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Abstract. Lung deposited surface area (LDSA) has been considered to be a better metric to explain nanoparticle toxicity 17 

instead of the commonly used particulate mass concentration. LDSA concentrations can be obtained either by direct 18 

measurements or by calculation based on the empirical lung deposition model and measurements of particle size distribution. 19 

However, the LDSA or size distribution measurements are neither compulsory nor regulated by the government. As a result, 20 

LDSA data are often scarce spatially and temporally. In light of this, we develop a novel statistical model, named input-21 

adaptive mixed-effects (IAME) model, to estimate LDSA based on other already existing measurements of air pollutant 22 

variables and meteorological conditions. During the measurement period in 2017–2018, we retrieved LDSA data measured by 23 

Pegasor AQ Urban and other variables at a street canyon (SC, average LDSA = 19.7±11.3 µm2 cm–3) site and an urban 24 

background (UB, average LDSA = 11.2±7.1 µm2 cm–3) site in Helsinki, Finland. For the continuous estimation of LDSA, the 25 

IAME model was automatised to select the best combination of input variables, including a maximum of three fixed effect 26 

variables and three time indictors as random effect variables. Altogether, 696 sub-models were generated and ranked by the 27 

coefficient of determination (𝑅2), mean absolute error (𝑀𝐴𝐸) and centred root-mean-square differences (𝑐𝑅𝑀𝑆𝐷) in order. At 28 

the SC site, the LDSA concentrations were best estimated by mass concentration of particle of diameters smaller than 2.5 µm 29 

(PM2.5), total particle number concentration (PNC) and black carbon (BC), all of which are closely connected with the vehicular 30 

emissions. At the UB site the LDSA concentrations were found to be correlated with PM2.5, BC and carbon monoxide (CO). 31 

The accuracy of the overall model was better at the SC site (𝑅2 = 0.80, 𝑀𝐴𝐸 = 3.7 µm2 cm–3) than at the UB site (𝑅2 = 0.77, 32 

𝑀𝐴𝐸 = 2.3 µm2 cm–3) plausibly because the LDSA source was more tightly controlled by the close-by vehicular emission 33 

source. The results also demonstrated that the additional adjustment by taking random effects into account improved the 34 

sensitivity and the accuracy of the fixed effect model. Due to its adaptive input selection and inclusion of random effects, 35 

IAME could fill up missing data or even serve as a network of virtual sensors to complement the measurements at reference 36 

stations.  37 

1 Introduction 38 

Particulate matter is one of the key components determining urban air pollution. Particulate matter can be described by a 39 

combination of varying concentration (number, surface area and mass) and chemical composition. The mass concentrations of 40 

particulate matter are dominated by large particles whereas the number concentrations are governed by sub-micron particles 41 

(particle diameter (dp) <1 μm), particularly ultrafine particles (UFP, dp< 0.1 μm) (e.g. Petäjä et al., 2007; Rönkkö et al., 2017; 42 
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Zhou et al., 2020). Particulate matter of varying sizes, carrying various harmful substances, have been known for playing a 43 

major role in adverse health effects (Dockery et al., 1993; Oberdorster, 2012; Shiraiwa et al., 2017) in particular to respiratory 44 

systems. A particle could be deposited in lung airways upon inhalation (Oberdörster et al., 2005) through three main 45 

mechanisms: inertial impaction, gravitational sedimentation and Brownian diffusion. An airborne particle might be inhaled 46 

either through nasal or oral passage and enter the respiratory tract. Coarser particles are usually partly deposited in the head 47 

airway by the inertial impaction mechanism because they cannot follow the air streamline. Some finer particles are deposited 48 

in the tracheobronchial region, mainly through gravitational sedimentation while some are removed by mucociliary clearance 49 

(Gupta and Xie, 2018). The remaining sub-micron particles diffuse by Brownian motion and penetrate deeply into the alveolar 50 

region, which is considered to be the most vulnerable section in lungs because removal mechanisms might be insufficient 51 

(Gupta and Xie, 2018). The surface area of inhaled particulate matter could also act as a transport vector for many bacteria and 52 

viruses (Liu et al., 2018a), and therefore, besides commonly monitored particulate matter number concentration and mass 53 

concentration, the surface area of a particle is also an important factor when considering the harmfulness of particulate matter 54 

(Duffin et al., 2002). In particular, the total surface area of particles which are deposited in alveolar section of human lungs, 55 

known as Lung Deposited Surface Area (LDSA), is of the greatest concern because in vitro nanoparticle toxicity has been 56 

demonstrated to be better explained when the lung burden was expressed as total particle surface area instead of atmospheric 57 

particulate matter mass (e.g. Brown et al., 2001; Oberdorster, 2012; Schmid and Stoeger, 2016).  58 

 59 

LDSA can be considered as an intermediary parameter between particle mass and particle number concentration as it cannot 60 

be simply inferred from either of those parameters. Moreover, due to the various deposition efficiency with respect to particle 61 

sizes, the quantification of LDSA is not simple. Conventionally, LDSA concentrations can be retrieved by (1) derivation from 62 

particle size distribution with a deposition model or (2) direct measurements. 63 

 64 

By fitting experimental lung deposition data on human beings, empirical deposition models are developed with the use of the 65 

lung deposition model modified by Yeh and Schum (1980). Examples include the International Commission on Radiological 66 

Protection (ICRP) Human Respiratory Tract Model (ICRP, 1994), the NCRP model (NCRP, 1997) and Multiple Path Particle 67 

Dosimetry (MPPD) model (Anjilvel and Asgharian, 1995). Different conceptual particle deposition models vary primarily 68 

with respect to lung morphometry and mathematical modelling techniques, rather than by using different deposition equations. 69 

The three whole lung deposition models define regions of the human lungs (head airway, tracheobronchial and alveolar) for 70 

any combination of particle size and breathing pattern (Hofmann, 2009). Among all models, single-path models, such as ICRP 71 

model, are often used over multiple-path models due to their simplicity and their applicability to an average path without 72 

requiring detailed knowledge of the branching structure of lungs. Owing to a higher potential health risk, LDSA in alveolar 73 

region is often of greatest concern and it can be calculated by summing up the products of the surface concentration across 74 

particle size spectrum and their corresponding deposition efficiency based on the selected deposition model. 75 

 76 

Apart from numerical computation method, LDSA could also be measured by accredited instruments. Diffusion charging 77 

based technique is a common approach where particles are charged with a unipolar corona charger (Fissan et al., 2006). This 78 

method enables measurement of ultrafine particles and, more specifically, the LDSA concentration with good accuracy (Todea 79 

et al., 2015) and stable performance in long term measurements (Rostedt et al., 2014). Nanoparticle Surface Area Monitor 80 

(NSAM) has been used for decades (e.g. Asbach et al., 2009; Hama et al., 2017; Kiriya et al., 2017; Hennig et al., 2018), and 81 

several other instruments and sensors, including DiSCmini, Testo Inc. (e.g. Eeftens et al., 2016; Habre et al., 2018) and 82 

Partector, Naneos Ltd. (e.g. Cheristanidis et al., 2020), and Pegasor AQ Urban, Pegasor Ltd. (e.g. Kuuluvainen et al., 2018; 83 

Kuula et al., 2020), using similar measuring techniques, are developed later on. Using these instruments in campaigns and 84 

continuous measurements, LDSA concentrations in alveolar region and size distribution measurements in various 85 
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environments have been reported across the globe in the past decade (Table 1). When comparing LDSA concentrations 86 

measured by different instruments, the instruments’ limitations should be considered in experimental LDSA studies, which 87 

will be further discussion in Sect. 2.2. 88 

 89 

Although each of these methods is capable of measuring aerosol surface area concentrations, the corresponding uncertainties  90 

and cost hinder the widespread use in monitoring networks (Asbach et al., 2017). Even though the instruments are available, 91 

missing data often takes place due to instruments maintenance and data corruption. Kuula et al. (2020) demonstrated high 92 

correlations of measured LDSA concentrations with black carbon (BC) and nitrogen oxide (NOx) in traffic environments. 93 

Traffic activities have been observed to be significant source contribution to the LDSA concentrations (Järvinen et al., 2015). 94 

A clear correlation was also found between the emission factors of exhaust plume BC and LDSA in on-road studies for city 95 

buses (e.g. Järvinen et al., 2019). These highly correlating relationships provide good grounds for estimating LDSA 96 

concentrations and short-term trends by the other pollutants measured at the same site with the use of data mining-based 97 

approach as statistical models. These statistical models can eventually turn into virtual sensors of LDSA after being validated 98 

even under the circumstances of no actual instrumental LDSA measurements. Due to the health effects LDSA has 99 

demonstrated, it is of great importance to researchers that continuous measurements of LDSA are available with the help of 100 

these virtual sensors via statistical models. Similar approach for sensor virtualisation of BC measurement has been studied in 101 

Fung et al. (2020).  102 

 103 

Data mining-based approach exploits statistical or machine learning techniques to detect patterns between predictors and 104 

dependent variables in the time series data. They do not demand in-depth understanding of air pollutant dynamics, but 105 

evaluation by experts is still required to determine whether the models work properly. Simple yet apprehensible models, such 106 

as multiple linear regression (MLR, e.g. Fernández-Guisuraga et al., 2016) and generalized additive models (GAM, e.g. Chen 107 

et al., 2019), are commonly utilised as white-box models in air pollutant proxy studies. Furthermore, more sophisticated 108 

machine learning black-box models, such as artificial neural network (ANN, e.g. Cabaneros et al., 2019; Zaidan et al., 2019; 109 

Fung et al., 2021a), nonlinear autoregressive network with exogenous inputs (NARX, e.g. Zaidan et al., 2020) and support 110 

vector regression (SVR, e.g. Fung et al., 2021b), have been intensively investigated in recent years. They work better in terms 111 

of accuracy; however, they provide limited transparency and accountability regarding the outcomes (Rudin, 2019; Fung et al., 112 

2021b).  113 

 114 

Apart from model structures, the criteria of selecting variables in multipollutant datasets for model development have received 115 

considerable attention over the years, and a large number of methods have been proposed (Miller, 2002). Traditional methods, 116 

like stepwise procedures, which is a combination of forward selection and backward elimination (e.g. Liu et al., 2018b; Chen 117 

et al., 2019), can be unstable because it uses restricted search through the space of potential models, which eventually causes 118 

inherent problem of multiple hypothesis testing (Breiman, 1996; Faraway, 2014). Another approach named regularization has 119 

emerged as a successful method to reduce the data dimension in an automated way, yet deal poorly with multi-collinear 120 

variables, for example Least Absolute Shrinkage and Selection Operator (LASSO, e.g. Fung et al., 2021b; Šimić et al., 2020), 121 

ridge regression (e.g. Chen et al., 2019) and  ELASTINET (e.g. Chen et al., 2019). Criterion-based procedures, which choose 122 

the best predictor variables according to some criteria (e.g. coefficient of determination, residual, etc), are sensitive to outliers 123 

and influential points, but involve a wider search and compare models in a preferable manner. Examples are best subset 124 

regression (e.g. Chen et al., 2019), input adaptive proxy (IAP, e.g. Fung et al., 2020; Fung et al., 2021b), etc. Hastie et al. 125 

(2020) compared some of the models using the three approaches and concluded that no single feature selection method 126 

uniformly outweighs the others. Despite the extensive research of feature selection methods, the inclusion of random effects 127 

together with the fixed effects as linear mixed-effects (LME) model has received relatively little attention (e.g. Mikkonen et 128 
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al., 2020; Tong et al., 2020) in air pollution research, let alone LDSA study in particular. This inclusion of random effects 129 

could acknowledge a possible effect coming from a factor where specific and fixed values are not of interest. 130 

 131 

In this study, we combine the use of criterion-based feature selection method and the inclusion of random effects, and develop 132 

a novel input-adaptive mixed effects (IAME) model to estimate alveolar LDSA concentrations, which is the first study of this 133 

context to our best knowledge. The description of LDSA measurements and the techniques of IAME model are outlined in 134 

Sect. 2 and 3, respectively. Section 4 presents the characteristics of alveolar LDSA, including its seasonal variability, weekend 135 

effect and diurnal pattern, in four types of environments. We also aim to investigate the correlation with other air pollutants. 136 

In Sect. 5, we evaluate the performance of the IAME proxy (LDSAIAME) with the measured alveolar LDSA by Pegasor AQ 137 

Urban (LDSAPegasor), ICRP lung deposition model derived LDSA (LDSAICRP) and another modelled alveolar LDSA by IAP 138 

(LDSAIAP) as well as the benefits and implication of this alveolar LDSA model as virtual sensors. It should be noted that this 139 

study discusses LDSA in alveolar region, unless stated otherwise. 140 

2 Measurement description 141 

2.1 Measurement sites 142 

We retrieved aerosol, gaseous and meteorological data from two types of measurement sites, i.e., street canyon (SC, 2017–143 

2018) and urban background (UB, 2017–May 2018), in Helsinki Metropolitan Area (HMA) described in more details below. 144 

Data from detached housing (DH, 2017) and regional background (RB, 2017) sites were also included in the study to provide 145 

comparison and data from the background concentrations. Situated on a relatively flat land at the coast of Gulf of Finland, 146 

HMA has land area of 715 km2 and population of about 1.13 million inhabitants. Helsinki can be classified as continental or 147 

marine climate depending on the air flows and the pressure system. Figure S1 and Table S1 show the detailed site description. 148 

Street canyon site (SC): Mäkelänkatu urban supersite is operated by the Helsinki Region Environmental Services Authority 149 

(HSY, Kuuluvainen et al., 2018). The station is located at 3 km from the city centre in a street canyon in the immediate vicinity 150 

to one of the main roads leading to downtown Helsinki. The street, with speed limit of 50 km h−1, consists of six lanes and two 151 

tramlines. The annual mean traffic volume in 2018 per workday was 28 100 vehicles, 11% of which were recorded as the 152 

heavy duty vehicles. The traffic loads are especially high during rush hours at 8 a.m. and 5 p.m. (Figure S2). The street canyon 153 

of width of 42 m is surrounded by rows of buildings of 17 m high, which weaken the dispersion process of the direct vehicular 154 

emissions. All the inlets for the measuring devices are positioned approximately at a height of 4 m from the ground level. 155 

Urban background site (UB): The Station for Measuring Ecosystem-Atmosphere Relations III (SMEAR III, Järvi et al., 156 

2009) in Kumpula, situated on a rocky hill at 26 m above sea level, is about 4 km northeast from the Helsinki centre. The 157 

surroundings of this urban background station are heterogeneous, constituting of residential buildings, small roads, parking 158 

lots, patchy forest and low vegetation from different direction. One main road (45 000 vehicles per workday) is located at the 159 

distance of 150 m east from the site. Trace gases and meteorological conditions are measured at a height of 4 m and 32 m, 160 

respectively, at a triangular lattice tower while aerosol measurements are conducted inside a container approximately 4 m 161 

above the ground. The site is co-operated by Finnish Meteorological Institute (FMI) and the University of Helsinki (UHEL). 162 

Detached housing site (DH): Three measurement stations, Rekola (DH1), Itä-Hakkila (DH2) and Hiekkaharju (DH3), were 163 

chosen since they represent a sub-urban residential area surrounded by detached houses. These sites are mainly affected by the 164 

wood combustion emissions from residential activities, especially in cold weather conditions. Emissions from traffic source 165 

also account for a small portion of the whole pollution. It is estimated that 90 % of the households burn wood to warm up 166 

houses and saunas, less than 2 % of which use wood burning as the main heating source in detached houses in HMA (Hellén 167 

et al., 2017).  168 
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Regional background site (RB): The RB site is located about 23 km away from the Helsinki city centre at Luukki, surrounded 169 

by a wooded outdoor recreational area right at the edge of the Greater Helsinki golf course. The measuring station is in an 170 

open place away from busy traffic routes and large point sources. As a result, this site can represent background concentration 171 

levels outside the urban area without any main local sources. 172 

2.2 Instruments 173 

LDSA measurements: The sensor unit and the core of the Pegasor AQ Urban is practically another instrument called a Pegasor 174 

PPS-M sensor (Pegasor Ltd., Finland) originally designed for automotive exhaust emission measurements (e.g. Maricq, 2013; 175 

Amanatidis et al., 2017). The operation of the sensor is based on diffusion charging of particles and the measurement of electric 176 

current without the collection of particles. The diffusion charging of particles is carried out by a corona-ionized flow that is 177 

mixed with the ambient sample air in an ejector diluter inside the sensor. The sampling lines and the sensor unit are heated to 178 

40℃ above the ambient temperature (1) to dry the aerosol sample, (2) to prevent interference from humidity, and (3) to prevent 179 

any water condensation inside the sensor. The performance of the Pegasor PPS-M sensors for long-term ambient measurements 180 

has been improved after they were tested in Helsinki (Järvinen et al., 2015) and Beijing (Dal Maso et al., 2016). The suggestions 181 

have been considered for the design of the current form of the Pegasor AQ Urban in this study.  182 

The Pegasor AQ Urban (dimension: 320 mm×250 mm×1000 mm), which consists of a weatherproof cover, clean air supply, 183 

and the abovementioned Pegasor PPS-M sensor, has been designed such that its response to LDSA is not to be subjected to 184 

meteorological fluctuation for outdoor operation. Kuuluvainen et al. (2016) used two Pegasor AQ Urban devices during a 2 185 

week period at an urban street canyon and an urban background measurement station in Helsinki, Finland whereas Kuula et 186 

al. (2019) later used the instruments in a 3 month long campaign at the same urban street canyon station. These studies 187 

demonstrated that the output signal of the Pegasor AQ Urban correlated well with other devices measuring LDSA 188 

concentrations such as the Partector and DiSCmini. Kuula et al. (2020) further validated the accuracy and stability of Pegasor 189 

AQ Urban at the street canyon station by comparing the measured values of one full year with DMPS reference instruments 190 

(𝑅2 = 0.90, 𝑅𝑀𝑆𝐸 = 4.1 µm2 cm–3). The internal precision of Pegasor AQ Urban is ± 3%, but this was not tested prior the 191 

campaign. The instrument is optimized to measure the alveolar LDSA concentrations of particles in ~10–400 nm size range. 192 

Pegasor AQ Urban tends to underestimate LDSA of particle larger than about 400 nm. In typical urban environments, most of 193 

the particles from local combustion sources are in the size below the threshold (Asbach et al., 2009; Kuuluvainen et al., 2016; 194 

Pirjola et al., 2017), generated vastly by anthropogenic sources such as vehicular exhaust emissions (Karjalainen et al., 2016) 195 

and residential wood combustion (Tissari, 2008) which typically produce large amount of small particles. However, the impact 196 

of larger particles (>400 nm) to alveolar LDSA might be significant, for example in HMA during PM2.5 long-range transport 197 

episodes or when there are many particles from very low-quality residential burning in detached housing areas (Pirjola et al., 198 

2017). The regional background source in very polluted regions (e.g. Delhi, Salo et al., 2021a; mining environments, Salo et 199 

al., 2021b) could be another reason for the significant impact of larger particles. This limitation of Pegasor AQ Urban should 200 

be considered when it comes to data analysis in Sect. 4 and 5. 201 

Aerosol measurements: Differential mobility particle sizer (DMPS) in combination of a differential mobility analyser (DMA) 202 

and a condensation particle counter (CPC) measures aerosol size distribution (Kulkarni et al., 2011). Vienna DMA and 203 

Airmodus A20 CPC (measurements of particle size range 6–800 nm) were used at the SC site while a twin DMPS (Hauke-204 

type DMA and TSI Model 3025 CPC + Hauke-type DMA and TSI Model 3010 CPC, merged particle size range 3–1000 nm) 205 

were used at the UB site. Both instruments make use of the bipolar charging of aerosol particles, followed by classification of 206 

particles into size classes according to their electrical equivalent mobility. In addition to particle size distribution, total particle 207 

number concentration (PNC, in cm−3) was calculated by summation. Particle mass concentration of diameter less than 2.5 µm 208 

(PM2.5, in µg m−3) and less than 10 µm (PM10, in µg m−3) were measured continuously with ambient particulate monitor TEOM 209 

1405 at the SC site and TEOM 1405-D at the UB site. Black carbon (BC, in µg m−3) mass concentration was measured by a 210 



6 

 

multi-angle absorption photometer (MAAP) Thermo Scientific 5012 with a PM1 inlet. The measured absorbance was converted 211 

to BC mass concentration by using a fixed 6.6 m2 g−1 mass absorption coefficient at wavelength of 637 nm. PM2.5, PM10 and 212 

BC were recorded in µg m−3. 213 

Ancillary measurements: Trace gas concentrations (in ppb), including nitric oxide (NO), nitrogen dioxide (NO2), their sum 214 

nitrogen oxide (NOx), ozone (O3) and carbon monoxide (CO) were determined with a suite of gas analysers. In addition, 215 

supporting meteorological variables, including air temperature (Temp), relative humidity (RH), air pressure (P), wind speed 216 

(WS), wind direction (WD) and photosynthetically active radiation (PAR), were measured at SC and UB. Figure S3 show the 217 

meteorological conditions during the measurement period. A list of collected variables is shown in Table S2. 218 

3. Method 219 

3.1 Data pre-processing 220 

The collected data was quality checked by the corresponding operating organisation, HSY, FMI and UHEL. No additional 221 

pre-processing was done for general analysis. For proxy development, outliers due to potential measurement errors were 222 

detected (SC: 0.73%; UB: 0.99% overall) by using the interquartile range (IQR) rule, which is applicable for non-Gaussian 223 

distribution sample. We calculated the cut-off for outliers as 2 times the IQR, subtracted this cut-off from the 25th percentile 224 

and added it to the 75th percentile to give the actual limits on the data. We applied a natural logarithm transformation to all the 225 

skewed-distributed aerosol and trace gases measurements in order to keep the distribution of each parameter following a normal 226 

distribution. Since wind direction is a circular variable, it is resolved into North-South (WD–N) and East-West (WD–E) vector 227 

components by trigonometric functions. 228 

3.2 Size-fractionated lung deposited surface area (LDSAICRP) 229 

Alveolar deposition fraction (𝐷𝐹𝐴𝐿) as a function of particle size with the unit density is determined with the ICRP Human 230 

Respiratory Tract Model by the following equation (ICRP, 1994):  231 

𝐷𝐹𝐴𝐿 = (
0.0155

𝑑𝑝

) (exp (−0.416(ln 𝑑𝑝 + 2.84)
2

) + 19.11 exp (−0.482(ln 𝑑𝑝 − 1.362)
2

)) (1), 

where 𝑑𝑝 is the aerodynamic diameter (µm) of spherical particles with the unit density (1 g cm−3). The equation is determined 232 

in two parts with respect to the two different peaks in the deposition curve in Figure 1. The peak near the size of 20 nm can be 233 

approximated to represent the Brownian deposition, whereas the peak between 1 µm and 2 µm represents the inertial 234 

deposition. From the particle number size distribution, we calculated the particle surface area distribution assuming each 235 

particle is monodisperse sphere of standard density at standard conditions. By Eq. (1), a deposition factor for each particle size 236 

bin (26 size bins at SC and 49 at UB) were calculated. Size-fractionated LDSA was then computed by multiplying the surface 237 

area concentration with 𝐷𝐹𝐴𝐿  in the corresponding size class. Total LDSA calculated by the ICRP lung model (LDSAICRP) can 238 

be obtained by summing up the all the size-fractionated LDSA values (Hinds, 1999). In this study, the alveolar LDSAICRP was 239 

calculated based on DMPS measurements in SC and UB. Thus, while the alveolar LDSA measured by Pegasor (LDSAPegasor) 240 

represent the ~10–400 nm size range, the alveolar LDSAICRP represent 6–800 nm and 3–1000 nm size range in SC and UB, 241 

respectively. 242 

3.3 Novel Input-adaptive mixed-effects (IAME) model 243 

Input-adaptive mixed-effects (IAME) model is a combination of input-adaptive proxy (IAP) and linear mixed-effects (LME) 244 

model. IAP was first introduced by Fung et al. (2020) and has been demonstrated reliable and flexible to fill up missing values 245 

by taking input variables adaptively with robust ordinary least square regression models. IAP has been able to estimate BC 246 

concentration by other air quality indicators with a satisfactory performance in two different categorised urban environments, 247 
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street canyon (adjusted 𝑅2 = 0.86–0.94) and urban background (adjusted 𝑅2 = 0.74–0.91). Some models outperformed IAP in 248 

accuracy performance, but its transparent model structure and ability to impute missing values still make it a preferred option 249 

as a virtual sensor (Fung et al., 2021b).  250 

 251 

In this study, we primarily stuck to the strength to select input variables adaptively with the introduction of mixed effects. The 252 

mixed effect approach is a generalization of the linear model that can incorporate both fixed (i.e. causing a main 253 

effect/interaction) and random effects (i.e. causing variance/variability in responses), allowing the account of several sources 254 

of variations (Chudnovsky et al., 2012). As seen in Figure 2, we picked the direct air pollutant measurement from the station 255 

(variables of high correlation: PM2.5, BC and NO2 and other supporting variables: PM10, O3, NOx, NO, CO and PNC) and 256 

meteorological data of higher correlation (Temp, RH, P, PAR, WS, WD–N, WD–E) as the fixed variables because the air 257 

pollutants can indicate the sources of LDSA which largely come from combustion and meteorological data could influence the 258 

dispersion and dilution of LDSA. They are the most direct factors to the fluctuation of LDSA concentrations. Due to the strong 259 

seasonal variation, weekend effects and diurnal pattern in urban air pollutant concentrations (Fung et al., 2020), the variance 260 

in responses might depend on the time indicators that are not the primary cause of the concentration variability, but they 261 

indirectly alter human-induced activities, such as traffic amounts. To take them into account, we created three time hierarchical 262 

sub-groups (12 months of year, 7 days of week and 24 hours of day) as the inputs of random effect variables. 263 

 264 

The regression equation of IAME is similar to the equation of IAP, except that IAME includes additional intercepts term for 265 

random effects as below: 266 

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑖𝑘𝑥𝑖𝑘

𝑝

𝑘=1

+ ∑ 𝑏𝑖𝑗

𝑞

𝑗=1

+ 𝑒𝑖 
(2), 

where 𝑦𝑖 is the 𝑖th estimated LDSA concentration. The first term on the right β0 indicates the fixed intercept of the equation. 267 

The second term represents the total contribution by the direct measurement of variable 𝑥 as fixed effects with a slope β at 268 

each data point 𝑖. A maximum of three inputs from the total 16 fixed variables are selected to from 696 sub-models (Figure 2).  269 

The inputs for random effects are indicated by 𝑏 as intercepts of the corresponding three hierarchical sub-groups. A Gaussian 270 

error term is indicated by 𝑒. The explanation of Eq. (2), is visualised in Figure 2.  271 

 272 

One of the assumptions of LME models is that the random effects, together with the error term, have the following prior 273 

distribution: 274 

𝑏~𝑁(0, 𝜎2𝐷(𝜃)) (3), 

where 𝐷 is a 𝑞-by-𝑞 symmetric and positive semidefinite matrix, parameterized by a variance component vector 𝜃, 𝑞 is the 275 

number of variables in the random-effects term, and 𝜎2 is the observation error variance. We use an optimiser, restricted 276 

maximum likelihood, commonly known as ReML, with the value 1x10–6 as the relative tolerance on gradient of objective 277 

function and 1x10–12 as absolute tolerance on step size. The use of ReML over the conventional ML could produce unbiased 278 

estimates of variance and covariance parameters (Lindstrom and Bates, 1988).  279 

  280 

After the sub-model formation, the dataset was randomly divided into five portions. 80% of the data were allocated for 4-fold 281 

cross validation to remove variance of accuracy. The results of all the folds were averaged and the sub-models were ranked by 282 

several evaluation metrics, which were further demonstrated in Figure 2 and described in Sect. 3.4. Some of the sub-models 283 

were subject to rejection under two conditions: (1) strong multi-collinearity among the fixed parameters (variance inflation 284 

factor (VIF) > 5) and (2) violation of the normality assumption of residuals also known as heteroscedasticity (fail in 285 

Kolmogorov-Smirnov (K-S) test, p < 0.05). Based on the situation of missing data, the automatised IAME model would search 286 
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for the best sub-model option from the ranking chart. Hence, each data point might be estimated differently depending on the 287 

available data. The number of data points being estimated by each sub-model was reported to show their frequency of usage. 288 

3.4 Evaluation metrics 289 

In order to evaluate the model performance quantitatively, we used the following metrics: 290 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1

 
(4), 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑁

𝑖=1
 

(5), 

𝑐𝑅𝑀𝑆𝐷 =  √
1

𝑁
∑ ((𝑦𝑖 − 𝑦̅) − (𝑦𝑖̂ − 𝑦̃))2

𝑁

𝑖=1
 

(6), 

𝑟 =
∑ (𝑦𝑖 − 𝑦̅)(𝑦𝑖̂ − 𝑦̃)𝑁

𝑖=1

√∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1 √∑ (𝑦𝑖̂ − 𝑦̃)2𝑁

𝑖=1

 
(7), 

𝑁𝑆𝐷 =
𝑆𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑆𝐷𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

=
√ 1

𝑁 − 1
∑ (𝑦𝑖̂ − 𝑦̃)2𝑁

𝑖=1

√ 1
𝑁 − 1

∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1

= √
∑ (𝑦𝑖̂ − 𝑦̃)2𝑁

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1

 

(8), 

where 𝑦𝑖̂ and 𝑦𝑖̂ are 𝑖th measured data point and estimated variable by the model, respectively. 𝑦̅ and 𝑦̃ are the expected value 291 

of the measured and modelled dataset, respectively. 𝑁 is the number of complete data input to the model. Coefficient of 292 

determination (𝑅2) is a measure of how close the data lie to the fitted regression line.  It, however, does not consider the biases 293 

in the estimation. Therefore, we further validated the models with mean absolute error (𝑀𝐴𝐸) and centred root-mean-square 294 

differences (𝑐𝑅𝑀𝑆𝐷), where 𝑀𝐴𝐸 measures the arithmetic mean of the absolute differences between the members of each 295 

pair, whilst 𝑐𝑅𝑀𝑆𝐷 calculates the square root of the average squared difference between the forecast and the observation pairs. 296 

𝑐𝑅𝑀𝑆𝐷 is more sensitive to larger errors than 𝑀𝐴𝐸. Furthermore, together with 𝑐𝑅𝑀𝑆𝐷, Pearson correlation coefficient (𝑟) 297 

and normalised standard deviation (𝑁𝑆𝐷) of the modelled data set are also studied. 𝑟 describes the correlation between the 298 

measured and modelled data whereas 𝑁𝑆𝐷  measures the relative spread of the data. Due to their unique mathematical 299 

relationship, the three metrics can be portrayed on Taylor’s diagram, which has been used for sub-model selection purpose. 300 

We ranked our sub-models first by 𝑅2 , followed by 𝑀𝐴𝐸 and 𝑐𝑅𝑀𝑆𝐷. 𝑟 and 𝑁𝑆𝐷 serve as additional evidence when we 301 

explain the model performance.  302 

3.5 Two-sample t-tests 303 

We assessed the temporal and spatial impact on the IAME model by comparing the means of absolute differences between the 304 

hourly measured and modelled LDSA in different time windows at both stations. Two-sample t-tests were performed on the 305 

two populations of absolute differences abovementioned to determine whether the difference between these was statistically 306 

significant. A significance level α of 5% was chosen as the probability of rejecting the null hypothesis when it is true, denoted 307 

as p. 308 

4 LDSA measurement characterization 309 

4.1 General characteristics of LDSAPegasor in Helsinki metropolitan area 310 

The annual mean alveolar LDSA concentrations at four station types SC (2017–2018), UB (2017–May 2018), DH (2018) and 311 

RB (2018) were 19.7±11.3 µm2 cm–3, 11.2±7.1 µm2 cm–3, 11.7±8.6 µm2 cm–3 and 7.6±5.4 µm2 cm–3, respectively (Table 2). 312 

The DH and RB site were included to give more substantial interpretation of data because the LDSA concentrations at RB can 313 
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be viewed as background measurements and the local LDSA increments in HMA can be represented by the LDSA at the 314 

hotspot measurement site subtracted by the LDSA at the RB site. The timeseries of LDSA concentrations at the SC and the 315 

UB site were presented in Figure 3 and Fig. S4, where the missing data of LDSA for the whole measurement period was 3% 316 

and 30%, respectively. When comparing with the same site type in other cities around the globe, LDSA concentrations detected 317 

in HMA were the lowest among the European cities with reported values. While some literatures also reported LDSA at 318 

tracheobronchial region, most just considered LDSA at alveolar, which is considered to bring most harm to human’s lungs, as 319 

shown in Table 1. 320 

 321 

The diurnal pattern of LDSA at RB was not observable on workdays or over weekends (Figure 4, upper panel). The relatively 322 

low variability can be explained by the scarcity of human activities. We can then regard the LDSA at RB as the background 323 

concentrations mainly influenced by the regionally and long-range transported aerosol and meteorological variation (see 324 

Luoma et al., 2021; Jafar and Harrison, 2021). As the concentrations at RB was stable throughout the different hours of day; 325 

therefore, the diurnal pattern of LDSA concentration was apparently indistinguishable between the measured concentration 326 

and the local increments. At the UB and DH site, the magnitudes and the patterns of the average hourly LDSA concentrations 327 

at workdays were comparable, and both showed bimodal curves, one peak at 6−9 a.m., the other at 9−11 p.m.. The former had 328 

a larger peak during the morning peak hour because of the vehicular emissions (Timonen et al., 2013; Teinilä et al., 2019) 329 

while the latter had a larger peak in the evening attributed mainly by the residential burning (Hellén et al., 2017; Helin et al., 330 

2018; Luoma et al., 2021). Over weekends, the peaks in the morning were not identifiable and the evening peaks were amplified 331 

due to enhanced human activities. Similar diurnal variation at residential area was observed for BC emitted by residential 332 

combustion by Helin et al. (2018). At the SC site, the morning peak on weekends was not obvious because of the lack of work-333 

related traffic. It appears that a similar bimodal curve can be seen during workdays, but the evening peak was seen during the 334 

evening traffic rush hour around 4−6 p.m.. The reason was that the main contributor of LDSA at the SC site was traffic and 335 

combustion processes and the diurnal variability mainly depended on the citizen’s movement by vehicles in the city. Over 336 

weekends, the average hourly LDSA concentrations were the minimum at 5 a.m. and they increased and remained at a high 337 

level at 2 p.m. until the late night. The level of LDSA concentrations at DH was comparable with that at UB site. However, 338 

the amplitude of the evening peak was higher than that of the morning peak both on workdays and weekends due to elevated 339 

residential combustion.  340 

 341 

However, the monthly variability of background measurements at the RB site was stronger compared to the diurnal pattern 342 

and the calculation of local increment was necessary (e.g. Jafar and Harrison, 2021). With no intense point sources, the 343 

variations at RB were probably due to horizontal dispersion and advection of aerosol particles and vertical dilution controlled 344 

by the boundary layer dynamics. Based on the monthly frequencies of backward trajectory by NOAA HYSPLIT Trajectory 345 

Model (Rolph et al., 2017, Fig. S5), pollutants could be originated 600 km away from Helsinki within 24 hours in the winter. 346 

In the summer, when solar radiation was persistently stronger, the boundary layer became elevated due to surface heating and 347 

associated thermal turbulence. This turbulence would dilute the concentration of pollutants at the surface. Another plausible 348 

reason could be the higher regional and long-range transported LDSA in the summer, as demonstrated by Kuula et al. (2020) 349 

and Barreira et al. (2021). The lower panel in Figure 4 shows the LDSA local increments after subtraction of the LDSA 350 

concentrations at the RB site. For instance, the local LDSA increments at DH are the highest in the winter probably due to 351 

local small-scale wood combustion (and traffic). However, without subtracting the background concentrations, the LDSA 352 

concentrations at DH were higher in the summer than in the winter (due to high regional background concentrations in 353 

summer), as was observed also by Kuula et al. (2020). This piece of evidence can help in the source apportionment. The 354 

variation of diurnal and seasonal LDSA for all sites are visualised in Fig. S6. 355 
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4.2 The connection between LDSA and other parameters 356 

Alveolar LDSA concentration, as a single number, comprises particles across the whole particle size spectrum measured (e.g. 357 

Pegasor AQ Urban ~10–400 nm). In HMA, the two local main sources of particles contributing to LDSA are vehicular 358 

combustion and residential wood combustion emissions. Upon the two combustion processes, particles of different sizes and 359 

different gaseous pollutants are emitted. A study by Lamberg et al. (2011) has shown that the geometric mean diameter of 360 

residential wood combustion is typically 70–150 nm whereas Barreira et al. (2021) presented that the typical particle size for 361 

vehicular combustion can be smaller than 50 nm. By calculating the proportion of LDSA with respect to different pollutant 362 

parameters BC, NOx, PNC (dominated by UFP), and PM2.5, we could identify the relative contribution of LDSA across the 363 

hour of day (Fig. S7 for workdays and Fig. S8 for weekends). Whereas the ratios could partly tell the relative contribution of 364 

LDSA in that certain hour, they are also dependent on various factors that include the different properties of each parameter 365 

(e.g. the lung deposition factor for LDSA) and the time-dependent increase in particle size (e.g. new particle formation) which 366 

are not the focus of this manuscript. Since the vehicular combustion emits smaller particles which elevate the LDSA 367 

concentration but meanwhile do not substantially influence the value of PM2.5 (e.g. Salo et al., 2021a); therefore, LDSA/PM2.5 368 

had a diurnal pattern similar to the LDSA concentrations which peaked in the morning rush hour during workdays. Conversely, 369 

LDSA/BC, LDSA/PNC and LDSA/NOx had a low ratio value in the morning rush hour. This can be explained by the fact that 370 

vehicular combustion caused high concentration of BC, PNC and NOx (Reche et al., 2015) compared to its contribution to 371 

LDSA concentration. In other words, the role of regional background was higher for LDSA compared to those of NOx, BC 372 

and PNC. At the UB site, the average LDSA/BC at all hours remained at a constant level in the winter while the variability of 373 

the ratio was much higher in the summer. The general LDSA/PNC ratio at UB was steadily 2−3 times higher than that at all 374 

hours in all seasons because the proportion of larger particles at UB was usually higher than SC. This large variability again 375 

validated the heterogeneity of source of LDSA at UB.  376 

 377 

The integrated alveolar LDSA with a various size ranges was calculated to explore the correlation of size-fractionated LDSA 378 

and other parameters in our multipollutant dataset. No single fractionated LDSA correlated well with meteorological 379 

parameters at both sites (Figure 5). Out of all fractions, alveolar LDSA of the whole spectrum (LDSA6−800) and LDSA250−400, 380 

which explained majority of LDSA, correlated best with other air pollutants. In general, alveolar LDSA had a high correlation 381 

with BC. BC correlated the best with LDSA100−250 (𝑟 = 0.84), which was in alignment with the reported values from previous 382 

literatures (Gramsch et al., 2014; Ding et al., 2016). As expected, PM2.5 showed better correlation with the LDSA of larger 383 

particles (𝑟 = 0.68−0.76) because larger particles contributes more to PM2.5 mass concentration values. In the meanwhile, PM10 384 

had fair correlation with all selected size bins. NO2 correlated highly with LDSA of smaller particles (𝑟  = 0.69−0.77), 385 

indicating the dominant role of local traffic exhausts. CO had a higher correlation with LDSA of 400−800 nm (𝑟 = 0.64) since 386 

CO concentrations were more affected by regionally transported pollutants. O3 had a fair correlation with LDSA of all sections 387 

(𝑟 = 0.30−0.43) because the formation of O3 is mostly secondary and the chemical interactions with pollutants are more 388 

complicated than the other compounds. In general, the correlations of LDSA with other air pollutant parameters were higher 389 

at the SC site than that at the UB site (Fig. S9). The high correlations of LDSA with BC, PM2.5 and NO2, which agreed with 390 

the results by Kuula et al. (2020), proved the possibility of developing a model to estimate LDSA concentrations. 391 

5 Model evaluation 392 

5.1 Sub-model diagnostics 393 

Following the evaluation attributes described in Sect. 3.4, Table 3 depicts the descriptive statistics of the overall model 394 

evaluation on its testing set. The overall model at the SC site was able to explain 80% of the variability of the testing set of the 395 

measured data. The 𝑅2 in the winter was 0.86 being the highest while the worst 𝑅2 was shown in the summer, i.e., 0.70. The 396 



11 

 

𝑀𝐴𝐸 and 𝑐𝑅𝑀𝑆𝐷 were the smallest during weekends with 𝑅2 not particularly high (𝑅2 = 0.72) probably because the LDSA 397 

concentration itself was relatively low in that period. The overall performance was generally worse in UB in terms of 𝑅2, 398 

except during weekends that 𝑅2 is 10% higher.  399 

 400 

For individual sub-models, their performance could be seen on the Taylor’s diagram in Figure 6 (Taylor, 2001). Each marker 401 

represents one sub-model, the contribution of which to the outcome of the final model is displayed in various colours. The 402 

sub-model performance can be evaluated by the distance of the sub-model marker and the red point, which represents the 403 

reference station, i.e., the perfect model. The location of each marker indicates its individual performance in terms of 𝑟 (blue 404 

contours), 𝑐𝑅𝑀𝑆𝐷 (green contour) and 𝑁𝑆𝐷 (black axis). At the SC site, the narrow distribution of the sub-models on the 405 

Taylor’s diagram gives a clue that they were very similar in terms of model performance of LDSA estimation. The five mostly 406 

used sub-models were concentrated within the region where 𝑟 was 0.85–0.87, 𝑐𝑅𝑀𝑆𝐷 was 5.67−5.77 µm2 cm–3 and 𝑁𝑆𝐷 was 407 

0.75−0.79 (Table 4). The values of their evaluation metrics were close to each other where R2 and 𝑀𝐴𝐸 differed in the narrow 408 

range of 10% (𝑅2 = 0.72–0.74, 𝑀𝐴𝐸 = 3.8 µm2 cm–3). It infers that if one metric was prioritised over another, the rank of the 409 

sub-models can be greatly different. Although no individual sub-models showed 𝑟  greater than 0.9, the overall model 410 

comprising the outcomes by all the sub-models remained high (𝑅2 = 0.80, 𝑀𝐴𝐸 = 3.8 µm2 cm–3). The best sub-model was also 411 

the most used one, which accounted for 81% of the total data points while the two succeeding sub-models constituted another 412 

16%. This also indicates that the input adaptivity function of the suggested method supplemented 19% of the estimates, which 413 

would be a missing estimate if a single model with fixed predictor variables was used. Four out of the five most used sub-414 

models contain BC as an input predictor with the combination of other two air pollutants or meteorological parameters. This 415 

was in line with the high correlation of LDSA with BC (𝑟 = 0.84, Fig. S9) In case BC is missing at a certain time stamp, the 416 

sub-model without BC as an input could be used. It further supports the input adaptive function.  417 

 418 

At the UB site, the sub-model performance was more scattered on the Taylor’s diagram (Figure 6). The five most used sub-419 

models had varying metrics (𝑟 = 0.77−0.92, 𝑐𝑅𝑀𝑆𝐷 = 2.5−3.9 µm2 cm–3 and 𝑁𝑆𝐷 = 0.63−0.89, see Table 5). Although some 420 

showed exceptionally good performance, the overall model had a slightly worse performance than that in street canyon. The 421 

best sub-model estimated 49% of the total measurement, followed by 17%. The third and fourth most used sub-models, which 422 

formed up to 30% of the estimates, had rather moderate performance (𝑅2 = 0.58 and 0.69). Considering all possible outcomes, 423 

the overall model was still able to explain 77% of the total variance. Despite the fair linear correlation with LDSA, CO (𝑟 = 424 

0.26) and PNC (𝑟 = 0.71) dominated in the top five used sub-models. This could be explained by the fact that the source of 425 

CO can well cover the missing piece that PNC was unable to account for LDSA. BC, NOx and meteorological parameters, like 426 

RH and WD-N were also involved in the final LDSA estimation.  427 

 428 

By checking the variance inflation factor (VIF) of all 696 sub-models, 4.6% and 2.2% were rejected respectively. The higher 429 

rejection rate at SC can be explained by the fact that some of the predictor variables were highly correlating to each other and 430 

the inclusion of them would result in an inflation of multi-collinearity of the sub-model, from which biases arose. At UB, since 431 

the source of LDSA was more varied and the correlation of LDSA with other pollutants was generally lower, the probability 432 

of the VIF of the individual sub-models exceeding the threshold was lower. 433 

5.2 Temporal difference in comparison with other models 434 

Figure 7 presents the comparison of measured LDSA (LDSAPegasor), deposition model derived LDSA (LDSAICRP) and the 435 

LDSA modelled by IAP and IAME (LDSAIAP and LDSAIAME) as a timeseries plot between 14 and 28 February 2017. This 436 

particular time window was selected because it had the least data gaps for all the respective instruments at both sites. This 437 

figure during this period can also showcase the difference in magnitudes of the diurnal shape over workdays and weekends 438 
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(shaded regions in Figure 7). At both sites, both IAP and IAME underestimated the peaks when the change of the measured 439 

LDSA concentration was sudden and relatively large. However, this limitation did not diminish much of the usefulness of the 440 

models as virtual sensors as the models were still able to generally catch up with the diurnal cycle of the measured data. Despite 441 

the small difference observed in the figure, the blue dotted line representing LDSAIAME often stays closer to the measured 442 

LDSA concentration (black line). When we smoothed out all the estimates at each hour, the ability for IAME to catch the 443 

morning peak on workdays was much better.   444 

 445 

A more generalised diurnal cycle can be found in Figure 8. The error bars of the modelled LDSAIAP and LDSAIAME were 446 

consistently smaller than that of LDSAPegasor and LDSAICRP. It might be due to the reason that the model fails to catch the 447 

extreme values although it managed to catch the general diurnal cycle. Since outliers were removed in the pre-processing stage 448 

and the model penalised the extreme values, the model tended to give a more centralised estimate. It was a trade-off between 449 

the option with better coefficients of determination but stronger extreme errors and that with better estimations at tails but 450 

derivation of averaged estimation. This circumstance was more apparent on workdays than weekends. Furthermore, LDSAIAME 451 

could follow the diurnal cycle of LDSAPegasor much better than LDSAIAP, especially during the start of the peak hours over 452 

workdays at the SC site where the LDSA concentrations jumped to a high level. LDSAIAME can explain 80% and 77% of the 453 

variability of the reference measurements at SC and UB, respectively (Table 6), and compared to LDSAIAP’s 77% and 66%, 454 

LDSAIAME performed better in terms of accuracy. In addition, the slightly smaller 𝑀𝐴𝐸  and the closer to 1 𝑁𝑆𝐷  of the 455 

LDSAIAME suggested that the mean absolute error was improved and the spread of the estimation distribution was closer to the 456 

reference measurement by taking random effects into account. 457 

 458 

Furthermore, we assessed the temporal and spatial impact on the IAME model by comparing the means of absolute differences 459 

between the hourly LDSAPegasor and LDSAIAME in different time windows at both stations. A descriptive statistic is presented 460 

in Table 7. We used two-sample t-tests to assess whether the distribution of absolute differences were statistically significant. 461 

At SC, the p value of the t-tests at all selected windows were below 0.05, which demonstrated that the performance at different 462 

seasons, days of week and hours of day of absolute differences between the measured and modelled LDSA were significantly 463 

different at the confidential level of 95%. At the UB site, the difference between the two selected hour periods was not 464 

statistically significant. The same applied to the difference between winter and spring. There was no statistically sufficient 465 

evidence to validate the difference among the rest of the selected time period. In other words, with the use of random effects 466 

of time constraint, the overall models still performed differently at different time windows most of the time. This indicates that 467 

IAME still needs improvements on minimising temporal differences. 468 

6 Conclusion 469 

In this study, we developed a novel input-adaptive mixed-effects (IAME) proxy, to estimate alveolar LDSA by other already 470 

existing air pollutant variables and meteorological conditions in Helsinki Metropolitan Area. During the measurement period 471 

2017–2018, we retrieved LDSA measurements measured by Pegasor AQ Urban (alveolar LDSA in the ~10−400 size range) 472 

and other variables in a street canyon (SC, average LDSA = 19.7±11.3 µm2 cm–3) site and an urban background (UB, average 473 

LDSA = 11.2±7.1 µm2 cm–3) site in Helsinki, Finland. Furthermore, three detached housing sites (DH, average LDSA = 474 

11.7±8.6 µm2 cm–3) and a regional background site (RB, average LDSA = 7.6±5.4 µm2 cm–3) were also included as reference 475 

and background source estimation, respectively. At the SC site, LDSA concentrations were closely correlated with traffic 476 

emission. The ratio to black carbon (LDSA/BC), to particle number concentration (LDSA/PNC), and to nitrogen oxide 477 

(LDSA/NOx) had a higher value before the morning peak and it reached its minimum during the morning peak since the role 478 

of regional background was higher for LDSA compared to those of NOx, BC and PNC. However, the ratio of LDSA to mass 479 
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concentration of particles of diameter smaller than 2.5 µm (LDSA/PM2.5) performed differently since the freshly vehicular 480 

emitted particles were smaller than 50 nm, which did not contribute much to PM2.5 mass concentration.  481 

 482 

For the continuous estimation of LDSA, IAME was automatised to select the best combination of input variables, including a 483 

maximum of three fixed effect variables and three time indictors as random effect variables. Altogether, 696 sub-models were 484 

generated and ranked by the coefficient of determination (𝑅2), mean absolute error (𝑀𝐴𝐸) and centred root-mean-square 485 

differences (𝑐𝑅𝑀𝑆𝐷) in order. At the SC site, LDSA concentrations can be best estimated by PM2.5, PNC and BC, all of which 486 

were closely connected with the vehicular emissions, while they were found correlating with PM2.5, BC and carbon monoxide 487 

(CO) the best at the UB site. At both sites, PM2.5 also indicated the regionally and long-range transported pollutants, which 488 

was a significant source of LDSA concentrations. The accuracy of the overall model was higher at the SC site (𝑅2 = 0.80, 489 

𝑀𝐴𝐸 = 3.7 µm2 cm–3) than at the UB site (𝑅2 = 0.77, 𝑀𝐴𝐸 = 2.3 µm2 cm–3) plausibly because the LDSA source was more 490 

tightly controlled by the close-by vehicular emission source. This model could catch the temporal pattern of LDSA; however, 491 

the two-sample t-tests of the residuals at all selected time windows showed that their distributions were different. This indicated 492 

that the model still performed differently at different time windows. Despite this, the novel IMAE model worked better in 493 

explaining the variability of the measurements than the previously suggested IAP model as indicted by a higher 𝑅2  and 494 

lower 𝑀𝐴𝐸 in both sites. This adjustment by taking random effects into account improved the sensitivity and the accuracy of 495 

the fixed effect model IAP. 496 

 497 

The models alone cannot replace the need for reference measurements (Hagler et al., 2018). However, the IAME proxy could 498 

serve as virtual sensors to complement the measurements at reference stations in case of missing data. The two measurement 499 

sites in this study served as a pilot of the proxy development, and the next step is to extend the work to the existing network 500 

of several measurement stations within the Helsinki metropolitan region. With similar configurations, we could fill up the 501 

voids with the information from the other stations after conscientious calibration. For example, in this paper, the two 502 

measurement sites were characterised as street canyon and urban background. In a different setup, we may assume the 503 

similarity of the same type of environment and utilise the measurements as replacement. Furthermore, this continuous LDSA 504 

estimation could be useful in updating some of the current air quality application, for instance ENFUSER air quality model 505 

which provide accurate spatio-temporal estimation for air pollutants in Helsinki (Johansson et al., 2015).   506 
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J., Fujitani, Y., Furuyama, A., Lakey, P. S. J., Lelieveld, J., Lucas, K., Morino, Y., Pöschl, U., Takahama, S., Takami, A., 726 

Tong, H., Weber, B., Yoshino, A., and Sato, K.: Aerosol health effects from molecular to global scales, Environ. Sci. Technol., 727 

51, 13545-13567, https://doi.org/10.1021/acs.est.7b04417, 2017. 728 
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Table 1. Ambient LDSA of alveolar region (in µm2 cm–3, corrected to 2 significant figures) reported in the last decade in chronological 759 
order of the measurement start. TS and RA represent traffic sites and residential area respectively. For the other acronyms, please see the 760 
method section. 761 

Site 

description 

Location Average 

(Mean, 

unless state 

otherwise) 

Uncertainties 

(SD, unless 

state 

otherwise) 

Period/Season Instruments Study 

UB Ruhr, 

Germany 

median=36 IQR=21 Mar 2009–Dec 

2014 

NSAM Hennig et al. (2018)  

RB+UB+TS Basel, 

Geneva, 

Lugano, 

Wald, 

Switerland 

32 IQR=25 Jan 2011–Dec 

2012 

DiSCmini Eeftens et al. (2016) 

City centre 

with heavy 

traffic 

Lisbon, 

Portugal 

35–89 4–8 Apr–May 2011 NSAM Albuquerque et al. 

(2012)  

UB 

 

Cassino, Italy 88–240 

 

- 

 

Oct 2011– Mar 

2012 

NSAM Buonanno et al. 

(2012)  

RB 69 

UB with 

traffic 

influence 

Barcelona, 

Spain 

37 26 Nov 2011–May 

2013 

NSAM Reche et al. (2015)  

TS Helsinki, 

Finland 

65–94 - Feb 2012 ELPI, 

NSAM 

Kuuluvainen et al. 

(2016) RA 15–31 

TS Athens, 

Greece 

65 21 

4.8 

Jul 2012 

 

Partector 

Aerotrak 

9000 

Cheristanidis et al. 

(2020) 

UB with 

traffic 

influence 

Leichester, 

UK 

30 25 Nov 2013–May 

2015 

NSAM Hama et al. (2017)  

23 14 Warm months 

38 33 Cold months 

Airport Los Angeles 47 27 Nov–Dec 2014 

and May–Jul 

2015 

DiSCmini Habre et al. (2018) 

UB Fukuoka, 

Japan 

127 62 Apr 2015–Mar 

2016 

NSAM Kiriya et al. (2017) 

TS Helsinki, 

Finland 

60 (ground level) Nov 2016 Partector, 

ELPI, 

DiSCmini,  

Pegasor AQ 

Urban 

Kuuluvainen et al. 

(2018) 36-40 (below rooftop) 

16-26 (above rooftop) 

SC 22 14 Kuula et al. (2020) 
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UB Helsinki, 

Finland 

9.4 6.9 Feb 2017–Jan 

2018 

Pegasor AQ 

Urban DH 12 10 

TS Delhi, India 330 130 Nov–Dec 2018 ELPI Salo et al. (2021a) 

UB Salerno 

Roma, Italy 

79 48 Nov 2018– 

May 2019 

NanoTracer Pacitto et al. (2020) 

TS 110 57 

RB Parma, Italy 17 10 

 762 

 763 

  764 
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Table 2. Descriptive statistics of alveolar LDSA concentrations (µm2 cm–3) at SC (2017–2018), UB (2017–May 2018), DH1–3 (2018) and 765 
RB (2018) site. The mean (column 3), standard deviation (SD, column 4), 10th, 25th, 50th, 75th and 90th percentile (P10, P25, P50, P75 and 766 
P90, column 5–9), geometric mean (Gmean, column 10) and geometric standard deviation (GSD, column 11) of the concentrations are 767 
corrected to one decimal place. The percentage of valid data in the reported measurement period is shown in column 12. 768 

  Mean SD P10 P25 P50 P75 P90 Gmean GSD % 

SC All 19.7 11.3 8.4 11.7 17.0 24.7 34.4 17.0 1.7 97 

 Winter 19.4 12.2 7.6 10.7 16.1 24.7 35.3 16.3 1.8 98 

 Spring 19.6 11.0 8.6 11.8 16.9 24.3 34.2 17.1 1.7 94 

 Summer 20.8 10.4 10.5 13.5 18.4 25.5 34.2 18.6 1.6 98 

 Autumn 18.4 11.7 7.1 10.0 15.0 23.8 34.6 15.3 1.8 96 

 Workdays 21.4 12.3 8.6 12.5 18.8 27.7 37.6 18.4 1.8 97 

 Weekends 15.9 7.5 8.1 10.7 14.4 19.4 25.2 14.4 1.6 97 

UB All 11.2 7.1 4.6 6.4 9.5 14.0 19.6 9.5 1.8 70 

 Winter 12.4 9.1 4.8 6.3 10.0 15.4 22.5 10.1 1.9 89 

 Spring 10.4 6.1 4.6 6.2 9.0 12.8 18.3 9.0 1.7 100 

 Summer 12.8 5.8 6.7 8.5 11.4 15.8 20.7 11.6 1.6 57 

 Autumn 7.7 4.7 3.2 4.5 6.7 9.7 13.2 6.7 1.7 56 

 Workdays 11.5 7.3 4.8 6.7 9.7 14.1 20.3 9.8 1.8 70 

 Weekends 10.4 6.6 4.1 5.8 8.8 13.6 18.3 8.8 1.8 70 

DH1–3 All 11.7 8.6 4.2 6.3 9.7 14.5 21.1 9.5 1.9 94 

 Winter 12.3 10.2 4.1 6.2 9.6 14.8 23.4 9.7 2.0 86 

 Spring 12.8 8.2 5.3 7.4 10.8 15.9 23.1 10.7 1.8 98 

 Summer 11.8 5.9 5.7 7.8 10.8 14.5 19.2 10.6 1.6 98 

 Autumn 10.5 10.2 3.0 4.6 6.8 13.0 22.2 7.5 2.2 95 

 Workdays 11.8 8.3 4.3 6.4 9.9 14.6 20.8 9.6 1.9 95 

 Weekends 11.7 9.3 4.0 6.0 9.4 14.3 21.8 9.3 2.0 93 

RB All 7.6 5.4 2.4 4.0 6.5 10.2 14.0 6.1 2.0 99 

 Winter 6.6 6.0 2.2 3.5 5.6 8.3 11.6 5.3 1.9 100 

 Spring 9.1 6.4 3.5 5.1 7.4 11.0 16.6 7.5 1.9 99 

 Summer 9.8 4.3 4.7 6.6 9.3 12.5 15.3 8.9 1.6 99 

 Autumn 4.9 4.1 1.6 2.6 3.9 5.6 8.9 3.8 2.0 99 

 Workdays 7.7 5.6 2.5 4.1 6.6 10.2 14.1 6.2 2.0 99 

 Weekends 7.6 5.0 2.4 4.0 6.5 10.1 14.0 6.1 2.0 100 

 769 

 770 

  771 
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Table 3. The evaluation attributes by IAME model at the SC and the UB site, corrected to 2 significant figures. 772 

 Street canyon Urban background 

 𝑅2 𝑀𝐴𝐸 𝑐𝑅𝑀𝑆𝐷 𝑟 𝑁𝑆𝐷 𝑅2 𝑀𝐴𝐸 𝑐𝑅𝑀𝑆𝐷 𝑟 𝑁𝑆𝐷 

All 0.80 3.7 5.6 0.87 0.78 0.77 2.3 3.7 0.86 0.80 

Winter 0.86 3.4 5.3 0.92 0.74 0.81 2.5 4.6 0.89 0.68 

Spring 0.75 3.9 5.9 0.85 0.79 0.61 2.4 3.3 0.84 0.85 

Summer 0.70 4.1 5.9 0.83 0.84 0.61 2.7 3.7 0.79 0.95 

Autumn 0.85 3.4 5.4 0.9 0.75 0.85 1.3 2.0 0.91 0.83 

Workdays 0.81 4.1 6.1 0.87 0.77 0.75 2.4 3.8 0.86 0.77 

Weekends 0.72 3.0 4.3 0.82 0.82 0.8 2.1 3.5 0.85 0.87 

 773 

  774 
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Table 4. Five most successful sub-models at the SC site. The table shows only the fixed predictors with their coefficient (𝜷, all p<0.05) and 775 
corresponding standard error (SE). The variance inflation factor (VIF) among the fixed predictors is also shown for the 5 sub-models. The 776 
evaluation attributes of the sub-models are shown column 6–10. The percentage of the sub-model usage and the number of data points (n) 777 
is shown in column 11 and 12. Natural logarithm is taken for parameters with asterisk (*). 778 

 Fixed 

predictors 

𝛽 SE VIF 𝑅2 𝑀𝐴𝐸 𝑐𝑅𝑀𝑆𝐷 𝑟 𝑁𝑆𝐷 % n 

1 

*PM2.5 0.119 0.005 1.54 

0.74 3.7 5.7 0.87 0.79 81 2603 *PNC 0.313 0.005 2.89 

*BC 0.223 0.004 2.17 

2 

*NOx 0.236 0.005 3.79 

0.74 3.8 5.7 0.86 0.77 13 2629 *PNC 0.153 0.005 1.63 

*BC 0.231 0.007 4.90 

3 

*PNC –0.044 0.003 1.07 

0.74 3.8 5.8 0.86 0.78 4 6622 *BC 0.375 0.004 2.20 

WS 0.201 0.004 2.15 

4 

*NOx 0.250 0.005 3.09 

0.74 3.8 5.7 0.87 0.78 <1 2596 *PM2.5 0.243 0.004 1.17 

*PNC 0.184 0.005 3.02 

5 

*NOx 0.176 0.005 3.51 

0.72 3.8 5.8 0.85 0.75 <1 2713 *PM10 0.070 0.004 1.3 

*BC 0.326 0.006 3.65 

 779 

  780 
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Table 5. Five most successful sub-models at the UB site. The table shows only the fixed predictors with their coefficient (𝜷, all p<0.05) and 781 
corresponding standard error (SE). The variance inflation factor (VIF) among the fixed predictors is also shown for the 5 sub-models. The 782 
evaluation attributes of the sub-models are shown column 6–10, corrected to 2 significant figures. The percentage of the sub-model usage 783 
and the number of data points (n) is shown in column 11 and 12. Natural logarithm is taken for parameters with asterisk (*). 784 

 Fixed 

predictors 

𝛽 SE VIF 𝑅2 𝑀𝐴𝐸 𝑐𝑅𝑀𝑆𝐷 𝑟 𝑁𝑆𝐷 % n 

1 

*CO 0.072 0.027 1.72 

0.84 1.7 2.5 0.92 0.87 49 941 *PNC 0.400 0.006 2.08 

*BC 2.956 0.007 1.52 

2 

*PNC –0.098 0.005 1.09 

0.82 1.9 2.9 0.91 0.89 17 6608 *BC 0.398 0.004 1.44 

WD-N 0.328 0.006 1.55 

3 

*NO2 0.237 0.007 1.88 

0.69 2.4 3.4 0.84 0.73 17 941 *CO 0.520 0.024 1.10 

*PNC 0.341 0.010 2.00 

4 

*CO 0.009 0.000 1.08 

0.58 2.7 3.9 0.77 0.63 11 9757 *PNC 0.348 0.025 1.07 

RH 0.590 0.007 1.15 

5 

*NOx 0.107 0.006 2.22 

0.81 1.9 3.0 0.90 0.85 2 7036 *CO 0.182 0.032 1.72 

*BC 0.455 0.007 2.56 

 785 

 786 

 787 

  788 
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Table 6. Model evaluation comparison of deposition model derived LDSA (LDSAICRP), modelled LDSA by IAP (LDSAIAP) and modelled 789 
LDSA by IAME (LDSAIAME) against reference measurements LDSAPegasor at the SC and the UB site. Parameters with an asterisk represent 790 
natural logarithm. The evaluation attributes of the three methods are corrected to 2 significant figures. 791 

 Street canyon Urban background 

 𝑅2 𝑀𝐴𝐸 𝑐𝑅𝑀𝑆𝐷 𝑟 𝑁𝑆𝐷 𝑅2 𝑀𝐴𝐸 𝑐𝑅𝑀𝑆𝐷 𝑟 𝑁𝑆𝐷 

LDSAICRP 0.72 4.1 6.2 0.88 1.1 0.83 1.8 2.9 0.93 1.1 

LDSAIAP 0.77 4.0 6.0 0.85 0.78 0.66 2.8 3.9 0.84 0.81 

LDSAIAME 0.80 3.7 5.6 0.87 0.78 0.77 2.3 3.7 0.86 0.80 

 792 

  793 
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Table 7. Statistics to show temporal difference. The number of data (n), mean and standard deviation (SD) of absolute error and the 794 
corresponding p-values of t-tests at the selected time windows at both sites. 795 

Street canyon (SC) n Mean SD t-test p 

Workdays 11658 4.1 4.8 
Workdays vs Weekends 4.13×10–81 

Weekends 5322 3.0 3.2 

Winter 

Spring 

Summer 

Autumn 

4023 

2297 

6457 

4320 

3.4 

4.0 

4.2 

3.4 

4.2 

4.5 

4.4 

4.3 

Winter vs Spring 

Winter vs Summer 

Winter vs Autumn 

Spring vs Summer 

Spring vs Autumn 

Summer vs Autumn 

3.64×10–24 

5.89×10–5 

7.07×10–7 

6.38×10–34 

1.02×10–4 

2.69×10–15 

Hour 4–10 a.m. 4953 4.8 5.6 Hour 4–10 a.m. vs  

4–10 p.m. 
2.58×10–40 

Hour 4–10 p.m. 4981 3.5 3.6 

 796 

Urban background (UB) n Mean SD t-test p 

Workdays 8473 2.3 2.6 
Workdays vs Weekends 5.08×10–8 

Weekends 3852 2.1 2.6 

Winter 

Spring 

Summer 

Autumn 

2539 

1101 

1628 

812 

2.5 

1.9 

2.6 

2.3 

3.2 

3.1 

2.4 

2.1 

Winter vs Spring 

Winter vs Summer 

Winter vs Autumn 

Spring vs Summer 

Spring vs Autumn 

Summer vs Autumn 

1.96×10–7 

0.39*** 

1.90×10–2 

2.75×10–9 

2.20×10–3 

1.40×10–3 

Hour 4–10 a.m. 3620 2.3 2.7 Hour 4–10 a.m. vs  

4–10 p.m. 
0.86*** 

Hour 4–10 p.m. 3591 2.3 2.7 

 797 

 n Mean SD t-test p 

Street canyon (SC) 
11940 

3.9 4.6 SC vs UB  

(in same time period) 
8.21×10–246 

Urban background (UB) 2.3 2.6 

*** p>0.05 the null hypothesis of different distribution is rejected  798 

 799 

  800 
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Figure 1. Lung deposition factor of a spectrum of particle size distribution based on the equation (ICRP, 1994). Black solid line represents 

the total deposition factor while blue, green and red dotted line refer to deposition factor in head airway, tracheobraonchial and alveolar 

region, respectively. Pegasor AQ Urban measured the alveolar LDSA concentration of particles in the ~10–400 nm size range (dark grey). 

DMPS at SC and UB were used to calculate alveolar LDSA in selected size fractions in the 6–800 nm and 3–1000 nm size range, 

respectively. 
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Figure 2. The block diagram of the proxy procedures (top). The blue and orange blocks are explanatory notes to the sections of sub-

model formation and cross validation, respectively.  
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Figure 3. Time series of the selected air pollutant parameters (First to end row: LDSA (µm2 cm–3), BC (µg m–3), NOx (ppb), PM2.5 (µg 

m–3) and PNC (cm–3)) at Mäkelänkatu SC site during the measurement period from 1 January 2017 and 31 December 2018. Each bar 

represents a period of two weeks where the shaded diamond marker is the median and the vertical error bars are the 25 th and 75th 

percentiles. Seasons are thermally separated. 
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Figure 4. Upper panel: Diurnal cycles of LDSA concentrations (µm2 cm–3) at SC (red diamond, 2017–2018), UB (blue square, 2017–

May 2018), DH1–3 (black triangle, 2018) and RB site (green circle, 2018) on workdays and weekends with error bars of 25th and 75th 

percentiles. Lower panel: Monthly averages in year 2018 of local LDSA increments at the SC (red diamond) and DH1–3 (black triangle) 

site (LDSA concentration at the hotspot site – LDSA at RB site) on workdays and weekends with error bars of 25th and 75th percentiles. 
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Figure 5. Heatmap showing Pearson correlation coefficient (r, corrected to 2 significant figures) of LDSA of different particle size 

sections (in nm) by ICRP lung deposition model and the other air pollutant parameters at Mäkelänkatu SC site. Dark red indicates a high 

correlation while pale yellow indicates a low correlation. Parameters with an asterisk represent natural logarithm. LDSAPegasor represents 

the measured LDSA concentrations.  
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Figure 6. The upper panel shows the scatter plots of modelled LDSA against the measured LDSA at Mäkelänkatu SC site (first 

column) and at Kumpula UB site (second column). Hues of colours represent the density of points on the figure. The lower panel 

shows the Taylor’s diagrams (Taylor, 2001) at Mäkelänkatu SC site (first column) and at Kumpula UB site (second column). Each 

diamond marker in the Taylor’s diagrams represents each sub-model used in the final estimation by IAME (solid black dot), 

compared with the reference data (solid red dot). Hues of colours represent how frequent the sub-model was used. 
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Figure 7. Timeseries of measured LDSA (LDSAPegasor, black), deposition model derived LDSA by ICRP (LDSAICRP, red), modelled 

LDSA by IAP (LDSAIAP, blue solid line) and modelled LDSA by IAME (LDSAIAME, blue dotted line) during a selected measurement 

window between 14 and 28 February 2017. Shaded regions represent weekends, otherwise workdays. 
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Figure 8. Diurnal cycles of measured (LDSAPegasor, black), deposition model derived (LDSAICRP, red) and modelled (LDSAIAP and 

LDSAIAME, blue) LDSA concentrations with error bars of 25th and 75th percentiles on workdays (left) and weekends (right). LDSAIAP 

and LDSAIAME can be differentiated by their markers, cross for the former and square for the latter. 
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