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Abstract. Lung deposited surface area (LDSA) has been considered to be a better metric to explain nanoparticle toxicity
instead of the commonly used particulate mass concentration. LDSA concentrations can be obtained either by direct
measurements or by calculation based on the empirical lung deposition model and measurements of particle size distribution.
However, the LDSA or size distribution measurements are neither compulsory nor regulated by the government. As a result,
LDSA data are often scarce spatially and temporally. In light of this, we develop a novel statistical model, named input-
adaptive mixed-effects (IAME) model, to estimate LDSA based on other already existing measurements of air pollutant
variables and meteorological conditions. During the measurement period in 2017—2018, we retrieved LDSA data measured by
Pegasor AQ Urban and other variables at a street canyon (SC, average LDSA = 19.7+11.3 pm? cm™®) site and an urban
background (UB, average LDSA = 11.2+7.1 pum? cm~3) site in Helsinki, Finland. For the continuous estimation of LDSA, the
IAME model was automatised to select the best combination of input variables, including a maximum of three fixed effect
variables and three time indictors as random effect variables. Altogether, 696 sub-models were generated and ranked by the
coefficient of determination (R?), mean absolute error (MAE) and centred root-mean-square differences (cRMSD) in order. At
the SC site, the LDSA concentrations were best estimated by mass concentration of particle of diameters smaller than 2.5 um
(PM25s), total particle number concentration (PNC) and black carbon (BC), all of which are closely connected with the vehicular
emissions. At the UB site the LDSA concentrations were found to be correlated with PM2s, BC and carbon monoxide (CO).
The accuracy of the overall model was better at the SC site (R? = 0.80, MAE = 3.7 um? cm™) than at the UB site (R? = 0.77,
MAE = 2.3 um? cm™) plausibly because the LDSA source was more tightly controlled by the close-by vehicular emission
source. The results also demonstrated that the additional adjustment by taking random effects into account improved the
sensitivity and the accuracy of the fixed effect model. Due to its adaptive input selection and inclusion of random effects,
IAME could fill up missing data or even serve as a network of virtual sensors to complement the measurements at reference

stations.

1 Introduction

Particulate matter is one of the key components determining urban air pollution. Particulate matter can be described by a
combination of varying concentration (number, surface area and mass) and chemical composition. The mass concentrations of
particulate matter are dominated by large particles whereas the number concentrations are governed by sub-micron particles

(particle diameter (dp) <1 um), particularly ultrafine particles (UFP, dy< 0.1 um) (e.g. Petéjé et al., 2007; Ronkko et al., 2017;

1


mailto:pak.fung@helsinki.fi
mailto:tareq.hussein@helsinki.fi

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

Zhou et al., 2020). Particulate matter of varying sizes, carrying various harmful substances, have been known for playing a
major role in adverse health effects (Dockery et al., 1993; Oberdorster, 2012; Shiraiwa et al., 2017) in particular to respiratory
systems. A particle could be deposited in lung airways upon inhalation (Oberddrster et al., 2005) through three main
mechanisms: inertial impaction, gravitational sedimentation and Brownian diffusion. An airborne particle might be inhaled
either through nasal or oral passage and enter the respiratory tract. Coarser particles are usually partly deposited in the head
airway by the inertial impaction mechanism because they cannot follow the air streamline. Some finer particles are deposited
in the tracheobronchial region, mainly through gravitational sedimentation while some are removed by mucociliary clearance
(Gupta and Xie, 2018). The remaining sub-micron particles diffuse by Brownian motion and penetrate deeply into the alveolar
region, which is considered to be the most vulnerable section in lungs because removal mechanisms might be insufficient
(Gupta and Xie, 2018). The surface area of inhaled particulate matter could also act as a transport vector for many bacteria and
viruses (Liu et al., 2018a), and therefore, besides commonly monitored particulate matter number concentration and mass
concentration, the surface area of a particle is also an important factor when considering the harmfulness of particulate matter
(Duffin et al., 2002). In particular, the total surface area of particles which are deposited in alveolar section of human lungs,
known as Lung Deposited Surface Area (LDSA), is of the greatest concern because in vitro nanoparticle toxicity has been
demonstrated to be better explained when the lung burden was expressed as total particle surface area instead of atmospheric

particulate matter mass (e.g. Brown et al., 2001; Oberdorster, 2012; Schmid and Stoeger, 2016).

LDSA can be considered as an intermediary parameter between particle mass and particle number concentration as it cannot
be simply inferred from either of those parameters. Moreover, due to the various deposition efficiency with respect to particle
sizes, the quantification of LDSA is not simple. Conventionally, LDSA concentrations can be retrieved by (1) derivation from

particle size distribution with a deposition model or (2) direct measurements.

By fitting experimental lung deposition data on human beings, empirical deposition models are developed with the use of the
lung deposition model modified by Yeh and Schum (1980). Examples include the International Commission on Radiological
Protection (ICRP) Human Respiratory Tract Model (ICRP, 1994), the NCRP model (NCRP, 1997) and Multiple Path Particle
Dosimetry (MPPD) model (Anjilvel and Asgharian, 1995). Different conceptual particle deposition models vary primarily
with respect to lung morphometry and mathematical modelling techniques, rather than by using different deposition equations.
The three whole lung deposition models define regions of the human lungs (head airway, tracheobronchial and alveolar) for
any combination of particle size and breathing pattern (Hofmann, 2009). Among all models, single-path models, such as ICRP
model, are often used over multiple-path models due to their simplicity and their applicability to an average path without
requiring detailed knowledge of the branching structure of lungs. Owing to a higher potential health risk, LDSA in alveolar
region is often of greatest concern and it can be calculated by summing up the products of the surface concentration across

particle size spectrum and their corresponding deposition efficiency based on the selected deposition model.

Apart from numerical computation method, LDSA could also be measured by accredited instruments. Diffusion charging
based technique is a common approach where particles are charged with a unipolar corona charger (Fissan et al., 2006). This
method enables measurement of ultrafine particles and, more specifically, the LDSA concentration with good accuracy (Todea
et al., 2015) and stable performance in long term measurements (Rostedt et al., 2014). Nanoparticle Surface Area Monitor
(NSAM) has been used for decades (e.g. Asbach et al., 2009; Hama et al., 2017; Kiriya et al., 2017; Hennig et al., 2018), and
several other instruments and sensors, including DiSCmini, Testo Inc. (e.g. Eeftens et al., 2016; Habre et al., 2018) and
Partector, Naneos Ltd. (e.g. Cheristanidis et al., 2020), and Pegasor AQ Urban, Pegasor Ltd. (e.g. Kuuluvainen et al., 2018;
Kuula et al., 2020), using similar measuring techniques, are developed later on. Using these instruments in campaigns and

continuous measurements, LDSA concentrations in alveolar region and size distribution measurements in various
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environments have been reported across the globe in the past decade (Table 1). When comparing LDSA concentrations
measured by different instruments, the instruments’ limitations should be considered in experimental LDSA studies, which

will be further discussion in Sect. 2.2.

Although each of these methods is capable of measuring aerosol surface area concentrations, the corresponding uncertainties
and cost hinder the widespread use in monitoring networks (Asbach et al., 2017). Even though the instruments are available,
missing data often takes place due to instruments maintenance and data corruption. Kuula et al. (2020) demonstrated high
correlations of measured LDSA concentrations with black carbon (BC) and nitrogen oxide (NOy) in traffic environments.
Traffic activities have been observed to be significant source contribution to the LDSA concentrations (Jarvinen et al., 2015).
A clear correlation was also found between the emission factors of exhaust plume BC and LDSA in on-road studies for city
buses (e.g. Jarvinen et al., 2019). These highly correlating relationships provide good grounds for estimating LDSA
concentrations and short-term trends by the other pollutants measured at the same site with the use of data mining-based
approach as statistical models. These statistical models can eventually turn into virtual sensors of LDSA after being validated
even under the circumstances of no actual instrumental LDSA measurements. Due to the health effects LDSA has
demonstrated, it is of great importance to researchers that continuous measurements of LDSA are available with the help of
these virtual sensors via statistical models. Similar approach for sensor virtualisation of BC measurement has been studied in
Fung et al. (2020).

Data mining-based approach exploits statistical or machine learning techniques to detect patterns between predictors and
dependent variables in the time series data. They do not demand in-depth understanding of air pollutant dynamics, but
evaluation by experts is still required to determine whether the models work properly. Simple yet apprehensible models, such
as multiple linear regression (MLR, e.g. Ferndndez-Guisuraga et al., 2016) and generalized additive models (GAM, e.g. Chen
et al., 2019), are commonly utilised as white-box models in air pollutant proxy studies. Furthermore, more sophisticated
machine learning black-box models, such as artificial neural network (ANN, e.g. Cabaneros et al., 2019; Zaidan et al., 2019;
Fung et al., 2021a), nonlinear autoregressive network with exogenous inputs (NARX, e.g. Zaidan et al., 2020) and support
vector regression (SVR, e.g. Fung et al., 2021b), have been intensively investigated in recent years. They work better in terms
of accuracy; however, they provide limited transparency and accountability regarding the outcomes (Rudin, 2019; Fung et al.,
2021b).

Apart from model structures, the criteria of selecting variables in multipollutant datasets for model development have received
considerable attention over the years, and a large number of methods have been proposed (Miller, 2002). Traditional methods,
like stepwise procedures, which is a combination of forward selection and backward elimination (e.g. Liu et al., 2018b; Chen
et al., 2019), can be unstable because it uses restricted search through the space of potential models, which eventually causes
inherent problem of multiple hypothesis testing (Breiman, 1996; Faraway, 2014). Another approach named regularization has
emerged as a successful method to reduce the data dimension in an automated way, yet deal poorly with multi-collinear
variables, for example Least Absolute Shrinkage and Selection Operator (LASSO, e.g. Fung et al., 2021b; Simié et al., 2020),
ridge regression (e.g. Chen et al., 2019) and ELASTINET (e.g. Chen et al., 2019). Criterion-based procedures, which choose
the best predictor variables according to some criteria (e.g. coefficient of determination, residual, etc), are sensitive to outliers
and influential points, but involve a wider search and compare models in a preferable manner. Examples are best subset
regression (e.g. Chen et al., 2019), input adaptive proxy (IAP, e.g. Fung et al., 2020; Fung et al., 2021b), etc. Hastie et al.
(2020) compared some of the models using the three approaches and concluded that no single feature selection method
uniformly outweighs the others. Despite the extensive research of feature selection methods, the inclusion of random effects

together with the fixed effects as linear mixed-effects (LME) model has received relatively little attention (e.g. Mikkonen et
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al., 2020; Tong et al., 2020) in air pollution research, let alone LDSA study in particular. This inclusion of random effects

could acknowledge a possible effect coming from a factor where specific and fixed values are not of interest.

In this study, we combine the use of criterion-based feature selection method and the inclusion of random effects, and develop
a novel input-adaptive mixed effects (IAME) model to estimate alveolar LDSA concentrations, which is the first study of this
context to our best knowledge. The description of LDSA measurements and the techniques of IAME model are outlined in
Sect. 2 and 3, respectively. Section 4 presents the characteristics of alveolar LDSA, including its seasonal variability, weekend
effect and diurnal pattern, in four types of environments. We also aim to investigate the correlation with other air pollutants.
In Sect. 5, we evaluate the performance of the IAME proxy (LDSA ame) with the measured alveolar LDSA by Pegasor AQ
Urban (LDSApegasor), ICRP lung deposition model derived LDSA (LDSAcre) and another modelled alveolar LDSA by I1AP
(LDSA\ap) as well as the benefits and implication of this alveolar LDSA model as virtual sensors. It should be noted that this

study discusses LDSA in alveolar region, unless stated otherwise.

2 Measurement description
2.1 Measurement sites

We retrieved aerosol, gaseous and meteorological data from two types of measurement sites, i.e., street canyon (SC, 2017—
2018) and urban background (UB, 2017—May 2018), in Helsinki Metropolitan Area (HMA) described in more details below.
Data from detached housing (DH, 2017) and regional background (RB, 2017) sites were also included in the study to provide
comparison and data from the background concentrations. Situated on a relatively flat land at the coast of Gulf of Finland,
HMA has land area of 715 km? and population of about 1.13 million inhabitants. Helsinki can be classified as continental or
marine climate depending on the air flows and the pressure system. Figure S1 and Table S1 show the detailed site description.
Street canyon site (SC): Mékel&nkatu urban supersite is operated by the Helsinki Region Environmental Services Authority
(HSY, Kuuluvainen et al., 2018). The station is located at 3 km from the city centre in a street canyon in the immediate vicinity
to one of the main roads leading to downtown Helsinki. The street, with speed limit of 50 km h™*, consists of six lanes and two
tramlines. The annual mean traffic volume in 2018 per workday was 28 100 vehicles, 11% of which were recorded as the
heavy duty vehicles. The traffic loads are especially high during rush hours at 8 a.m. and 5 p.m. (Figure S2). The street canyon
of width of 42 m is surrounded by rows of buildings of 17 m high, which weaken the dispersion process of the direct vehicular
emissions. All the inlets for the measuring devices are positioned approximately at a height of 4 m from the ground level.
Urban background site (UB): The Station for Measuring Ecosystem-Atmosphere Relations Il (SMEAR 11, Jarvi et al.,
2009) in Kumpula, situated on a rocky hill at 26 m above sea level, is about 4 km northeast from the Helsinki centre. The
surroundings of this urban background station are heterogeneous, constituting of residential buildings, small roads, parking
lots, patchy forest and low vegetation from different direction. One main road (45 000 vehicles per workday) is located at the
distance of 150 m east from the site. Trace gases and meteorological conditions are measured at a height of 4 m and 32 m,
respectively, at a triangular lattice tower while aerosol measurements are conducted inside a container approximately 4 m
above the ground. The site is co-operated by Finnish Meteorological Institute (FMI) and the University of Helsinki (UHEL).
Detached housing site (DH): Three measurement stations, Rekola (DH1), Itd-Hakkila (DH2) and Hiekkaharju (DH3), were
chosen since they represent a sub-urban residential area surrounded by detached houses. These sites are mainly affected by the
wood combustion emissions from residential activities, especially in cold weather conditions. Emissions from traffic source
also account for a small portion of the whole pollution. It is estimated that 90 % of the households burn wood to warm up
houses and saunas, less than 2 % of which use wood burning as the main heating source in detached houses in HMA (Hellén
etal., 2017).
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Regional background site (RB): The RB site is located about 23 km away from the Helsinki city centre at Luukki, surrounded
by a wooded outdoor recreational area right at the edge of the Greater Helsinki golf course. The measuring station is in an
open place away from busy traffic routes and large point sources. As a result, this site can represent background concentration

levels outside the urban area without any main local sources.

2.2 Instruments

LDSA measurements: The sensor unit and the core of the Pegasor AQ Urban is practically another instrument called a Pegasor
PPS-M sensor (Pegasor Ltd., Finland) originally designed for automotive exhaust emission measurements (e.g. Maricq, 2013;
Amanatidis et al., 2017). The operation of the sensor is based on diffusion charging of particles and the measurement of electric
current without the collection of particles. The diffusion charging of particles is carried out by a corona-ionized flow that is
mixed with the ambient sample air in an ejector diluter inside the sensor. The sampling lines and the sensor unit are heated to
40°C above the ambient temperature (1) to dry the aerosol sample, (2) to prevent interference from humidity, and (3) to prevent
any water condensation inside the sensor. The performance of the Pegasor PPS-M sensors for long-term ambient measurements
has been improved after they were tested in Helsinki (J&rvinen et al., 2015) and Beijing (Dal Maso et al., 2016). The suggestions
have been considered for the design of the current form of the Pegasor AQ Urban in this study.

The Pegasor AQ Urban (dimension: 320 mmx250 mmx1000 mm), which consists of a weatherproof cover, clean air supply,
and the abovementioned Pegasor PPS-M sensor, has been designed such that its response to LDSA is not to be subjected to
meteorological fluctuation for outdoor operation. Kuuluvainen et al. (2016) used two Pegasor AQ Urban devices during a 2
week period at an urban street canyon and an urban background measurement station in Helsinki, Finland whereas Kuula et
al. (2019) later used the instruments in a 3 month long campaign at the same urban street canyon station. These studies
demonstrated that the output signal of the Pegasor AQ Urban correlated well with other devices measuring LDSA
concentrations such as the Partector and DiSCmini. Kuula et al. (2020) further validated the accuracy and stability of Pegasor
AQ Urban at the street canyon station by comparing the measured values of one full year with DMPS reference instruments
(R? = 0.90, RMSE = 4.1 um? cm™®). The internal precision of Pegasor AQ Urban is + 3%, but this was not tested prior the
campaign. The instrument is optimized to measure the alveolar LDSA concentrations of particles in ~10—400 nm size range.
Pegasor AQ Urban tends to underestimate LDSA of particle larger than about 400 nm. In typical urban environments, most of
the particles from local combustion sources are in the size below the threshold (Asbach et al., 2009; Kuuluvainen et al., 2016;
Pirjola et al., 2017), generated vastly by anthropogenic sources such as vehicular exhaust emissions (Karjalainen et al., 2016)
and residential wood combustion (Tissari, 2008) which typically produce large amount of small particles. However, the impact
of larger particles (>400 nm) to alveolar LDSA might be significant, for example in HMA during PM2s long-range transport
episodes or when there are many particles from very low-quality residential burning in detached housing areas (Pirjola et al.,
2017). The regional background source in very polluted regions (e.g. Delhi, Salo et al., 2021a; mining environments, Salo et
al., 2021b) could be another reason for the significant impact of larger particles. This limitation of Pegasor AQ Urban should
be considered when it comes to data analysis in Sect. 4 and 5.

Aerosol measurements: Differential mobility particle sizer (DMPS) in combination of a differential mobility analyser (DMA)
and a condensation particle counter (CPC) measures aerosol size distribution (Kulkarni et al., 2011). Vienna DMA and
Airmodus A20 CPC (measurements of particle size range 6-800 nm) were used at the SC site while a twin DMPS (Hauke-
type DMA and TSI Model 3025 CPC + Hauke-type DMA and TSI Model 3010 CPC, merged particle size range 3—1000 nm)
were used at the UB site. Both instruments make use of the bipolar charging of aerosol particles, followed by classification of
particles into size classes according to their electrical equivalent mobility. In addition to particle size distribution, total particle
number concentration (PNC, in cm™3) was calculated by summation. Particle mass concentration of diameter less than 2.5 um
(PM_s, in ug m—) and less than 10 um (PMyo, in g m>) were measured continuously with ambient particulate monitor TEOM
1405 at the SC site and TEOM 1405-D at the UB site. Black carbon (BC, in pg m~) mass concentration was measured by a
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multi-angle absorption photometer (MAAP) Thermo Scientific 5012 with a PM; inlet. The measured absorbance was converted
to BC mass concentration by using a fixed 6.6 m?g! mass absorption coefficient at wavelength of 637 nm. PMzs, PMyo and
BC were recorded in pug m>.

Ancillary measurements: Trace gas concentrations (in ppb), including nitric oxide (NO), nitrogen dioxide (NO2), their sum
nitrogen oxide (NOy), ozone (O3) and carbon monoxide (CO) were determined with a suite of gas analysers. In addition,
supporting meteorological variables, including air temperature (Temp), relative humidity (RH), air pressure (P), wind speed
(WS), wind direction (WD) and photosynthetically active radiation (PAR), were measured at SC and UB. Figure S3 show the

meteorological conditions during the measurement period. A list of collected variables is shown in Table S2.

3. Method
3.1 Data pre-processing

The collected data was quality checked by the corresponding operating organisation, HSY, FMI and UHEL. No additional
pre-processing was done for general analysis. For proxy development, outliers due to potential measurement errors were
detected (SC: 0.73%; UB: 0.99% overall) by using the interquartile range (IQR) rule, which is applicable for non-Gaussian
distribution sample. We calculated the cut-off for outliers as 2 times the IQR, subtracted this cut-off from the 25™ percentile
and added it to the 75" percentile to give the actual limits on the data. We applied a natural logarithm transformation to all the
skewed-distributed aerosol and trace gases measurements in order to keep the distribution of each parameter following a normal
distribution. Since wind direction is a circular variable, it is resolved into North-South (WD-N) and East-West (WD-E) vector

components by trigonometric functions.

3.2 Size-fractionated lung deposited surface area (LDSAIcrp)

Alveolar deposition fraction (DF,;) as a function of particle size with the unit density is determined with the ICRP Human

Respiratory Tract Model by the following equation (ICRP, 1994):

0.0155 2 2
DF,, = exp|—0.416(Ind, + 2.84) )+ 19.11exp(—0.482(Ind, — 1.362
AL ( a, ) ( ( (Ind, ) ) ( (Ind, ) )) 1),

where d,, is the agrodynamic diameter (um) of spherical particles with the unit density (1 g cm ). The equation is determined
in two parts with respect to the two different peaks in the deposition curve in Figure 1. The peak near the size of 20 nm can be
approximated to represent the Brownian deposition, whereas the peak between 1 um and 2 pum represents the inertial
deposition. From the particle number size distribution, we calculated the particle surface area distribution assuming each
particle is monodisperse sphere of standard density at standard conditions. By Eq. (1), a deposition factor for each particle size
bin (26 size bins at SC and 49 at UB) were calculated. Size-fractionated LDSA was then computed by multiplying the surface
area concentration with DF,; in the corresponding size class. Total LDSA calculated by the ICRP lung model (LDSAcre) can
be obtained by summing up the all the size-fractionated LDSA values (Hinds, 1999). In this study, the alveolar LDSAcrp Was
calculated based on DMPS measurements in SC and UB. Thus, while the alveolar LDSA measured by Pegasor (LDSApegasor)
represent the ~10-400 nm size range, the alveolar LDSAcre represent 6-800 nm and 3-1000 nm size range in SC and UB,

respectively.

3.3 Novel Input-adaptive mixed-effects (IAME) model

Input-adaptive mixed-effects (IAME) model is a combination of input-adaptive proxy (IAP) and linear mixed-effects (LME)
model. IAP was first introduced by Fung et al. (2020) and has been demonstrated reliable and flexible to fill up missing values
by taking input variables adaptively with robust ordinary least square regression models. IAP has been able to estimate BC

concentration by other air quality indicators with a satisfactory performance in two different categorised urban environments,

6



248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286

street canyon (adjusted R? = 0.86-0.94) and urban background (adjusted R? = 0.74-0.91). Some models outperformed IAP in
accuracy performance, but its transparent model structure and ability to impute missing values still make it a preferred option

as a virtual sensor (Fung et al., 2021b).

In this study, we primarily stuck to the strength to select input variables adaptively with the introduction of mixed effects. The
mixed effect approach is a generalization of the linear model that can incorporate both fixed (i.e. causing a main
effect/interaction) and random effects (i.e. causing variance/variability in responses), allowing the account of several sources
of variations (Chudnovsky et al., 2012). As seen in Figure 2, we picked the direct air pollutant measurement from the station
(variables of high correlation: PM2s, BC and NO, and other supporting variables: PMig, O3, NOx, NO, CO and PNC) and
meteorological data of higher correlation (Temp, RH, P, PAR, WS, WD-N, WD-E) as the fixed variables because the air
pollutants can indicate the sources of LDSA which largely come from combustion and meteorological data could influence the
dispersion and dilution of LDSA. They are the most direct factors to the fluctuation of LDSA concentrations. Due to the strong
seasonal variation, weekend effects and diurnal pattern in urban air pollutant concentrations (Fung et al., 2020), the variance
in responses might depend on the time indicators that are not the primary cause of the concentration variability, but they
indirectly alter human-induced activities, such as traffic amounts. To take them into account, we created three time hierarchical

sub-groups (12 months of year, 7 days of week and 24 hours of day) as the inputs of random effect variables.

The regression equation of IAME is similar to the equation of 1AP, except that IAME includes additional intercepts term for

random effects as below:

P q
Yi = Bo +Zﬁikxik+zbij+ei )
k=1 j=1 @)

where y; is the i"" estimated LDSA concentration. The first term on the right B, indicates the fixed intercept of the equation.
The second term represents the total contribution by the direct measurement of variable x as fixed effects with a slope 3 at
each data point i. A maximum of three inputs from the total 16 fixed variables are selected to from 696 sub-models (Figure 2).
The inputs for random effects are indicated by b as intercepts of the corresponding three hierarchical sub-groups. A Gaussian

error term is indicated by e. The explanation of Eq. (2), is visualised in Figure 2.

One of the assumptions of LME models is that the random effects, together with the error term, have the following prior
distribution:

b~N(0,52D(0)) @A),
where D is a g-by-q symmetric and positive semidefinite matrix, parameterized by a variance component vector 6, q is the
number of variables in the random-effects term, and o2 is the observation error variance. We use an optimiser, restricted
maximum likelihood, commonly known as ReML, with the value 1x10°° as the relative tolerance on gradient of objective
function and 1x107'? as absolute tolerance on step size. The use of ReML over the conventional ML could produce unbiased

estimates of variance and covariance parameters (Lindstrom and Bates, 1988).

After the sub-model formation, the dataset was randomly divided into five portions. 80% of the data were allocated for 4-fold
cross validation to remove variance of accuracy. The results of all the folds were averaged and the sub-models were ranked by
several evaluation metrics, which were further demonstrated in Figure 2 and described in Sect. 3.4. Some of the sub-models
were subject to rejection under two conditions: (1) strong multi-collinearity among the fixed parameters (variance inflation
factor (VIF) > 5) and (2) violation of the normality assumption of residuals also known as heteroscedasticity (fail in

Kolmogorov-Smirnov (K-S) test, p < 0.05). Based on the situation of missing data, the automatised IAME model would search
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for the best sub-model option from the ranking chart. Hence, each data point might be estimated differently depending on the

available data. The number of data points being estimated by each sub-model was reported to show their frequency of usage.

3.4 Evaluation metrics

In order to evaluate the model performance quantitatively, we used the following metrics:
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where ¥, and ¥, are i"™ measured data point and estimated variable by the model, respectively. y and ¥ are the expected value
of the measured and modelled dataset, respectively. N is the number of complete data input to the model. Coefficient of
determination (R?) is a measure of how close the data lie to the fitted regression line. It, however, does not consider the biases
in the estimation. Therefore, we further validated the models with mean absolute error (MAE) and centred root-mean-square
differences (cRMSD), where MAE measures the arithmetic mean of the absolute differences between the members of each
pair, whilst cRMSD calculates the square root of the average squared difference between the forecast and the observation pairs.
cRMSD is more sensitive to larger errors than MAE. Furthermore, together with cRMSD, Pearson correlation coefficient (r)
and normalised standard deviation (NSD) of the modelled data set are also studied. r describes the correlation between the
measured and modelled data whereas NSD measures the relative spread of the data. Due to their unique mathematical
relationship, the three metrics can be portrayed on Taylor’s diagram, which has been used for sub-model selection purpose.
We ranked our sub-models first by R?, followed by MAE and cRMSD. r and NSD serve as additional evidence when we

explain the model performance.

3.5 Two-sample t-tests

We assessed the temporal and spatial impact on the IAME model by comparing the means of absolute differences between the
hourly measured and modelled LDSA in different time windows at both stations. Two-sample t-tests were performed on the
two populations of absolute differences abovementioned to determine whether the difference between these was statistically
significant. A significance level a of 5% was chosen as the probability of rejecting the null hypothesis when it is true, denoted

as p.

4 LDSA measurement characterization
4.1 General characteristics of LDSApegasor in Helsinki metropolitan area

The annual mean alveolar LDSA concentrations at four station types SC (2017-2018), UB (2017—-May 2018), DH (2018) and
RB (2018) were 19.7+11.3 um? cm 3, 11.2+7.1 pm? cm3, 11.748.6 pm? cm2 and 7.6+5.4 um? cm 3, respectively (Table 2).

The DH and RB site were included to give more substantial interpretation of data because the LDSA concentrations at RB can
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be viewed as background measurements and the local LDSA increments in HMA can be represented by the LDSA at the
hotspot measurement site subtracted by the LDSA at the RB site. The timeseries of LDSA concentrations at the SC and the
UB site were presented in Figure 3 and Fig. S4, where the missing data of LDSA for the whole measurement period was 3%
and 30%, respectively. When comparing with the same site type in other cities around the globe, LDSA concentrations detected
in HMA were the lowest among the European cities with reported values. While some literatures also reported LDSA at
tracheobronchial region, most just considered LDSA at alveolar, which is considered to bring most harm to human’s lungs, as

shown in Table 1.

The diurnal pattern of LDSA at RB was not observable on workdays or over weekends (Figure 4, upper panel). The relatively
low variability can be explained by the scarcity of human activities. We can then regard the LDSA at RB as the background
concentrations mainly influenced by the regionally and long-range transported aerosol and meteorological variation (see
Luoma et al., 2021; Jafar and Harrison, 2021). As the concentrations at RB was stable throughout the different hours of day;
therefore, the diurnal pattern of LDSA concentration was apparently indistinguishable between the measured concentration
and the local increments. At the UB and DH site, the magnitudes and the patterns of the average hourly LDSA concentrations
at workdays were comparable, and both showed bimodal curves, one peak at 6—9 a.m., the other at 9—11 p.m.. The former had
a larger peak during the morning peak hour because of the vehicular emissions (Timonen et al., 2013; Teinila et al., 2019)
while the latter had a larger peak in the evening attributed mainly by the residential burning (Hellén et al., 2017; Helin et al.,
2018; Luomacetal., 2021). Over weekends, the peaks in the morning were not identifiable and the evening peaks were amplified
due to enhanced human activities. Similar diurnal variation at residential area was observed for BC emitted by residential
combustion by Helin et al. (2018). At the SC site, the morning peak on weekends was not obvious because of the lack of work-
related traffic. It appears that a similar bimodal curve can be seen during workdays, but the evening peak was seen during the
evening traffic rush hour around 4-6 p.m.. The reason was that the main contributor of LDSA at the SC site was traffic and
combustion processes and the diurnal variability mainly depended on the citizen’s movement by vehicles in the city. Over
weekends, the average hourly LDSA concentrations were the minimum at 5 a.m. and they increased and remained at a high
level at 2 p.m. until the late night. The level of LDSA concentrations at DH was comparable with that at UB site. However,
the amplitude of the evening peak was higher than that of the morning peak both on workdays and weekends due to elevated

residential combustion.

However, the monthly variability of background measurements at the RB site was stronger compared to the diurnal pattern
and the calculation of local increment was necessary (e.g. Jafar and Harrison, 2021). With no intense point sources, the
variations at RB were probably due to horizontal dispersion and advection of aerosol particles and vertical dilution controlled
by the boundary layer dynamics. Based on the monthly frequencies of backward trajectory by NOAA HYSPLIT Trajectory
Model (Rolph et al., 2017, Fig. S5), pollutants could be originated 600 km away from Helsinki within 24 hours in the winter.
In the summer, when solar radiation was persistently stronger, the boundary layer became elevated due to surface heating and
associated thermal turbulence. This turbulence would dilute the concentration of pollutants at the surface. Another plausible
reason could be the higher regional and long-range transported LDSA in the summer, as demonstrated by Kuula et al. (2020)
and Barreira et al. (2021). The lower panel in Figure 4 shows the LDSA local increments after subtraction of the LDSA
concentrations at the RB site. For instance, the local LDSA increments at DH are the highest in the winter probably due to
local small-scale wood combustion (and traffic). However, without subtracting the background concentrations, the LDSA
concentrations at DH were higher in the summer than in the winter (due to high regional background concentrations in
summer), as was observed also by Kuula et al. (2020). This piece of evidence can help in the source apportionment. The

variation of diurnal and seasonal LDSA for all sites are visualised in Fig. S6.
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4.2 The connection between LDSA and other parameters

Alveolar LDSA concentration, as a single number, comprises particles across the whole particle size spectrum measured (e.g.
Pegasor AQ Urban ~10-400 nm). In HMA, the two local main sources of particles contributing to LDSA are vehicular
combustion and residential wood combustion emissions. Upon the two combustion processes, particles of different sizes and
different gaseous pollutants are emitted. A study by Lamberg et al. (2011) has shown that the geometric mean diameter of
residential wood combustion is typically 70-150 nm whereas Barreira et al. (2021) presented that the typical particle size for
vehicular combustion can be smaller than 50 nm. By calculating the proportion of LDSA with respect to different pollutant
parameters BC, NOy, PNC (dominated by UFP), and PM2s, we could identify the relative contribution of LDSA across the
hour of day (Fig. S7 for workdays and Fig. S8 for weekends). Whereas the ratios could partly tell the relative contribution of
LDSA in that certain hour, they are also dependent on various factors that include the different properties of each parameter
(e.g. the lung deposition factor for LDSA) and the time-dependent increase in particle size (e.g. new particle formation) which
are not the focus of this manuscript. Since the vehicular combustion emits smaller particles which elevate the LDSA
concentration but meanwhile do not substantially influence the value of PM2s (e.g. Salo et al., 2021a); therefore, LDSA/PM2 5
had a diurnal pattern similar to the LDSA concentrations which peaked in the morning rush hour during workdays. Conversely,
LDSA/BC, LDSA/PNC and LDSA/NOy had a low ratio value in the morning rush hour. This can be explained by the fact that
vehicular combustion caused high concentration of BC, PNC and NOy (Reche et al., 2015) compared to its contribution to
LDSA concentration. In other words, the role of regional background was higher for LDSA compared to those of NOx, BC
and PNC. At the UB site, the average LDSA/BC at all hours remained at a constant level in the winter while the variability of
the ratio was much higher in the summer. The general LDSA/PNC ratio at UB was steadily 2—3 times higher than that at all
hours in all seasons because the proportion of larger particles at UB was usually higher than SC. This large variability again

validated the heterogeneity of source of LDSA at UB.

The integrated alveolar LDSA with a various size ranges was calculated to explore the correlation of size-fractionated LDSA
and other parameters in our multipollutant dataset. No single fractionated LDSA correlated well with meteorological
parameters at both sites (Figure 5). Out of all fractions, alveolar LDSA of the whole spectrum (LDSAs-s00) and LDSA250-400,
which explained majority of LDSA, correlated best with other air pollutants. In general, alveolar LDSA had a high correlation
with BC. BC correlated the best with LDSA1g0-250 (r = 0.84), which was in alignment with the reported values from previous
literatures (Gramsch et al., 2014; Ding et al., 2016). As expected, PM2s showed better correlation with the LDSA of larger
particles (r = 0.68—0.76) because larger particles contributes more to PM.s mass concentration values. In the meanwhile, PM1o
had fair correlation with all selected size bins. NO: correlated highly with LDSA of smaller particles (r = 0.69-0.77),
indicating the dominant role of local traffic exhausts. CO had a higher correlation with LDSA of 400—800 nm (r = 0.64) since
CO concentrations were more affected by regionally transported pollutants. Oz had a fair correlation with LDSA of all sections
(r = 0.30-0.43) because the formation of Oz is mostly secondary and the chemical interactions with pollutants are more
complicated than the other compounds. In general, the correlations of LDSA with other air pollutant parameters were higher
at the SC site than that at the UB site (Fig. S9). The high correlations of LDSA with BC, PM.5s and NO,, which agreed with

the results by Kuula et al. (2020), proved the possibility of developing a model to estimate LDSA concentrations.

5 Model evaluation
5.1 Sub-model diagnostics

Following the evaluation attributes described in Sect. 3.4, Table 3 depicts the descriptive statistics of the overall model
evaluation on its testing set. The overall model at the SC site was able to explain 80% of the variability of the testing set of the

measured data. The R? in the winter was 0.86 being the highest while the worst R? was shown in the summer, i.e., 0.70. The
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MAE and cRMSD were the smallest during weekends with R? not particularly high (R? = 0.72) probably because the LDSA
concentration itself was relatively low in that period. The overall performance was generally worse in UB in terms of R?,

except during weekends that R? is 10% higher.

For individual sub-models, their performance could be seen on the Taylor’s diagram in Figure 6 (Taylor, 2001). Each marker
represents one sub-model, the contribution of which to the outcome of the final model is displayed in various colours. The
sub-model performance can be evaluated by the distance of the sub-model marker and the red point, which represents the
reference station, i.e., the perfect model. The location of each marker indicates its individual performance in terms of r (blue
contours), cRMSD (green contour) and NSD (black axis). At the SC site, the narrow distribution of the sub-models on the
Taylor’s diagram gives a clue that they were very similar in terms of model performance of LDSA estimation. The five mostly
used sub-models were concentrated within the region where r was 0.85-0.87, cRMSD was 5.67—5.77 um? cm 3 and NSD was
0.75—0.79 (Table 4). The values of their evaluation metrics were close to each other where R? and MAE differed in the narrow
range of 10% (R? = 0.72-0.74, MAE = 3.8 um? cm™). It infers that if one metric was prioritised over another, the rank of the
sub-models can be greatly different. Although no individual sub-models showed r greater than 0.9, the overall model
comprising the outcomes by all the sub-models remained high (R? = 0.80, MAE = 3.8 um? cm3). The best sub-model was also
the most used one, which accounted for 81% of the total data points while the two succeeding sub-models constituted another
16%. This also indicates that the input adaptivity function of the suggested method supplemented 19% of the estimates, which
would be a missing estimate if a single model with fixed predictor variables was used. Four out of the five most used sub-
models contain BC as an input predictor with the combination of other two air pollutants or meteorological parameters. This
was in line with the high correlation of LDSA with BC (r = 0.84, Fig. S9) In case BC is missing at a certain time stamp, the

sub-model without BC as an input could be used. It further supports the input adaptive function.

At the UB site, the sub-model performance was more scattered on the Taylor’s diagram (Figure 6). The five most used sub-
models had varying metrics (r = 0.77-0.92, cRMSD = 2.5-3.9 um? cm~3and NSD = 0.63-0.89, see Table 5). Although some
showed exceptionally good performance, the overall model had a slightly worse performance than that in street canyon. The
best sub-model estimated 49% of the total measurement, followed by 17%. The third and fourth most used sub-models, which
formed up to 30% of the estimates, had rather moderate performance (R? = 0.58 and 0.69). Considering all possible outcomes,
the overall model was still able to explain 77% of the total variance. Despite the fair linear correlation with LDSA, CO (r =
0.26) and PNC (r = 0.71) dominated in the top five used sub-models. This could be explained by the fact that the source of
CO can well cover the missing piece that PNC was unable to account for LDSA. BC, NOy and meteorological parameters, like

RH and WD-N were also involved in the final LDSA estimation.

By checking the variance inflation factor (VIF) of all 696 sub-models, 4.6% and 2.2% were rejected respectively. The higher
rejection rate at SC can be explained by the fact that some of the predictor variables were highly correlating to each other and
the inclusion of them would result in an inflation of multi-collinearity of the sub-model, from which biases arose. At UB, since
the source of LDSA was more varied and the correlation of LDSA with other pollutants was generally lower, the probability

of the VIF of the individual sub-models exceeding the threshold was lower.

5.2 Temporal difference in comparison with other models

Figure 7 presents the comparison of measured LDSA (LDSApegasor), deposition model derived LDSA (LDSAicre) and the
LDSA modelled by IAP and IAME (LDSAar and LDSA ame) as a timeseries plot between 14 and 28 February 2017. This
particular time window was selected because it had the least data gaps for all the respective instruments at both sites. This

figure during this period can also showcase the difference in magnitudes of the diurnal shape over workdays and weekends
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(shaded regions in Figure 7). At both sites, both IAP and IAME underestimated the peaks when the change of the measured
LDSA concentration was sudden and relatively large. However, this limitation did not diminish much of the usefulness of the
models as virtual sensors as the models were still able to generally catch up with the diurnal cycle of the measured data. Despite
the small difference observed in the figure, the blue dotted line representing LDSA amve Often stays closer to the measured
LDSA concentration (black line). When we smoothed out all the estimates at each hour, the ability for IAME to catch the

morning peak on workdays was much better.

A more generalised diurnal cycle can be found in Figure 8. The error bars of the modelled LDSA ap and LDSAame Were
consistently smaller than that of LDSApegasor and LDSA cre. It might be due to the reason that the model fails to catch the
extreme values although it managed to catch the general diurnal cycle. Since outliers were removed in the pre-processing stage
and the model penalised the extreme values, the model tended to give a more centralised estimate. It was a trade-off between
the option with better coefficients of determination but stronger extreme errors and that with better estimations at tails but
derivation of averaged estimation. This circumstance was more apparent on workdays than weekends. Furthermore, LDSA ame
could follow the diurnal cycle of LDSApegasor much better than LDSA ap, especially during the start of the peak hours over
workdays at the SC site where the LDSA concentrations jumped to a high level. LDSAame can explain 80% and 77% of the
variability of the reference measurements at SC and UB, respectively (Table 6), and compared to LDSAap’s 77% and 66%,
LDSA ame performed better in terms of accuracy. In addition, the slightly smaller MAE and the closer to 1 NSD of the
LDSA ame suggested that the mean absolute error was improved and the spread of the estimation distribution was closer to the

reference measurement by taking random effects into account.

Furthermore, we assessed the temporal and spatial impact on the IAME model by comparing the means of absolute differences
between the hourly LDSApegasor and LDSAame in different time windows at both stations. A descriptive statistic is presented
in Table 7. We used two-sample t-tests to assess whether the distribution of absolute differences were statistically significant.
At SC, the p value of the t-tests at all selected windows were below 0.05, which demonstrated that the performance at different
seasons, days of week and hours of day of absolute differences between the measured and modelled LDSA were significantly
different at the confidential level of 95%. At the UB site, the difference between the two selected hour periods was not
statistically significant. The same applied to the difference between winter and spring. There was no statistically sufficient
evidence to validate the difference among the rest of the selected time period. In other words, with the use of random effects
of time constraint, the overall models still performed differently at different time windows most of the time. This indicates that

IAME still needs improvements on minimising temporal differences.

6 Conclusion

In this study, we developed a novel input-adaptive mixed-effects (IAME) proxy, to estimate alveolar LDSA by other already
existing air pollutant variables and meteorological conditions in Helsinki Metropolitan Area. During the measurement period
2017-2018, we retrieved LDSA measurements measured by Pegasor AQ Urban (alveolar LDSA in the ~10—400 size range)
and other variables in a street canyon (SC, average LDSA = 19.7+11.3 um? cm2) site and an urban background (UB, average
LDSA = 11.2+7.1 um? cm™) site in Helsinki, Finland. Furthermore, three detached housing sites (DH, average LDSA =
11.7+8.6 um? cm3) and a regional background site (RB, average LDSA = 7.6+5.4 um? cm~3) were also included as reference
and background source estimation, respectively. At the SC site, LDSA concentrations were closely correlated with traffic
emission. The ratio to black carbon (LDSA/BC), to particle number concentration (LDSA/PNC), and to nitrogen oxide
(LDSA/NOy) had a higher value before the morning peak and it reached its minimum during the morning peak since the role

of regional background was higher for LDSA compared to those of NOy, BC and PNC. However, the ratio of LDSA to mass
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concentration of particles of diameter smaller than 2.5 um (LDSA/PM2s) performed differently since the freshly vehicular

emitted particles were smaller than 50 nm, which did not contribute much to PM..s mass concentration.

For the continuous estimation of LDSA, IAME was automatised to select the best combination of input variables, including a
maximum of three fixed effect variables and three time indictors as random effect variables. Altogether, 696 sub-models were
generated and ranked by the coefficient of determination (R?), mean absolute error (MAE) and centred root-mean-square
differences (cRMSD) in order. At the SC site, LDSA concentrations can be best estimated by PM,s, PNC and BC, all of which
were closely connected with the vehicular emissions, while they were found correlating with PM. s, BC and carbon monoxide
(CO) the best at the UB site. At both sites, PM.s also indicated the regionally and long-range transported pollutants, which
was a significant source of LDSA concentrations. The accuracy of the overall model was higher at the SC site (R? = 0.80,
MAE = 3.7 um? cm3) than at the UB site (R? = 0.77, MAE = 2.3 um? cm™®) plausibly because the LDSA source was more
tightly controlled by the close-by vehicular emission source. This model could catch the temporal pattern of LDSA; however,
the two-sample t-tests of the residuals at all selected time windows showed that their distributions were different. This indicated
that the model still performed differently at different time windows. Despite this, the novel IMAE model worked better in
explaining the variability of the measurements than the previously suggested IAP model as indicted by a higher R? and
lower MAE in both sites. This adjustment by taking random effects into account improved the sensitivity and the accuracy of
the fixed effect model IAP.

The models alone cannot replace the need for reference measurements (Hagler et al., 2018). However, the IAME proxy could
serve as virtual sensors to complement the measurements at reference stations in case of missing data. The two measurement
sites in this study served as a pilot of the proxy development, and the next step is to extend the work to the existing network
of several measurement stations within the Helsinki metropolitan region. With similar configurations, we could fill up the
voids with the information from the other stations after conscientious calibration. For example, in this paper, the two
measurement sites were characterised as street canyon and urban background. In a different setup, we may assume the
similarity of the same type of environment and utilise the measurements as replacement. Furthermore, this continuous LDSA
estimation could be useful in updating some of the current air quality application, for instance ENFUSER air quality model

which provide accurate spatio-temporal estimation for air pollutants in Helsinki (Johansson et al., 2015).
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759 Table 1. Ambient LDSA of alveolar region (in um? cm-3, corrected to 2 significant figures) reported in the last decade in chronological

760  order of the measurement start. TS and RA represent traffic sites and residential area respectively. For the other acronyms, please see the
761  method section.
Site Location Average Uncertainties Period/Season  Instruments  Study
description (Mean, (SD, unless
unless state state
otherwise) otherwise)
uB Ruhr, median=36 IQR=21 Mar 2009-Dec NSAM Hennig et al. (2018)
Germany 2014
RB+UB+TS Basel, 32 IQR=25 Jan 2011-Dec DiSCmini Eeftens et al. (2016)
Geneva, 2012
Lugano,
Wald,
Switerland
City centre Lisbon, 35-89 4-8 Apr-May 2011 NSAM Albuquerque et al.
with heavy Portugal (2012)
traffic
uB Cassino, Italy  88-240 - Oct 2011- Mar NSAM Buonanno et al.
2012 (2012)
RB 69
UB with Barcelona, 37 26 Nov 2011-May NSAM Reche et al. (2015)
traffic Spain 2013
influence
TS Helsinki, 65-94 - Feb 2012 ELPI, Kuuluvainen et al.
RA Finland 15-31 NSAM (2016)
TS Athens, 65 21 Jul 2012 Partector Cheristanidis et al.
Greece 4.8 Aerotrak (2020)
9000
UB with Leichester, 30 25 Nov 2013-May NSAM Hama et al. (2017)
traffic UK 2015
influence 23 14 Warm months
38 33 Cold months
Airport Los Angeles 47 27 Nov-Dec 2014 DiSCmini Habre et al. (2018)
and  May-Jul
2015
UB Fukuoka, 127 62 Apr 2015-Mar NSAM Kiriya et al. (2017)
Japan 2016
TS Helsinki, 60 (ground level) Nov 2016 Partector, Kuuluvainen et al.
Finland 36-40 (below rooftop) ELPI, (2018)
16-26 (above rooftop) DiSCmini,
Pegasor AQ
Urban
SC 22 14 Kuula et al. (2020)
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762
763
764

UB Helsinki, 9.4 6.9 Feb 2017-Jan Pegasor AQ

DH Finland 12 10 2018 Urban

TS Delhi, India 330 130 Nov-Dec 2018 ELPI Salo et al. (2021a)
uB Salerno 79 48 Nov 2018- NanoTracer Pacitto et al. (2020)
TS Roma, ltaly 110 57 May 2019

RB Parma, Italy 17 10
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765 Table 2. Descriptive statistics of alveolar LDSA concentrations (um? cm=) at SC (2017-2018), UB (2017-May 2018), DH1-3 (2018) and
766 RB (2018) site. The mean (column 3), standard deviation (SD, column 4), 10%, 25t 50t 75% and 90" percentile (P10, P25, P50, P75 and
767 P90, column 5-9), geometric mean (Gmean, column 10) and geometric standard deviation (GSD, column 11) of the concentrations are
768  corrected to one decimal place. The percentage of valid data in the reported measurement period is shown in column 12.

Mean SD P10 P25 P50 P75 P90  Gmean GSD %

SC All 19.7 11.3 8.4 11.7 17.0 24.7 344 17.0 1.7 97

Winter 19.4 12.2 7.6 10.7 16.1 24.7 35.3 16.3 1.8 98

Spring 19.6 11.0 8.6 11.8 16.9 24.3 34.2 17.1 1.7 94

Summer 20.8 10.4 10.5 135 18.4 25.5 34.2 18.6 1.6 98

Autumn 18.4 11.7 7.1 10.0 15.0 23.8 34.6 15.3 1.8 96

Workdays 214 12.3 8.6 12.5 18.8 27.7 37.6 18.4 1.8 97

Weekends 15.9 75 8.1 10.7 14.4 19.4 25.2 14.4 1.6 97

uB All 11.2 7.1 4.6 6.4 9.5 14.0 19.6 9.5 1.8 70

Winter 124 9.1 4.8 6.3 10.0 15.4 22.5 10.1 1.9 89

Spring 10.4 6.1 4.6 6.2 9.0 12.8 18.3 9.0 1.7 100

Summer 12.8 5.8 6.7 8.5 11.4 15.8 20.7 11.6 1.6 57

Autumn 7.7 4.7 3.2 4.5 6.7 9.7 13.2 6.7 1.7 56

Workdays 11.5 7.3 4.8 6.7 9.7 14.1 20.3 9.8 1.8 70

Weekends 10.4 6.6 4.1 5.8 8.8 13.6 18.3 8.8 1.8 70

DH1-3 All 11.7 8.6 4.2 6.3 9.7 14.5 21.1 9.5 1.9 94

Winter 12.3 10.2 4.1 6.2 9.6 14.8 234 9.7 2.0 86

Spring 12.8 8.2 53 7.4 10.8 15.9 23.1 10.7 1.8 98

Summer 11.8 5.9 5.7 7.8 10.8 14,5 19.2 10.6 1.6 98

Autumn 10.5 10.2 3.0 4.6 6.8 13.0 22.2 7.5 2.2 95

Workdays 11.8 8.3 4.3 6.4 9.9 14.6 20.8 9.6 1.9 95

Weekends 11.7 9.3 4.0 6.0 9.4 14.3 21.8 9.3 2.0 93

RB All 7.6 5.4 2.4 4.0 6.5 10.2 14.0 6.1 2.0 99

Winter 6.6 6.0 2.2 35 5.6 8.3 11.6 5.3 1.9 100

Spring 9.1 6.4 3.5 51 7.4 11.0 16.6 75 1.9 99

Summer 9.8 4.3 4.7 6.6 9.3 125 15.3 8.9 1.6 99

Autumn 4.9 4.1 1.6 2.6 3.9 5.6 8.9 3.8 2.0 99

Workdays 7.7 5.6 2.5 4.1 6.6 10.2 14.1 6.2 2.0 99

Weekends 7.6 5.0 2.4 4.0 6.5 10.1 14.0 6.1 2.0 100
769
770
771
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772 Table 3. The evaluation attributes by IAME model at the SC and the UB site, corrected to 2 significant figures.

Street canyon

Urban background

R? MAE cRMSD r NSD R? MAE cRMSD T NSD
All 0.80 3.7 5.6 087 0.78 0.77 2.3 3.7 0.86 0.80
Winter 0.86 3.4 5.3 092 074 0.81 2.5 4.6 0.89 0.68
Spring 0.75 3.9 5.9 085 0.79 0.61 2.4 3.3 0.84 0.85
Summer 0.70 41 5.9 083 084 0.61 2.7 3.7 0.79 0.95
Autumn 0.85 3.4 5.4 0.9 0.75 0.85 1.3 2.0 0.91 0.83
Workdays 0.81 41 6.1 087  0.77 0.75 2.4 3.8 0.86 0.77
Weekends 0.72 3.0 4.3 082 082 0.8 2.1 3.5 0.85 0.87
773
774
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775 Table 4. Five most successful sub-models at the SC site. The table shows only the fixed predictors with their coefficient (B, all p<0.05) and
776 corresponding standard error (SE). The variance inflation factor (VIF) among the fixed predictors is also shown for the 5 sub-models. The
777 evaluation attributes of the sub-models are shown column 6-10. The percentage of the sub-model usage and the number of data points (n)
778 isshown in column 11 and 12. Natural logarithm is taken for parameters with asterisk (*).

Fixed B SE VIF R? MAE  cRMSD r NSD % n
predictors
*PM2s 0.119 0.005 1.54
1 *PNC 0.313 0.005 289 0.74 3.7 5.7 087 0.79 81 2603
*BC 0.223 0.004 2.17
*NOx 0.236 0.005 3.79
2 *PNC 0.153 0.005 1.63 0.74 38 5.7 0.86 0.77 13 2629
*BC 0.231 0.007 4.90
*PNC -0.044 0.003 1.07
3 *BC 0.375 0.004 220 0.74 3.8 5.8 0.8 0.78 4 6622
WS 0.201 0.004 2.15
*NOx 0.250 0.005 3.09
4 *PMazs 0.243 0.004 117 0.74 3.8 5.7 0.87 078 <1 2596
*PNC 0.184 0.005 3.02
*NOx 0.176 0.005 3.51
5 *PMio 0.070 0.004 13 072 3.8 5.8 085 075 <1 2713
*BC 0.326 0.006 3.65
779
780
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781
782
783
784

785
786
787
788

Table 5. Five most successful sub-models at the UB site. The table shows only the fixed predictors with their coefficient (8, all p<0.05) and
corresponding standard error (SE). The variance inflation factor (VIF) among the fixed predictors is also shown for the 5 sub-models. The
evaluation attributes of the sub-models are shown column 6-10, corrected to 2 significant figures. The percentage of the sub-model usage
and the number of data points (n) is shown in column 11 and 12. Natural logarithm is taken for parameters with asterisk (*).

Fixed B SE VIF R? MAE  cRMSD r NSD % n
predictors
*CO 0.072 0.027 1.72

1 *PNC 0.400 0.006 208 0.84 1.7 25 0.92 0.87 49 941
*BC 2.956 0.007 1.52
*PNC -0.098 0.005 1.09

2 *BC 0.398 0.004 144 0.82 1.9 2.9 091 0.89 17 6608
WD-N 0.328 0.006 1.55
*NO; 0.237 0.007 1.88

3 *CO 0.520 0.024 1.10 0.69 24 34 084 0.73 17 941
*PNC 0.341 0.010 2.00
*CO 0.009 0.000 1.08

4 *PNC 0.348 0.025 1.07 0.58 2.7 3.9 0.77 063 11 9757
RH 0.590 0.007 1.15
*NOx 0.107 0.006 2.22

5 *CO 0.182 0.032 1.72 081 1.9 3.0 090 085 2 7036
*BC 0.455 0.007 2.56
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789 Table 6. Model evaluation comparison of deposition model derived LDSA (LDSAicrr), modelled LDSA by IAP (LDSAIar) and modelled
790 LDSA by IAME (LDSAIame) against reference measurements LDSApegasor at the SC and the UB site. Parameters with an asterisk represent
791 natural logarithm. The evaluation attributes of the three methods are corrected to 2 significant figures.

Street canyon Urban background
R? MAE cRMSD r NSD R? MAE cRMSD T NSD
LDSA crp 0.72 4.1 6.2 0.88 11 0.83 1.8 2.9 0.93 11
LDSA ap 0.77 4.0 6.0 0.85 0.78 0.66 2.8 3.9 0.84 0.81
LDSA ame 0.80 3.7 5.6 0.87 0.78 0.77 2.3 3.7 0.86 0.80
792
793
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794 Table 7. Statistics to show temporal difference. The number of data (n), mean and standard deviation (SD) of absolute error and the
795  corresponding p-values of t-tests at the selected time windows at both sites.

Street canyon (SC) n Mean SD t-test p
Workdays 11658 4.1 4.8
Workdays vs Weekends ~ 4.13x10®
Weekends 5322 3.0 3.2
Winter vs Spring  3.64x107%*
Winter 4023 3.4 4.2 Winter vs Summer  5.89x10°°
Spring 2297 4.0 4.5 Winter vs Autumn  7.07x10~7
Summer 6457 4.2 4.4 Spring vs Summer  6.38x10°%
Autumn 4320 3.4 4.3 Spring vs Autumn  1.02x10*
Summer vs Autumn  2.69x1071°
Hour 4-10 a.m. 4953 4.8 5.6 Hour 4-10 a.m. vs
2.58x107
Hour 4-10 p.m. 4981 3.5 3.6 4-10 p.m.
796
Urban background (UB) n Mean SD t-test p
Workdays 8473 2.3 2.6
Workdays vs Weekends 5.08x1078
Weekends 3852 2.1 2.6
Winter vs Spring  1.96x10~"
Winter 2539 25 3.2 Winter vs Summer  0.39***
Spring 1101 19 3.1 Winter vs Autumn  1.90x1072
Summer 1628 2.6 2.4 Spring vs Summer  2.75x10°°
Autumn 812 2.3 2.1 Spring vs Autumn ~ 2.20x10°®
Summer vs Autumn  1.40x1073
Hour 4-10 a.m. 3620 2.3 2.7 Hour 4-10 a.m. vs
0.86***
Hour 4-10 p.m. 3591 2.3 2.7 4-10 p.m.
797
n Mean SD t-test p
Street canyon (SC) 3.9 4.6 SCvs UB
11940 ) ) ) 8.21x107%46
Urban background (UB) 2.3 2.6 (in same time period)
798 ***p>0.05 the null hypothesis of different distribution is rejected
799
800
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Figure 1. Lung deposition factor of a spectrum of particle size distribution based on the equation (ICRP, 1994). Black solid line represents
the total deposition factor while blue, green and red dotted line refer to deposition factor in head airway, tracheobraonchial and alveolar
region, respectively. Pegasor AQ Urban measured the alveolar LDSA concentration of particles in the ~10-400 nm size range (dark grey).
DMPS at SC and UB were used to calculate alveolar LDSA in selected size fractions in the 6800 nm and 3-1000 nm size range,

respectively.
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Figure 4. Upper panel: Diurnal cycles of LDSA concentrations (um? cm-2) at SC (red diamond, 2017-2018), UB (blue square, 2017—
May 2018), DH1-3 (black triangle, 2018) and RB site (green circle, 2018) on workdays and weekends with error bars of 25" and 75™
percentiles. Lower panel: Monthly averages in year 2018 of local LDSA increments at the SC (red diamond) and DH1-3 (black triangle)
site (LDSA concentration at the hotspot site — LDSA at RB site) on workdays and weekends with error bars of 25" and 75" percentiles.
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Figure 5. Heatmap showing Pearson correlation coefficient (r, corrected to 2 significant figures) of LDSA of different particle size
sections (in nm) by ICRP lung deposition model and the other air pollutant parameters at Mékelankatu SC site. Dark red indicates a high
correlation while pale yellow indicates a low correlation. Parameters with an asterisk represent natural logarithm. LDSApegasor represents
the measured LDSA concentrations.
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Figure 6. The upper panel shows the scatter plots of modelled LDSA against the measured LDSA at Méakeldnkatu SC site (first
column) and at Kumpula UB site (second column). Hues of colours represent the density of points on the figure. The lower panel
shows the Taylor’s diagrams (Taylor, 2001) at Makeldnkatu SC site (first column) and at Kumpula UB site (second column). Each
diamond marker in the Taylor’s diagrams represents each sub-model used in the final estimation by IAME (solid black dot),
compared with the reference data (solid red dot). Hues of colours represent how frequent the sub-model was used.
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