

1 Input-adaptive linear mixed-effects model for estimating alveolar 2 Lung Deposited Surface Area (LDSA) using multipollutant datasets

3 Pak Lun Fung^{1,2}, Martha A. Zaidan^{1,2,3}, Jarkko V. Niemi⁴, Erkka Saukko⁵, Hilkka Timonen⁶, Anu Kousa⁴,
4 Joel Kuula⁶, Topi Rönkkö⁷, Ari Karppinen⁶, Sasu Tarkoma⁸, Markku Kulmala^{1,3}, Tuukka Petäjä^{1,3} and
5 Tareq Hussein^{1,9}

6 ¹Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Finland

7 ²Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Finland

8 ³Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing
9 University, Nanjing 210023, China

10 ⁴Helsinki Region Environmental Services Authority (HSY), P.O. Box 100, FI-00066 Helsinki, Finland

11 ⁵Pegasor Ltd., FI-33100 Tampere, Finland

12 ⁶Atmospheric Composition Research, Finnish Meteorological Institute, FI-00560 Helsinki, Finland

13 ⁷Aerosol Physics Laboratory, Physics Unit, Tampere University, FI-33720 Tampere, Finland

14 ⁸Department of Computer Science, Faculty of Science, University of Helsinki, Finland

15 ⁹Department of Physics, the University of Jordan, Amman 11942, Jordan

16 *Correspondence to:* Pak Lun Fung (pak.fung@helsinki.fi), Tareq Hussein (tareq.hussein@helsinki.fi)

17 **Abstract.** Lung deposited surface area (LDSA) has been considered to be a better metric to explain nanoparticle toxicity
18 instead of the commonly used particulate mass concentration. LDSA concentrations can be obtained either by direct
19 measurements or by calculation based on the empirical lung deposition model and measurements of particle size distribution.
20 However, the LDSA or size distribution measurements are neither compulsory nor regulated by the government. As a result,
21 LDSA data are often scarce spatially and temporally. In light of this, we develop a novel statistical model, named input-
22 adaptive mixed-effects (IAME) model, to estimate LDSA based on other already existing measurements of air pollutant
23 variables and meteorological conditions. During the measurement period in 2017–2018, we retrieved LDSA data measured by
24 Pegasor AQ Urban and other variables at a street canyon (SC, average LDSA = $19.7 \pm 11.3 \mu\text{m}^2 \text{cm}^{-3}$) site and an urban
25 background (UB, average LDSA = $11.2 \pm 7.1 \mu\text{m}^2 \text{cm}^{-3}$) site in Helsinki, Finland. For the continuous estimation of LDSA, the
26 IAME model was automated to select the best combination of input variables, including a maximum of three fixed effect
27 variables and three time indicators as random effect variables. Altogether, 696 sub-models were generated and ranked by the
28 coefficient of determination (R^2), mean absolute error (MAE) and centred root-mean-square differences ($cRMSE$) in order. At
29 the SC site, the LDSA concentrations were best estimated by mass concentration of particle of diameters smaller than $2.5 \mu\text{m}$
30 ($PM_{2.5}$), total particle number concentration (PNC) and black carbon (BC), all of which are closely connected with the vehicular
31 emissions. At the UB site the LDSA concentrations were found to be correlated with $PM_{2.5}$, BC and carbon monoxide (CO).
32 The accuracy of the overall model was better at the SC site ($R^2 = 0.80$, $MAE = 3.7 \mu\text{m}^2 \text{cm}^{-3}$) than at the UB site ($R^2 = 0.77$,
33 $MAE = 2.3 \mu\text{m}^2 \text{cm}^{-3}$) plausibly because the LDSA source was more tightly controlled by the close-by vehicular emission
34 source. The results also demonstrated that the additional adjustment by taking random effects into account improved the
35 sensitivity and the accuracy of the fixed effect model. Due to its adaptive input selection and inclusion of random effects,
36 IAME could fill up missing data or even serve as a network of virtual sensors to complement the measurements at reference
37 stations.

38 1 Introduction

39 Particulate matter is one of the key components determining urban air pollution. Particulate matter can be described by a
40 combination of varying concentration (number, surface area and mass) and chemical composition. The mass concentrations of
41 particulate matter are dominated by large particles whereas the number concentrations are governed by sub-micron particles
42 (particle diameter (d_p) $< 1 \mu\text{m}$), particularly ultrafine particles (UFP, $d_p < 0.1 \mu\text{m}$) (e.g. Petäjä et al., 2007; Rönkkö et al., 2017;

43 Zhou et al., 2020). Particulate matter of varying sizes, carrying various harmful substances, have been known for playing a
44 major role in adverse health effects (Dockery et al., 1993; Oberdorster, 2012; Shiraiwa et al., 2017) in particular to respiratory
45 systems. A particle could be deposited in lung airways upon inhalation (Oberdörster et al., 2005) through three main
46 mechanisms: inertial impaction, gravitational sedimentation and Brownian diffusion. An airborne particle might be inhaled
47 either through nasal or oral passage and enter the respiratory tract. Coarser particles are usually partly deposited in the head
48 airway by the inertial impaction mechanism because they cannot follow the air streamline. Some finer particles are deposited
49 in the tracheobronchial region, mainly through gravitational sedimentation while some are removed by mucociliary clearance
50 (Gupta and Xie, 2018). The remaining sub-micron particles diffuse by Brownian motion and penetrate deeply into the alveolar
51 region, which is considered to be the most vulnerable section in lungs because removal mechanisms might be insufficient
52 (Gupta and Xie, 2018). The surface area of inhaled particulate matter could also act as a transport vector for many bacteria and
53 viruses (Liu et al., 2018a), and therefore, besides commonly monitored particulate matter number concentration and mass
54 concentration, the surface area of a particle is also an important factor when considering the harmfulness of particulate matter
55 (Duffin et al., 2002). In particular, the total surface area of particles which are deposited in alveolar section of human lungs,
56 known as Lung Deposited Surface Area (LDSA), is of the greatest concern because in vitro nanoparticle toxicity has been
57 demonstrated to be better explained when the lung burden was expressed as total particle surface area instead of atmospheric
58 particulate matter mass (e.g. Brown et al., 2001; Oberdorster, 2012; Schmid and Stoeger, 2016).

59
60 LDSA can be considered as an intermediary parameter between particle mass and particle number concentration as it cannot
61 be simply inferred from either of those parameters. Moreover, due to the various deposition efficiency with respect to particle
62 sizes, the quantification of LDSA is not simple. Conventionally, LDSA concentrations can be retrieved by (1) derivation from
63 particle size distribution with a deposition model or (2) direct measurements.

64
65 By fitting experimental lung deposition data on human beings, empirical deposition models are developed with the use of the
66 lung deposition model modified by Yeh and Schum (1980). Examples include the International Commission on Radiological
67 Protection (ICRP) Human Respiratory Tract Model (ICRP, 1994), the NCRP model (NCRP, 1997) and Multiple Path Particle
68 Dosimetry (MPPD) model (Anjilvel and Asgharian, 1995). Different conceptual particle deposition models vary primarily
69 with respect to lung morphometry and mathematical modelling techniques, rather than by using different deposition equations.
70 The three whole lung deposition models define regions of the human lungs (head airway, tracheobronchial and alveolar) for
71 any combination of particle size and breathing pattern (Hofmann, 2009). Among all models, single-path models, such as ICRP
72 model, are often used over multiple-path models due to their simplicity and their applicability to an average path without
73 requiring detailed knowledge of the branching structure of lungs. Owing to a higher potential health risk, LDSA in alveolar
74 region is often of greatest concern and it can be calculated by summing up the products of the surface concentration across
75 particle size spectrum and their corresponding deposition efficiency based on the selected deposition model.

76
77 Apart from numerical computation method, LDSA could also be measured by accredited instruments. Diffusion charging
78 based technique is a common approach where particles are charged with a unipolar corona charger (Fissan et al., 2006). This
79 method enables measurement of ultrafine particles and, more specifically, the LDSA concentration with good accuracy (Todea
80 et al., 2015) and stable performance in long term measurements (Rostedt et al., 2014). Nanoparticle Surface Area Monitor
81 (NSAM) has been used for decades (e.g. Asbach et al., 2009; Hama et al., 2017; Kiriya et al., 2017; Hennig et al., 2018), and
82 several other instruments and sensors, including DiSCmini, Testo Inc. (e.g. Eeftens et al., 2016; Habre et al., 2018) and
83 Partector, Naneos Ltd. (e.g. Cheristanidis et al., 2020), and Pegasor AQ Urban, Pegasor Ltd. (e.g. Kuuluvainen et al., 2018;
84 Kuula et al., 2020), using similar measuring techniques, are developed later on. Using these instruments in campaigns and
85 continuous measurements, LDSA concentrations in alveolar region and size distribution measurements in various

86 environments have been reported across the globe in the past decade (Table 1). When comparing LDSA concentrations
87 measured by different instruments, the instruments' limitations should be considered in experimental LDSA studies, which
88 will be further discussion in Sect. 2.2.

89

90 Although each of these methods is capable of measuring aerosol surface area concentrations, the corresponding uncertainties
91 and cost hinder the widespread use in monitoring networks (Asbach et al., 2017). Even though the instruments are available,
92 missing data often takes place due to instruments maintenance and data corruption. Kuula et al. (2020) demonstrated high
93 correlations of measured LDSA concentrations with black carbon (BC) and nitrogen oxide (NO_x) in traffic environments.
94 Traffic activities have been observed to be significant source contribution to the LDSA concentrations (Järvinen et al., 2015).
95 A clear correlation was also found between the emission factors of exhaust plume BC and LDSA in on-road studies for city
96 buses (e.g. Järvinen et al., 2019). These highly correlating relationships provide good grounds for estimating LDSA
97 concentrations and short-term trends by the other pollutants measured at the same site with the use of data mining-based
98 approach as statistical models. These statistical models can eventually turn into virtual sensors of LDSA after being validated
99 even under the circumstances of no actual instrumental LDSA measurements. Due to the health effects LDSA has
100 demonstrated, it is of great importance to researchers that continuous measurements of LDSA are available with the help of
101 these virtual sensors via statistical models. Similar approach for sensor virtualisation of BC measurement has been studied in
102 Fung et al. (2020).

103

104 Data mining-based approach exploits statistical or machine learning techniques to detect patterns between predictors and
105 dependent variables in the time series data. They do not demand in-depth understanding of air pollutant dynamics, but
106 evaluation by experts is still required to determine whether the models work properly. Simple yet apprehensible models, such
107 as multiple linear regression (MLR, e.g. Fernández-Guisuraga et al., 2016) and generalized additive models (GAM, e.g. Chen
108 et al., 2019), are commonly utilised as white-box models in air pollutant proxy studies. Furthermore, more sophisticated
109 machine learning black-box models, such as artificial neural network (ANN, e.g. Cabaneros et al., 2019; Zaidan et al., 2019;
110 Fung et al., 2021a), nonlinear autoregressive network with exogenous inputs (NARX, e.g. Zaidan et al., 2020) and support
111 vector regression (SVR, e.g. Fung et al., 2021b), have been intensively investigated in recent years. They work better in terms
112 of accuracy; however, they provide limited transparency and accountability regarding the outcomes (Rudin, 2019; Fung et al.,
113 2021b).

114

115 Apart from model structures, the criteria of selecting variables in multipollutant datasets for model development have received
116 considerable attention over the years, and a large number of methods have been proposed (Miller, 2002). Traditional methods,
117 like stepwise procedures, which is a combination of forward selection and backward elimination (e.g. Liu et al., 2018b; Chen
118 et al., 2019), can be unstable because it uses restricted search through the space of potential models, which eventually causes
119 inherent problem of multiple hypothesis testing (Breiman, 1996; Faraway, 2014). Another approach named regularization has
120 emerged as a successful method to reduce the data dimension in an automated way, yet deal poorly with multi-collinear
121 variables, for example Least Absolute Shrinkage and Selection Operator (LASSO, e.g. Fung et al., 2021b; Šimić et al., 2020),
122 ridge regression (e.g. Chen et al., 2019) and ELASTINET (e.g. Chen et al., 2019). Criterion-based procedures, which choose
123 the best predictor variables according to some criteria (e.g. coefficient of determination, residual, etc), are sensitive to outliers
124 and influential points, but involve a wider search and compare models in a preferable manner. Examples are best subset
125 regression (e.g. Chen et al., 2019), input adaptive proxy (IAP, e.g. Fung et al., 2020; Fung et al., 2021b), etc. Hastie et al.
126 (2020) compared some of the models using the three approaches and concluded that no single feature selection method
127 uniformly outweighs the others. Despite the extensive research of feature selection methods, the inclusion of random effects
128 together with the fixed effects as linear mixed-effects (LME) model has received relatively little attention (e.g. Mikkonen et

129 al., 2020; Tong et al., 2020) in air pollution research, let alone LDSA study in particular. This inclusion of random effects
130 could acknowledge a possible effect coming from a factor where specific and fixed values are not of interest.

131

132 In this study, we combine the use of criterion-based feature selection method and the inclusion of random effects, and develop
133 a novel input-adaptive mixed effects (IAME) model to estimate alveolar LDSA concentrations, which is the first study of this
134 context to our best knowledge. The description of LDSA measurements and the techniques of IAME model are outlined in
135 Sect. 2 and 3, respectively. Section 4 presents the characteristics of alveolar LDSA, including its seasonal variability, weekend
136 effect and diurnal pattern, in four types of environments. We also aim to investigate the correlation with other air pollutants.
137 In Sect. 5, we evaluate the performance of the IAME proxy (LDS_{IAME}) with the measured alveolar LDSA by Pegasor AQ
138 Urban ($LDS_{Pegasor}$), ICRP lung deposition model derived LDSA (LDS_{ICRP}) and another modelled alveolar LDSA by IAP
139 (LDS_{IAP}) as well as the benefits and implication of this alveolar LDSA model as virtual sensors. It should be noted that this
140 study discusses LDSA in alveolar region, unless stated otherwise.

141 **2 Measurement description**

142 **2.1 Measurement sites**

143 We retrieved aerosol, gaseous and meteorological data from two types of measurement sites, i.e., street canyon (SC, 2017–
144 2018) and urban background (UB, 2017–May 2018), in Helsinki Metropolitan Area (HMA) described in more details below.
145 Data from detached housing (DH, 2017) and regional background (RB, 2017) sites were also included in the study to provide
146 comparison and data from the background concentrations. Situated on a relatively flat land at the coast of Gulf of Finland,
147 HMA has land area of 715 km² and population of about 1.13 million inhabitants. Helsinki can be classified as continental or
148 marine climate depending on the air flows and the pressure system. Figure S1 and Table S1 show the detailed site description.

149 **Street canyon site (SC):** Mäkelänkatu urban supersite is operated by the Helsinki Region Environmental Services Authority
150 (HSY, Kuuluvainen et al., 2018). The station is located at 3 km from the city centre in a street canyon in the immediate vicinity
151 to one of the main roads leading to downtown Helsinki. The street, with speed limit of 50 km h⁻¹, consists of six lanes and two
152 tramlines. The annual mean traffic volume in 2018 per workday was 28 100 vehicles, 11% of which were recorded as the
153 heavy duty vehicles. The traffic loads are especially high during rush hours at 8 a.m. and 5 p.m. (Figure S2). The street canyon
154 of width of 42 m is surrounded by rows of buildings of 17 m high, which weaken the dispersion process of the direct vehicular
155 emissions. All the inlets for the measuring devices are positioned approximately at a height of 4 m from the ground level.

156 **Urban background site (UB):** The Station for Measuring Ecosystem-Atmosphere Relations III (SMEAR III, Järvi et al.,
157 2009) in Kumpula, situated on a rocky hill at 26 m above sea level, is about 4 km northeast from the Helsinki centre. The
158 surroundings of this urban background station are heterogeneous, constituting of residential buildings, small roads, parking
159 lots, patchy forest and low vegetation from different direction. One main road (45 000 vehicles per workday) is located at the
160 distance of 150 m east from the site. Trace gases and meteorological conditions are measured at a height of 4 m and 32 m,
161 respectively, at a triangular lattice tower while aerosol measurements are conducted inside a container approximately 4 m
162 above the ground. The site is co-operated by Finnish Meteorological Institute (FMI) and the University of Helsinki (UHEL).

163 **Detached housing site (DH):** Three measurement stations, Rekola (DH1), Itä-Hakkila (DH2) and Hiekkaharju (DH3), were
164 chosen since they represent a sub-urban residential area surrounded by detached houses. These sites are mainly affected by the
165 wood combustion emissions from residential activities, especially in cold weather conditions. Emissions from traffic source
166 also account for a small portion of the whole pollution. It is estimated that 90 % of the households burn wood to warm up
167 houses and saunas, less than 2 % of which use wood burning as the main heating source in detached houses in HMA (Hellén
168 et al., 2017).

169 **Regional background site (RB):** The RB site is located about 23 km away from the Helsinki city centre at Luukki, surrounded
170 by a wooded outdoor recreational area right at the edge of the Greater Helsinki golf course. The measuring station is in an
171 open place away from busy traffic routes and large point sources. As a result, this site can represent background concentration
172 levels outside the urban area without any main local sources.

173 **2.2 Instruments**

174 **LDSA measurements:** The sensor unit and the core of the Pegasor AQ Urban is practically another instrument called a Pegasor
175 PPS-M sensor (Pegasor Ltd., Finland) originally designed for automotive exhaust emission measurements (e.g. Maricq, 2013;
176 Amanatidis et al., 2017). The operation of the sensor is based on diffusion charging of particles and the measurement of electric
177 current without the collection of particles. The diffusion charging of particles is carried out by a corona-ionized flow that is
178 mixed with the ambient sample air in an ejector diluter inside the sensor. The sampling lines and the sensor unit are heated to
179 40°C above the ambient temperature (1) to dry the aerosol sample, (2) to prevent interference from humidity, and (3) to prevent
180 any water condensation inside the sensor. The performance of the Pegasor PPS-M sensors for long-term ambient measurements
181 has been improved after they were tested in Helsinki (Järvinen et al., 2015) and Beijing (Dal Maso et al., 2016). The suggestions
182 have been considered for the design of the current form of the Pegasor AQ Urban in this study.

183 The Pegasor AQ Urban (dimension: 320 mm×250 mm×1000 mm), which consists of a weatherproof cover, clean air supply,
184 and the abovementioned Pegasor PPS-M sensor, has been designed such that its response to LDSA is not to be subjected to
185 meteorological fluctuation for outdoor operation. Kuuluvainen et al. (2016) used two Pegasor AQ Urban devices during a 2
186 week period at an urban street canyon and an urban background measurement station in Helsinki, Finland whereas Kuula et
187 al. (2019) later used the instruments in a 3 month long campaign at the same urban street canyon station. These studies
188 demonstrated that the output signal of the Pegasor AQ Urban correlated well with other devices measuring LDSA
189 concentrations such as the Partector and DiSCmini. Kuula et al. (2020) further validated the accuracy and stability of Pegasor
190 AQ Urban at the street canyon station by comparing the measured values of one full year with DMPS reference instruments
191 ($R^2 = 0.90$, $RMSE = 4.1 \mu\text{m}^2 \text{ cm}^{-3}$). The internal precision of Pegasor AQ Urban is $\pm 3\%$, but this was not tested prior the
192 campaign. The instrument is optimized to measure the alveolar LDSA concentrations of particles in $\sim 10\text{--}400 \text{ nm}$ size range.
193 Pegasor AQ Urban tends to underestimate LDSA of particle larger than about 400 nm. In typical urban environments, most of
194 the particles from local combustion sources are in the size below the threshold (Asbach et al., 2009; Kuuluvainen et al., 2016;
195 Pirjola et al., 2017), generated vastly by anthropogenic sources such as vehicular exhaust emissions (Karjalainen et al., 2016)
196 and residential wood combustion (Tissari, 2008) which typically produce large amount of small particles. However, the impact
197 of larger particles ($>400 \text{ nm}$) to alveolar LDSA might be significant, for example in HMA during $\text{PM}_{2.5}$ long-range transport
198 episodes or when there are many particles from very low-quality residential burning in detached housing areas (Pirjola et al.,
199 2017). The regional background source in very polluted regions (e.g. Delhi, Salo et al., 2021a; mining environments, Salo et
200 al., 2021b) could be another reason for the significant impact of larger particles. This limitation of Pegasor AQ Urban should
201 be considered when it comes to data analysis in Sect. 4 and 5.

202 **Aerosol measurements:** Differential mobility particle sizer (DMPS) in combination of a differential mobility analyser (DMA)
203 and a condensation particle counter (CPC) measures aerosol size distribution (Kulkarni et al., 2011). Vienna DMA and
204 Airmodus A20 CPC (measurements of particle size range 6–800 nm) were used at the SC site while a twin DMPS (Hauke-
205 type DMA and TSI Model 3025 CPC + Hauke-type DMA and TSI Model 3010 CPC, merged particle size range 3–1000 nm)
206 were used at the UB site. Both instruments make use of the bipolar charging of aerosol particles, followed by classification of
207 particles into size classes according to their electrical equivalent mobility. In addition to particle size distribution, total particle
208 number concentration (PNC, in cm^{-3}) was calculated by summation. Particle mass concentration of diameter less than $2.5 \mu\text{m}$
209 ($\text{PM}_{2.5}$, in $\mu\text{g m}^{-3}$) and less than $10 \mu\text{m}$ (PM_{10} , in $\mu\text{g m}^{-3}$) were measured continuously with ambient particulate monitor TEOM
210 1405 at the SC site and TEOM 1405-D at the UB site. Black carbon (BC, in $\mu\text{g m}^{-3}$) mass concentration was measured by a

211 multi-angle absorption photometer (MAAP) Thermo Scientific 5012 with a PM₁ inlet. The measured absorbance was converted
212 to BC mass concentration by using a fixed 6.6 m² g⁻¹ mass absorption coefficient at wavelength of 637 nm. PM_{2.5}, PM₁₀ and
213 BC were recorded in $\mu\text{g m}^{-3}$.

214 **Ancillary measurements:** Trace gas concentrations (in ppb), including nitric oxide (NO), nitrogen dioxide (NO₂), their sum
215 nitrogen oxide (NO_x), ozone (O₃) and carbon monoxide (CO) were determined with a suite of gas analysers. In addition,
216 supporting meteorological variables, including air temperature (Temp), relative humidity (RH), air pressure (P), wind speed
217 (WS), wind direction (WD) and photosynthetically active radiation (PAR), were measured at SC and UB. Figure S3 show the
218 meteorological conditions during the measurement period. A list of collected variables is shown in Table S2.

219 **3. Method**

220 **3.1 Data pre-processing**

221 The collected data was quality checked by the corresponding operating organisation, HSY, FMI and UHEL. No additional
222 pre-processing was done for general analysis. For proxy development, outliers due to potential measurement errors were
223 detected (SC: 0.73%; UB: 0.99% overall) by using the interquartile range (IQR) rule, which is applicable for non-Gaussian
224 distribution sample. We calculated the cut-off for outliers as 2 times the IQR, subtracted this cut-off from the 25th percentile
225 and added it to the 75th percentile to give the actual limits on the data. We applied a natural logarithm transformation to all the
226 skewed-distributed aerosol and trace gases measurements in order to keep the distribution of each parameter following a normal
227 distribution. Since wind direction is a circular variable, it is resolved into North-South (WD–N) and East-West (WD–E) vector
228 components by trigonometric functions.

229 **3.2 Size-fractionated lung deposited surface area (LDSA_{ICRP})**

230 Alveolar deposition fraction (DF_{AL}) as a function of particle size with the unit density is determined with the ICRP Human
231 Respiratory Tract Model by the following equation (ICRP, 1994):

$$232 DF_{AL} = \left(\frac{0.0155}{d_p} \right) \left(\exp(-0.416(\ln d_p + 2.84)^2) + 19.11 \exp(-0.482(\ln d_p - 1.362)^2) \right) \quad (1)$$

233 where d_p is the aerodynamic diameter (μm) of spherical particles with the unit density (1 g cm^{-3}). The equation is determined
234 in two parts with respect to the two different peaks in the deposition curve in Figure 1. The peak near the size of 20 nm can be
235 approximated to represent the Brownian deposition, whereas the peak between 1 μm and 2 μm represents the inertial
236 deposition. From the particle number size distribution, we calculated the particle surface area distribution assuming each
237 particle is monodisperse sphere of standard density at standard conditions. By Eq. (1), a deposition factor for each particle size
238 bin (26 size bins at SC and 49 at UB) were calculated. Size-fractionated LDSA was then computed by multiplying the surface
239 area concentration with DF_{AL} in the corresponding size class. Total LDSA calculated by the ICRP lung model (LDSA_{ICRP}) can
240 be obtained by summing up the all the size-fractionated LDSA values (Hinds, 1999). In this study, the alveolar LDSA_{ICRP} was
241 calculated based on DMPS measurements in SC and UB. Thus, while the alveolar LDSA measured by Pegasor (LDSA_{Pegasor})
242 represent the ~10–400 nm size range, the alveolar LDSA_{ICRP} represent 6–800 nm and 3–1000 nm size range in SC and UB,
243 respectively.

244 **3.3 Novel Input-adaptive mixed-effects (IAME) model**

245 Input-adaptive mixed-effects (IAME) model is a combination of input-adaptive proxy (IAP) and linear mixed-effects (LME)
246 model. IAP was first introduced by Fung et al. (2020) and has been demonstrated reliable and flexible to fill up missing values
247 by taking input variables adaptively with robust ordinary least square regression models. IAP has been able to estimate BC
concentration by other air quality indicators with a satisfactory performance in two different categorised urban environments,

248 street canyon (adjusted $R^2 = 0.86\text{--}0.94$) and urban background (adjusted $R^2 = 0.74\text{--}0.91$). Some models outperformed IAP in
249 accuracy performance, but its transparent model structure and ability to impute missing values still make it a preferred option
250 as a virtual sensor (Fung et al., 2021b).

251

252 In this study, we primarily stuck to the strength to select input variables adaptively with the introduction of mixed effects. The
253 mixed effect approach is a generalization of the linear model that can incorporate both fixed (i.e. causing a main
254 effect/interaction) and random effects (i.e. causing variance/variability in responses), allowing the account of several sources
255 of variations (Chudnovsky et al., 2012). As seen in Figure 2, we picked the direct air pollutant measurement from the station
256 (variables of high correlation: PM_{2.5}, BC and NO₂ and other supporting variables: PM₁₀, O₃, NO_x, NO, CO and PNC) and
257 meteorological data of higher correlation (Temp, RH, P, PAR, WS, WD–N, WD–E) as the fixed variables because the air
258 pollutants can indicate the sources of LDSA which largely come from combustion and meteorological data could influence the
259 dispersion and dilution of LDSA. They are the most direct factors to the fluctuation of LDSA concentrations. Due to the strong
260 seasonal variation, weekend effects and diurnal pattern in urban air pollutant concentrations (Fung et al., 2020), the variance
261 in responses might depend on the time indicators that are not the primary cause of the concentration variability, but they
262 indirectly alter human-induced activities, such as traffic amounts. To take them into account, we created three time hierarchical
263 sub-groups (12 months of year, 7 days of week and 24 hours of day) as the inputs of random effect variables.

264

265 The regression equation of IAME is similar to the equation of IAP, except that IAME includes additional intercepts term for
266 random effects as below:

$$y_i = \beta_0 + \sum_{k=1}^p \beta_{ik} x_{ik} + \sum_{j=1}^q b_{ij} + e_i \quad (2),$$

267 where y_i is the i^{th} estimated LDSA concentration. The first term on the right β_0 indicates the fixed intercept of the equation.
268 The second term represents the total contribution by the direct measurement of variable x as fixed effects with a slope β at
269 each data point i . A maximum of three inputs from the total 16 fixed variables are selected to from 696 sub-models (Figure 2).
270 The inputs for random effects are indicated by b as intercepts of the corresponding three hierarchical sub-groups. A Gaussian
271 error term is indicated by e . The explanation of Eq. (2), is visualised in Figure 2.

272

273 One of the assumptions of LME models is that the random effects, together with the error term, have the following prior
274 distribution:

$$b \sim N(0, \sigma^2 D(\theta)) \quad (3),$$

275 where D is a q -by- q symmetric and positive semidefinite matrix, parameterized by a variance component vector θ , q is the
276 number of variables in the random-effects term, and σ^2 is the observation error variance. We use an optimiser, restricted
277 maximum likelihood, commonly known as ReML, with the value 1×10^{-6} as the relative tolerance on gradient of objective
278 function and 1×10^{-12} as absolute tolerance on step size. The use of ReML over the conventional ML could produce unbiased
279 estimates of variance and covariance parameters (Lindstrom and Bates, 1988).

280

281 After the sub-model formation, the dataset was randomly divided into five portions. 80% of the data were allocated for 4-fold
282 cross validation to remove variance of accuracy. The results of all the folds were averaged and the sub-models were ranked by
283 several evaluation metrics, which were further demonstrated in Figure 2 and described in Sect. 3.4. Some of the sub-models
284 were subject to rejection under two conditions: (1) strong multi-collinearity among the fixed parameters (variance inflation
285 factor (VIF) > 5) and (2) violation of the normality assumption of residuals also known as heteroscedasticity (fail in
286 Kolmogorov-Smirnov (K-S) test, $p < 0.05$). Based on the situation of missing data, the automatised IAME model would search

287 for the best sub-model option from the ranking chart. Hence, each data point might be estimated differently depending on the
 288 available data. The number of data points being estimated by each sub-model was reported to show their frequency of usage.

289 **3.4 Evaluation metrics**

290 In order to evaluate the model performance quantitatively, we used the following metrics:

$$R^2 = 1 - \frac{\sum_{i=1}^N (y_i - \hat{y}_i)^2}{\sum_{i=1}^N (y_i - \bar{y})^2} \quad (4),$$

$$MAE = \frac{1}{N} \sum_{i=1}^N |y_i - \hat{y}_i| \quad (5),$$

$$cRMSD = \sqrt{\frac{1}{N} \sum_{i=1}^N ((y_i - \bar{y}) - (\hat{y}_i - \tilde{y}))^2} \quad (6),$$

$$r = \frac{\sum_{i=1}^N (y_i - \bar{y})(\hat{y}_i - \tilde{y})}{\sqrt{\sum_{i=1}^N (y_i - \bar{y})^2} \sqrt{\sum_{i=1}^N (\hat{y}_i - \tilde{y})^2}} \quad (7),$$

$$NSD = \frac{SD_{predicted}}{SD_{reference}} = \frac{\sqrt{\frac{1}{N-1} \sum_{i=1}^N (\hat{y}_i - \tilde{y})^2}}{\sqrt{\frac{1}{N-1} \sum_{i=1}^N (y_i - \bar{y})^2}} = \sqrt{\frac{\sum_{i=1}^N (\hat{y}_i - \tilde{y})^2}{\sum_{i=1}^N (y_i - \bar{y})^2}} \quad (8),$$

291 where \hat{y}_i and \tilde{y}_i are i^{th} measured data point and estimated variable by the model, respectively. \bar{y} and \tilde{y} are the expected value
 292 of the measured and modelled dataset, respectively. N is the number of complete data input to the model. Coefficient of
 293 determination (R^2) is a measure of how close the data lie to the fitted regression line. It, however, does not consider the biases
 294 in the estimation. Therefore, we further validated the models with mean absolute error (MAE) and centred root-mean-square
 295 differences ($cRMSD$), where MAE measures the arithmetic mean of the absolute differences between the members of each
 296 pair, whilst $cRMSD$ calculates the square root of the average squared difference between the forecast and the observation pairs.
 297 $cRMSD$ is more sensitive to larger errors than MAE . Furthermore, together with $cRMSD$, Pearson correlation coefficient (r)
 298 and normalised standard deviation (NSD) of the modelled data set are also studied. r describes the correlation between the
 299 measured and modelled data whereas NSD measures the relative spread of the data. Due to their unique mathematical
 300 relationship, the three metrics can be portrayed on Taylor's diagram, which has been used for sub-model selection purpose.
 301 We ranked our sub-models first by R^2 , followed by MAE and $cRMSD$. r and NSD serve as additional evidence when we
 302 explain the model performance.

303 **3.5 Two-sample t-tests**

304 We assessed the temporal and spatial impact on the IAME model by comparing the means of absolute differences between the
 305 hourly measured and modelled LDSA in different time windows at both stations. Two-sample t-tests were performed on the
 306 two populations of absolute differences abovementioned to determine whether the difference between these was statistically
 307 significant. A significance level α of 5% was chosen as the probability of rejecting the null hypothesis when it is true, denoted
 308 as p .

309 **4 LDSA measurement characterization**

310 **4.1 General characteristics of LDSA_{Pegasor} in Helsinki metropolitan area**

311 The annual mean alveolar LDSA concentrations at four station types SC (2017–2018), UB (2017–May 2018), DH (2018) and
 312 RB (2018) were $19.7 \pm 11.3 \mu\text{m}^2 \text{cm}^{-3}$, $11.2 \pm 7.1 \mu\text{m}^2 \text{cm}^{-3}$, $11.7 \pm 8.6 \mu\text{m}^2 \text{cm}^{-3}$ and $7.6 \pm 5.4 \mu\text{m}^2 \text{cm}^{-3}$, respectively (Table 2).
 313 The DH and RB site were included to give more substantial interpretation of data because the LDSA concentrations at RB can

314 be viewed as background measurements and the local LDSA increments in HMA can be represented by the LDSA at the
315 hotspot measurement site subtracted by the LDSA at the RB site. The timeseries of LDSA concentrations at the SC and the
316 UB site were presented in Figure 3 and Fig. S4, where the missing data of LDSA for the whole measurement period was 3%
317 and 30%, respectively. When comparing with the same site type in other cities around the globe, LDSA concentrations detected
318 in HMA were the lowest among the European cities with reported values. While some literatures also reported LDSA at
319 tracheobronchial region, most just considered LDSA at alveolar, which is considered to bring most harm to human's lungs, as
320 shown in Table 1.

321

322 The diurnal pattern of LDSA at RB was not observable on workdays or over weekends (Figure 4, upper panel). The relatively
323 low variability can be explained by the scarcity of human activities. We can then regard the LDSA at RB as the background
324 concentrations mainly influenced by the regionally and long-range transported aerosol and meteorological variation (see
325 Luoma et al., 2021; Jafar and Harrison, 2021). As the concentrations at RB was stable throughout the different hours of day;
326 therefore, the diurnal pattern of LDSA concentration was apparently indistinguishable between the measured concentration
327 and the local increments. At the UB and DH site, the magnitudes and the patterns of the average hourly LDSA concentrations
328 at workdays were comparable, and both showed bimodal curves, one peak at 6–9 a.m., the other at 9–11 p.m.. The former had
329 a larger peak during the morning peak hour because of the vehicular emissions (Timonen et al., 2013; Teinilä et al., 2019)
330 while the latter had a larger peak in the evening attributed mainly by the residential burning (Hellén et al., 2017; Helin et al.,
331 2018; Luoma et al., 2021). Over weekends, the peaks in the morning were not identifiable and the evening peaks were amplified
332 due to enhanced human activities. Similar diurnal variation at residential area was observed for BC emitted by residential
333 combustion by Helin et al. (2018). At the SC site, the morning peak on weekends was not obvious because of the lack of work-
334 related traffic. It appears that a similar bimodal curve can be seen during workdays, but the evening peak was seen during the
335 evening traffic rush hour around 4–6 p.m.. The reason was that the main contributor of LDSA at the SC site was traffic and
336 combustion processes and the diurnal variability mainly depended on the citizen's movement by vehicles in the city. Over
337 weekends, the average hourly LDSA concentrations were the minimum at 5 a.m. and they increased and remained at a high
338 level at 2 p.m. until the late night. The level of LDSA concentrations at DH was comparable with that at UB site. However,
339 the amplitude of the evening peak was higher than that of the morning peak both on workdays and weekends due to elevated
340 residential combustion.

341

342 However, the monthly variability of background measurements at the RB site was stronger compared to the diurnal pattern
343 and the calculation of local increment was necessary (e.g. Jafar and Harrison, 2021). With no intense point sources, the
344 variations at RB were probably due to horizontal dispersion and advection of aerosol particles and vertical dilution controlled
345 by the boundary layer dynamics. Based on the monthly frequencies of backward trajectory by NOAA HYSPLIT Trajectory
346 Model (Rolph et al., 2017, Fig. S5), pollutants could be originated 600 km away from Helsinki within 24 hours in the winter.
347 In the summer, when solar radiation was persistently stronger, the boundary layer became elevated due to surface heating and
348 associated thermal turbulence. This turbulence would dilute the concentration of pollutants at the surface. Another plausible
349 reason could be the higher regional and long-range transported LDSA in the summer, as demonstrated by Kuula et al. (2020)
350 and Barreira et al. (2021). The lower panel in Figure 4 shows the LDSA local increments after subtraction of the LDSA
351 concentrations at the RB site. For instance, the local LDSA increments at DH are the highest in the winter probably due to
352 local small-scale wood combustion (and traffic). However, without subtracting the background concentrations, the LDSA
353 concentrations at DH were higher in the summer than in the winter (due to high regional background concentrations in
354 summer), as was observed also by Kuula et al. (2020). This piece of evidence can help in the source apportionment. The
355 variation of diurnal and seasonal LDSA for all sites are visualised in Fig. S6.

356 **4.2 The connection between LDSA and other parameters**

357 Alveolar LDSA concentration, as a single number, comprises particles across the whole particle size spectrum measured (e.g.
358 Pegasor AQ Urban ~10–400 nm). In HMA, the two local main sources of particles contributing to LDSA are vehicular
359 combustion and residential wood combustion emissions. Upon the two combustion processes, particles of different sizes and
360 different gaseous pollutants are emitted. A study by Lamberg et al. (2011) has shown that the geometric mean diameter of
361 residential wood combustion is typically 70–150 nm whereas Barreira et al. (2021) presented that the typical particle size for
362 vehicular combustion can be smaller than 50 nm. By calculating the proportion of LDSA with respect to different pollutant
363 parameters BC, NO_x, PNC (dominated by UFP), and PM_{2.5}, we could identify the relative contribution of LDSA across the
364 hour of day (Fig. S7 for workdays and Fig. S8 for weekends). Whereas the ratios could partly tell the relative contribution of
365 LDSA in that certain hour, they are also dependent on various factors that include the different properties of each parameter
366 (e.g. the lung deposition factor for LDSA) and the time-dependent increase in particle size (e.g. new particle formation) which
367 are not the focus of this manuscript. Since the vehicular combustion emits smaller particles which elevate the LDSA
368 concentration but meanwhile do not substantially influence the value of PM_{2.5} (e.g. Salo et al., 2021a); therefore, LDSA/PM_{2.5}
369 had a diurnal pattern similar to the LDSA concentrations which peaked in the morning rush hour during workdays. Conversely,
370 LDSA/BC, LDSA/PNC and LDSA/NO_x had a low ratio value in the morning rush hour. This can be explained by the fact that
371 vehicular combustion caused high concentration of BC, PNC and NO_x (Reche et al., 2015) compared to its contribution to
372 LDSA concentration. In other words, the role of regional background was higher for LDSA compared to those of NO_x, BC
373 and PNC. At the UB site, the average LDSA/BC at all hours remained at a constant level in the winter while the variability of
374 the ratio was much higher in the summer. The general LDSA/PNC ratio at UB was steadily 2–3 times higher than that at all
375 hours in all seasons because the proportion of larger particles at UB was usually higher than SC. This large variability again
376 validated the heterogeneity of source of LDSA at UB.

377

378 The integrated alveolar LDSA with a various size ranges was calculated to explore the correlation of size-fractionated LDSA
379 and other parameters in our multipollutant dataset. No single fractionated LDSA correlated well with meteorological
380 parameters at both sites (Figure 5). Out of all fractions, alveolar LDSA of the whole spectrum (LDSA_{6–800}) and LDSA_{250–400},
381 which explained majority of LDSA, correlated best with other air pollutants. In general, alveolar LDSA had a high correlation
382 with BC. BC correlated the best with LDSA_{100–250} ($r = 0.84$), which was in alignment with the reported values from previous
383 literatures (Gramsch et al., 2014; Ding et al., 2016). As expected, PM_{2.5} showed better correlation with the LDSA of larger
384 particles ($r = 0.68–0.76$) because larger particles contributes more to PM_{2.5} mass concentration values. In the meanwhile, PM₁₀
385 had fair correlation with all selected size bins. NO₂ correlated highly with LDSA of smaller particles ($r = 0.69–0.77$),
386 indicating the dominant role of local traffic exhausts. CO had a higher correlation with LDSA of 400–800 nm ($r = 0.64$) since
387 CO concentrations were more affected by regionally transported pollutants. O₃ had a fair correlation with LDSA of all sections
388 ($r = 0.30–0.43$) because the formation of O₃ is mostly secondary and the chemical interactions with pollutants are more
389 complicated than the other compounds. In general, the correlations of LDSA with other air pollutant parameters were higher
390 at the SC site than that at the UB site (Fig. S9). The high correlations of LDSA with BC, PM_{2.5} and NO₂, which agreed with
391 the results by Kuula et al. (2020), proved the possibility of developing a model to estimate LDSA concentrations.

392 **5 Model evaluation**

393 **5.1 Sub-model diagnostics**

394 Following the evaluation attributes described in Sect. 3.4, Table 3 depicts the descriptive statistics of the overall model
395 evaluation on its testing set. The overall model at the SC site was able to explain 80% of the variability of the testing set of the
396 measured data. The R^2 in the winter was 0.86 being the highest while the worst R^2 was shown in the summer, i.e., 0.70. The

397 *MAE* and *cRMSE* were the smallest during weekends with R^2 not particularly high ($R^2 = 0.72$) probably because the LDSA
398 concentration itself was relatively low in that period. The overall performance was generally worse in UB in terms of R^2 ,
399 except during weekends that R^2 is 10% higher.

400

401 For individual sub-models, their performance could be seen on the Taylor's diagram in Figure 6 (Taylor, 2001). Each marker
402 represents one sub-model, the contribution of which to the outcome of the final model is displayed in various colours. The
403 sub-model performance can be evaluated by the distance of the sub-model marker and the red point, which represents the
404 reference station, i.e., the perfect model. The location of each marker indicates its individual performance in terms of r (blue
405 contours), *cRMSE* (green contour) and *NSD* (black axis). At the SC site, the narrow distribution of the sub-models on the
406 Taylor's diagram gives a clue that they were very similar in terms of model performance of LDSA estimation. The five mostly
407 used sub-models were concentrated within the region where r was 0.85–0.87, *cRMSE* was 5.67–5.77 $\mu\text{m}^2 \text{cm}^{-3}$ and *NSD* was
408 0.75–0.79 (Table 4). The values of their evaluation metrics were close to each other where R^2 and *MAE* differed in the narrow
409 range of 10% ($R^2 = 0.72$ –0.74, *MAE* = 3.8 $\mu\text{m}^2 \text{cm}^{-3}$). It infers that if one metric was prioritised over another, the rank of the
410 sub-models can be greatly different. Although no individual sub-models showed r greater than 0.9, the overall model
411 comprising the outcomes by all the sub-models remained high ($R^2 = 0.80$, *MAE* = 3.8 $\mu\text{m}^2 \text{cm}^{-3}$). The best sub-model was also
412 the most used one, which accounted for 81% of the total data points while the two succeeding sub-models constituted another
413 16%. This also indicates that the input adaptivity function of the suggested method supplemented 19% of the estimates, which
414 would be a missing estimate if a single model with fixed predictor variables was used. Four out of the five most used sub-
415 models contain BC as an input predictor with the combination of other two air pollutants or meteorological parameters. This
416 was in line with the high correlation of LDSA with BC ($r = 0.84$, Fig. S9) In case BC is missing at a certain time stamp, the
417 sub-model without BC as an input could be used. It further supports the input adaptive function.

418

419 At the UB site, the sub-model performance was more scattered on the Taylor's diagram (Figure 6). The five most used sub-
420 models had varying metrics ($r = 0.77$ –0.92, *cRMSE* = 2.5–3.9 $\mu\text{m}^2 \text{cm}^{-3}$ and *NSD* = 0.63–0.89, see Table 5). Although some
421 showed exceptionally good performance, the overall model had a slightly worse performance than that in street canyon. The
422 best sub-model estimated 49% of the total measurement, followed by 17%. The third and fourth most used sub-models, which
423 formed up to 30% of the estimates, had rather moderate performance ($R^2 = 0.58$ and 0.69). Considering all possible outcomes,
424 the overall model was still able to explain 77% of the total variance. Despite the fair linear correlation with LDSA, CO ($r =$
425 0.26) and PNC ($r = 0.71$) dominated in the top five used sub-models. This could be explained by the fact that the source of
426 CO can well cover the missing piece that PNC was unable to account for LDSA. BC, NO_x and meteorological parameters, like
427 RH and WD-N were also involved in the final LDSA estimation.

428

429 By checking the variance inflation factor (VIF) of all 696 sub-models, 4.6% and 2.2% were rejected respectively. The higher
430 rejection rate at SC can be explained by the fact that some of the predictor variables were highly correlating to each other and
431 the inclusion of them would result in an inflation of multi-collinearity of the sub-model, from which biases arose. At UB, since
432 the source of LDSA was more varied and the correlation of LDSA with other pollutants was generally lower, the probability
433 of the VIF of the individual sub-models exceeding the threshold was lower.

434 5.2 Temporal difference in comparison with other models

435 Figure 7 presents the comparison of measured LDSA (LDSA_{Pegasor}), deposition model derived LDSA (LDSA_{ICRP}) and the
436 LDSA modelled by IAP and IAME (LDSA_{IAP} and LDSA_{IAME}) as a timeseries plot between 14 and 28 February 2017. This
437 particular time window was selected because it had the least data gaps for all the respective instruments at both sites. This
438 figure during this period can also showcase the difference in magnitudes of the diurnal shape over workdays and weekends

439 (shaded regions in Figure 7). At both sites, both IAP and IAME underestimated the peaks when the change of the measured
440 LDSA concentration was sudden and relatively large. However, this limitation did not diminish much of the usefulness of the
441 models as virtual sensors as the models were still able to generally catch up with the diurnal cycle of the measured data. Despite
442 the small difference observed in the figure, the blue dotted line representing $\text{LDSA}_{\text{IAME}}$ often stays closer to the measured
443 LDSA concentration (black line). When we smoothed out all the estimates at each hour, the ability for IAME to catch the
444 morning peak on workdays was much better.

445

446 A more generalised diurnal cycle can be found in Figure 8. The error bars of the modelled LDSA_{IAP} and $\text{LDSA}_{\text{IAME}}$ were
447 consistently smaller than that of $\text{LDSA}_{\text{Pegasor}}$ and $\text{LDSA}_{\text{ICRP}}$. It might be due to the reason that the model fails to catch the
448 extreme values although it managed to catch the general diurnal cycle. Since outliers were removed in the pre-processing stage
449 and the model penalised the extreme values, the model tended to give a more centralised estimate. It was a trade-off between
450 the option with better coefficients of determination but stronger extreme errors and that with better estimations at tails but
451 derivation of averaged estimation. This circumstance was more apparent on workdays than weekends. Furthermore, $\text{LDSA}_{\text{IAME}}$
452 could follow the diurnal cycle of $\text{LDSA}_{\text{Pegasor}}$ much better than LDSA_{IAP} , especially during the start of the peak hours over
453 workdays at the SC site where the LDSA concentrations jumped to a high level. $\text{LDSA}_{\text{IAME}}$ can explain 80% and 77% of the
454 variability of the reference measurements at SC and UB, respectively (Table 6), and compared to LDSA_{IAP} 's 77% and 66%,
455 $\text{LDSA}_{\text{IAME}}$ performed better in terms of accuracy. In addition, the slightly smaller *MAE* and the closer to 1 *NSD* of the
456 $\text{LDSA}_{\text{IAME}}$ suggested that the mean absolute error was improved and the spread of the estimation distribution was closer to the
457 reference measurement by taking random effects into account.

458

459 Furthermore, we assessed the temporal and spatial impact on the IAME model by comparing the means of absolute differences
460 between the hourly $\text{LDSA}_{\text{Pegasor}}$ and $\text{LDSA}_{\text{IAME}}$ in different time windows at both stations. A descriptive statistic is presented
461 in Table 7. We used two-sample t-tests to assess whether the distribution of absolute differences were statistically significant.
462 At SC, the *p* value of the t-tests at all selected windows were below 0.05, which demonstrated that the performance at different
463 seasons, days of week and hours of day of absolute differences between the measured and modelled LDSA were significantly
464 different at the confidential level of 95%. At the UB site, the difference between the two selected hour periods was not
465 statistically significant. The same applied to the difference between winter and spring. There was no statistically sufficient
466 evidence to validate the difference among the rest of the selected time period. In other words, with the use of random effects
467 of time constraint, the overall models still performed differently at different time windows most of the time. This indicates that
468 IAME still needs improvements on minimising temporal differences.

469 6 Conclusion

470 In this study, we developed a novel input-adaptive mixed-effects (IAME) proxy, to estimate alveolar LDSA by other already
471 existing air pollutant variables and meteorological conditions in Helsinki Metropolitan Area. During the measurement period
472 2017–2018, we retrieved LDSA measurements measured by Pegasor AQ Urban (alveolar LDSA in the ~10–400 size range)
473 and other variables in a street canyon (SC, average $\text{LDSA} = 19.7 \pm 11.3 \mu\text{m}^2 \text{cm}^{-3}$) site and an urban background (UB, average
474 $\text{LDSA} = 11.2 \pm 7.1 \mu\text{m}^2 \text{cm}^{-3}$) site in Helsinki, Finland. Furthermore, three detached housing sites (DH, average $\text{LDSA} =$
475 $11.7 \pm 8.6 \mu\text{m}^2 \text{cm}^{-3}$) and a regional background site (RB, average $\text{LDSA} = 7.6 \pm 5.4 \mu\text{m}^2 \text{cm}^{-3}$) were also included as reference
476 and background source estimation, respectively. At the SC site, LDSA concentrations were closely correlated with traffic
477 emission. The ratio to black carbon (LDSA/BC), to particle number concentration (LDSA/PNC), and to nitrogen oxide
478 (LDSA/NO_x) had a higher value before the morning peak and it reached its minimum during the morning peak since the role
479 of regional background was higher for LDSA compared to those of NO_x , BC and PNC. However, the ratio of LDSA to mass

480 concentration of particles of diameter smaller than 2.5 μm (LDSA/PM_{2.5}) performed differently since the freshly vehicular
481 emitted particles were smaller than 50 nm, which did not contribute much to PM_{2.5} mass concentration.

482

483 For the continuous estimation of LDSA, IAME was automatised to select the best combination of input variables, including a
484 maximum of three fixed effect variables and three time indicators as random effect variables. Altogether, 696 sub-models were
485 generated and ranked by the coefficient of determination (R^2), mean absolute error (MAE) and centred root-mean-square
486 differences ($cRMSE$) in order. At the SC site, LDSA concentrations can be best estimated by PM_{2.5}, PNC and BC, all of which
487 were closely connected with the vehicular emissions, while they were found correlating with PM_{2.5}, BC and carbon monoxide
488 (CO) the best at the UB site. At both sites, PM_{2.5} also indicated the regionally and long-range transported pollutants, which
489 was a significant source of LDSA concentrations. The accuracy of the overall model was higher at the SC site ($R^2 = 0.80$,
490 $MAE = 3.7 \mu\text{m}^2 \text{ cm}^{-3}$) than at the UB site ($R^2 = 0.77$, $MAE = 2.3 \mu\text{m}^2 \text{ cm}^{-3}$) plausibly because the LDSA source was more
491 tightly controlled by the close-by vehicular emission source. This model could catch the temporal pattern of LDSA; however,
492 the two-sample t-tests of the residuals at all selected time windows showed that their distributions were different. This indicated
493 that the model still performed differently at different time windows. Despite this, the novel IMAE model worked better in
494 explaining the variability of the measurements than the previously suggested IAP model as indicated by a higher R^2 and
495 lower MAE in both sites. This adjustment by taking random effects into account improved the sensitivity and the accuracy of
496 the fixed effect model IAP.

497

498 The models alone cannot replace the need for reference measurements (Hagler et al., 2018). However, the IAME proxy could
499 serve as virtual sensors to complement the measurements at reference stations in case of missing data. The two measurement
500 sites in this study served as a pilot of the proxy development, and the next step is to extend the work to the existing network
501 of several measurement stations within the Helsinki metropolitan region. With similar configurations, we could fill up the
502 voids with the information from the other stations after conscientious calibration. For example, in this paper, the two
503 measurement sites were characterised as street canyon and urban background. In a different setup, we may assume the
504 similarity of the same type of environment and utilise the measurements as replacement. Furthermore, this continuous LDSA
505 estimation could be useful in updating some of the current air quality application, for instance ENFUSER air quality model
506 which provide accurate spatio-temporal estimation for air pollutants in Helsinki (Johansson et al., 2015).

507 **Data availability**

508 The air quality data and meteorological data are available from HSY website (<https://www.hsy.fi/avoindata>) and through
509 SmartSMEAR online tool (<https://smear.avaa.csc.fi/>).

510 **Author contributions**

511 PLF performed formal analysis and writing – original draft of the manuscript. PLF, MAZ, TP and TH conceptualized and
512 designed the methodology of this work. MAZ, ST, MK, TP and TH provided supervision in this research activity. ES (Pegasor
513 Ltd.), JVN and AKo (HSY), and HT, JK and AKA (FMI) provided instruments and data for the campaign. All the co-authors
514 (MAZ, JVN, ES, HT, AKo, JK, TR, AKA, ST, MK, TP and TH) reviewed and commented on the manuscript.

515 **Competing interests**

516 Prof. Markku Kulmala and Prof. Tuukka Petäjä are members of the editorial board of the journal Atmospheric Chemistry and
517 Physics. Dr. Erkka Saukko works in Pegasor Ltd. which is the manufacturer of Pegasor AQ Urban.

518 **Acknowledgements**

519 The authors acknowledge the City of Helsinki for providing traffic count data.

520 **Financial support**

521 This work is supported by the European Regional Development Fund through the Urban Innovative Action (project HOPE;
522 Healthy Outdoor Premises for Everyone, project no. UIA03-240) and Regional Innovations and Experimentations Fund AIKO,
523 governed by the Helsinki Regional Council (project HAQT; Helsinki Air Quality Testbed, project no. AIKO014). Grants are
524 also received from the European Research Council through the European Union's Horizon 2020 Research and Innovation
525 Framework Program (grant agreement no. 742206), and ERA-PLANET (www.era-planet.eu) and its trans-national project
526 SMURBS (www.smurbs.eu) funded under the same program (grant agreement no. 689443). The authors show gratitude to
527 Academy of Finland for the funding via the Academy of Finland Flagship funding (project no. 337549 and 337552) and
528 NanoBioMass (project no. 1307537).

529 **References**

530 Albuquerque, P. C., Gomes, J. F., and Bordado, J. C.: Assessment of exposure to airborne ultrafine particles in the urban
531 environment of Lisbon, Portugal, *J. Air Waste Manag. Assoc.*, 62, 373-380, <https://doi.org/10.1080/10962247.2012.658957>,
532 2012.

533 Amanatidis, S., Maricq, M. M., Ntziachristos, L., and Samaras, Z.: Application of the dual Pegasor Particle Sensor to real-
534 time measurement of motor vehicle exhaust PM, *J. Aerosol Sci.*, 103, 93-104, <https://doi.org/10.1016/j.jaerosci.2016.10.005>,
535 2017.

536 Anjilvel, S., and Asgharian, B.: A multiple-path model of particle deposition in the rat lung, *Fund. Appl. Toxicol.*, 28, 41-50,
537 <https://doi.org/10.1006/faat.1995.1144>, 1995.

538 Asbach, C., Fissan, H., Stahlmecke, B., Kuhlbusch, T., and Pui, D.: Conceptual limitations and extensions of lung-deposited
539 Nanoparticle Surface Area Monitor (NSAM), *J. Nanopart. Res.*, 11, 101-109, <https://doi.org/10.1007/s11051-008-9479-8>,
540 2009.

541 Asbach, C., Alexander, C., Clavaguera, S., Dahmann, D., Dozol, H., Faure, B., Fierz, M., Fontana, L., Iavicoli, I., Kaminski,
542 H., MacCalman, L., Meyer-Plath, A., Simonow, B., van Tongeren, M., and Todea, A. M.: Review of measurement techniques
543 and methods for assessing personal exposure to airborne nanomaterials in workplaces, *Sci. Total Environ.*, 603, 793-806,
544 <https://doi.org/10.1016/j.scitotenv.2017.03.049>, 2017.

545 Barreira, L. M. F., Helin, A., Aurela, M., Teinilä, K., Friman, M., Kangas, L., Niemi, J. V., Portin, H., Kousa, A., Pirjola, L.,
546 Rönkkö, T., Saarikoski, S., and Timonen, H.: In-depth characterization of submicron particulate matter inter-annual variations
547 at a street canyon site in northern Europe, *Atmos. Chem. Phys.*, 21, 6297-6314, <https://doi.org/10.5194/acp-21-6297-2021>,
548 2021.

549 Breiman, L.: Heuristics of instability and stabilization in model selection, *Ann. Stat.*, 24, 2350-2383,
550 <https://doi.org/10.1214/aos/1032181158>, 1996.

551 Brown, D. M., Wilson, M. R., MacNee, W., Stone, V., and Donaldson, K.: Size-dependent proinflammatory effects of ultrafine
552 polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines, *Toxicol. Appl. Pharm.*,
553 175, 191-199, <https://doi.org/10.1006/taap.2001.9240>, 2001.

554 Buonanno, G., Marini, S., Morawska, L., and Fuoco, F. C.: Individual dose and exposure of Italian children to ultrafine
555 particles, *Sci. Total Environ.*, 438, 271-277, <https://doi.org/10.1016/j.scitotenv.2012.08.074>, 2012.

556 Cabaneros, S. M., Calautit, J. K., and Hughes, B. R.: A review of artificial neural network models for ambient air pollution
557 prediction, *Environ. Modell. Softw.*, 119, 285-304, <https://doi.org/10.1016/j.envsoft.2019.06.014>, 2019.

558 Chen, J., de Hoogh, K., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M., Bauwelinck, M., van Donkelaar, A., Hvidtfeldt, U.
559 A., Katsouyanni, K., Janssen, N. A. H., Martin, R. V., Samoli, E., Schwartz, P. E., Stafoggia, M., Bellander, T., Strak, M.,
560 Wolf, K., Vienneau, D., Vermeulen, R., Brunekreef, B., and Hoek, G.: A comparison of linear regression, regularization, and
561 machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide, *Environ. Int.*, 130,
562 104934, <https://doi.org/10.1016/j.envint.2019.104934>, 2019.

563 Cheristanidis, S., Grivas, G., and Chaloulakou, A.: Determination of total and lung-deposited particle surface area
564 concentrations, in central Athens, Greece, *Environ. Monit. Assess.*, 192, 627, <https://doi.org/10.1007/s10661-020-08569-8>,
565 2020.

566 Chudnovsky, A. A., Lee, H. J., Kostinski, A., Kotlov, T., and Koutrakis, P.: Prediction of daily fine particulate matter
567 concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES), *J.*
568 *Air Waste Manag. Assoc.*, 62, 1022-1031, <https://doi.org/10.1080/10962247.2012.695321>, 2012.

569 Dal Maso, M., Gao, J., Järvinen, A., Li, H., Luo, D., Janka, K., and Rönkkö, T.: Improving urban air quality measurements by
570 a diffusion charger based electrical particle sensors-A field study in Beijing, China, *Aerosol Air Qual. Res.*, 16, 3001-3011,
571 <https://doi.org/10.4209/aaqr.2015.09.0546>, 2016.

572 Ding, A., Huang, X., Nie, W., Sun, J., Kerminen, V. M., Petäjä, T., Su, H., Cheng, Y., Yang, X. Q., and Wang, M.: Enhanced
573 haze pollution by black carbon in megacities in China, *Geophys. Res. Lett.*, 43, 2873-2879,
574 <https://doi.org/10.1002/2016GL067745>, 2016.

575 Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris Jr, B. G., and Speizer, F. E.: An association
576 between air pollution and mortality in six US cities, *New Engl. J. Med.*, 329, 1753-1759,
577 <https://doi.org/10.1056/NEJM199312093292401>, 1993.

578 Duffin, R., Tran, C., Clouter, A., Brown, D., MacNee, W., Stone, V., and Donaldson, K.: The importance of surface area and
579 specific reactivity in the acute pulmonary inflammatory response to particles, *Ann. Occup. Hyg.*, 46, 242-245,
580 <https://doi.org/10.1093/annhyg/mef684>, 2002.

581 Eeftens, M., Meier, R., Schindler, C., Aguilera, I., Phuleria, H., Ineichen, A., Davey, M., Ducret-Stich, R., Keidel, D., Probst-
582 Hensch, N., Kunzli, N., and Tsai, M. Y.: Development of land use regression models for nitrogen dioxide, ultrafine particles,
583 lung deposited surface area, and four other markers of particulate matter pollution in the Swiss SAPALDIA regions, *Environ.*
584 *Health*, 15, 53, <https://doi.org/10.1186/s12940-016-0137-9>, 2016.

585 Faraway, J. J.: *Linear models with R*, CRC press, 2014.

586 Fernández-Guisuraga, J. M., Castro, A., Alves, C., Calvo, A., Alonso-Blanco, E., Blanco-Alegre, C., Rocha, A., and Fraile,
587 R.: Nitrogen oxides and ozone in Portugal: trends and ozone estimation in an urban and a rural site, *Environ. Sci. Pollut. R.*,
588 23, 17171-17182, <https://doi.org/10.1007/s11356-016-6888-6>, 2016.

589 Fissan, H., Neumann, S., Trampe, A., Pui, D., and Shin, W.: Rationale and principle of an instrument measuring lung deposited
590 nanoparticle surface area, *J. Nanopart. Res.*, 53-59, <https://doi.org/10.1007/s11051-006-9156-8>, 2006.

591 Fung, P. L., Zaidan, M. A., Sillanpaa, S., Kousa, A., Niemi, J. V., Timonen, H., Kuula, J., Saukko, E., Luoma, K., Petaja, T.,
592 Tarkoma, S., Kulmala, M., and Hussein, T.: Input-Adaptive Proxy for Black Carbon as a Virtual Sensor, *Sensors (Basel)*, 20,
593 <https://doi.org/10.3390/s20010182>, 2020.

594 Fung, P. L., Zaidan, M. A., Surakhi, O., Tarkoma, S., Petäjä, T., and Hussein, T.: Data imputation in in situ-measured particle
595 size distributions by means of neural networks, *Atmos. Meas. Tech.*, 14, 5535-5554, <https://doi.org/10.5194/amt-14-5535-2021>, 2021a.

596 Fung, P. L., Zaidan, M. A., Timonen, H., Niemi, J. V., Kousa, A., Kuula, J., Luoma, K., Tarkoma, S., Petäjä, T., Kulmala, M.,
597 and Hussein, T.: Evaluation of white-box versus black-box machine learning models in estimating ambient black carbon
598 concentration, *J. Aerosol Sci.*, <https://doi.org/10.1016/j.jaerosci.2020.105694>, 2021b.

599 Gramsch, E., Reyes, F., Oyola, P., Rubio, M., López, G., Pérez, P., and Martínez, R.: Particle size distribution and its
600 relationship to black carbon in two urban and one rural site in Santiago de Chile, *J. Air Waste Manag. Assoc.*, 64, 785-796,
601 <https://doi.org/10.1080/10962247.2014.890141>, 2014.

602 Gupta, R., and Xie, H.: Nanoparticles in daily life: applications, toxicity and regulations, *J. Environ. Pathol. Tox.*, 37,
603 <https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009>, 2018.

604 Habre, R., Zhou, H., Eckel, S. P., Enebish, T., Fruin, S., Bastain, T., Rappaport, E., and Gilliland, F.: Short-term effects of
605 airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma, *Environ. Int.*, 118, 48-
606 59, <https://doi.org/10.1016/j.envint.2018.05.031>, 2018.

607 Hagler, G. S. W., Williams, R., Papapostolou, V., and Polidori, A.: Air Quality Sensors and Data Adjustment Algorithms:
608 When Is It No Longer a Measurement?, *Environ. Sci. Technol.*, 52, 5530-5531,
609 <https://pubs.acs.org/doi/10.1021/acs.est.8b01826>, 2018.

610 Hama, S. M. L., Ma, N., Cordell, R. L., Kos, G. P. A., Wiedensohler, A., and Monks, P. S.: Lung deposited surface area in
611 Leicester urban background site/UK: Sources and contribution of new particle formation, *Atmos. Environ.*, 151, 94-107,
612 <https://doi.org/10.1016/j.atmosenv.2016.12.002>, 2017.

613 Hastie, T., Tibshirani, R., and Tibshirani, R.: Best Subset, Forward Stepwise or Lasso? Analysis and Recommendations Based
614 on Extensive Comparisons, *Stat. Sci.*, 35, 579-592, <https://doi.org/10.1214/19-STS733>, 2020.

615 Helin, A., Niemi, J. V., Virkkula, A., Pirjola, L., Teinilä, K., Backman, J., Aurela, M., Saarikoski, S., Rönkkö, T., Asmi, E.,
616 and Timonen, H.: Characteristics and source apportionment of black carbon in the Helsinki metropolitan area, Finland, *Atmos.*
617 *Environ.*, 190, 87-98, <https://doi.org/10.1016/j.atmosenv.2018.07.022>, 2018.

618 Hellén, H., Kangas, L., Kousa, A., Vestenius, M., Teinilä, K., Karppinen, A., Kukkonen, J., and Niemi, J. V.: Evaluation of
619 the impact of wood combustion on benzo [a] pyrene (BaP) concentrations; ambient measurements and dispersion modeling in
620 Helsinki, Finland, *Atmos. Chem. Phys.*, 17, 3475-3487, <https://doi.org/10.5194/acp-17-3475-2017>, 2017.

621 Hennig, F., Quass, U., Hellack, B., Kupper, M., Kuhlbusch, T. A. J., Stafoggia, M., and Hoffmann, B.: Ultrafine and Fine
622 Particle Number and Surface Area Concentrations and Daily Cause-Specific Mortality in the Ruhr Area, Germany, 2009-2014,
623 *Environ. Health Persp.*, 126, 027008, <https://doi.org/10.1289/EHP2054>, 2018.

624 Hinds, W. C.: *Aerosol technology: properties, behavior, and measurement of airborne particles*, John Wiley & Sons, 1999.

625 Hofmann, W.: Modelling particle deposition in human lungs: modelling concepts and comparison with experimental data,
626 *Biomarkers*, 14, 59-62, <https://doi.org/10.1080/13547500902965120>, 2009.

627 ICRP: PUBLICATION 66: Human Respiratory Tract Model for Radiological Protection, Pergamon Press, New York, 1994.

628 Jafar, H. A., and Harrison, R. M.: Spatial and temporal trends in carbonaceous aerosols in the United Kingdom, *Atmos. Pollut.*
629 *Res.*, 12, 295-305, <https://doi.org/10.1016/j.apr.2020.09.009>, 2021.

631 Järvi, L., Hannuniemi, H., Hussein, T., Junninen, H., Aalto, P. P., Hillamo, R., Mäkelä, T., Keronen, P., Siivola, E., and Vesala, T.: The urban measurement station SMEAR III: Continuous monitoring of air pollution and surface–atmosphere interactions in Helsinki, Finland, *Boreal Environ. Res.*, 19, 86–109, 2009.

632 Järvinen, A., Kuuluvainen, H., Niemi, J. V., Saari, S., Dal Maso, M., Pirjola, L., Hillamo, R., Janka, K., Keskinen, J., and Rönkkö, T.: Monitoring urban air quality with a diffusion charger based electrical particle sensor, *Urban Clim.*, 14, 441–456, <https://doi.org/10.1016/j.ulclim.2014.10.002>, 2015.

633 Järvinen, A., Timonen, H., Karjalainen, P., Bloss, M., Simonen, P., Saarikoski, S., Kuuluvainen, H., Kalliokoski, J., Dal Maso, M., Niemi, J. V., Keskinen, J., and Rönkkö, T.: Particle emissions of Euro VI, EEV and retrofitted EEV city buses in real traffic, *Environ. Pollut.*, 250, 708–716, <https://doi.org/10.1016/j.envpol.2019.04.033>, 2019.

634 Johansson, L., Epitropou, V., Karatzas, K., Karppinen, A., Wanner, L., Vrochidis, S., Bassoukos, A., Kukkonen, J., and Kompatsiaris, I.: Fusion of meteorological and air quality data extracted from the web for personalized environmental information services, *Environ. Modell. Softw.*, 64, 143–155, <https://doi.org/10.1016/j.envsoft.2014.11.021>, 2015.

635 Karjalainen, P., Timonen, H., Saukko, E., Kuuluvainen, H., Saarikoski, S., Aakko-Saksa, P., Murtonen, T., Bloss, M., Maso, M. D., Simonen, P., Ahlberg, E., Svenningsson, B., Brune, W. H., Hillamo, R., Keskinen, J., and Rönkkö, T.: Time-resolved characterization of primary particle emissions and secondary particle formation from a modern gasoline passenger car, *Atmos. Chem. Phys.*, 16, 8559–8570, <https://doi.org/10.5194/acp-16-8559-2016>, 2016.

636 Kiriya, M., Okuda, T., Yamazaki, H., Hatoya, K., Kaneyasu, N., Uno, I., Nishita, C., Hara, K., Hayashi, M., Funato, K., Inoue, K., Yamamoto, S., Yoshino, A., and Takami, A.: Monthly and Diurnal Variation of the Concentrations of Aerosol Surface Area in Fukuoka, Japan, Measured by Diffusion Charging Method, *Atmosphere (Basel)*, 8, <https://doi.org/10.3390/atmos8070114>, 2017.

637 Kulkarni, P., Baron, P. A., and Willeke, K.: *Aerosol measurement: principles, techniques, and applications*, John Wiley & Sons, 2011.

638 Kuula, J., Kuuluvainen, H., Rönkkö, T., Niemi, J. V., Saukko, E., Portin, H., Aurela, M., Saarikoski, S., Rostedt, A., Hillamo, R., and Timonen, H.: Applicability of Optical and Diffusion Charging-Based Particulate Matter Sensors to Urban Air Quality Measurements, *Aerosol Air Qual. Res.*, 19, 1024–1039, <https://doi.org/10.4209/aaqr.2018.04.0143>, 2019.

639 Kuula, J., Kuuluvainen, H., Niemi, J. V., Saukko, E., Portin, H., Kousa, A., Aurela, M., Rönkkö, T., and Timonen, H.: Long-term sensor measurements of lung deposited surface area of particulate matter emitted from local vehicular and residential wood combustion sources, *Aerosol Sci. Tech.*, 54, 190–202, <https://doi.org/10.1080/02786826.2019.1668909>, 2020.

640 Kuuluvainen, H., Rönkkö, T., Järvinen, A., Saari, S., Karjalainen, P., Lähde, T., Pirjola, L., Niemi, J. V., Hillamo, R., and Keskinen, J.: Lung deposited surface area size distributions of particulate matter in different urban areas, *Atmos. Environ.*, 136, 105–113, <https://doi.org/10.1016/j.atmosenv.2016.04.019>, 2016.

641 Kuuluvainen, H., Poikkinen, M., Jarvinen, A., Kuula, J., Irlala, M., Dal Maso, M., Keskinen, J., Timonen, H., Niemi, J. V., and Ronkko, T.: Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon, *Environ. Pollut.*, 241, 96–105, <https://doi.org/10.1016/j.envpol.2018.04.100>, 2018.

642 Lamberg, H., Nuutinen, K., Tissari, J., Ruusunen, J., Yli-Pirilä, P., Sippula, O., Tapanainen, M., Jalava, P., Makkonen, U., Teinilä, K., Saarnio, K., Hillamo, R., Hirvonen, M.-R., and Jokiniemi, J.: Physicochemical characterization of fine particles from small-scale wood combustion, *Atmos. Environ.*, 45, 7635–7643, <https://doi.org/10.1016/j.atmosenv.2011.02.072>, 2011.

643 Lindstrom, M. J., and Bates, D. M.: Newton—Raphson and EM algorithms for linear mixed-effects models for repeated-measures data, *J. Am. Stat. Assoc.*, 83, 1014–1022, <https://doi.org/10.2307/2290128>, 1988.

644 Liu, H., Zhang, X., Zhang, H., Yao, X., Zhou, M., Wang, J., He, Z., Zhang, H., Lou, L., Mao, W., Zheng, P., and Hu, B.: Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter, *Environ. Pollut.*, 233, 483–493, <https://doi.org/10.1016/j.envpol.2017.10.070>, 2018a.

645 Liu, Y., Wu, J., Yu, D., and Hao, R.: Understanding the patterns and drivers of air pollution on multiple time scales: the case of northern China, *Environ. Manage.*, 61, 1048–1061, <https://doi.org/10.1007/s00267-018-1026-5>, 2018b.

646 Luoma, K., Niemi, J. V., Aurela, M., Fung, P. L., Helin, A., Hussein, T., Kangas, L., Kousa, A., Rönkkö, T., Timonen, H., Virkkula, A., and Petäjä, T.: Spatiotemporal variation and trends in equivalent black carbon in the Helsinki metropolitan area in Finland, *Atmos. Chem. Phys.*, 21, 1173–1189, <https://doi.org/10.5194/acp-21-1173-2021>, 2021.

647 Maricq, M. M.: Monitoring Motor Vehicle PM Emissions: An Evaluation of Three Portable Low-Cost Aerosol Instruments, *Aerosol Sci. Tech.*, 47, 564–573, <https://doi.org/10.1080/02786826.2013.773394>, 2013.

648 Mikkonen, S., Németh, Z., Varga, V., Weidinger, T., Leinonen, V., Yli-Juuti, T., and Salma, I.: Decennial time trends and diurnal patterns of particle number concentrations in a central European city between 2008 and 2018, *Atmos. Chem. Phys.*, 20, 12247–12263, <https://doi.org/10.5194/acp-20-12247-2020>, 2020.

649 Miller, A.: *Subset selection in regression*, CRC Press, 2002.

650 NCRP: Report No. 125: Deposition, Retention and Dosimetry of Inhaled Radioactive Substances, National Council on Radiation Protection and Measurements, 1997.

651 Oberdörster, G.: Nanotoxicology: in vitro-in vivo dosimetry, *Environ. Health Persp.*, 120, A13; author reply A13, <https://doi.org/10.1289/ehp.1104320>, 2012.

652 Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D., Yang, H., and A report from the ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group: Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy, Part. Fibre Toxicol., 2, 1–35, <https://doi.org/10.1186/1743-8977-2-8>, 2005.

653 Pacitto, A., Stabile, L., Russo, S., and Buonanno, G.: Exposure to Submicron Particles and Estimation of the Dose Received by Children in School and Non-School Environments, *Atmosphere (Basel)*, 11, <https://doi.org/10.3390/atmos11050485>, 2020.

695 Petäjä, T., Kerminen, V.-M., Maso, M. D., Junninen, H., Koponen, I., Hussein, T., Aalto, P. P., Andronopoulos, S., Robin, D.,
696 Hämeri, K., Bartzis, J. G., and Kulmala, M.: Sub-micron atmospheric aerosols in the surroundings of Marseille and Athens:
697 physical characterization and new particle formation, *Atmos. Chem. Phys.*, 7, 2705-2720, <https://doi.org/10.5194/acp-7-2705-2007>, 2007.
698

699 Pirjola, L., Niemi, J. V., Saarikoski, S., Aurela, M., Enroth, J., Carbone, S., Saarnio, K., Kuuluvainen, H., Kousa, A., Rönkkö,
700 T., and Hillamo, R.: Physical and chemical characterization of urban winter-time aerosols by mobile measurements in Helsinki,
701 Finland, *Atmos. Environ.*, 158, 60-75, <https://doi.org/10.1016/j.atmosenv.2017.03.028>, 2017.
702 Reche, C., Viana, M., Brines, M., Perez, N., Beddows, D., Alastuey, A., and Querol, X.: Determinants of aerosol lung-
703 deposited surface area variation in an urban environment, *Sci. Total Environ.*, 517, 38-47,
704 <https://doi.org/10.1016/j.scitotenv.2015.02.049>, 2015.
705 Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications and Display sYstem: READY, *Environ. Model.
706 Softw.*, 95, 210-228, <https://doi.org/10.1016/j.envsoft.2017.06.025>, 2017.
707 Rönkkö, T., Kuuluvainen, H., Karjalainen, P., Keskinen, J., Hillamo, R., Niemi, J. V., Pirjola, L., Timonen, H. J., Saarikoski,
708 S., Saukko, E., Järvinen, A., Silvennoinen, H., Rostedt, A., Olin, M., Yli-Ojanperä, J., Nousiainen, P., Kousa, A., and Dal
709 Maso, M.: Traffic is a major source of atmospheric nanocluster aerosol, *Proc. Natl. Acad. Sci. U.S.A.*, 114, 7549-7554,
710 <https://doi.org/10.1073/pnas.1700830114>, 2017.
711 Rostedt, A., Arffman, A., Janka, K., Yli-Ojanperä, J., and Keskinen, J.: Characterization and Response Model of the PPS-M
712 Aerosol Sensor, *Aerosol Sci. Tech.*, 48, 1022-1030, <https://doi.org/10.1080/02786826.2014.951023>, 2014.
713 Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead,
714 *Nat. Mach. Intell.*, 1, 206-215, <https://doi.org/10.1038/s42256-019-0048-x>, 2019.
715 Salo, L., Hyvärinen, A., Jalava, P., Teinilä, K., Hooda, R. K., Datta, A., Saarikoski, S., Lintusaari, H., Lepistö, T., Martikainen,
716 S., Rostedt, A., Sharma, V. P., Rahman, M. H., Subudhi, S., Asmi, E., Niemi, J. V., Lihavainen, H., Lal, B., Keskinen, J.,
717 Kuuluvainen, H., Timonen, H., and Rönkkö, T.: The characteristics and size of lung-depositing particles vary significantly
718 between high and low pollution traffic environments, *Atmos. Environ.*, 118421,
719 <https://doi.org/10.1016/j.atmosenv.2021.118421>, 2021a.
720 Salo, L., Rönkkö, T., Saarikoski, S., Teinilä, K., Kuula, J., Alanen, J., Arffman, A., Timonen, H., and Keskinen, J.: Concentrations and Size Distributions of Particle Lung-deposited Surface Area (LDSA) in an Underground Mine, *Aerosol Air
721 Qual. Res.*, 21, 200660-200660, <https://doi.org/10.4209/aaqr.200660>, 2021b.
722 Schmid, O., and Stoeger, T.: Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the
723 lung, *J. Aerosol Sci.*, 99, 133-143, <https://doi.org/10.1016/j.jaerosci.2015.12.006>, 2016.
724 Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C. J., Fushimi, A., Enami, S., Arangio, A. M., Fröhlich-Nowoisky,
725 J., Fujitani, Y., Furuyama, A., Lakey, P. S. J., Lelieveld, J., Lucas, K., Morino, Y., Pöschl, U., Takahama, S., Takami, A.,
726 Tong, H., Weber, B., Yoshino, A., and Sato, K.: Aerosol health effects from molecular to global scales, *Environ. Sci. Technol.*,
727 51, 13545-13567, <https://doi.org/10.1021/acs.est.7b04417>, 2017.
728 Šimić, I., Lovrić, M., Godec, R., Kröll, M., and Bešlić, I.: Applying machine learning methods to better understand, model
729 and estimate mass concentrations of traffic-related pollutants at a typical street canyon, *Environ. Pollut.*, 263, 114587,
730 <https://doi.org/10.1016/j.envpol.2020.114587>, 2020.
731 Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, *J. Geophys. Res. Atmos.*, 106, 7183-
732 7192, <https://doi.org/10.1029/2000JD900719>, 2001.
733 Teinilä, K., Aurela, M., Niemi, J. V., Kousa, A., Petäjä, T., Järvi, L., Hillamo, R., Kangas, L., Saarikoski, S., and Timonen,
734 H.: Concentration variation of gaseous and particulate pollutants in the Helsinki city centre—Observations from a two-year
735 campaign from 2013–2015, *Boreal Environ. Res.*, 2019.
736 Timonen, H., Carbone, S., Aurela, M., Saarnio, K., Saarikoski, S., Ng, N. L., Canagaratna, M. R., Kulmala, M., Kerminen, V.-
737 M., Worsnop, D. R., and Hillamo, R.: Characteristics, sources and water-solubility of ambient submicron organic aerosol in
738 springtime in Helsinki, Finland, *J. Aerosol Sci.*, 56, 61-77, <https://doi.org/10.1016/j.jaerosci.2012.06.005>, 2013.
739 Tissari, J.: Fine particle emissions from residential wood combustion (Puun pienpolton pieniukkaspäästöt), University of
740 Kuopio, Finland, 63 pp., 2008.
741 Todea, A. M., Beckmann, S., Kaminski, H., and Asbach, C.: Accuracy of electrical aerosol sensors measuring lung deposited
742 surface area concentrations, *J. Aerosol Sci.*, 89, 96-109, <https://doi.org/10.1016/j.jaerosci.2015.07.003>, 2015.
743 Tong, X., Ho, J. M. W., Li, Z., Lui, K.-H., Kwok, T. C., Tsui, K. K., and Ho, K.: Prediction model for air particulate matter
744 levels in the households of elderly individuals in Hong Kong, *Sci. Total Environ.*, 717, 135323,
745 <https://doi.org/10.1016/j.scitotenv.2019.135323>, 2020.
746 Yeh, H.-C., and Schum, G.: Models of human lung airways and their application to inhaled particle deposition, *B. Math. Biol.*,
747 42, 461-480, [https://doi.org/10.1016/S0092-8240\(80\)80060-7](https://doi.org/10.1016/S0092-8240(80)80060-7), 1980.
748 Zaidan, M. A., Wraith, D., Boor, B. E., and Hussein, T.: Bayesian proxy modelling for estimating black carbon concentrations
749 using white-box and black-box models, *Appl. Sci.*, 9, 4976, <https://doi.org/10.3390/app9224976>, 2019.
750 Zaidan, M. A., Motlagh, N. H., Fung, P. L., Lu, D., Timonen, H., Kuula, J., Niemi, J. V., Tarkoma, S., Petäjä, T., Kulmala,
751 M., and Hussein, T.: Intelligent calibration and virtual sensing for integrated low-cost air quality sensors, *IEEE Sens. J.*, 20,
752 13638-13652, 2020.
753 Zhou, Y., Dada, L., Liu, Y., Fu, Y., Kangasluoma, J., Chan, T., Yan, C., Chu, B., Daellenbach, K. R., Bianchi, F., Kokkonen,
754 T. V., Liu, Y., Kujansuu, J., Kerminen, V.-M., Petäjä, T., Wang, L., Jiang, J., and Kulmala, M.: Variation of size-segregated
755 particle number concentrations in wintertime Beijing, *Atmos. Chem. Phys.*, 20, 1201-1216, [https://doi.org/10.5194/acp-20-1201-2020](https://doi.org/10.5194/acp-20-
756 1201-2020), 2020.
757

759 **Table 1.** Ambient LDSA of alveolar region (in $\mu\text{m}^2 \text{cm}^{-3}$, corrected to 2 significant figures) reported in the last decade in chronological
 760 order of the measurement start. TS and RA represent traffic sites and residential area respectively. For the other acronyms, please see the
 761 method section.

Site	Location	Average	Uncertainties	Period/Season	Instruments	Study
description		(Mean, unless otherwise)	(SD, unless state otherwise)			
UB	Ruhr, Germany	median=36	IQR=21	Mar 2009–Dec 2014	NSAM	Hennig et al. (2018)
RB+UB+TS	Basel, Geneva, Lugano, Wald, Switzerland	32	IQR=25	Jan 2011–Dec 2012	DiSCmini	Eeftens et al. (2016)
City centre with heavy traffic	Lisbon, Portugal	35–89	4–8	Apr–May 2011	NSAM	Albuquerque et al. (2012)
UB	Cassino, Italy	88–240	-	Oct 2011–Mar 2012	NSAM	Buonanno et al. (2012)
RB		69				
UB with traffic influence	Barcelona, Spain	37	26	Nov 2011–May 2013	NSAM	Reche et al. (2015)
TS	Helsinki, Finland	65–94	-	Feb 2012	ELPI, NSAM	Kuuluvainen et al. (2016)
RA		15–31				
TS	Athens, Greece	65	21 4.8	Jul 2012	Partector Aerotrak 9000	Cheristanidis et al. (2020)
UB with traffic influence	Leicester, UK	30	25	Nov 2013–May 2015	NSAM	Hama et al. (2017)
		23	14	Warm months		
		38	33	Cold months		
Airport	Los Angeles	47	27	Nov–Dec 2014 and May–Jul 2015	DiSCmini	Habre et al. (2018)
UB	Fukuoka, Japan	127	62	Apr 2015–Mar 2016	NSAM	Kiriya et al. (2017)
TS	Helsinki, Finland	60 (ground level) 36–40 (below rooftop) 16–26 (above rooftop)		Nov 2016	Partector, ELPI, DiSCmini, Pegasor AQ Urban	Kuuluvainen et al. (2018)
SC		22	14			Kuula et al. (2020)

UB	Helsinki, Finland	9.4 12	6.9 10	Feb 2018	2017–Jan 2018	Pegasor Urban	AQ
TS	Delhi, India	330	130	Nov–Dec 2018	ELPI	Salo et al. (2021a)	
UB	Salerno	79	48	Nov	2018–	NanoTracer	Pacitto et al. (2020)
TS	Roma, Italy	110	57	May 2019			
RB	Parma, Italy	17	10				

762

763

764

765 **Table 2.** Descriptive statistics of alveolar LDSA concentrations ($\mu\text{m}^2 \text{cm}^{-3}$) at SC (2017–2018), UB (2017–May 2018), DH1–3 (2018) and
 766 RB (2018) site. The mean (column 3), standard deviation (SD, column 4), 10th, 25th, 50th, 75th and 90th percentile (P10, P25, P50, P75 and
 767 P90, column 5–9), geometric mean (Gmean, column 10) and geometric standard deviation (GSD, column 11) of the concentrations are
 768 corrected to one decimal place. The percentage of valid data in the reported measurement period is shown in column 12.

		Mean	SD	P10	P25	P50	P75	P90	Gmean	GSD	%
SC	All	19.7	11.3	8.4	11.7	17.0	24.7	34.4	17.0	1.7	97
	Winter	19.4	12.2	7.6	10.7	16.1	24.7	35.3	16.3	1.8	98
	Spring	19.6	11.0	8.6	11.8	16.9	24.3	34.2	17.1	1.7	94
	Summer	20.8	10.4	10.5	13.5	18.4	25.5	34.2	18.6	1.6	98
	Autumn	18.4	11.7	7.1	10.0	15.0	23.8	34.6	15.3	1.8	96
	Workdays	21.4	12.3	8.6	12.5	18.8	27.7	37.6	18.4	1.8	97
	Weekends	15.9	7.5	8.1	10.7	14.4	19.4	25.2	14.4	1.6	97
UB	All	11.2	7.1	4.6	6.4	9.5	14.0	19.6	9.5	1.8	70
	Winter	12.4	9.1	4.8	6.3	10.0	15.4	22.5	10.1	1.9	89
	Spring	10.4	6.1	4.6	6.2	9.0	12.8	18.3	9.0	1.7	100
	Summer	12.8	5.8	6.7	8.5	11.4	15.8	20.7	11.6	1.6	57
	Autumn	7.7	4.7	3.2	4.5	6.7	9.7	13.2	6.7	1.7	56
	Workdays	11.5	7.3	4.8	6.7	9.7	14.1	20.3	9.8	1.8	70
	Weekends	10.4	6.6	4.1	5.8	8.8	13.6	18.3	8.8	1.8	70
DH1–3	All	11.7	8.6	4.2	6.3	9.7	14.5	21.1	9.5	1.9	94
	Winter	12.3	10.2	4.1	6.2	9.6	14.8	23.4	9.7	2.0	86
	Spring	12.8	8.2	5.3	7.4	10.8	15.9	23.1	10.7	1.8	98
	Summer	11.8	5.9	5.7	7.8	10.8	14.5	19.2	10.6	1.6	98
	Autumn	10.5	10.2	3.0	4.6	6.8	13.0	22.2	7.5	2.2	95
	Workdays	11.8	8.3	4.3	6.4	9.9	14.6	20.8	9.6	1.9	95
	Weekends	11.7	9.3	4.0	6.0	9.4	14.3	21.8	9.3	2.0	93
RB	All	7.6	5.4	2.4	4.0	6.5	10.2	14.0	6.1	2.0	99
	Winter	6.6	6.0	2.2	3.5	5.6	8.3	11.6	5.3	1.9	100
	Spring	9.1	6.4	3.5	5.1	7.4	11.0	16.6	7.5	1.9	99
	Summer	9.8	4.3	4.7	6.6	9.3	12.5	15.3	8.9	1.6	99
	Autumn	4.9	4.1	1.6	2.6	3.9	5.6	8.9	3.8	2.0	99
	Workdays	7.7	5.6	2.5	4.1	6.6	10.2	14.1	6.2	2.0	99
	Weekends	7.6	5.0	2.4	4.0	6.5	10.1	14.0	6.1	2.0	100

769
 770
 771

772 **Table 3.** The evaluation attributes by IAME model at the SC and the UB site, corrected to 2 significant figures.

	Street canyon					Urban background				
	R^2	MAE	cRMSD	r	NSD	R^2	MAE	cRMSD	r	NSD
All	0.80	3.7	5.6	0.87	0.78	0.77	2.3	3.7	0.86	0.80
Winter	0.86	3.4	5.3	0.92	0.74	0.81	2.5	4.6	0.89	0.68
Spring	0.75	3.9	5.9	0.85	0.79	0.61	2.4	3.3	0.84	0.85
Summer	0.70	4.1	5.9	0.83	0.84	0.61	2.7	3.7	0.79	0.95
Autumn	0.85	3.4	5.4	0.9	0.75	0.85	1.3	2.0	0.91	0.83
Workdays	0.81	4.1	6.1	0.87	0.77	0.75	2.4	3.8	0.86	0.77
Weekends	0.72	3.0	4.3	0.82	0.82	0.8	2.1	3.5	0.85	0.87

773

774

775 **Table 4.** Five most successful sub-models at the SC site. The table shows only the fixed predictors with their coefficient (β , all p<0.05) and
776 corresponding standard error (SE). The variance inflation factor (VIF) among the fixed predictors is also shown for the 5 sub-models. The
777 evaluation attributes of the sub-models are shown column 6–10. The percentage of the sub-model usage and the number of data points (n)
778 is shown in column 11 and 12. Natural logarithm is taken for parameters with asterisk (*).

	Fixed predictors	β	SE	VIF	R^2	MAE	cRMSD	r	NSD	%	n
	*PM _{2.5}	0.119	0.005	1.54							
1	*PNC	0.313	0.005	2.89	0.74	3.7	5.7	0.87	0.79	81	2603
	*BC	0.223	0.004	2.17							
	*NOx	0.236	0.005	3.79							
2	*PNC	0.153	0.005	1.63	0.74	3.8	5.7	0.86	0.77	13	2629
	*BC	0.231	0.007	4.90							
	*PNC	-0.044	0.003	1.07							
3	*BC	0.375	0.004	2.20	0.74	3.8	5.8	0.86	0.78	4	6622
	WS	0.201	0.004	2.15							
	*NO _x	0.250	0.005	3.09							
4	*PM _{2.5}	0.243	0.004	1.17	0.74	3.8	5.7	0.87	0.78	<1	2596
	*PNC	0.184	0.005	3.02							
	*NOx	0.176	0.005	3.51							
5	*PM ₁₀	0.070	0.004	1.3	0.72	3.8	5.8	0.85	0.75	<1	2713
	*BC	0.326	0.006	3.65							

779

780

781 **Table 5.** Five most successful sub-models at the UB site. The table shows only the fixed predictors with their coefficient (β , all $p < 0.05$) and
782 corresponding standard error (SE). The variance inflation factor (VIF) among the fixed predictors is also shown for the 5 sub-models. The
783 evaluation attributes of the sub-models are shown column 6–10, corrected to 2 significant figures. The percentage of the sub-model usage
784 and the number of data points (n) is shown in column 11 and 12. Natural logarithm is taken for parameters with asterisk (*).

	Fixed predictors	β	SE	VIF	R^2	MAE	cRMSD	r	NSD	%	n
	*CO	0.072	0.027	1.72							
1	*PNC	0.400	0.006	2.08	0.84	1.7	2.5	0.92	0.87	49	941
	*BC	2.956	0.007	1.52							
	*PNC	-0.098	0.005	1.09							
2	*BC	0.398	0.004	1.44	0.82	1.9	2.9	0.91	0.89	17	6608
	WD-N	0.328	0.006	1.55							
	*NO ₂	0.237	0.007	1.88							
3	*CO	0.520	0.024	1.10	0.69	2.4	3.4	0.84	0.73	17	941
	*PNC	0.341	0.010	2.00							
	*CO	0.009	0.000	1.08							
4	*PNC	0.348	0.025	1.07	0.58	2.7	3.9	0.77	0.63	11	9757
	RH	0.590	0.007	1.15							
	*NO _x	0.107	0.006	2.22							
5	*CO	0.182	0.032	1.72	0.81	1.9	3.0	0.90	0.85	2	7036
	*BC	0.455	0.007	2.56							

785

786

787

788

789 **Table 6.** Model evaluation comparison of deposition model derived LDSA ($\text{LDSA}_{\text{ICRP}}$), modelled LDSA by IAP (LDSA_{IAP}) and modelled
 790 LDSA by IAME ($\text{LDSA}_{\text{IAME}}$) against reference measurements $\text{LDSA}_{\text{Pegasor}}$ at the SC and the UB site. Parameters with an asterisk represent
 791 natural logarithm. The evaluation attributes of the three methods are corrected to 2 significant figures.

	Street canyon					Urban background				
	R^2	MAE	$cRMSD$	r	NSD	R^2	MAE	$cRMSD$	r	NSD
$\text{LDSA}_{\text{ICRP}}$	0.72	4.1	6.2	0.88	1.1	0.83	1.8	2.9	0.93	1.1
LDSA_{IAP}	0.77	4.0	6.0	0.85	0.78	0.66	2.8	3.9	0.84	0.81
$\text{LDSA}_{\text{IAME}}$	0.80	3.7	5.6	0.87	0.78	0.77	2.3	3.7	0.86	0.80

792

793

794 **Table 7.** Statistics to show temporal difference. The number of data (n), mean and standard deviation (SD) of absolute error and the
 795 corresponding *p*-values of t-tests at the selected time windows at both sites.

Street canyon (SC)	n	Mean	SD	t-test	<i>p</i>
Workdays	11658	4.1	4.8	Workdays vs Weekends	4.13×10^{-81}
Weekends	5322	3.0	3.2		
Winter	4023	3.4	4.2	Winter vs Spring	3.64×10^{-24}
					5.89×10^{-5}
Spring	2297	4.0	4.5	Winter vs Summer	7.07×10^{-7}
Summer	6457	4.2	4.4	Winter vs Autumn	6.38×10^{-34}
Autumn	4320	3.4	4.3	Spring vs Summer	1.02×10^{-4}
				Spring vs Autumn	2.69×10^{-15}
Hour 4–10 a.m.	4953	4.8	5.6	Hour 4–10 a.m. vs 4–10 p.m.	2.58×10^{-40}
Hour 4–10 p.m.	4981	3.5	3.6		
Urban background (UB)	n	Mean	SD	t-test	<i>p</i>
Workdays	8473	2.3	2.6	Workdays vs Weekends	5.08×10^{-8}
Weekends	3852	2.1	2.6		
Winter	2539	2.5	3.2	Winter vs Spring	1.96×10^{-7}
					0.39^{***}
Spring	1101	1.9	3.1	Winter vs Summer	1.90×10^{-2}
Summer	1628	2.6	2.4	Winter vs Autumn	2.75×10^{-9}
Autumn	812	2.3	2.1	Spring vs Summer	2.20×10^{-3}
				Spring vs Autumn	1.40×10^{-3}
Hour 4–10 a.m.	3620	2.3	2.7	Hour 4–10 a.m. vs 4–10 p.m.	0.86^{***}
Hour 4–10 p.m.	3591	2.3	2.7		
	n	Mean	SD	t-test	<i>p</i>
Street canyon (SC)	11940	3.9	4.6	SC vs UB (in same time period)	8.21×10^{-246}
Urban background (UB)		2.3	2.6		

798 *** *p*>0.05 the null hypothesis of different distribution is rejected

799

800

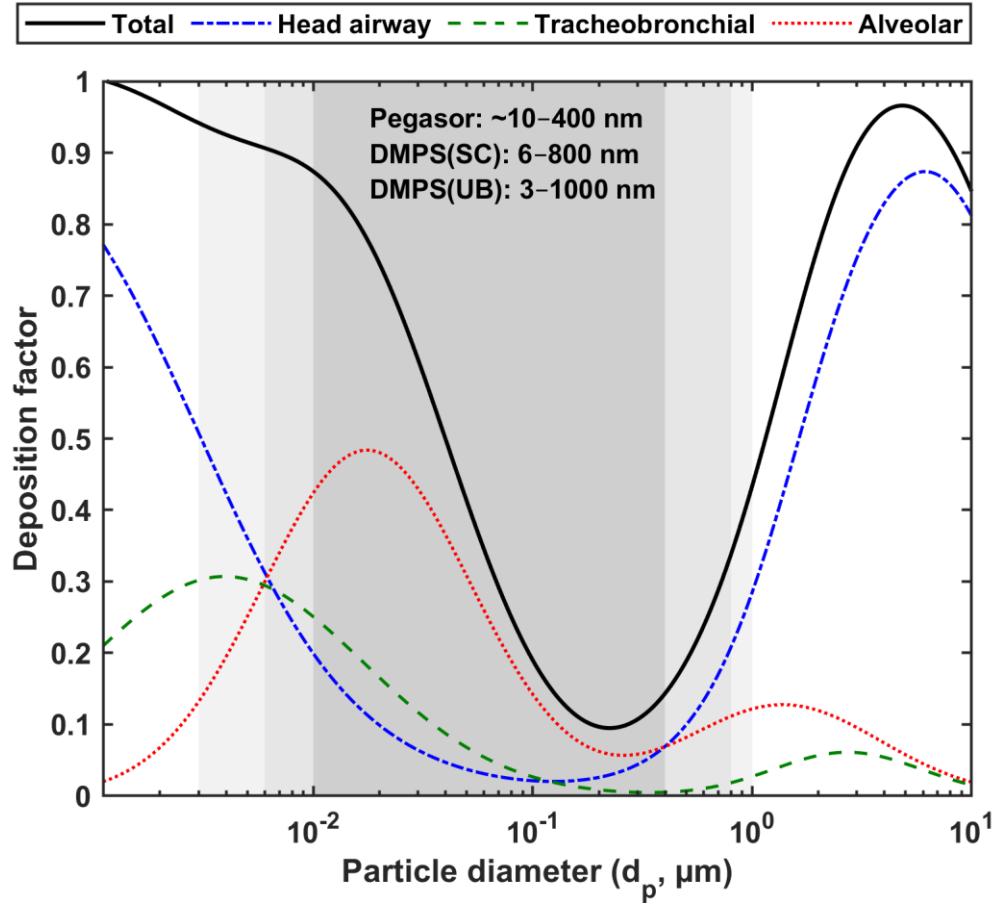


Figure 1. Lung deposition factor of a spectrum of particle size distribution based on the equation (ICRP, 1994). Black solid line represents the total deposition factor while blue, green and red dotted line refer to deposition factor in head airway, tracheobronchial and alveolar region, respectively. Pegasor AQ Urban measured the alveolar LDSA concentration of particles in the ~10–400 nm size range (dark grey). DMPS at SC and UB were used to calculate alveolar LDSA in selected size fractions in the 6–800 nm and 3–1000 nm size range, respectively.

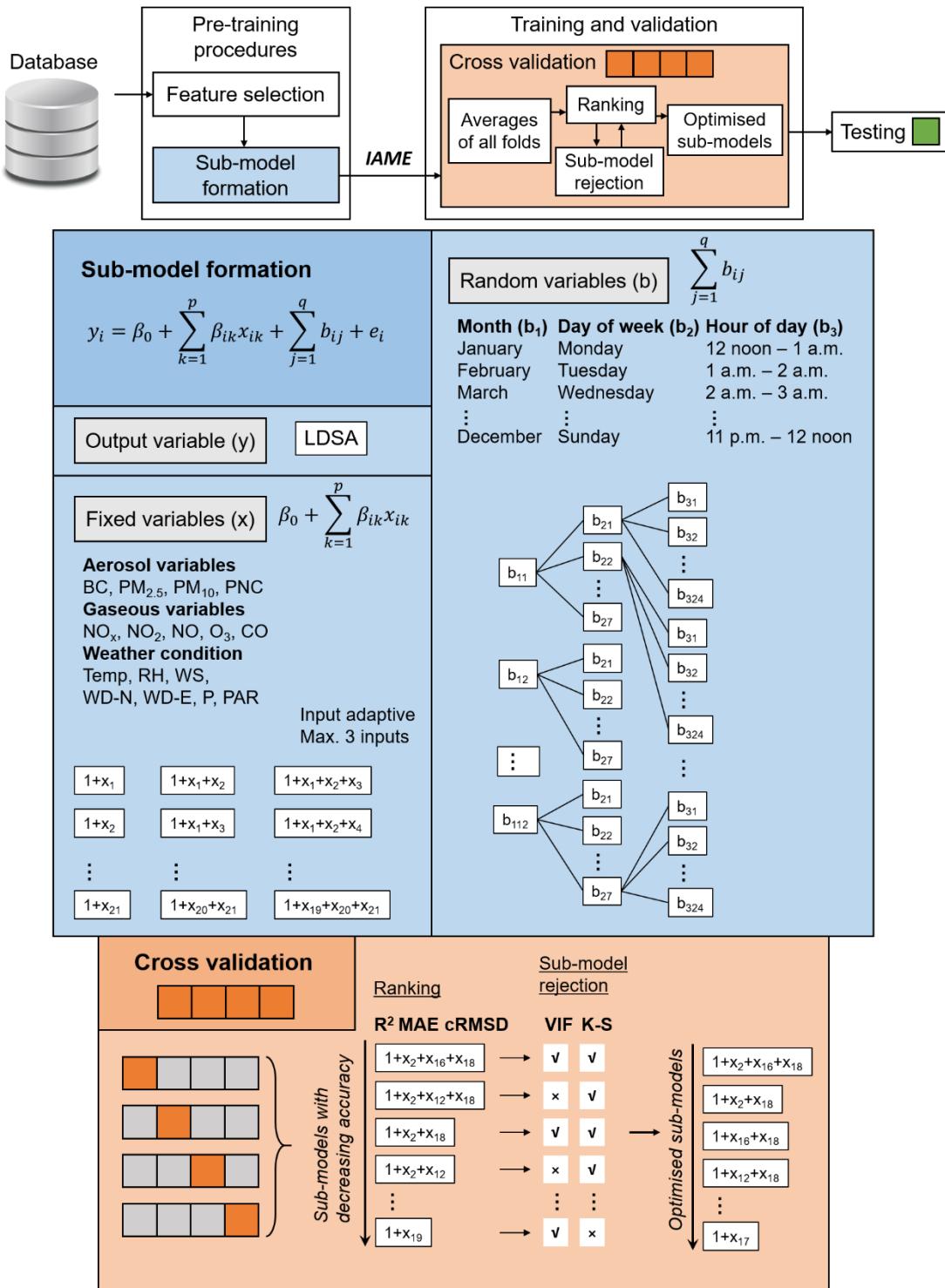


Figure 2. The block diagram of the proxy procedures (top). The blue and orange blocks are explanatory notes to the sections of sub-model formation and cross validation, respectively.

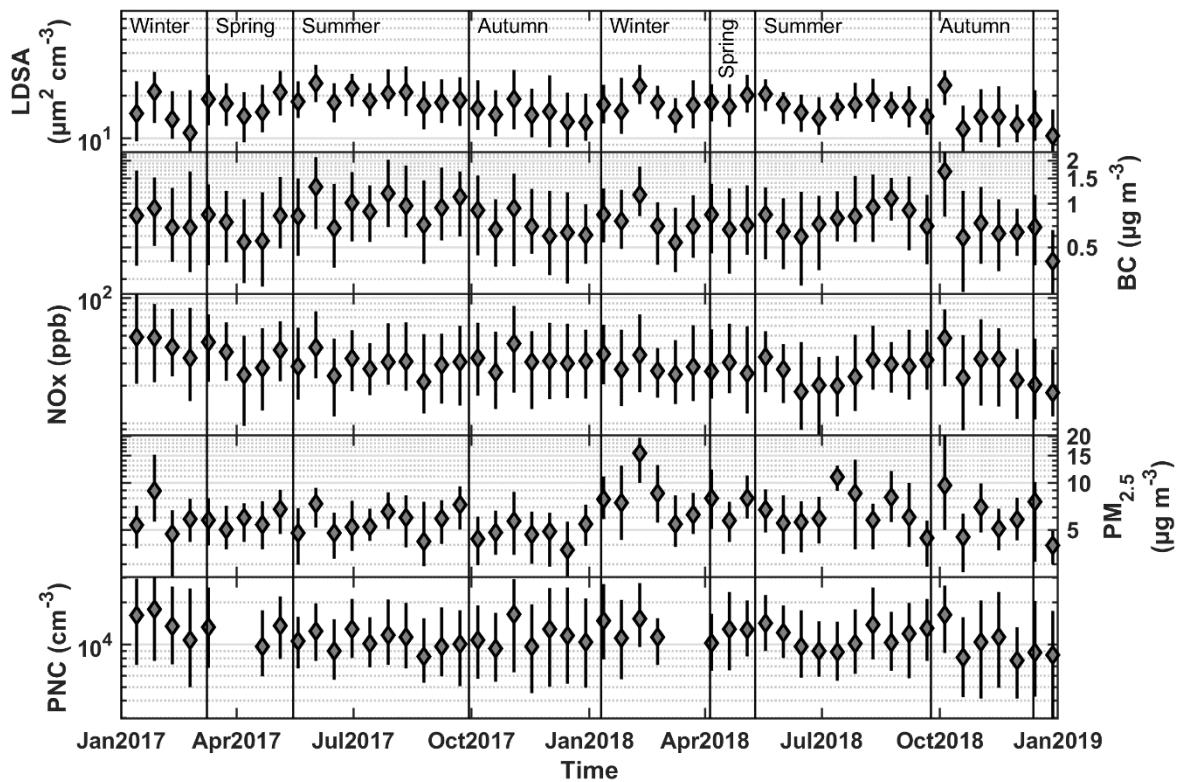


Figure 3. Time series of the selected air pollutant parameters (First to end row: LDSA ($\mu\text{m}^2 \text{cm}^{-3}$), BC ($\mu\text{g m}^{-3}$), NO_x (ppb), PM_{2.5} ($\mu\text{g m}^{-3}$) and PNC (cm^{-3})) at Mäkelänkatu SC site during the measurement period from 1 January 2017 and 31 December 2018. Each bar represents a period of two weeks where the shaded diamond marker is the median and the vertical error bars are the 25th and 75th percentiles. Seasons are thermally separated.

803

804

805

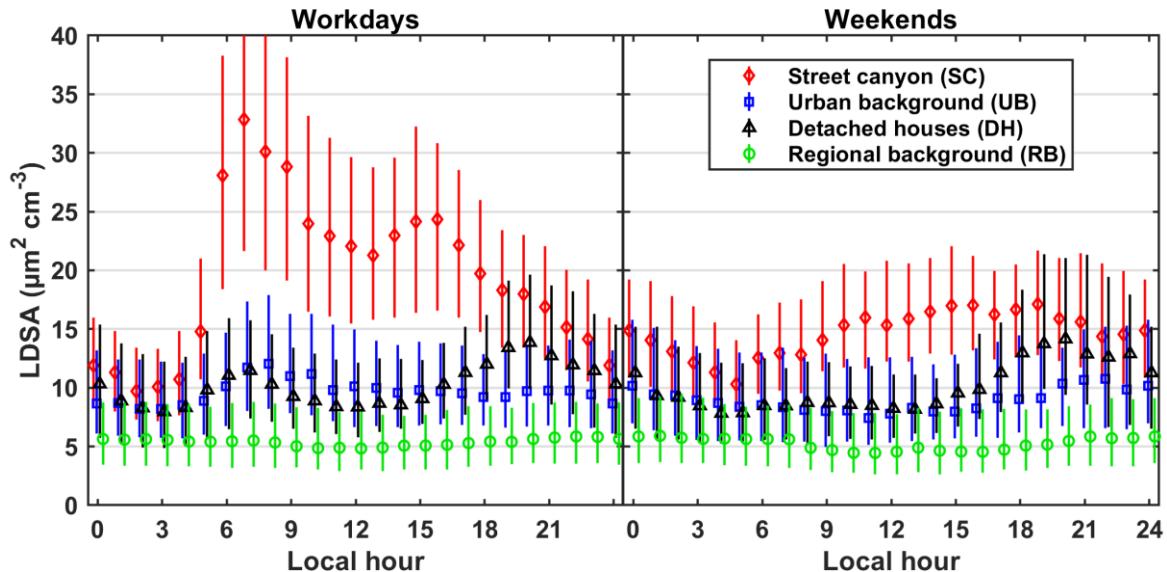
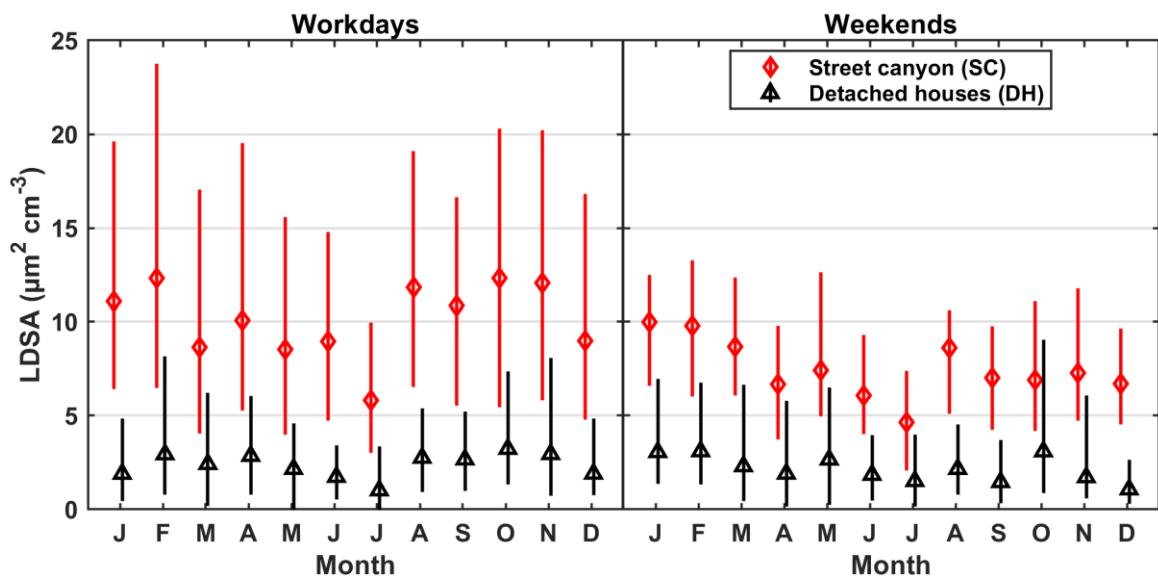


Figure 4. Upper panel: Diurnal cycles of LDSA concentrations ($\mu\text{m}^2 \text{cm}^{-3}$) at SC (red diamond, 2017–2018), UB (blue square, 2017–May 2018), DH1–3 (black triangle, 2018) and RB site (green circle, 2018) on workdays and weekends with error bars of 25th and 75th percentiles. Lower panel: Monthly averages in year 2018 of local LDSA increments at the SC (red diamond) and DH1–3 (black triangle) site (LDSA concentration at the hotspot site – LDSA at RB site) on workdays and weekends with error bars of 25th and 75th percentiles.

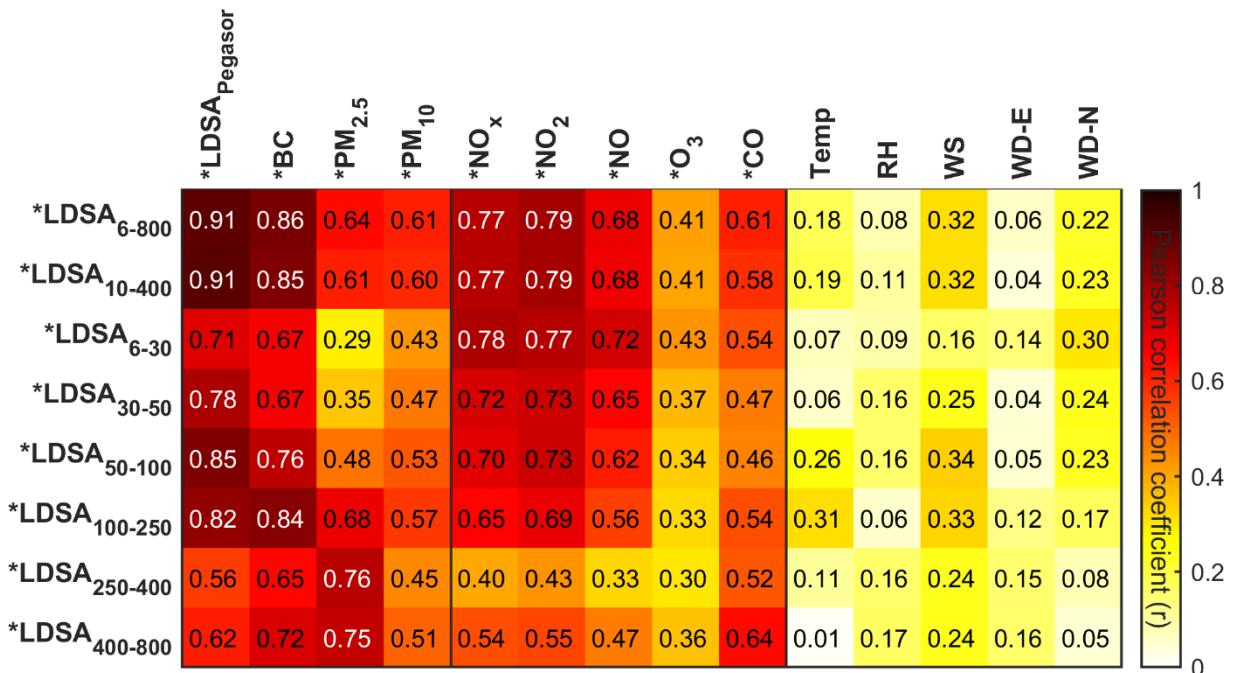


Figure 5. Heatmap showing Pearson correlation coefficient (r , corrected to 2 significant figures) of LDSA of different particle size sections (in nm) by ICRP lung deposition model and the other air pollutant parameters at Mäkeläkatu SC site. Dark red indicates a high correlation while pale yellow indicates a low correlation. Parameters with an asterisk represent natural logarithm. LDSA_{Pegasor} represents the measured LDSA concentrations.

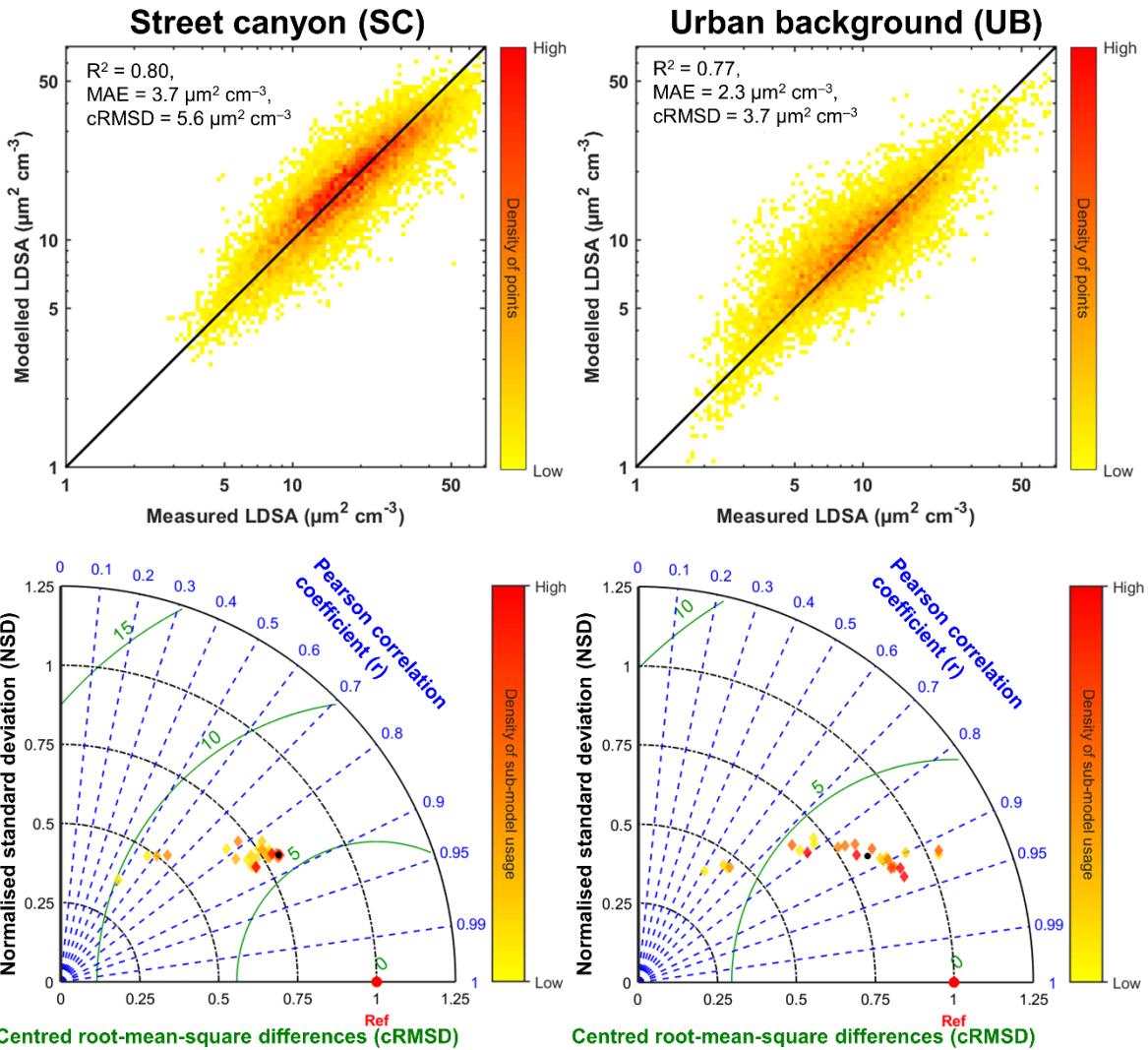


Figure 6. The upper panel shows the scatter plots of modelled LDSA against the measured LDSA at Mäkelänkatu SC site (first column) and at Kumpula UB site (second column). Hues of colours represent the density of points on the figure. The lower panel shows the Taylor's diagrams (Taylor, 2001) at Mäkelänkatu SC site (first column) and at Kumpula UB site (second column). Each diamond marker in the Taylor's diagrams represents each sub-model used in the final estimation by IAME (solid black dot), compared with the reference data (solid red dot). Hues of colours represent how frequent the sub-model was used.

809

810

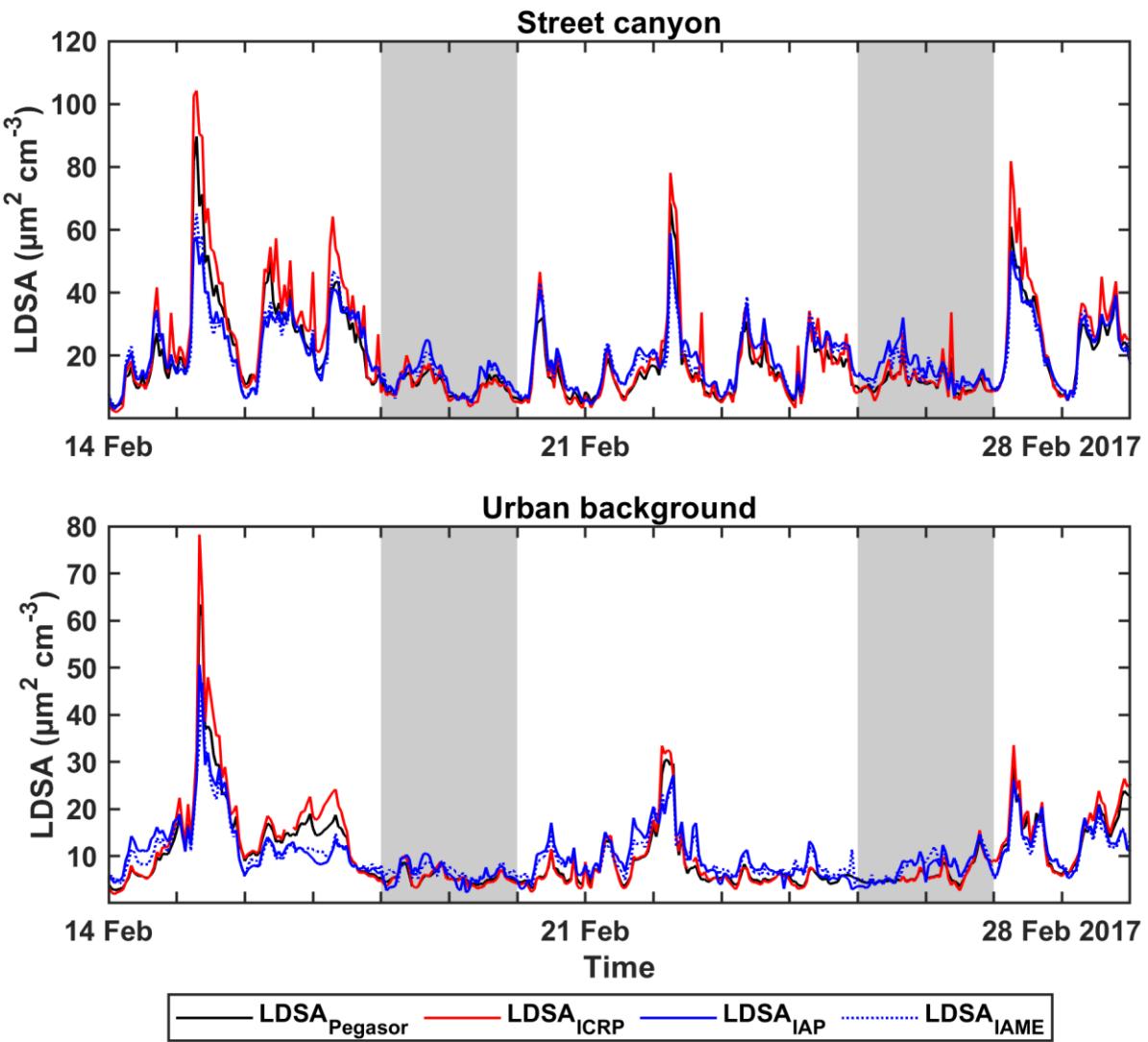


Figure 7. Timeseries of measured LDSA ($\text{LDSA}_{\text{Pegasor}}$, black), deposition model derived LDSA by ICRP ($\text{LDSA}_{\text{ICRP}}$, red), modelled LDSA by IAP (LDSA_{IAP} , blue solid line) and modelled LDSA by IAME ($\text{LDSA}_{\text{IAME}}$, blue dotted line) during a selected measurement window between 14 and 28 February 2017. Shaded regions represent weekends, otherwise workdays.

811

812

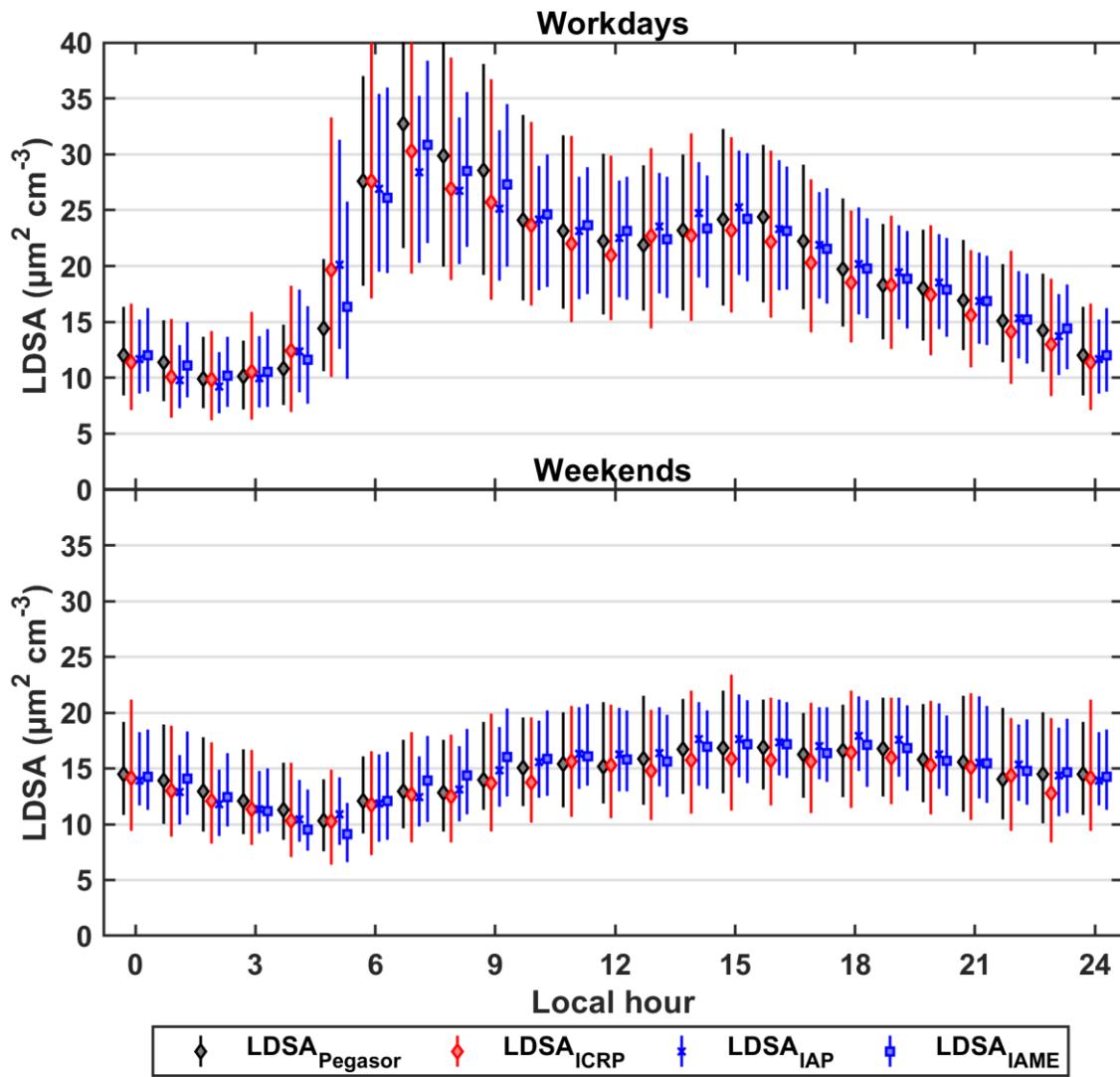


Figure 8. Diurnal cycles of measured ($\text{LDSA}_{\text{Pegasor}}$, black), deposition model derived ($\text{LDSA}_{\text{ICRP}}$, red) and modelled (LDSA_{IAP} and $\text{LDSA}_{\text{IAME}}$, blue) LDSA concentrations with error bars of 25th and 75th percentiles on workdays (left) and weekends (right). LDSA_{IAP} and $\text{LDSA}_{\text{IAME}}$ can be differentiated by their markers, cross for the former and square for the latter.

813

814