixed effect approach is a generalization of the linear model that can incorporate both fixed (i.e. causing a main 259 

effect/interaction) and random effects (i.e. causing variance/variability in responses), allowing the account of several sources 260 

of variations (Chudnovsky et al., 2012). As seen in Figure 2, We picked the direct air pollutant measurement from the station 261 

(variables of high correlation: PM2.5, BC and NO2 and other supporting variables: PM10, O3, NOx, NO, CO and PNC) and 262 

meteorological data of higher correlation (Temp, RH, P, PAR, WS, WD–N, WD–E) as the fixed variables because the air 263 

pollutants can indicate the sources of LDSA which largely come from combustion and meteorological data could influence the 264 

dispersion and dilution of LDSA. They are the most direct factors to the fluctuation of LDSA concentrations. Due to the strong 265 

seasonal variation, weekend effects and diurnal pattern in urban air pollutant concentrations (Fung et al., 2020), the variance 266 

in responses might depend on the time indicators that are not the primary cause of the concentration variability, but they 267 

indirectly alter human-induced activities, such as traffic amounts. To take them into account, we created three time hierarchical 268 

sub-groups (12 months of year, 7 days of week and 24 hours of day) as the inputs of random effect variables. 269 

 270 

The regression equation of IAME is similar to the equation of IAP, except that IAME includes additional intercepts term for 271 

random effects as below: 272 

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑖𝑘𝑥𝑖𝑘

𝑝

𝑘=1

+ ∑ 𝑏𝑖𝑗

𝑞

𝑗=1

+ 𝑒𝑖 
(2), 

where 𝑦𝑖 is the 𝑖th estimated LDSA concentration. The first term on the right β0 indicates the fixed intercept of the equation. 273 

The second term represents the total contribution by the direct measurement of variable 𝑥 as fixed effects with a slope β at 274 

each data point 𝑖. A maximum of three inputs from the total 16 fixed variables are selected to from 696 sub-models (Figure 2).  275 

The inputs for random effects are indicated by 𝑏 as intercepts of the corresponding three hierarchical sub-groups. A Gaussian 276 

error term is indicated by 𝑒. The explanation of Eq (2), is visualised in Figure 2.  277 

 278 

One of the assumptions of LME models is that the random effects, together with the error term, have the following prior 279 

distribution: 280 

𝑏~𝑁(0, 𝜎2𝐷(𝜃)) (3), 

where 𝐷 is a 𝑞-by-𝑞 symmetric and positive semidefinite matrix, parameterized by a variance component vector 𝜃, 𝑞 is the 281 

number of variables in the random-effects term, and 𝜎2 is the observation error variance. We use an optimiser, restricted 282 

maximum likelihood, commonly known as ReML, with the value 1x10–6 as the relative tolerance on gradient of objective 283 

function and 1x10–12 as absolute tolerance on step size. The use of ReML over the conventional ML could produce unbiased 284 

estimates of variance and covariance parameters (Lindstrom and Bates, 1988).  285 

  286 
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After the sub-model formation, the dataset is randomly divided into five portions. 80% of the data are allocated for 4-fold cross 287 

validation to remove variance of accuracy. The results of all the folds are averaged and the sub-models are ranked by several 288 

evaluation metrics, which are further demonstrated in Figure 2 and described in Sect. 3.4. Some of the sub-models are subject 289 

to rejection under two conditions: (1) strong multi-collinearity among the fixed parameters (variance inflation factor (VIF) 290 

exceeding a threshold of 5) and (2) violation of the normality assumption of residuals also known as heteroscedasticity (fail in 291 

Kolmogorov-Smirnov (K-S) test, p < 0.05). Based on the situation of missing data, the automatised IAME model will search 292 

for the best sub-model option from the ranking chart. Hence, each data point might be estimated differently depending on the 293 

available data. The number of data points being estimated by each sub-model is reported to show their frequency of usage. 294 

3.4 Evaluation metrics 295 

In order to evaluate the model performance quantitatively, we use the following metrics: 296 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

 
(4), 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦�̂�|

𝑁

𝑖=1
 

(5), 

𝑐𝑅𝑀𝑆𝐷 =  √
1

𝑁
∑ ((𝑦𝑖 − �̅�) − (𝑦�̂� − �̃�))2

𝑁

𝑖=1
 

(6), 

𝑟 =
∑ (𝑦𝑖 − �̅�)(𝑦�̂� − �̃�)𝑁

𝑖=1

√∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1 √∑ (𝑦�̂� − �̃�)2𝑁

𝑖=1

 
(7), 

𝑁𝑆𝐷 =
𝑆𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑆𝐷𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

=
√ 1

𝑁 − 1
∑ (𝑦�̂� − �̃�)2𝑁

𝑖=1

√ 1
𝑁 − 1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

= √
∑ (𝑦�̂� − �̃�)2𝑁

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

 

(8), 

where 𝑦�̂� and 𝑦�̂� are 𝑖th measured data point and estimated variable by the model, respectively. �̅� and �̃� are the expected value 297 

of the measured and modelled dataset, respectively. 𝑁 is the number of complete data input to the model. Coefficient of 298 

determination (𝑅2) is a measure of how close the data lie to the fitted regression line.  It, however, does not consider the biases 299 

in the estimation. Therefore, we further validated the models with mean absolute error (𝑀𝐴𝐸) and centred root-mean-square 300 

differences (𝑐𝑅𝑀𝑆𝐷), where 𝑀𝐴𝐸 measures the arithmetic mean of the absolute differences between the members of each 301 

pair, whilst 𝑐𝑅𝑀𝑆𝐷 calculates the square root of the average squared difference between the forecast and the observation pairs. 302 

𝑐𝑅𝑀𝑆𝐷 is more sensitive to larger errors than 𝑀𝐴𝐸. Furthermore, together with 𝑐𝑅𝑀𝑆𝐷, Pearson correlation coefficient (𝑟) 303 

and normalised standard deviation (𝑁𝑆𝐷) of the modelled data set are also studied. 𝑟 describes the correlation between the 304 

measured and modelled data whereas 𝑁𝑆𝐷  measures the relative spread of the data. Due to their unique mathematical 305 

relationship, the three metrics can be portrayed on Taylor’s diagram, which has been used for sub-model selection purpose. 306 

We ranked our sub-models first by 𝑅2 , followed by 𝑀𝐴𝐸 and 𝑐𝑅𝑀𝑆𝐷. 𝑟 and 𝑁𝑆𝐷 serve as additional evidence when we 307 

explain the model performance.  308 

3.5 Two-sample t-tests 309 

We assessed the temporal and spatial impact on the IAME model by comparing the means of absolute differences between the 310 

hourly measured and modelled LDSA in different time windows at both stations. Two-sample t-tests were performed on the 311 

two populations of absolute differences abovementioned to determine whether the difference between these is statistically 312 

significant. A significance level α of 5% is chosen as the probability of rejecting the null hypothesis when it is true, denoted 313 

as p. 314 

https://doi.org/10.5194/acp-2021-427
Preprint. Discussion started: 5 July 2021
c© Author(s) 2021. CC BY 4.0 License.



9 

 

4 LDSA measurement characterization 315 

4.1 General characteristics of LDSAPegasor in Helsinki metropolitan area 316 

The annual mean alveolar LDSA concentrations at four station types SC (2017–2018), UB (2017–May 2018), DH (2018) and 317 

RB (2018) are 19.7±11.3 µm2 cm–3, 11.2±7.1 µg m–3, 11.7±8.6 µm2 cm–3 and 7.6±5.4 µm2 cm–3, respectively (Table 2). The 318 

DH and RB site are included to give more substantial interpretation of data because the LDSA concentrations at RB can be 319 

viewed as background measurements and the local LDSA increments in HMA can be represented by the LDSA at the hotspot 320 

measurement site subtracted by the LDSA at the RB site. The timeseries of LDSA concentrations at the SC and the UB site 321 

are presented in Figure 3 and Fig. S4, where the missing data of LDSA for the whole measurement period is 3% and 30%, 322 

respectively. When comparing with the same site type in other cities around the globe, LDSA concentrations detected in HMA 323 

are the lowest among the European cities with reported values, and about one-fifth that in Japan (Table 1). Some literatures 324 

also report LDSA at tracheobronchial region but most just consider LDSA at alveolar which is considered to bring most harm 325 

to human’s lungs. 326 

 327 

The diurnal pattern of LDSA at RB is not observable on workdays or over weekends (Figure 4, upper panel). The relatively 328 

low variability can be explained by the scarcity of human activities. We can then regard the LDSA at RB as the background 329 

concentrations mainly influenced by the regionally and long-range transported aerosol and meteorological variation. As the 330 

concentrations at RB is stable throughout the different hours of day; therefore, the diurnal pattern of LDSA concentration is 331 

apparently indistinguishable between the measured concentration and the local increments. At the UB and DH site, the 332 

magnitudes and the patterns of the average hourly LDSA concentrations at workdays are comparable, and both show bimodal 333 

curves, one peak at 6−9 a.m., the other at 9−11 p.m.. The former has a larger peak during the morning peak hour because of 334 

the vehicular emissions (Timonen et al., 2013; Teinilä et al., 2019) while the latter has a larger peak in the evening attributed 335 

mainly by the residential burning (Hellén et al., 2017; Helin et al., 2018; Luoma et al., 2021). Over weekends, the peaks in the 336 

morning are not identifiable and the evening peaks are amplified due to enhanced human activities. Similar diurnal variation 337 

at residential  area was observed for BC emitted by residential combustion by Helin et al. (2018). At the SC site, the morning 338 

peak on weekends is not obvious because of the lack of work-related traffic. It appears that a similar bimodal curve can be 339 

seen during workdays, but the evening peak is seen during the evening traffic rush hour around 4−6 p.m.. The reason is that 340 

the main contributor of LDSA at the SC site is traffic and combustion processes and the diurnal variability mainly depends on 341 

the citizen’s movement by vehicles in the city. Over weekends, the average hourly LDSA concentrations are the minimum at 342 

5 a.m. and they increase and remain at a high level at 2 p.m. until the late night. The level of LDSA concentrations at DH is 343 

comparable with that at UB site. However, the amplitudes of the evening peak is higher than that of the morning peak both on 344 

workdays and weekends due to elevated residential combustion.  345 

 346 

However, the monthly variability of background measurements at the RB site is stronger compared to the diurnal pattern and 347 

the calculation of local increment is necessary. With no intense point sources, the variations at RB are probably due to 348 

horizontal dispersion and advection of aerosol particles and vertical dilution controlled by the boundary layer dynamics. In the 349 

summer, when solar radiation is persistently stronger, the boundary layer becomes elevated due to surface heating and 350 

associated thermal turbulence. This turbulence would dilute the concentration of pollutants at the surface. Another plausible 351 

reason could be the higher regional and long-range transported LDSA in the summer, as demonstrated by Kuula et al. (2020) 352 

and Barreira et al. (2021). The lower panel in Figure 4 shows the LDSA local increments after subtraction of the LDSA at the 353 

RB site. For instance, the local LDSA increments at DH are the highest in the winter probably due to local small-scale wood 354 

combustion (and traffic). However, without subtracting the background concentrations, the LDSA concentrations at DH are 355 

higher in the summer than in the winter (due to high regional background concentrations in summer), as was observed also by 356 
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Kuula et al. (2020). This piece of evidence can help in the source apportionment. The variation of diurnal and seasonal LDSA 357 

for all sites are visualised in Fig. S5. 358 

4.2 The connection between LDSA and other parameters 359 

Alveolar LDSA concentration, as a single number, comprises particles across the whole particle size spectrum measured (e.g. 360 

Pegasor AQ Urban ~10–400 nm). InHMA, the two local main sources of particles contributing to LDSA are vehicular 361 

combustion and residential wood combustion emissions. Upon the two combustion processes, particles of different sizes and 362 

different gaseous pollutants are emitted. A study by Lamberg et al. (2011) has shown that the geometric mean diameter of 363 

residential wood combustion is typically 70–150 nm whereas Barreira et al. (2021) presented that the typical particle size for 364 

vehicular combustion can be smaller than 50 nm. By calculating the proportion of LDSA with respect to different pollutant 365 

parameters BC, NOx, PNC (dominated by UFP), and PM2.5, we could identify the contribution of LDSA across the hour of day 366 

(Fig. S6 for workdays and Fig. S7 for weekends). Since the vehicular combustion emits smaller particles which elevate the 367 

LDSA concentration but meanwhile do not substantially influence the value of PM2.5 (e.g. Salo et al., 2021a); therefore, 368 

LDSA/PM2.5 has a diurnal pattern similar to the LDSA concentrations which peaks in the morning rush hour during workdays. 369 

Conversely, LDSA/BC, LDSA/PNC and LDSA/NOx have a higher value before the morning rush hour and they plunged in 370 

the morning rush hour. This can be explained by the fact that vehicular combustion emits high concentration of BC, PNC and 371 

NOx (Reche et al., 2015) compared to its contribution to LDSA concentration. In other words, the role of regional background 372 

is higher for LDSA compared to those of NOx, BC and PNC. At the UB site, the average LDSA/BC at all hours remain at a 373 

constant level in the winter while the variability of the ratio is much higher in the summer. The general LDSA/PNC ratio at 374 

UB is steadily 2−3 times higher than that at all hours in all seasons because the proportion of larger particles at UB is usually 375 

higher than SC. This large variability again validate the heterogeneity of source of LDSA.  376 

 377 

The integrated alveolar LDSA with a various size ranges was calculated to explore the correlation of size-fractionated LDSA 378 

and other parameters in our multipollutant dataset. No single fractionated LDSA correlates well with meteorological 379 

parameters at both sites (Figure 5). Out of all fractions, alveolar LDSA of the whole spectrum (LDSA6−800) and LDSA250−400, 380 

which explains majority of LDSA, correlates best with other air pollutants. In general, alveolar LDSA has high correlation 381 

with BC. BC correlates the best with LDSA100−250, which is in alignment with the reported values from previous literature 382 

(Gramsch et al., 2014; Ding et al., 2016). As expected, PM2.5 show better correlation with the LDSA of larger particles because 383 

larger particles contributes more to PM2.5 mass concentration values. In the meanwhile, PM10 has fair correlation with all 384 

selected size bins. NO2 correlates highly with LDSA of smaller particles, indicating the dominant role of local traffic exhausts. 385 

CO has a higher correlation with LDSA of 400−800 nm since CO concentrations are more affected by regionally transported 386 

pollutants. O3 has a fair correlation with LDSA of all sections because the formation of O3 is mostly secondary and the chemical 387 

interactions with pollutants are more complicated than the other compounds. In general, the correlation of LDSA with other 388 

air pollutant parameters is higher at the SC site than that at the UB site (Fig. S8). The high correlation of LDSA with BC, PM2.5 389 

and NO2, which agrees with the results by Kuula et al. (2020), proves the possibility of developing a model to estimate LDSA 390 

concentrations. 391 

5 Model evaluation 392 

5.1 Sub-model diagnostics 393 

Following the evaluation attributes described in Sect. 3.4,   394 
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Table 3 depicts the descriptive statistics of the overall model evaluation on its testing set. The overall model at the SC site is 395 

able to explain 80% of the variability of the testing set of the measured data. The 𝑅2 in the winter is 0.86 being the highest 396 

while the worst 𝑅2 is shown in the summer, i.e., 0.70. The 𝑀𝐴𝐸 and 𝑐𝑅𝑀𝑆𝐷 are the smallest during weekend with 𝑅2 not 397 

particularly high (𝑅2 = 0.72) probably because the LDSA concentration itself is relatively low in that period. The overall 398 

performance is generally worse in UB in terms of 𝑅2, except during weekends that 𝑅2 is 10% higher.  399 

 400 

For individual sub-models, their performance could be seen on the Taylor’s diagram in Figure 6 (Taylor, 2001). Each marker 401 

represents one sub-model, the contribution of which to the outcome of the final model is displayed in various colours. The 402 

sub-model performance can be evaluated by the distance of the sub-model marker and the red point, which represents the 403 

reference station, i.e., the perfect model. The location of each marker indicates its individual performance in terms of 𝑟, 404 

𝑐𝑅𝑀𝑆𝐷 and 𝑁𝑆𝐷. At the SC site, the narrow distribution of the sub-models on the Taylor’s diagram gives a clue that they are 405 

very similar in terms of model performance of LDSA estimation. The five mostly used sub-models are concentrated within 406 

the region where 𝑟  is 0.85–0.87, 𝑐𝑅𝑀𝑆𝐷  is 5.67−5.77 µm2 cm–3 and 𝑁𝑆𝐷  is 0.75−0.79 (Table 4). The values of their 407 

evaluation metrics are close to each other where R2 and 𝑀𝐴𝐸 differ in the narrow range of 10% (𝑅2 = 0.72–0.74, 𝑀𝐴𝐸 = 3.8 408 

µm2 cm–3). It infers that if one metric is prioritised over another, the rank of the sub-models can be greatly different. Although 409 

no individual sub-models show 𝑟 greater than 0.9, the overall model comprising the outcomes by all the sub-models remains 410 

high (𝑅2 = 0.80, 𝑀𝐴𝐸 = 3.8 µm2 cm–3). The best sub-model is also the most used one, which accounts for 81% of the total 411 

data points while the two succeeding sub-models constitute another 16%. This also indicates that the input adaptivity function 412 

of the suggested method supplement 19% of estimates which would be a missing estimate if a single model with fixed predictor 413 

variables is used. Four out of the five most used sub-models contain BC as an input predictor with the combination of other 414 

two air pollutants or meteorological parameters. In case BC is missing at a certain time stamp, the sub-model without BC as 415 

an input could be used. It further supports the input adaptive function.  416 

 417 

At the UB site, the sub-model performance is more scattered on the Taylor’s diagram (Figure 6). The five most used sub-418 

models have varying metrics (𝑟 = 0.77−0.92, 𝑐𝑅𝑀𝑆𝐷 = 2.5−3.9 µm2 cm–3 and 𝑁𝑆𝐷 = 0.63−0.89, see Table 5). Although some 419 

show exceptionally good performance, the overall model has a slightly worse performance than that in street canyon. The best 420 

sub-model estimates 49% of the total measurement, followed by 17%. The third and fourth most used sub-models, which form 421 

up to 30% of the estimates, have rather moderate performance (𝑅2 = 0.58 and 0.69). Considering all possible outcomes, the 422 

overall model is still able to explain 77% of the total variance. CO and PNC dominate in the top five used sub-models. BC, 423 

NOx and meteorological parameters, like RH and WD-N are also involved in the final LDSA estimation.   424 

 425 

By checking the variance inflation factor (VIF) of all 696 sub-models, 4.6% and 2.2% are rejected respectively. The higher 426 

rejection rate at SC can be explained by the fact that some of the predictor variables are highly correlating to each other and 427 

the inclusion of them would result in an inflation of multi-collinearity of the sub-model, from which biases arise. At UB, since 428 

the source of LDSA is more varied and the correlation of LDSA with other pollutants is generally lower, the probability of the 429 

VIF of the individual sub-models exceeding the threshold is lower. 430 

5.2 Temporal difference in comparison with other models 431 

Figure 7 presents the comparison of measured LDSA (LDSAPegasor), deposition model derived LDSA (LDSAICRP) and the 432 

LDSA modelled by IAP and IAME (LDSAIAP and LDSAIAME) as a timeseries plot between 14 and 28 February 2017. This 433 

particular time window is selected because it suffers the least in data missing for all the respective instruments at both sites. 434 

This figure during this period can also showcase the difference in magnitudes of the diurnal shape over workdays and weekends 435 

(shaded regions in Figure 7). At the SC site, the estimates by both LDSAIAP and LDSAIAME could generally catch up with the 436 
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diurnal cycle of the measured data. However, the models underestimate the peak if the change of the measured LDSA 437 

concentration is sudden and relatively large. Despite the small difference observed in the figure, the blue dotted line 438 

representing LDSAIAME often stays closer to the measured LDSA concentration (black line). When we smooth out all the 439 

estimates at each hour, the ability for IAME to catch the morning peak on workdays is much better. At the UB site, IAME 440 

underestimates the LDSA concentration by almost 50% and 25% in the morning on 15 and 23 February 2017, respectively. 441 

The overestimation reaches 100% during the midnight between 26 and 17 February 2017.  442 

 443 

A more generalised diurnal cycle can be found in Figure 8. The error bars of the modelled LDSAIAP and LDSAIAME are 444 

consistently smaller than that of LDSAPegasor and LDSAICRP. It might be due to the reason that the model fails to catch the 445 

extreme values although it manages to catch the general diurnal cycle. Since outliers are removed in the pre-processing stage 446 

and the model penalises the extreme values, the model tends to give a more centralised estimate. It is a trade-off between the 447 

option with better coefficients of determination but stronger extreme errors and that with better estimations at tails but 448 

derivation of averaged estimation. This circumstance is more apparent on workdays than weekends. Furthermore, LDSAIAME 449 

could follow the diurnal cycle of LDSAPegasor much better than LDSAIAP, especially during the start of the peak hours over 450 

workdays at the SC site where the LDSA concentrations jump to a high level. LDSAIAME can explain 80% and 77% of the 451 

variability of the reference measurements at SC and UB, respectively (Table 6  452 
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Table 6), and compared to LDSAIAP’s 77% and 66%, LDSAIAME perform better in terms of accuracy. In addition, the slightly 453 

smaller 𝑀𝐴𝐸 and the closer to 1 𝑁𝑆𝐷 of the LDSAIAME suggest that the mean absolute error is improved and the spread of the 454 

estimation distribution is closer to the reference measurement by taking random effects into account. 455 

 456 

Furthermore, we assessed the temporal and spatial impact on the IAME model by comparing the means of absolute differences 457 

between the hourly LDSAPegasor and LDSAIAME in different time windows at both stations. A descriptive statistic is presented 458 

in Table 7. We used two-sample t-tests to assess whether the distribution of absolute differences were statistically significant. 459 

At SC, the p value of the t-tests at all selected windows are below 0.05, which demonstrate that the performance at different 460 

seasons, days of week and hours of day of absolute differences between the measured and modelled LDSA were significantly 461 

different at the confidential level of 95%. At the UB site, the difference between the two selected hour periods is not statistically 462 

significant. The same applies to the difference between winter and spring. There are no statistically sufficient evidence to 463 

validate the difference among the rest of the selected time period. In other words, with the use of random effects of time 464 

constraint, the overall models still perform differently at different time windows most of the time. This indicates that IAME 465 

still needs improvements on minimising temporal differences. 466 

6 Conclusion 467 

In this study, we develop a novel input-adaptive mixed-effects (IAME) proxy, to estimate alveolar LDSA by other already 468 

existing air pollutant variables and meteorological conditions in Helsinki Metropolitan Area. During the measurement period 469 

2017–2018, we retrieved LDSA measurements measured by Pegasor AQ Urban (alveolar LDSA in the ~10−400 size range) 470 

and other variables in a street canyon (SC, average LDSA = 19.7±11.3 µm2 cm–3) site and an urban background (UB, average 471 

LDSA = 11.2±7.1 µm2 cm–3) site in Helsinki, Finland. Furthermore, three detached housing sites (DH, average LDSA = 472 

11.7±8.6 µm2 cm–3) and a regional background site (RB, average LDSA = 7.6±5.4 µm2 cm–3) are also included as reference 473 

and background source estimation, respectively. At the SC site, LDSA concentrations are closely correlated with traffic 474 

emission. The ratio to black carbon (LDSA/BC), to particle number concentration (LDSA/PNC), and to nitrogen oxide 475 

(LDSA/NOx) have a higher value before the morning peak and it reaches its minimum during the morning peak since the role 476 

of regional background is higher for LDSA compared to those of NOx, BC and PNC. However, the ratio of LDSA to mass 477 

concentration of particles of diameter smaller than 2.5 µm (LDSA/PM2.5) perform differently since the freshly vehicular 478 

emitted particles are smaller than 50 nm, which do not contribute much to PM2.5 mass concentration.  479 

 480 

For the continuous estimation of LDSA, IAME is automatised to select the best combination of input variables, including a 481 

maximum of three fixed effect variables and three time indictors as random effect variables. Altogether, 696 sub-models are 482 

generated and ranked by the coefficient of determination (𝑅2), mean absolute error (𝑀𝐴𝐸) and centred root-mean-square 483 

differences (𝑐𝑅𝑀𝑆𝐷) in order. At the SC site, LDSA concentrations can be best estimated by PM2.5, PNC and BC, all of which 484 

are closely connected with the vehicular emissions, while they are found correlating with PM2.5, BC and carbon monoxide 485 

(CO) the best at the UB site. At both sites, PM2.5 also indicates the regionally and long-range transported pollutants, which is 486 

a significant source of LDSA concentrations. The accuracy of the overall model is higher at the SC site (𝑅2 = 0.80, 𝑀𝐴𝐸 = 487 

3.7 µm2 cm–3) than at the UB site (𝑅2 = 0.77, 𝑀𝐴𝐸 = 2.3 µm2 cm–3) plausibly because the LDSA source was more tightly 488 

controlled by the close-by vehicular emission source. This model could catch the temporal pattern of LDSA; however, the 489 

two-sample t-tests of the residuals at all selected time windows show that their distributions are different. This indicates that 490 

the model still performs differently at different time windows. Despite this, the novel IMAE model works better in explaining 491 

the variability of the measurements than the previously suggested IAP model as indicted by a higher 𝑅2 and lower 𝑀𝐴𝐸 in 492 
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both sites. This adjustment by taking random effects into account improves the sensitivity and the accuracy of the fixed effect 493 

model IAP. 494 

 495 

The models alone cannot replace the need for reference measurements. However, the IAME proxy could serve as virtual 496 

sensors to complement the measurements at reference stations in case of missing data. The two measurement sites in this study 497 

serve as a pilot of the proxy development, and the next step is to extend the work to the existing network of several measurement 498 

stations within the Helsinki metropolitan region. With similar configurations, we could fill up the voids with the information 499 

from the other stations after conscientious calibration. For example, in this paper, the two measurement sites are characterised 500 

as street canyon and urban background. In a different setup, we may assume the similarity of the same type of environment 501 

and utilise the measurements as replacement. 502 

 503 

Furthermore, this continuous LDSA estimation could be useful in updating some of the current air quality application, for 504 

instance GreenPaths application which searches for the best route to wished destination with the least exposure to air pollution 505 

(Poom et al., 2020) and ENFUSER air quality model which provide accurate spatio-temporal estimation for air pollutants in 506 

Helsinki (Johansson et al., 2015).   507 

 508 
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 757 

Table 1. Ambient LDSA of alveolar region (in µm2 cm–3, corrected to 2 significant figures) reported in the last decade in chronological 758 
order of the measurement start. TS and RA represent traffic sites and residential area respectively. For the other acronyms, please see the 759 
method section. 760 

Site 

description 

Location Average 

(Mean, 

unless state 

otherwise) 

Uncertainties 

(SD, unless 

state 

otherwise) 

Period/Season Instruments Study 

UB Ruhr, 

Germany 

median=36 IQR=21 Mar 2009–Dec 

2014 

NSAM Hennig et al. (2018)  

RB+UB+TS Basel, 

Geneva, 

Lugano, 

32 IQR=25 Jan 2011–Dec 

2012 

DiSCmini Eeftens et al. (2016) 
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Wald, 

Switerland 

City centre 

with heavy 

traffic 

Lisbon, 

Portugal 

35–89 4–8 Apr–May 2011 NSAM Albuquerque et al. 

(2012)  

UB 

 

Cassino, Italy 88–240 

 

- 

 

Oct 2011– Mar 

2012 

NSAM Buonanno et al. 

(2012)  

RB 69 

UB with 

traffic 

influence 

Barcelona, 

Spain 

37 26 Nov 2011–May 

2013 

NSAM Reche et al. (2015)  

TS Helsinki, 

Finland 

65–94 - Feb 2012 ELPI, 

NSAM 

Kuuluvainen et al. 

(2016) RA 15–31 

TS Athens, 

Greece 

65 21 

4.8 

Jul 2012 

 

Partector 

Aerotrak 

9000 

Cheristanidis et al. 

(2020) 

UB with 

traffic 

influence 

Leichester, 

UK 

30 25 Nov 2013–May 

2015 

NSAM Hama et al. (2017)  

23 14 Warm months 

38 33 Cold months 

Airport Los Angeles 47 27 Nov–Dec 2014 

and May–Jul 

2015 

DiSCmini Habre et al. (2018) 

UB Fukuoka, 

Japan 

127 62 Apr 2015–Mar 

2016 

NSAM Kiriya et al. (2017) 

TS Helsinki, 

Finland 

60 (ground level) Nov 2016 Partector, 

ELPI, 

DiSCmini,  

Pegasor AQ 

Urban 

Kuuluvainen et al. 

(2018) 36-40 (below rooftop) 

16-26 (above rooftop) 

SC Helsinki, 

Finland 

22 14 Feb 2017–Jan 

2018 

Pegasor AQ 

Urban 

Kuula et al. (2020) 

UB 9.4 6.9 

DH 12 10 

TS Delhi, India 330 130 Nov–Dec 2018 ELPI Salo et al. (2021a) 

UB Salerno 

Roma, Italy 

79 48 Nov 2018– 

May 2019 

NanoTracer Pacitto et al. (2020) 

TS 110 57 

RB Parma, Italy 17 10 

 761 

 762 

  763 
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Table 2. Descriptive statistics of alveolar LDSA concentrations (µm2 cm–3) at SC (2017–2018), UB (2017–May 2018), DH1–3 (2018) and 764 
RB (2018) site. The mean (column 3), standard deviation (SD, column 4), 10th, 25th, 50th, 75th and 90th percentile (P10, P25, P50, P75 and 765 
P90, column 5–9), geometric mean (Gmean, column 10) and geometric standard deviation (GSD, column 11) of the concentrations are 766 
corrected to one decimal place. The percentage of valid data in the reported measurement period is shown in column 12. 767 

  Mean SD P10 P25 P50 P75 P90 Gmean GSD % 

SC All 19.7 11.3 8.4 11.7 17.0 24.7 34.4 17.0 1.7 97 

 Winter 19.4 12.2 7.6 10.7 16.1 24.7 35.3 16.3 1.8 98 

 Spring 19.6 11.0 8.6 11.8 16.9 24.3 34.2 17.1 1.7 94 

 Summer 20.8 10.4 10.5 13.5 18.4 25.5 34.2 18.6 1.6 98 

 Autumn 18.4 11.7 7.1 10.0 15.0 23.8 34.6 15.3 1.8 96 

 Workdays 21.4 12.3 8.6 12.5 18.8 27.7 37.6 18.4 1.8 97 

 Weekends 15.9 7.5 8.1 10.7 14.4 19.4 25.2 14.4 1.6 97 

UB All 11.2 7.1 4.6 6.4 9.5 14.0 19.6 9.5 1.8 70 

 Winter 12.4 9.1 4.8 6.3 10.0 15.4 22.5 10.1 1.9 89 

 Spring 10.4 6.1 4.6 6.2 9.0 12.8 18.3 9.0 1.7 100 

 Summer 12.8 5.8 6.7 8.5 11.4 15.8 20.7 11.6 1.6 57 

 Autumn 7.7 4.7 3.2 4.5 6.7 9.7 13.2 6.7 1.7 56 

 Workdays 11.5 7.3 4.8 6.7 9.7 14.1 20.3 9.8 1.8 70 

 Weekends 10.4 6.6 4.1 5.8 8.8 13.6 18.3 8.8 1.8 70 

DH1–3 All 11.7 8.6 4.2 6.3 9.7 14.5 21.1 9.5 1.9 94 

 Winter 12.3 10.2 4.1 6.2 9.6 14.8 23.4 9.7 2.0 86 

 Spring 12.8 8.2 5.3 7.4 10.8 15.9 23.1 10.7 1.8 98 

 Summer 11.8 5.9 5.7 7.8 10.8 14.5 19.2 10.6 1.6 98 

 Autumn 10.5 10.2 3.0 4.6 6.8 13.0 22.2 7.5 2.2 95 

 Workdays 11.8 8.3 4.3 6.4 9.9 14.6 20.8 9.6 1.9 95 

 Weekends 11.7 9.3 4.0 6.0 9.4 14.3 21.8 9.3 2.0 93 

RB All 7.6 5.4 2.4 4.0 6.5 10.2 14.0 6.1 2.0 99 

 Winter 6.6 6.0 2.2 3.5 5.6 8.3 11.6 5.3 1.9 100 

 Spring 9.1 6.4 3.5 5.1 7.4 11.0 16.6 7.5 1.9 99 

 Summer 9.8 4.3 4.7 6.6 9.3 12.5 15.3 8.9 1.6 99 

 Autumn 4.9 4.1 1.6 2.6 3.9 5.6 8.9 3.8 2.0 99 

 Workdays 7.7 5.6 2.5 4.1 6.6 10.2 14.1 6.2 2.0 99 

 Weekends 7.6 5.0 2.4 4.0 6.5 10.1 14.0 6.1 2.0 100 

 768 

 769 
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Table 3. The evaluation attributes by IAME model at the SC and the UB site, corrected to 2 significant figures. 771 

 Street canyon Urban background 

 𝑅2 𝑀𝐴𝐸 𝑐𝑅𝑀𝑆𝐷 𝑟 𝑁𝑆𝐷 𝑅2 𝑀𝐴𝐸 𝑐𝑅𝑀𝑆𝐷 𝑟 𝑁𝑆𝐷 

All 0.80 3.7 5.6 0.87 0.78 0.77 2.3 3.7 0.86 0.80 

Winter 0.86 3.4 5.3 0.92 0.74 0.81 2.5 4.6 0.89 0.68 

Spring 0.75 3.9 5.9 0.85 0.79 0.61 2.4 3.3 0.84 0.85 

Summer 0.70 4.1 5.9 0.83 0.84 0.61 2.7 3.7 0.79 0.95 

Autumn 0.85 3.4 5.4 0.9 0.75 0.85 1.3 2.0 0.91 0.83 

Workdays 0.81 4.1 6.1 0.87 0.77 0.75 2.4 3.8 0.86 0.77 

Weekends 0.72 3.0 4.3 0.82 0.82 0.8 2.1 3.5 0.85 0.87 

 772 

  773 
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Table 4. Five most successful sub-models at the SC site. The table shows only the fixed predictors with their coefficient (𝜷, all p<0.05) and 774 
corresponding standard error (SE). The variance inflation factor (VIF) among the fixed predictors is also shown for the 5 sub-models. The 775 
evaluation attributes of the sub-models are shown column 6–10. The percentage of the sub-model usage and the number of data points (n) 776 
is shown in column 11 and 12. Natural logarithm is taken for parameters with asterisk (*). 777 

 Fixed 

predictors 

𝛽 SE VIF 𝑅2 𝑀𝐴𝐸 𝑐𝑅𝑀𝑆𝐷 𝑟 𝑁𝑆𝐷 % n 

1 

*PM2.5 0.119 0.005 1.54 

0.74 3.7 5.7 0.87 0.79 81 2603 *PNC 0.313 0.005 2.89 

*BC 0.223 0.004 2.17 

2 

*NOx 0.236 0.005 3.79 

0.74 3.8 5.7 0.86 0.77 13 2629 *PNC 0.153 0.005 1.63 

*BC 0.231 0.007 4.90 

3 

*PNC –0.044 0.003 1.07 

0.74 3.8 5.8 0.86 0.78 4 6622 *BC 0.375 0.004 2.20 

WS 0.201 0.004 2.15 

4 

*NOx 0.250 0.005 3.09 

0.74 3.8 5.7 0.87 0.78 <1 2596 *PM2.5 0.243 0.004 1.17 

*PNC 0.184 0.005 3.02 

5 

*NOx 0.176 0.005 3.51 

0.72 3.8 5.8 0.85 0.75 <1 2713 *PM10 0.070 0.004 1.3 

*BC 0.326 0.006 3.65 

 778 

  779 
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Table 5. Five most successful sub-models at the UB site. The table shows only the fixed predictors with their coefficient (𝜷, all p<0.05) and 780 
corresponding standard error (SE). The variance inflation factor (VIF) among the fixed predictors is also shown for the 5 sub-models. The 781 
evaluation attributes of the sub-models are shown column 6–10, corrected to 2 significant figures. The percentage of the sub-model usage 782 
and the number of data points (n) is shown in column 11 and 12. Natural logarithm is taken for parameters with asterisk (*). 783 

 Fixed 

predictors 

𝛽 SE VIF 𝑅2 𝑀𝐴𝐸 𝑐𝑅𝑀𝑆𝐷 𝑟 𝑁𝑆𝐷 % n 

1 

*CO 0.072 0.027 1.72 

0.84 1.7 2.5 0.92 0.87 49 941 *PNC 0.400 0.006 2.08 

*BC 2.956 0.007 1.52 

2 

*PNC –0.098 0.005 1.09 

0.82 1.9 2.9 0.91 0.89 17 6608 *BC 0.398 0.004 1.44 

WD-N 0.328 0.006 1.55 

3 

*NO2 0.237 0.007 1.88 

0.69 2.4 3.4 0.84 0.73 17 941 *CO 0.520 0.024 1.10 

*PNC 0.341 0.010 2.00 

4 

*CO 0.009 0.000 1.08 

0.58 2.7 3.9 0.77 0.63 11 9757 *PNC 0.348 0.025 1.07 

RH 0.590 0.007 1.15 

5 

*NOx 0.107 0.006 2.22 

0.81 1.9 3.0 0.90 0.85 2 7036 *CO 0.182 0.032 1.72 

*BC 0.455 0.007 2.56 

 784 

 785 

 786 

  787 
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Table 6. Model evaluation comparison of deposition model derived LDSA (LDSAICRP), modelled LDSA by IAP (LDSAIAP) and modelled 788 
LDSA by IAME (LDSAIAME) against reference measurements LDSAPegasor at the SC and the UB site. Parameters with an asterisk represent 789 
natural logarithm. The evaluation attributes of the three methods are corrected to 2 significant figures. 790 

 Street canyon Urban background 

 𝑅2 𝑀𝐴𝐸 𝑐𝑅𝑀𝑆𝐷 𝑟 𝑁𝑆𝐷 𝑅2 𝑀𝐴𝐸 𝑐𝑅𝑀𝑆𝐷 𝑟 𝑁𝑆𝐷 

LDSAICRP 0.72 4.1 6.2 0.88 1.1 0.83 1.8 2.9 0.93 1.1 

LDSAIAP 0.77 4.0 6.0 0.85 0.78 0.66 2.8 3.9 0.84 0.81 

LDSAIAME 0.80 3.7 5.6 0.87 0.78 0.77 2.3 3.7 0.86 0.80 

 791 

  792 
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Table 7. Statistics to show temporal difference. The number of data (n), mean and standard deviation (SD) of absolute error and the 793 
corresponding p-values of t-tests at the selected time windows at both sites. 794 

Street canyon (SC) n Mean SD t-test p 

Workdays 11658 4.1 4.8 
Workdays vs Weekends 4.13×10–81 

Weekends 5322 3.0 3.2 

Winter 

Spring 

Summer 

Autumn 

4023 

2297 

6457 

4320 

3.4 

4.0 

4.2 

3.4 

4.2 

4.5 

4.4 

4.3 

Winter vs Spring 

Winter vs Summer 

Winter vs Autumn 

Spring vs Summer 

Spring vs Autumn 

Summer vs Autumn 

3.64×10–24 

5.89×10–5 

7.07×10–7 

6.38×10–34 

1.02×10–4 

2.69×10–15 

Hour 4–10 a.m. 4953 4.8 5.6 Hour 4–10 a.m. vs  

4–10 p.m. 
2.58×10–40 

Hour 4–10 p.m. 4981 3.5 3.6 

 795 

Urban background (UB) n Mean SD t-test p 

Workdays 8473 2.3 2.6 
Workdays vs Weekends 5.08×10–8 

Weekends 3852 2.1 2.6 

Winter 

Spring 

Summer 

Autumn 

2539 

1101 

1628 

812 

2.5 

1.9 

2.6 

2.3 

3.2 

3.1 

2.4 

2.1 

Winter vs Spring 

Winter vs Summer 

Winter vs Autumn 

Spring vs Summer 

Spring vs Autumn 

Summer vs Autumn 

1.96×10–7 

0.39*** 

1.90×10–2 

2.75×10–9 

2.20×10–3 

1.40×10–3 

Hour 4–10 a.m. 3620 2.3 2.7 Hour 4–10 a.m. vs  

4–10 p.m. 
0.86*** 

Hour 4–10 p.m. 3591 2.3 2.7 

 796 

 n Mean SD t-test p 

Street canyon (SC) 
11940 

3.9 4.6 SC vs UB  

(in same time period) 
8.21×10–246 

Urban background (UB) 2.3 2.6 

*** p>0.05 the null hypothesis of different distribution is rejected  797 
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Figure 1. Lung deposition factor of a spectrum of particle size distribution based on the equation (ICRP, 1994). Black solid line represents 

the total deposition factor while blue, green and red dotted line refer to deposition factor in head airway, tracheobraonchial and alveolar 

region, respectively. Pegasor AQ Urban measured the alveolar LDSA concentration of particles in the ~10–400 nm size range (dark grey). 

DMPS at SC and UB were used to calculate alveolar LDSA in selected size fractions in the 6–800 nm and 3–1000 nm size range, 

respectively. 
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Figure 2. The block diagram of the proxy procedures (top). The blue and orange blocks are explanatory notes to the sections of sub-

model formation and cross validation, respectively.  
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Figure 3. Time series of the selected air pollutant parameters (First to end row: LDSA (µm2 cm–3), BC (µg m–3), NOx (ppb), PM2.5 (µg 

m–3) and PNC (cm–3)) at Mäkelänkatu SC site during the measurement period from 1 January 2017 and 31 December 2018. Each bar 

represents a period of two weeks where the shaded diamond marker is the median and the vertical error bars are the 25th and 75th 

percentiles. Seasons are thermally separated. 
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Figure 4. Upper panel: Diurnal cycles of LDSA concentrations (µm2 cm–3) at SC (red diamond, 2017–2018), UB (blue square, 2017–

May 2018), DH1–3 (black triangle, 2018) and RB site (green circle, 2018) on workdays and weekends with error bars of 25th and 75th 

percentiles. Lower panel: Monthly averages in year 2018 of local LDSA increments at the SC (red diamond) and DH1–3 (black triangle) 

site (LDSA concentration at the hotspot site – LDSA at RB site) on workdays and weekends with error bars of 25th and 75th percentiles. 
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Figure 5. Heatmap showing Pearson correlation coefficient (r, corrected to 2 significant figures) of LDSA of different particle size 

sections (in nm) by ICRP lung deposition model and the other air pollutant parameters at Mäkelänkatu SC site. Dark red indicates a high 

correlation while pale yellow indicates a low correlation. Parameters with an asterisk represent natural logarithm. LDSAPegasor represents 

the measured LDSA concentrations.  
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Figure 6. The upper panel shows the Taylor’s diagrams (Taylor, 2001) at Mäkelänkatu SC site (first column) and at Kumpula UB 

site (second column). Each diamond marker in the Taylor’s diagrams represents each sub-model used in the final estimation by 

IAME (solid black dot), compared with the reference data (solid red dot). Hues of colours represent how frequent the sub-model 

was used. The lower panel shows the scatter plots of modelled LDSA against the measured LDSA at Mäkelänkatu SC site (first 

column) and at Kumpula UB site (second column). Hues of colours represent the density of points on the figure. 
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Figure 7. Timeseries of measured LDSA (LDSAPegasor, black), deposition model derived LDSA by ICRP (LDSAICRP, red), modelled 

LDSA by IAP (LDSAIAP, blue solid line) and modelled LDSA by IAME (LDSAIAME, blue dotted line) during a selected measurement 

window between 14 and 28 February 2017. Shaded regions represent weekends, otherwise workdays. 
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Figure 8. Diurnal cycles of measured (LDSAPegasor, black), deposition model derived (LDSAICRP, red) and modelled (LDSAIAP and 

LDSAIAME, blue) LDSA concentrations with error bars of 25th and 75th percentiles on workdays (left) and weekends (right). LDSAIAP 

and LDSAIAME can be differentiated by their markers, cross for the former and square for the latter. 
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