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Abstract.

We present a climatology of trade cumulus cold pools and their associated meteorological perturbations
::::::
changes

::
in
:::::::
surface

:::::::
weather,

::::::
vertical

:::::::
velocity

::::
and

:::::::::
cloudiness based on more than ten years of in-situ and remote sensing data from the Barbados

Cloud Observatory. Cold pools are identified by abrupt drops in surface temperature, and the mesoscale organization pattern

is classified by a neural network algorithm based on GOES-16 ABI infrared images. We find cold pools to be ubiquitous in5

the winter trades—they are present about 7.8% of the time and occur on 73% of days. Cold pools with stronger temperature

drops (∆T ) are associated with deeper clouds, stronger precipitation, downdrafts and humidity drops, stronger wind gusts and

updrafts at the onset of the
:::
their

:
front, and larger cloud cover compared to weaker cold pools. The downdraft strength together

with the cold-pool front duration explains 50% of the variabilityin
:
,
:::::
which

::::::
agrees

::::
well

:::::
with

:::
the

:::::::::
conceptual

::::::
picture

:::
of

::::
cold

:::::
pools.

:::
The

::::
rain

:::::::
duration

::
in

:::
the

:::::
front

:
is
:::
the

::::
best

::::::::
predictor

::
of ∆T

:::
and

:::::::
explains

::::
36%

::
of

:::
its

:::::::::
variability.10

The mesoscale organization pattern has a strong influence on the occurrence frequency of cold pools. Fish has the largest

cold-pool fraction (12.8% of time), followed by Flowers and Gravel (9.9% and 7.2%), and lastly Sugar (1.6%). Fish cold pools

are also significantly stronger and longer-lasting compared to the other patterns, while Gravel cold pools are associated with

significantly stronger updrafts and deeper cloud-top height maxima. The daily
:::
diel

:
cycle of the occurrence frequency of Gravel,

Flowers, and Fish can explain a large fraction of the daily
:::
diel cycle in the cold-pool occurrence, as well as the pronounced15

extension of the daily
:::
diel cycle of shallow convection into the early afternoon by cold pools. Overall, we find cold-pool

periods to be 90% cloudier relative to the average winter trades. Also the wake of cold pools is characterized by above-average

cloudiness, suggesting that mesoscale arcs enclosing broad clear-sky areas are an exception. A better understanding of how

cold pools interact with and shape their environment could therefore be valuable to understand cloud cover variability in the

trades.20
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1 Introduction

Satellite images in the trades usually show very beautiful and diverse cloud structures over the dark blue ocean. Recurrent

features in these images are mesoscale arcs of cumuli that encircle either clear-sky areas or extensive stratiform cloud decks.

The mesoscale arcs result from spreading cold pools that have favourable conditions at their gust front for triggering new25

convection. Convective cold pools are generated by the evaporation of precipitation into unsaturated downdrafts, spreading out

at the surface as a density current. Cold pools are not only important for the triggering of new and often deeper convection

(Schlemmer and Hohenegger, 2014; Feng et al., 2015; Rowe and Houze Jr., 2015), but might also play a role in regulating cloud

cover in this
:::
the

:::::::
trades–a regime responsible for much of the uncertainty in climate sensitivity (Bony and Dufresne, 2005; Vial

et al., 2013). Here we use ground-based in-situ and remote sensing data from the Barbados Cloud Observatory (BCO) to study30

the climatology of trade-wind cumulus cold pools and to investigate its link to the pattern of mesoscale cloud organization.

Many studies addressing oceanic cold pools have focused on deep convection (Zuidema et al., 2017). In the trades, detailed

case studies for two weeks of the Rain in Cumulus over the Ocean (RICO) campaign have advanced our understanding of cold

pools from shallow convection (Zuidema et al., 2012). They showed that the deepest clouds and strongest radar signals occurred

in the moistest tercile of water vapour paths, and that precipitation-driven downdrafts can introduce additional gradients in the35

thermodynamic structure. More recently, analyses of data from the Elucidating the Role of Clouds-Circulation Coupling in

Climate (EUREC4A) field campaign (Bony et al., 2017; Stevens et al., 2021), which took place in January and February 2020

upstream Barbados, reveal that cold pools are frequent in the winter trades and can be well-detected from soundings due

to their very shallow mixed layers (Touzè-Peiffer et al., 2021). What is missing is a longterm climatology of trade cumulus

cold pools, along with a description of the changes in cloud properties and sub-cloud layer dynamics associated with the40

cold-pool passages. Such a climatology is particularly pertinent given the need for a reference dataset for comparison against

increasingly-available high-resolution simulations (Stevens et al., 2019; Rochetin et al., 2021).

Renewed interest in trade cumulus cold pools is also motivated by recent advances in characterizing patterns of mesoscale

cloud organization. Stevens et al. (2020) classified 900 satellite images in the North Atlantic trades and identified four promi-

nent patterns of mesoscale cloud organization—Sugar, Gravel, Flowers and Fish. The horizontal structure of the latter three45

patterns is intrinsically linked to the occurrence of mesoscale arcs and hence cold pools. The four patterns differ not only in

their horizontal structure, but also in cloud cover, cloud depth and precipitation (Bony et al., 2020; Schulz et al., 2021; Vial

et al., 2021). These differences likely also manifest in different cold-pool characteristics. Furthermore, cold pools might play

different roles in creating and maintaining these patterns. For the pattern Fish with its very large-scale fish-bone structures

that are tightly linked to extratropical dry intrusions (Aemisegger et al., 2021; Schulz et al., 2021), cold pools are likely to50

give the cloudy part its skeletal structure, but
::::
while

:
the overall system is forced by the large-scale

::::::::
dynamics

:
into its linear

alignment.
:::::::::::
Observations

::
of

::::::::
drizzling

:::::::::::
stratocumulus

:::::
often

:::::
show

::::
cold

:::::
pools

:::::
being

:::::::
dragged

:::::
along

::::
with

::
a

:::::
larger

::::::
system

:::::::
without

:::::::
initiating

:::
its

:::::::::
mesoscale

::::::::::
organization

::::::::::::::::::::
(Wilbanks et al., 2015).

:
Contrastingly, for the Gravel pattern, the large-scale influence

may be less important and also more homogeneous, such that the
:
.
:::::
Thus,

:
cold pools likely play an important role in cre-

ating and maintaining this pattern,
:::::::

similar
::
to

:::
the

::::::
strong

::::::::
influence

::
of

::::
rain

::::
(and

:::::::::
indirectly

::::
also

::::
cold

::::::
pools)

::
on

:::
the

:::::::::
transition55
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::::
from

::::::
closed-

::
to

::::::::
open-cell

::::::::::::
stratocumulus

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Xue et al., 2008; Wang and Feingold, 2009; Glassmeier and Feingold, 2017). Before

we can understand the different roles that cold pools play in these patterns, we need to understand whether and how cold-pool

characteristics differ among them.

This paper presents the first longterm climatology of trade-wind cumulus cold pools and addresses the following research

questions:60

1. How frequent are cold pools in the trade cumulus regime, and with which
::::
what changes in the surface meteorology,

cloudiness and vertical velocity are they associated?

2. How do cold-pool characteristics covary with the pattern of mesoscale organization?

We use more than ten years of surface meteorology and ground-based remote sensing data from
:::::::::
2011-2021

::::::::
collected

::
at

the BCO (Stevens et al., 2016). Clouds, their precipitation and therefore likely also cold pools at the BCO were shown to be65

representative across the trades (Medeiros and Nuijens, 2016). Cold pools are identified by abrupt drops in surface temperature,

and the pattern of mesoscale organization is classified by a neural network algorithm based on infrared satellite images (Schulz

et al., 2021).
::
To

:::::
focus

:::
on

::::
trade

:::::::
cumulus

::::
cold

::::::
pools,

::
we

:::::
limit

::::
most

::
of

:::
our

:::::::
analysis

::
to

:::
the

::::::
winter

::::::
regime

::::
from

:::::::::
December

::
to

:::::
April,

::
as

::
in

::::::
summer

:::
the

::::::::::
intertropical

:::::::::::
convergence

::::
zone

::
is

::::
often

:::::
close

::
to

::::::::
Barbados

:::
and

:::::::::
convection

::
is

:::::
much

:::::
deeper

::::::::::::::::::
(Brueck et al., 2015).

70

The next section
::::::
Section

::::
2.1 presents the data sources and explains the cold-pool detection algorithm and the selection

criteria. In Section 3, we present the cold-pool climatology and analyse the temporal structure of the cold-pool passages and

its
:::
the associated changes in meteorology and cloudiness. Section 4 discusses differences between the cold-pool properties of

the different mesoscale organization patterns. Conclusions are presented in Section 5.

2 Data and Methods75

2.1 BCO data

We use in-situ and ground-based remote sensing data from the BCO (Stevens et al., 2016), which is operated by the Max Planck

Institute for Meteorology together with the Caribbean Institute for Meteorology and Hydrology since April 2010. The BCO

is located atop a 17 m cliff on an eastward promontory of Barbados called Deebles Point (13.16◦N, 59.43◦W), and samples

nearly undisturbed Atlantic trade-wind conditions. We use surface meteorology and micro-rain radar (MRR) data from
::::
since80

January 2011, cloud radar data from
:::::
since January 2012, and Doppler lidar data from

::::
since

:
March 2016 until March 2021.

All data is aggregated into 1-min averages. The instruments used and meteorological variables derived are explained in the

following. More details about the BCO and its instrumentation can be found in Nuijens et al. (2014) and Stevens et al. (2016).

Surface meteorology

A Vaisala WXT520 sensor mounted on a 5 m mast measures temperature, relative humidity, barometric pressure, wind speed85

and wind direction. We discard temperature measurements exceeding 35◦C and pressure measurements lower than 980 hPa, as

they are outside the expected range of variability at the BCO.
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Micro-rain radar (MRR)

The MRR is a vertically-pointing frequency-modulated continuous-wave radar operating at 24 GHz (K band). The MRR has

a sampling frequency of 10 s (here averaged to 1 min)
:::
data

:::
has

::
a
::::::::
temporal

::::::::
resolution

::
of

::::::
1-min and a range gate of 30 m up to90

a height of 3 km. Rain rates lower than 0.03 mm h−1 are below the noise level and set to zero. We derive the mean rain rate

(RR) and the rain intensity (Rint; i.e. the
:::::::::::
instantaneous

:
rain rate during periods of rain) in a given

:::
for

:
a
::::::::
specified period from

data at 325 m above ground (the lowest level with reliable data). The MRR is also used to compute the rain frequency (Rfreq),

which is set to 1 when aRR>0.05 mm h−1 is measured in at least five range gates in the lowest 3 km (following Nuijens et al.,

2014). A few instances with unrealistically large RR exceeding 200 mm h−1 are set to NA.95

Cloud radar

Vertical profiles of hydrometeors (i.e.
::::::::
including

::::
both

:
cloud and rain droplets) at approx.

:::
10 s

::::::::
temporal

::::
and 30 m vertical

resolution are derived from two 35.5 GHz (Ka-Band) Doppler cloud radars. Radar returns with an equivalent radar reflectivity

lower than −50 dBZ are removed to eliminate signal from sea salt aerosol (Klingebiel et al., 2019). To identify individual

::::::::
connected

:
2D cloud entities

::::::
objects, a cloud segmentation algorithm is applied (Konow, 2020). Radar reflectivity is converted100

to a binary mask and morphological closing is applied
:
to

:::::::
remove

:::::
noise

::::
from

:::::::::::
measurement

:::::::::::
interruptions. The resulting mask

is used to segment cloud entities with
:::::
objects

:::::
using

:
connected components analysis with 8-connectivity. A minimum cloud

size of four pixels is applied, everything smaller than four pixels is discarded as clutter. For the resulting cloud entities, the

overall cloud-base height (cbhID), overall cloud-top height and the cloud length (i.e. the duration times the wind extrapolated

from the surface to cloud base assuming a power law) are determined. To focus on clouds connected to the sub-cloud and105

trade-wind layer, cloud entities with a
::::
only

:::::
cloud

::::::
objects

::::
with

::
a
::::::
lowest

:::::::::
cloud-base

::::::
height

:
(cbhID>:):::::::

smaller
::::
than

:
4 km are

excluded
:::::::::
considered

::
in

:::
the

:::::::
analysis.

From the remaining clouds, we derive
:::::
1-min

::::::::
averaged timeseries of the hydrometeor fraction , the lowest

:::::
(HF ),

:
cloud-

base height (CBH)and the highest
:
, cloud-top height (CTH)for every radar profile. The cloud cover ,

::::
and

::::::::
projected

:::::
cloud

::::
cover

::::::
(CC).

:::::::::
Following

:::::::::::::::::
Nuijens et al. (2014),

::::
CC

:
is further split up into contributions from precipitating cloud segments if110

::::
cloud

::::::::
segments

::::
with

::::::::
different CBH≤ 300 m (CCprcp), from ,

::::::
which

::::::::
represent cloudiness near the lifting-condensation level

(CClcl; 300 m< CBH ≤ 1 km), and from cloudiness aloft
:::::::::
cloudiness

::::
aloft

::::
such

::
as

::::::::
stratiform

::::::
layers

::
or

:::::
edges

::
of

::::::
deeper

::::::
cumuli

(CCaloft; 1 km<CBH ≤ 4 km). The latter two categories were also used in many previous studies (e.g Nuijens et al., 2014; Vial et al., 2019)
:::
We

:::
also

::::::::
introduce

:
a
:::::
third

:::::::
category

::
of

::::::::::
precipitating

:::::
cloud

::::::::
segments

::
if

:::::
CBH

::
≤

:::::
300 m

::::::::
(CCprcp,

::::
same

::::::::
threshold

::
as

::
in

::::::::::::::::::::
Klingebiel et al. (2021)).

A given radar
:::::
1-min

::::
HF

:
profile can only count to one of the three categories, such that e.g. a 2 km deep cloud with a115

CBH<300 m will only be counted in the CCprcp category. Note that the above classification into the different CBH cat-

egories does not account for the information of the cloud entity and all radar
::::::
consider

::::
the

:::::
cloud

::::::
objects

:::
and

::::::::::
subsequent

::::
HF

profiles are classified independently. A similar analysis accounting for the cloud entity by classifying cloud cover
::::::
objects

:::
by

:::::::::
classifying

:::
CC

:
contributions of different cloud types by their cbhID is shown in Appendix A.

From the cloud radar we also derive a deep-cloud mask, which is set to 1 if a radar signal between 4.5–8 km is detected.120

With this deep-cloud mask, periods of active deep convection reaching above the melting level can be omitted, while periods

with only cirrus-clouds are retained.
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Doppler lidar

The vertical velocity in the sub-cloud layer is measured by two Halo Photonics Streamline Pro Doppler wind lidar systems

::::::::::::::::::
(Päschke et al., 2015) at 30 m vertical resolution. The Doppler lidars measure vertical velocities of up to ±20 m s−1 with a125

1500 nm laser in altitudes from about 50 m to 1 km, depending on the atmospheric conditions and the aerosol loading. The

precision is <20 cm s−1 for a signal-to-noise ratio (SNR) of -17 dB. Measurements with a SNR smaller than -18.3 dB are

discarded. Data from the first system that was operated in vertically-pointing mode with a temporal resolution of 1.3 s is used

from March 2016 to October 2019. A second system is operated in horizontally-scanning mode since February 2019 and has a

temporal resolution of 3 s, with 2 out of 7 profiles measured in vertically-pointing mode. Vertical data from this second lidar is130

used from November 2019 to March 2021.

We derive
:::::
1-min

::::::::
timeseries

:::
of both the average vertical velocity in the sub-cloud layer (SCL) as the mean over 15 range

gates from 75-495 m (wSCL), and the vertical velocity near the sub-cloud layer top at 450 m as the mean over the four

range gates from 405-495 m (w450).
::::::
Doppler

::::
lidar

:::::::
vertical

::::::::
velocities

:::
are

::::::::::
commonly

:::::::::
considered

::::::
reliable

::::
also

:::
in

::::
rainy

:::::::
periods

:::::::::::::::::::::
(see e.g. Zhu et al., 2021).

:::
We

:::
did

:::
not

:::::::::
encounter

::::::::
problems

::::
with

:::
the

:::::::
Doppler

::::
lidar

::::::::
retrievals

::
in

::::
rainy

:::::::
periods

:::
and

:::::::
Figures

:
2
::::
and135

::
3h

::::
will

::::
show

::::
that

:::
the

:::::::
negative

::::::
vertical

::::::::
velocities

:::::::::
associated

::::
with

::::::::::
downdrafts

:::
are

::::::::
generally

::::
well

:::::::
captured.

:

2.2 Machine learning classification of mesoscale cloud organization patterns

The pattern of mesoscale cloud organization at BCO for the period January 2018 to March 2021 is classified by a neural

network algorithm applied to infrared satellite images from the Geostationary Operational Environmental Satellite 16 (GOES-

16). We use 30-minute brightness temperature retrievals
::::
every

:::
30

:::
min

:
from the 10.35µm-channel at a spatial resolution of 2 km140

from the Advanced Baseline Imager (ABI) Level 1b data product (GOES-R Calibration Working Group and GOES-R Series

Program, 2017), over a large domain including Barbados (45°W-66°W, 9.3°N-23.3°N).

The neural network based on the Retinanet algorithm (Lin et al., 2017) has been initially trained on and applied to visible

images in Rasp et al. (2020), and later retrained and applied to infrared images by Schulz et al. (2021). The use of infrared

images also allows study of the diurnal cycle of the mesoscale organization (Vial et al., 2021). The classifications of the145

neural network are rectangles of various sizes that belong to either the Sugar, Gravel, Flowers or Fish pattern. We select every

classified rectangle that overlaps with the BCO location. Periods without a classification are labelled as ’No’. For conditioning

on cold pools, the 30-min data is downscaled to
:::
The

::::
BCO

::::
data

::
at

:
1-min by using a given pattern for the 15 min before to after

the classificationtime.
::::::::
resolution

:::
are

:::::::::
considered

:::::::::::::::
contemporaneous

::::
with

:::
the

:::::::
nearest

::::::
30-min

::::::
neural

:::::::
network

:::::::::::
classification.

:
If a

given pattern is present for more than 75% of the duration of a cold pool, the pattern is attributed to this cold pool
::::
cold

::::
pool

::
is150

:::::::::
categorized

:::
by

:::
this

::::::
pattern.

At any given time, multiple rectangles of different sizes of the same and of different patterns can occur. Multiple rectangles

of the same pattern are combined and counted only once, while multiple rectangles of different patterns are counted separately.

This leads to timesteps
:::::::
locations

::
in
::::

the
:::::::
images,

:::
and

::::::
hence

::::
data

::
in

:::
the

:::::::::::::
meteorological

::::
time

::::::
series,

:
being classified e.g. as

both Gravel and Flowers. Excluding situations with multiple patterns only marginally influences the results, but reduces the155

sample size considerably (as previously noted in Vial et al., 2021). Ambiguities in the classification can be physical—for

5



example due to regime transitions or similarities between patterns—or related to ambiguities introduced to the neural network

by disagreement in the human classifications. The occurrence of multiple patterns can be reduced if a stricter threshold is used

for the agreement score representing the confidence of the neural network prediction (here set to 0.4 as in Schulz et al., 2021;

Vial et al., 2021), but this again reduces the sample size.160

2.3 Cold-pool detection algorithm

We detect cold pools by identifying abrupt drops in the
::::
BCO

:
surface temperature timeseries following Vogel (2017). We

first filter the 1-min averaged temperature timeseries with an 11-minute running average. We then classify all temperature

drops δT = Tfil(t)−Tfil(t− 1)<−0.05 K (per minute) in the filtered timeseries as a cold-pool candidate (see Figure 1 for an

illustration). For every candidate cold pool, we detect the time of the cold-pool front onset (tmax), the time of the minimum165

temperature (tmin), and the end of the cold pool (tend) as follows:

1. tmax: the onset of the cold-pool front tmax is defined as the last instance of δT > 0 K within 20 min before the initial

abrupt temperature drop
:::
with

:::::::::::::
δT <−0.05 K. If the temperature is falling continuously in this period, tmax is chosen as

the time of the maximum temperature (that is, 20 min before the abrupt temperature drop). We refer to the smoothed

temperature at tmax as Tmax.170

2. tmin: the time of the minimum filtered temperature Tmin marks the end of the cold-pool front and is identified as the

minimum of contiguous temperature minima. Subsequent candidate cold pools with δT <−0.05 K occurring within

20 min of the previous minimum are combined if the temperature does not rise by more than 0.5 K above the previous

minimum in between.

3. tend: the end of a cold pool is defined either as the minimum of (a) the time when the filtered temperature first exceeds175

its minimum by ∆T/e, where ∆T = Tmax−Tmin:::
and

::
e

:
is
::::::
Euler’s

:::::::
number, or (b) the onset of the next cold pool. If using

condition (a) or (b) leads to any temperature between tmin and tend to be smaller than Tmin− 0.1 K, then tend is defined

as (c) the time when the filtered temperature first decreases again after increasing for some time following tmin. Cold

pools with tend defined by (a) are referred to as recovered.

The period between tmax and tmin is referred to as the cold-pool front, and the period between tmin and tend as the cold-pool180

wake.
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Figure 1. Illustration of the cold-pool detection algorithm. (top) 11-min filtered Tfil (thick line) and 1-min raw surface temperature (thin

line), and (bottom) filtered temperature difference δT , along with the threshold of -0.05 K used (dashed). The detected cold-pool fronts and

wakes are indicated in dark grey (tmax to tmin) and light grey (tmin to tend), with the corresponding ∆T indicated at the top. The dark red

lines in the top panel show the analysis periods used for computing the diagnostics (see Section 2.5).

Our cold-pool detection algorithm is similar to the one used by de Szoeke et al. (2017), but with the important modification

that we only identify cold pools for situations with abrupt temperature drops
::::::::
exceeding

:::
our

::::::::
threshold

::
of
:::::::::::::
δT <−0.05 K. With

our algorithm we thus both filter out turbulent fluctuations and advective or diurnal patterns of temperature variability. The

threshold of δT <−0.05 K is subjectively chosen based on visual impression and represents distinct variations in temperature.185

For an 11-min averaging window, a δT of−0.05 K corresponds to about 2% of the data. Figure 2 shows example cold pools for

all patterns and illustrates the workings of the algorithm. In
:::
the next subsection we briefly discuss the strengths and weaknesses

of the algorithm based on these examples.

BCO time series and satellite images for 18 h of four cold-pool days representative of the four patterns. Shown are timeseries

of filtered surface temperature and specific humidity, MRR RR, and time-height plots of Doppler lidar vertical velocity and190

radar reflectivity. On the Gravel day the radar did not work prior to 12 LT and the lowest CBH from the ceilometer is shown

instead. The x-axis shows local time and the detected cold-pool fronts and wakes are indicated in grey and light grey, with ∆T

indicated at the bottom. Visible satellite images from 10-15◦N and 60-55◦W from MODIS Aqua (Sugar day) and GOES-16

ABI (other days), with the respective recording times indicated by the orange lines in the temperature panels. The BCO is

located near the easternmost tip of Barbados (outlined in yellow).195

2.4 Example cases

Timeseries of example cold-pool days along with corresponding satellite images are shown for every pattern in Figure 2 . The

example
:::
and

::::
shed

:::::
some

::::
light

:::
on

:::
the

:::::::::
differences

::
in

:::
the

::::::::
cold-pool

::::::::::::
characteristics

::
of

:::
the

::::
four

:::::::
patterns.

::::
The

:::
two

::::::
Sugar

::::
cold

:::::
pools

7



::::
stem

::::
from

:::::::
isolated

:::::::::::
precipitating

::::::
deeper

:::::::
cumuli.

::::
The

:::::::
satellite

:::::
image

:::::::
captures

::::
the

::::::
deeper

:::::
cloud

::::
over

:::::
BCO

::
at

:::
the

::::
time

:::
of

:::
the

:::
first

::::
cold

::::
pool

::::
and

::::
also

::::::::
indicates

:::::
some

::::::::::
organization

:::
of

:::
the

::::::
cumuli

::
in

:::::
lines

::::::::
upstream

:::::
BCO,

:::::
while

:::
the

::::::::
canonical

::::::
Sugar

:::::
fields200

::
of

::::::
shallow

:::::::
cumuli

::::
pass

::::::
further

:::::
North.

::::
The

:::::::::::
textbook-like

:::::::
Gravel

:::::::
example

:::
day

::
is
::::::::::::
characterized

::
by

:::::
many

:::::
short

:::
and

:::::
often

:::::
weak

:::
cold

:::::
pools

:::::::
quickly

::::::::
following

::::
each

::::::
other,

::::::::::
interspersed

::
by

::::::::
stronger

::::
cold

:::::
pools.

::::
The

:::::::
stronger

::::
cold

:::::
pools

:::
are

:::::::::
associated

::::
with

:::
the

:::::::
presence

::
of

:::::::
strongly

:::::::::::
precipitating

::::::
deeper

:::::
clouds

:::::
(note

:::
that

:::
the

:::::
radar

:::
did

:::
not

:::::
work

::::
prior

::
to

::::::
12 LT).

::::
The

:::::
many

::::
cold

::::
pools

:::::::
present

::
on

:::
this

::::
day

::::::
clearly

::::::
imprint

::::
their

::::::::
signature

:::
on

:::
the

::::::
satellite

::::::
image

::
in

:::
the

::::
form

::
of

:::::::::
mesoscale

::::
arcs.

:

:::
The

::::
cold

:::::
pools

:::
on

:::
the

::::::::
Flowers

:::
day

:::
are

:::::::::
associated

:::::
with

:::
the

::::
large

::::::
cloud

::::::
system

::::::
whose

::::::::
stratiform

:::::
layer

:::::::
reaches

:::
the

:::::
BCO205

:
at
::::::

10 LT.
:::::
Three

::::
cold

:::::
pools

::::
are

::::::
directly

:::::::::
associated

::::
with

::::
the

::::
large

:::::::
system,

::::
with

:::
the

::::
first

::::
one

::::::
starting

::
at
::::::

11 LT
:::::::
showing

::
a

::::
very

:::::
strong

::::
∆T

::
of

::::::::
−3.85 K.

::::
The

:::::
large

::::::
system

::::
has

::::
rain

::::
rates

:::
up

::
to

::::::::::
3.6 mm h−1

::::
and

::
is

::::::::
preceded

:::
by

:
a
:::::::

weaker
::::
cold

::::
pool

::
at
:::::

9:30

::
LT

:::::::::
associated

:::::
with

:::
the

::::
very

::::
thin

:::::::::
mesoscale

:::
arc

::::::
visible

::
in

::::
the

::::::
satellite

:::::::
image.

::::
This

::::
first

:::::
weak

::::
cold

::::
pool

:::::
goes

:::::
along

::::
with

::
a

:::::
strong

:::::::
increase

::
in

::::::::
humidity

::
of

::::::::::
1.3 g kg−1.

:::
The

:::::
Fish

:::
day

:::::::
features

:
a
:::

6 h
:::::
long

::::
cold

::::
pool

::::::::
associated

:::::
with

:::::
steady

::::
and

::::::
intense

::::
rain

:::::::::
(maximum

::::
RR

::
of

::::::::::::
11.6 mm h−1),

:::::::::
continued

::::::
strong

:::::::::
downdrafts

::::
and

::::
very

:::::
large

::::::::
humidity

:::::::::
throughout

:::
its

:::::
entire

::::::::
duration.

::::
The210

::::::::::
temperature

::::
fully

::::::::
recovers

:::::
within

::::::
about

::::::
20 min

::
of

:::
the

:::::::::
cold-pool

::::
end,

::::
and

:::
3 h

::::
later

::::
two

:::::::::
subsequent

::::::::::
pronounced

:::::
cold

:::::
pools

:::::
follow

::::
that

:::
are

:::::
again

:::::::::::
characterized

:::
by

:::::::::
continued

::::::::::
precipitation

::::
and

::::::::::
downdrafts.

::::
The

:::::::
satellite

:::::
image

::::::
shows

:::
the

::::::::
fish-bone

::::
like

::::
cloud

:::::
band

:::::::
typically

:::::::::
associated

::::
with

:::
the

::::
Fish

::::::
pattern,

::::::
which

:
is
:::::::
strongly

:::::::::
connected

::
to

::::::
trailing

::::
cold

:::::
fronts

::
of

:::::::::::
extratropical

::::::
origins

:::::::::::::::::::::::::::::::::::::
(Aemisegger et al., 2021; Schulz et al., 2021).

::::
The

::::
more

::::::::
front-like

::::::::
character

:::
of

:::
the

::::
Fish

::::
cold

:::::
pools

::::
with

::::::
steady

:::::::
showers

::::
and

:::::::::
downdrafts

::
is

::::::
clearly

::::::
evident.

::::::
While

::::
most

::
of

:::
the

:::::::
cooling

::
is

:::::::
expected

::
to

::::
stem

:::::
from

:::
the

:::::::::
evaporating

::::::::::::
precipitation,

::
we

::::::
cannot

::::
rule215

:::
out

:
a
:::::
small

::::::
cooling

::::::::::
contribution

::::::
related

::
to
::
a
::::::::::
larger-scale

::::::::::
temperature

::::::
contrast

::::::::
between

:::::
South

:::
and

:::::
North

:::
of

::
the

::::
Fish

:::::
cloud

:::::
band

:::::::::::::::::::::::
(see also Schulz et al., 2021).

:

:::
The

:::::::
example

:
cases highlight how well the detection algorithm works in these diverse situations. Abrupt strong temperature

drops are reliably detected, successive fronts sensibly combined into one single cold pool, and even the 6 h long cold pool with

frontal character on the Fish day is correctly identified.220

The example cases
::::::::
examples also indicate some challenges of the cold-pool identification. Although they look like cold

pools, some temperature drops on the Gravel and Sugar day are not identified as cold pools because they are either not abrupt

enough (δT >−0.05 K) or not strong enough (∆T >−0.4 K). The difficulty in defining the end of the cold-pool wake is

illustrated in the Fish case: the cold pool starting shortly before 16 LT lasts until well after 18 LT, but the temperature drop

near 17 LT causes a premature end of the cold pool, as such a temperature drop
:
.
::
A

::::::::::
temperature

::::
drop

::
of

::::
this

:::::::::
magnitude could225

also be caused by the daily
:::
diel

:
cycle in temperature. The cold-pool end definition could be improved by an additional rain or

downdraft requirement, to more robustly distinguish between cold-pool activity and other processes. Because most analyses

and diagnostics computed in this study focus entirely on the cold-pool front (see next section), not fully representing the wake

of rare long-lasting cold pools is a minor issue and only influences
:::
that

:::::
could

::::
only

::::::::
influence the overall cold-pool fraction and

the duration statistics.230

As mentioned in Section 2.2, the organization pattern definition is not unambiguous and also
::::::::
somewhat

::::::::::
ambiguous.

:::::
Also

among the example days shown in Figure 2,
:::::::
multiple

:::::
cloud

:::::::
patterns

::::::
pertain

::
to

:
some cold poolspertain to multiple patterns. For

the Flowers case, the 2 h at the beginning and end of the period shown are also classified respectively as Gravel and Fish. In

8



the Sugar case, only the period between 9-16 LT is exclusively classified as Sugar, while the periods before and after are also

partly classified as Gravel. Most surprisingly, the textbook Gravel day is also entirely classified as Flowers, and also setting a235

stricter agreement score of 0.5 leaves half of the day co-classified as Flowers. This indicates that distinguishing Gravel from

Flowers can be particularly challenging (as also shown in Vial et al., 2021). The Fish day is very confidently classified and no

other pattern is detected for the entire day.
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Figure 2.
:::
BCO

::::
time

:::::
series

:::
and

::::::
satellite

::::::
images

:::
for

:::
18 h

::
of
::::

four
::::::::
cold-pool

:::
days

:::::::::::
representative

::
of

:::
the

::::
four

::::::
patterns.

::::::
Shown

:::
are

::::::::
timeseries

:
of
::::::

filtered
::::::

surface
:::::::::
temperature

::::
and

::::::
specific

:::::::
humidity,

:::::
MRR

::::
rain

:::
rate,

::::
and

:::::::::
time-height

::::
plots

::
of

:::::::
Doppler

::::
lidar

::::::
vertical

::::::
velocity

:::
and

:::::
radar

::::::::
reflectivity.

:::
On

::
the

::::::
Gravel

:::
day

::
the

::::
radar

:::
did

:::
not

::::
work

::::
prior

::
to

::::
12 LT

:::
and

:::
the

:::
first

::::::::
ceilometer

::::
cloud

::::
base

:::::::
(CBH1)

::
is

:::::
shown

::::::
instead.

:::
The

:::::
x-axis

::::
shows

::::
local

::::
time

:::
and

:::
the

::::::
detected

::::::::
cold-pool

::::
fronts

:::
and

:::::
wakes

:::
are

:::::::
indicated

::
in

::::
grey

:::
and

::::
light

::::
grey,

:::
with

::::
∆T

:::::::
indicated

:
at
:::

the
::::::
bottom.

::::::
Visible

::::::
satellite

:::::
images

::::
from

:::::::
10-15◦N

:::
and

:::::::
60-55◦W

::::
from

::::::
MODIS

:::::
Aqua

:::::
(Sugar

::::
day)

:::
and

:::::::
GOES-16

::::
ABI

:::::
(other

::::
days),

::::
with

:::
the

:::::::
respective

::::::::
recording

::::
times

:::::::
indicated

::
by

:::
the

:::::
orange

::::
lines

::
in

:::
the

:::::::::
temperature

:::::
panels.

:::
The

::::
BCO

::
is
::::::
located

:::
near

:::
the

:::::::::
easternmost

::
tip

::
of
::::::::
Barbados

:::::::
(outlined

:
in
:::::::
yellow).
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2.5 Selection criteria and diagnostics

For the subsequent analyses, we apply a number of selection criteria to make the comparison of cold pools more robust. Namely,240

we only consider cold pools with ∆T <−0.4 K and less than two missing values in the filtered temperature timeseries during

the entire cold-pool duration (set all with 9234 cold pools). For the analyses of the cold-pool properties we further apply a

criterion of no non-recovered cold pool in the hour prior to the cold-pool onset (set noprev with 8772 cold pools), which

selects cold pools moving into an initially undisturbed atmosphere that is not modified by previous convection. For most of the

analyses
::::::
Except

:::
for

::::::::
Appendix

::
B,

:
we also focus on the dry winter regime from December-April (set noprevWI with 3889 cold245

pools), which is characterized by steady easterlies, subsiding large-scale motion in the free troposphere and the predominance

of shallow trade-wind convection (Brueck et al., 2015).

As shown in the brackets, all
:::
All

:
these selection criteria reduce the cold-pool sample size considerably. They represent a

trade-off between assuring a robust and unbiased sample to address our research questions, while not being unnecessarily

strict and removing too many cold pools. The selection criteria are thus somewhat subjective and also differ among studies.250

For example, Chandra et al. (2018) used the criterion of no rain in the hour prior to the cold-pool onset to select cold pools

unmodified by previous convection, whereas we achieve the same goal with the criterion of no non-recovered cold pool in the

prior hour, which excludes about 2500 less cold pools in our case. Instead of focusing on the winter regime, we could have also

set a criterion based on the cloud-top height to focus on trade cumulus cold pools. However, as this would restrict the analysis

to periods when the radar is running, and—as we are relying on single-site measurements—the parent convection might not255

move over the BCO in its entirety, we would likely exclude too many cold pools with a CTH criterion, without even being

sure that periods of deep convection are really excluded. Despite the rather strict criteria applied here, the long timeseries leads

to a much larger number of cold pools analysed than in previous studies.

Another potential sampling issue regarding the single-site measurements is that it is not clear at which stage of its lifecycle

we sample the cold pool, and where we sample it with respect to its center. Assuming isotropic
:::::::::
azimuthally

:::::::::
symmetric

:
wind260

variations around the cold-pool center, which in case of little wind shear is a good approximation (Touzè-Peiffer et al., 2021),

the change in wind direction from the mean direction prior to the cold-pool onset could give a hint as to the location relative

to the cold-pool center. However, due
:::
Due to our large sample sizepotential biases are

:
,
:
a
::::::::
potential

:::::::
random

:::
bias

::
is
:
likely to be

small.
::::
The

:::::::
influence

:::
of

::::
wind

:::::
shear

:::
on

:::
the

::::::::::
propagation

::::::::
direction

:::
and

::::::::::::
characteristics

::
of

::::
cold

:::::
pools

::
is
:::
an

:::::::::
interesting

::::
topic

:::
for

::
a

:::::
future

:::::
study.265

If not mentioned differently, the cold-pool diagnostics
:::::::::
diagnostics

:::
for

::::
each

::::
cold

:::::
pool are computed either as the minimum

difference (∆Xmin) or maximum difference (∆Xmax) of a variable X between its value at tmax and the values between

tmax + 1 and min(tend, tmin + 20).
:::::
across

:::
the

::::::::
cold-pool

::::::::
duration

:::::
(e.g.,

:::::::::::::::::::::::::::::::::::::::::
∆Xmax = max(X((tmax + 1) : tend)−X(tmax)).

::
If

::
the

:::::::::
cold-pool

:::::
wake

::::
lasts

::::::
longer

::::
than

::::::
20 min,

:::
the

::::::::::
diagnostics

:::
are

:::::::::
computed

::::
only

::::
until

::::::
20 min

:::::
after

::::
tmin ::

to
:::::::
prevent

::::::::
problems

::
in

::::
case

::
of

:
a
::::::
poorly

:::::::
defined

::::::::
cold-pool

::::
end. Similarly, Xmean or Xmax are the mean or maximum of variable X over the same270

analysis period (indicated in dark red in Figure 1). For the Doppler lidar vertical velocities, we diagnose wmaxSCL (wmax450) as

the maximum wSCL (w450) in the first half of the front (including the last 10 min before tmax), and wminSCL as the minimum

11



wSCL in the second half of the front (including the first 10 min after tmin). Unless otherwise stated, the surface meteorology

diagnostics are computed from the 11-min filtered timeseries.

Along with most diagnostics and composites we show the standard error (SE), which measures how well the median or mean275

of a given sample can be estimated. The SE of the median is computed as IQR/
√
n, where IQR represents the inter-quartile

range and n the sample size, and the SE of the mean as σ/
√
n, where σ is the standard deviation. As not all instruments

were running all the time, some diagnostics are only available for a subset of the cold pools and the sample size is adjusted

accordingly when computing the SE.

3 Cold-pool climatology280

In this section we present the climatology of trade cumulus cold pools detected at BCO for the winter seasons of the years

2011-2021. The first subsection presents general statistics, followed by a discussion of the composite temporal structure of the

cold pools in Section 3.2. The daily
:::
diel cycle of cold-pool statistics is shown in Section 3.3. While our focus lies on the winter

regime, Appendix B also briefly discusses the seasonal cycle of the cold-pool statistics.

3.1 General statistics285

In total we detect 3889 cold pools that meet the criteria of ∆T <−0.4 K and less than two missing values in Tfil in the winter

seasons considered. We find that cold pools are very frequent at BCO and on 73% of days at least one cold pool is detected.

The BCO is on average affected by cold pools during 7.8% of the day (i.e. 112 min) and by a cold-pool front during 4.4% of the

day, with the medians being
:
.
:::
The

:::::::
median

::::
daily

::::::::
cold-pool

::::::::
fractions

:::
are about one-third smaller than the means mentionedThe

mean ,
:::::::::

indicating
::::
that

::::
there

::::
are

::::
some

:::::
days

::::
with

:
a
:::::

very
::::
large

:
cold-pool

:::::::
fraction.

::::
The

:::::
mean

::::
daily

:::::::::
cold-pool fraction of 8.6%290

for January and February 2011-2021 is also very close to the 7% found by Touzè-Peiffer et al. (2021) during the EUREC4A

campaign in January and February 2020, despite their very different method defining cold pools in atmospheric soundings

based on a mixed-layer depth criterion.
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Table 1. Table showing median±IQR of various cold-pool properties for the noprevWI set of cold pools, as well as the 25% strongest

(∆T <−1.39 K) and weakest (∆T >−0.61 K) cold pools of this set. How
::
The

::::::::::
computation

::
of the diagnostics are computed is explained

in Section 2.5 and in the text.

noprevWI strong weak

# 3889 972 972

∆T [K] -0.89±0.78 -1.82±0.67 -0.5±0.1

∆Tunfil [K] -1.2±0.8 -2.16±0.66 -0.79±0.17

∆qmin [gkg−1] -0.43±0.65 -0.55±0.81 -0.36±0.54

∆qmax [gkg−1] 0.2±0.41 0.29±0.51 0.12±0.3

∆θe,min [K] -2.05±2.08 -3.3±2.25 -1.35±1.35

∆θv,min [K] -0.96±0.81 -1.92±0.7 -0.55±0.14

:::::
∆pmax:

[
:::
hPa]

::::
0.09

::::
±0.29

:::
0.2

::::
±0.44

::::
0.04

::::
±0.19

∆Umax [ms−1] 1.14±1.55 2±1.97 0.7±0.99

::::::::::
∆Umax.unfil [

:::::
ms−1]

::::
2.81

::::
±2.36

:
4
:::::
±2.52

::::
2.02

::::
±1.69

::::::::::
∆wdirmean [

:
°]

::::
0.48

:::::
±12.57

::::
3.33

:::::
±18.34

::::
-0.32

:::::
±8.59

Rint [mmh−1] 0.9±1.76 1.45±2.42 0.41±0.95

RRmean [mmh−1] 0.05±0.38 0.39±1.06 0±0.04

CTHmax [km] 3.04±1.11 3.56±1.2 2.66±0.96

CTHmean [km] 2.32±0.88 2.74±0.81 2.03±0.89

wminSCL [ms−1] -0.55±1.56 -1.89±2.42 -0.27±0.51

wmaxSCL [ms−1] 0.91±0.62 1.1±0.7 0.78±0.54

wmax450 [ms−1] 0.98±0.81 1.27±0.99 0.79±0.66

length [km] 13.34
:::
13.3±9.49

::
9.5 18.65

:::
18.6±10.94

:::
10.9 10.01

::
10±6.03

:
6

∆tnextcp [min] 117±426 85±245 158±725

dur [min] 33±22 47±29 25±12

front dur [min] 19±12 29±19 15±4

Table 1 presents statistics of the most important cold-pool properties for the set of winter cold pools with no non-recovered

cold pool in the prior hour (noprevWI). It shows that 50% of the cold pools have a temperature drop exceeding 0.9 K across295

the front (the unfiltered temperature drop is 0.3 K stronger), a ∆qmax exceeding 0.2 g kg−1 and a ∆qmin below −0.43 g kg−1,

decreases in θe and θv exceeding −2.1 K and −0.96 K, respectively,
:
a
::::::
∆pmax:::::::::

exceeding
:::::

9 Pa,
:
and a ∆Umax larger than

1.14 m s−1
::::
(with

:::
the

:::::::::
unfiltered

:::::::
anomaly

:::::
being

:::::
more

::::
than

:::::
twice

::
as

:::::
large). The median rain intensity measured by the MRR is

0.9 mm h−1. Furthermore, 50% of the cold pools are associated with a maximum cloud-top height exceeding 3 km, andwmaxSCL

and wminSCL of 0.9 m s−1 and −0.55 m s−1 near the onset and end of the front, respectively.300
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The average cold-pool duration is 33 min, of which a bit more than half of the time pertains to the front. Multiplying the

duration with the surface wind speed yields a median cold-pool length larger than 13.3 km.

The IQR shows that all these medians are associated with substantial variability, especially for the humidity and rain

variables. However, focusing on the winter regime generally reduces the IQR of the diagnostics compared to all seasons

(not shown), suggesting that this criterion indeed results in a more homogeneous cold-pool sample representative of the305

trade-cumulus regime. The median duration of 33 min and length of about 13.3 km of the cold pools
::::
This

::::::
median

:::::::::
cold-pool

:::::::
duration

:::
and

::::::
length may seem small compared to satellite imagery, in which mesoscale cold-pool arcs can easily span 100 km.

Also the largest 2% of cold pools are hardly larger than 40 km. The smaller cold-pool sizes found here are likely due to the

algorithm sampling mostly the edge of the cold pools, and due to the challenges of defining the cold-pool end purely based on

the surface temperature timeseries (see discussion in Section 2.4).310

:::
The

:::::
IQR

::::::
shows

::::
that

::
all

:::::
these

::::::::
medians

:::
are

:::::::::
associated

::::
with

::::::::::
substantial

:::::::::
variability,

:::::::::
especially

:::
for

:::
the

::::::::
humidity

::::
and

::::
rain

::::::::
variables.

::::::::
However,

::::::::
focusing

::
on

::::
the

:::::
winter

:::::::
regime

::::::::
generally

:::::::
reduces

:::
the

:::::
IQR

::
of

:::
the

::::::::::
diagnostics

:::::::::
compared

::
to

:::
all

:::::::
seasons

:::
(not

:::::::
shown),

::::::::::
suggesting

::::
that

:::
this

::::::::
criterion

::::::
indeed

::::::
results

::
in
::

a
:::::
more

::::::::::::
homogeneous

:::::::::
cold-pool

::::::
sample

::::::::::::
representative

::
of

::::
the

:::::::::::
trade-cumulus

:::::::
regime.

Table 1 also compares the median±IQR of the 25% strongest and weakest cold pools in terms of ∆T . The strongest cold315

pools last longer, follow each other more quickly (lower ∆tnextcp), and are associated with deeper clouds, more rain, stronger

downdrafts, humidity drops and wind gusts, and larger positive vertical velocities at the beginning of the front compared to

weaker cold pools.
::::
This

:::::
agrees

:::::
well

::::
with

:::
the

:::::::::
conceptual

:::::::
picture

::
of

::::::
deeper

::::::
clouds

:::::::::
producing

::::
more

::::
rain

::::
and

::::::
having

:
a
::::::

larger

:::::::
potential

:::
for

::::
rain

::::::::::
evaporation,

::::::
which

:::::
drives

:::::::
stronger

::::::::::
downdrafts

::::
that

::::
bring

:::::
down

:::::
more

::::
dry

::
air

:::::
from

::::::
further

:::::
aloft,

:::
and

::::::
which

::::::
induces

::
a

:::::::
stronger

::::::
cooling

::::
and

:
a
:::::::
stronger

::::
gust

:::::
front

:::
that

::
is

:::::::::
associated

::::
with

:::::::
stronger

:::::
rising

::::::
motion

:::
at

::
its

::::::
leading

:::::
edge.

:
Similar320

but slightly smaller differences between stronger and weaker cold pools are found when comparing cold pools associated with

the 25% strongest versus weakest downdrafts or the 25% deepest versus shallowest CTHmax (not shown).

The downdraft strength wminSCL

:::
The

::::
rain

:::::::
duration

:::
in

:::
the

::::
front

:
is the diagnostic that correlates best with

::::::
explains

:::::
most

:::::::::
variability

::
in

:
∆T (R2=0.23), and

together
::::::
0.364).

::::
Rain

:::::::
duration

::
is

::::
well

:::::::::
correlated

:::::::
(R=0.47)

:
with the front durationit explains a lot of the

:
,
:::::
which

:::::
itself

:::::::
explains325

:
a
::::::::::
comparable

::::::
amount

::
of

:
variability in ∆T for the noprevWI set (multiple

:
(R2=0.49). The 25 and 75% quartiles of wminSCL also

distinguish the rain diagnostics best.

That CTHmax also distinguishes the cold-pool properties very well
::::::
0.357).

::::
That

:::
the

:::::::::::
accumulated

:::
rain

:::::::
amount

::
in

:::
the

:::::
front

:::::::
explains

:::
less

:::::::::
variability

::
in

:::
∆T

:::::::::
(R2=0.21)

::::
than

:::
the

::::
rain

:::::::
duration indicates that the parent convection triggering the cold pool is

sampled well by the single-point measurements
:::
rain

::::::::
intensity

::
is

::
of

:::::::::
secondary

::::::::::
importance.

:::::::
Another

::::::::
important

::::::::
predictor

::
of

::::
∆T330

:
is
:::
the

:::::::::
downdraft

:::::::
strength

:::::::
wminSCL :::::::::

(R2=0.23),
:::::
which

:::::::
together

:::::
with

::
the

:::::
front

:::::::
duration

:::::::
explains

::::
50%

:::
of

:::
the

::::::::
variability

::
in

::::
∆T

:::
for

::
the

:::::::::
noprevWI

::
set. The CTH usually scales with the precipitation amount for trade cumuli (Byers and Hall, 1955; Kubar et al.,

2009; Nuijens et al., 2009), so other factors like the environmental humidity do not seem to influence rain evaporation and

downdraft strength much further. We also compared the properties of the 25% driest and moistest cold pools in terms of ∆qmin

(not shown), which does not strongly distinguish other
:::
and

::::
also

:::::::
CTHmax:::::::

explains
:::::
some

:::::::::
variability

::
in

:::
∆T

::::::::::
(R2=0.10).

::::
That

:::
the335
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:::
rain

::::::::
duration,

:::
the

::::::::
downdraft

:::::::
strength

::::
and

:::
the

::::::::
maximum

::::::
CTH

:::
also

::::::::::
distinguish

:::
the cold-pool properties , not even the RR that

was shown to be particularly related to ∆qmin in the literature (Barnes and Garstang, 1982). The specific humidity signal is

generally also very variable and the response to the cold-pool onset hard to define in one diagnostic, as will be shown next
::::
well

:::::::
indicates

::::
that

:::
the

:::::
parent

:::::::::
convection

:::::::::
triggering

:::
the

:::
cold

:::::
pool

:
is
::::::::
sampled

:::
well

:::
by

:::
the

::::::::::
single-point

::::::::::::
measurements.

3.2 Composite temporal structure340

Figure 3 shows the composite mean temporal structure of the perturbations associated with the cold-pool passages. To facilitate

the comparison of different cold pools, we use a normalized time coordinate in
:::::
within the cold-pool front with values

::::
after

::::
tmax

:::
and

::::::
before

:::
tmin:

mapped onto 20 points (the median front duration), similar to previous studies (Young et al., 1995; de Szoeke

et al., 2017; Zuidema et al., 2017).
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Figure 3. Composite mean temporal structure of anomalies relative to the cold-pool onset (tmax) for the surface properties (a) temperature,

(b) specific humidity, (c) equivalent potential temperature, (d) relative humidity, and (e) wind speed, as well as absolute values of (f) the

MRR rain frequency and (g) rain rate, and (h) the vertical velocity at 450 m height. The black line shows the mean structure of all cold pools

matching the noprevWI criterion, and the red and blue lines show the mean for the 25% strongest and weakest cold pools, respectively. The

dotted lines show the mean±1 SE. Vertical and horizontal reference lines are added to indicate tmax, tmin and 0.

The temperature of the composite-mean cold pool, after increasing slightly before tmax, decreases rapidly in the front
::
to345

:::::::
−1.15 K and recovers by ∆T/e within 16 min after tmin :::

(not
::::::
shown). The temperature remains about 0.5 K below Tmax in the

hour after the frontal passage. The temperature drop in the front of the 25% strongest cold pools is by definition stronger, but

with a mean tendency of −0.070 K min−1 also more than twice as abrupt compared to the weakest cold pools. The strongest

cold pools also take longer to recover than the weakest.

The temporal structure of the specific humidity response is intriguing. The composite-mean humidity starts to increase350

already 8 min before tmax and increases by about 0.2 g kg−1 until tmax. In the first quarter of the front, the humidity increases

by another 0.2 g kg−1, before it drops to its minimum of −0.25 g kg−1 at tmin, which is hardly lower than the pre-front

value. The humidity recovers much more quickly than the temperature and remains slightly elevated compared to its pre-front
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value in the hour after. The fast humidity recovery might be due to the trapping of surface moisture fluxes in the shallow

mixed layer typically associated with cold pools (Touzè-Peiffer et al., 2021). Another reason might be continued evaporation355

of precipitation, which would cool and moisten the air in the cold-pool wake and thus speed up the humidity recovery but slow

down the temperature recovery.

The specific humidity response of the strongest cold pools only differs significantly from the weakest cold pools at tmin,

with the humidity drop at tmin being about−0.4 g kg−1 and thus about twice stronger than the drop for the weakest cold pools.

If the entire set of cold pools including the summer season with deeper convection is used, the strongest cold pools have a360

significantly weaker positive humidity anomaly at the beginning of the front, and a significantly faster and stronger humidity

reduction at tmin compared to the weakest cold pools (see Figure B1c-d).

:::
The

::::::::
humidity

:::::::
recovers

::::::
much

::::
more

:::::::
quickly

::::
than

::::
the

::::::::::
temperature

:::
and

:::::::
remains

:::::::
slightly

:::::::
elevated

:::::::::
compared

::
to

:::
its

::::::::
pre-front

::::
value

::
in
:::
the

:::::
hour

::::
after.

::::
The

:::
fast

::::::::
humidity

:::::::
recovery

::::::
might

::
be

:::
due

::
to
:::

the
::::::::
trapping

::
of

::::::
surface

::::::::
moisture

:::::
fluxes

::
in

:::
the

:::::::::::
anomalously

::::::
shallow

::::::
mixed

::::
layer

::::::::
typically

::::::::
associated

::::
with

::::
cold

:::::
pools

:::::::::::::::::::::::
(Touzè-Peiffer et al., 2021).

:::::::
Another

:::::
reason

::
in

:::::
cases

::
of

:::::
more

:::::::
strongly365

::::::::::
precipitating

::::
cold

:::::
pools

:::::
might

::
be

:::::::::
continued

:::::::::
evaporation

::
of

::::::::::::
precipitation,

:::::
which

:::::
would

::::
cool

:::
and

:::::::
moisten

:::
the

:::
air

::
in

:::
the

::::::::
cold-pool

::::
wake

::::
and

:::
thus

:::::
speed

:::
up

:::
the

::::::::
humidity

:::::::
recovery

:::
but

::::
slow

:::::
down

:::
the

::::::::::
temperature

::::::::
recovery.

:::
The

:::::
initial

::::::::
increase

::
in

::::::::
humidity

::
at

:::
the

::::
edge

::
of

:::
the

:::::
front

::
at

:::::
BCO

:::::
might

::
be

:::::::::
explained

::
by

::::::::
enhanced

:::::::
surface

:::::
fluxes

::::
due

::
to

:::
the

:::::::::::
strengthening

:::::
winds

::::::::::::::::::::::::::::::::::::::::::::
(Langhans and Romps, 2015; Torri and Kuang, 2016),

::
by

::::::::
moisture

::::::::
advection

::::::::::::::::::::::::::::::
(Schlemmer and Hohenegger, 2016),

::
or

::
by

:::
an

:::::::::::
accumulation

::
of

::::::::
moisture

::::
from

::::::::::
evaporation

:::
of

::::::::::
precipitation

::
of
:::

the
::::::

parent
::::::::::
convection,

:::::
which

::::
was

::::::
pushed

::
to

:::
the

:::::
edge370

::
of

:::
the

::::
front

::::::::::::::::
(Tompkins, 2001).

::::::::
Analyses

:::
of

:::
the

::::::
various

:::::::
isotope

::::::::::::
measurements

:::::
made

::::::
during

:::
the

::::::::::
EUREC4A

::::
field

:::::::::
campaign

::::::::::::::::::::::
(Stevens et al., 2021) might

::::
help

::::::::
elucidate

:::
the

:::::
origin

::
of

::::
these

::::::::
moisture

:::::
rings,

::
as

::::::::
suggested

:::
by

:::::::
idealized

::::
LES

::::::::::::
(Torri, 2021).

::::
This

::::
could

::::
also

::::
help

:::::::::
understand

::::
why

::::::::::::::
cloud-resolving

::::::
models

:::::
seem

::
to

::::
have

:::::::::
difficulties

::
in

::::::::::
representing

:::
the

::::::::
humidity

::::::::
structure

::
in

:::
the

::::::::
cold-pool

::::
front

::::::::
correctly

:::::::::::::::::::
(Chandra et al., 2018). As discussed by de Szoeke et al. (2017), the humidity increase just before

tmax might be mostly due to the increasing saturation specific humidity associated with the increasing temperature before tmax375

(as seen by the relative humidity anomaly in panel d being slightly below zero), and as such likely also related to the way we

identify Tmax.
::
A

:::::::
potential

:::::::::
dynamical

::::::
reason

:::
for

:::
the

:::::::
pre-front

::::::::
humidity

:::::::
increase

:::::
could

:::
be

:::
due

::
to
::::::::
moisture

::::::::::
convergence

::::::
ahead

::
of

:::
the

::::
front

::::::::::::::::::::::::::::::
(Schlemmer and Hohenegger, 2016).

:

The temporal structure of the equivalent potential temperature
::::::
(Figure

:::
3c)

:
is similar to the humidity structure, but with a

stronger drop across the front, and a stronger difference between the weaker and stronger cold pools governed by the tempera-380

ture drops. The relative humidity signal in the front is mostly governed by the temperature decrease, with RH being 8% larger

at tmin for the strongest cold pools.

The in-front wind speed increase has a maximum in the middle of the front,
::::::::::
confirming

:::
that

:::
the

:::::::
interval

:::::::
between

::::
tmax::::

and

:::
tmin:::::::

catches
:::
the

:::::
front

:::::::::::
characterised

:::
by

:
a
:::::::
vortical

::::::::::
overturning

:::::::
internal

:::::::::
circulation. After the frontal passage, the wind speed

decreases slightly below the pre-front level.
::
As

:::
the

::::
cold

::::::
pools

::::::
spread

:::
into

::
a
::::::
strong

::::::::::
background

:::::::
easterly

::::
flow

::::::
(mean

:::::
wind385

:::::::
direction

::
at

::::
tmax::

is
::::
86°,

:::
not

:::::::
shown),

:::
the

::::
wind

:::::
speed

:::::::::
anomalies

::::
show

::::
that

:::
the

::::
cold

:::::
pools

::
on

:::::::
average

::::
push

:::::::
forward

:::
into

:::
the

:::::
wind

::::
until

::::
tmax,

::::
and

::::::::
backward

::::
after

::::
tmin.

:::
For

:::::
some

::::
cold

:::::
pools,

::::
tmin:::::

might
::::
thus

::::
mark

:::
the

::::::
center

::
of

::
the

::::::::
divergent

::::
flow

::::
and

::::::
indicate

::::
that

::
the

::::::
parent

:::::::::
convection

::::::
passed

::::
over

:::::
BCO.

:
The strengthening winds in the front and the slackening winds in the wake are again
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significantly more pronounced for the strongest cold pools, with a maximum of 1.5 m s−1 and a minimum smaller −0.5 m s−1

in the front and wake compared to the value at tmax.390

Figure 3f-g show the composite mean Rfreq and RR measured by the MRR. Both rain variables increase rapidly after the

onset of the cold pool, peak towards the middle or end of the front, and start to decrease shortly before tmin. The strongest cold

pools have much larger rain rates and rain frequencies during the entire front compared to the weakest cold pools, and the rain

frequency of the strongest cold pools also remains strongly elevated until more than an hour after tmin.

The last panel of Figure 3 shows the Doppler lidar vertical velocity averaged over four 30 m range gates with mean height395

of 450 m (w450). The mean w450 peaks at the edge of the front with about 0.25 m s−1 and decreases rapidly to −0.3 m s−1

near the end of the front, reflecting updrafts triggered at the cold-pool gust front and downdrafts driven by the evaporating

precipitation inside the front, respectively. The
::::::
median

::::::
wmax450::

at
:::
the

::::
gust

::::
front

::::
edge

::::
(see

:::::
Table

::
1)

::
is

::::
with

:::::::
1 m s−1

:::::
much

:::::
larger

:::
than

:::
the

::::::::
averaged

::::::
hourly

:::::::
in-cloud

:::::::
vertical

::::::::
velocities

::::
near

:::::
cloud

::::
base

:::::::::
measured

::
by

:::
the

:::::
BCO

:::::::
Doppler

:::::
radar,

::::::
which

:::
has

:
a
:::::
peak

::::::
density

::
at

::::::::
0.2 m s−1

:::
and

:::::::
maxima

::
of

::::::::
0.6 m s−1

::::::::::::::::::::
(Klingebiel et al., 2021).

::::::
1 m s−1

::::
also

:::::
marks

:::
the

:::::
upper

:::
tail

::
of

:::::::::
cloud-base

::::::::
averaged400

::::::
updraft

::::::
vertical

::::::::
velocities

::
at

:::::
BCO

:::::::::::::::::::::::::::::::::::::::::
(see Figure 4b of Sakradzija and Klingebiel, 2020).

::::
This

::::::::
suggests

:::
that

:::
the

::::::::
gust-front

:::::::
vertical

::::::
velocity

:::::::
maxima

:::
are

:::::
very

:::::::
relevant

::
for

:::::::::
triggering

::::
new

:::::::::
convection

::
in

:::
the

:::::
trade

:::::::
cumulus

:::::::
regime.

::::
The strongest cold pools have

significantly stronger downdrafts and also updrafts compared to the weakest cold pools (see also Table 1), the latter highlighting

the potentially enhanced triggering of new convection by stronger cold pools. For the vertical velocity averaged over the entire

sub-cloud layer (wSCL), the picture is similar, but the peak wmaxSCL is slightly smaller for the strongest cold pools and more405

similar compared to the weaker cold pools (Table 1).

As already shown in Table 1, Figure 3 shows that the strongest cold pools are also the driest and the rainiest, and have the

strongest wind and vertical velocity anomalies in the front. The relationships and timings discussed are mostly the same when

considering all cold pools meeting the noprev criterion (i.e. also including summer periods), just with larger anomalies and the

differences mentioned above for the humidity structure. The mean temporal structure for all variables—except for the specific410

humidity and partly for the wind speed—is also similar to previous observations of tropical deep convective cold pools during

the DYNAMO field campaign (de Szoeke et al., 2017; Chandra et al., 2018), just with slightly smaller anomalies at BCO
:::::
larger

::::
mean

::::::::::
across-front

::::::::::
temperature

::::
and

::::::::
humidity

::::::::
decreases

:::::::
(−1.3 K

:::
and

:::::::::::
−0.6 g kg−1

:::::
during

::::::::::
DYNAMO

::::::::
compared

::
to

:::::::
−1.15 K

::::
and

:::::::::::
−0.25 g kg−1

::
at

:::::
BCO)

:::
and

:::::
larger

::::::::
mid-front

:::::
wind

:::::
speed

:::::::
increases

::::::
(about

::::::::
1.5 m s−1

::::::::
compared

::
to

::::::::
1 m s−1)

:::::
during

:::::::::
DYNAMO

:
due

to the shallower convection. During DYNAMO,
:::::
deeper

::::::::::
convection.

:::::::::::
Furthermore,

::::::
during

:::::::::
DYNAMO the increases in specific hu-415

midity at the beginning of the front are hardly presentand the humidity minima near tmin are much more pronounced compared

to BCO. The mean in-front wind speed increase is about 2,
::::
and

:::
the

::::
wind

::::::
speed

:::::::
remains

:::::::
elevated

::
by

:::
0.4 m s−1 and the wind

speed also remains elevated in the wake of the DYNAMO cold pools (de Szoeke et al., 2017; Chandra et al., 2018)
:::::::::::::::::::
(de Szoeke et al., 2017),

whereas at BCO it
::
the

:::::
wind

:::::
speed

:
decreases below the value at tmax in the wake. What might strengthen

::
We

:::::::::::
hypothesize

:::
that

::::
this

::::::::
difference

::::
can

::
be

:::::::::
explained

::
by

:::
the

::::::::
stronger

::::
cold

:::::
pools

::::::
during

:::::::::
DYNAMO

::::::::
travelling

::::::
further

:::::
away

:::::
from

::::
their

::::::
parent420

:::::::::
convection,

:::::
such

:::
that

::::
they

::::::::
continue

::
to

:::::
push

:::::::
forward

:::
into

:::
the

:::::
mean

::::::
wind.

:::::
What

:::::::::
strengthens

:
cold pools in the trades despite

the shallower parent convection is the drier cloud layer and free troposphere compared to the deep convective regions, which

facilitates evaporation of precipitation and can strengthen downdrafts (Chandra et al., 2018).
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The initial increase in humidity at the edge of the front at BCO might be explained by enhanced surface fluxes due

to the strengthening winds (Langhans and Romps, 2015; Torri and Kuang, 2016), or by an accumulation of moisture from425

evaporation of precipitation of the parent convection, which was pushed to the edge of the front (Tompkins, 2001). Analyses

of the various isotope measurements made during the EUREC4A field campaign (Stevens et al., 2021) might help elucidate

the origin of these moisture rings. This could also help understand why cloud-resolving models seem to have difficulties in

representing the humidity structure in the cold-pool front correctly (Chandra et al., 2018).

The cloud radars at BCO also allow study of how the cloud properties change across the cold-pool passage (Figure 4). The430

mean cloud-top height (CTH) increases rapidly by ∼ 500 m after the cold-pool onset and peaks at the end of the front. CTH

remains elevated by ∼ 300
::::
about

::::
300 m compared to the pre-front value in the following hour. The 25% strongest cold pools

are associated with significantly deeper clouds throughout the entire period shown, especially so at the end of the front, when

the CTH is on average higher than 3300 m. The cloud-base height (CBH) starts to decrease already slightly before tmax and

reaches its minimum near the end of the front at ∼ 500 m. This decrease is due to the more frequent precipitation with very435

low echo-base heights, and is most pronounced for the strongest cold pools.

The total hydrometeor cover (CC) increases rapidly at the beginning of the cold-pool front, remains about 25% larger

compared to the pre-front value inside the front, and then decreases slowly in the wake. The mean CC of the 25% strongest

cold pools reaches nearly 100% at the end of the front and is significantly larger than the CC of the weakest cold pools

during the entire period shown, especially so in the wake.
::
In Figure 4d-f show

:::
the

:::::
cloud

:::::
cover

::
is

::::
split

:::
into

:::::::::::
contributions

:::::
from440

::::
cloud

::::::::
segments

::::
with

::::::::
different

:::::
CBH

:::
by

:::::::::
considering

:::
all

:::::
1-min

:::::::::::
hydrometeor

::::::
fraction

:::::::
profiles

::::::::::::
independently.

::::
This

:::::
shows

:
that the

enhanced CC of the strongest cold pools in the prior hour is entirely due to cloud segments with CBH above 1 km (CCaloft),

whereas the enhanced CC in the front and wake of the strongest cold pools is mostly due to precipitating cloud segments with

CBH below 300 m. The rapid increase in CC lcl up to its peak at tmax strongly contributes to the CC increase at the edge of

the front. This peak is also larger for the strongest cold pools, consistent with their larger w450 at tmax. CC lcl and CCaloft are445

lower at the end of the front for the strongest cold pools, as the lowest CBH is mostly below 300 m and the cloud segments

thus count to the CCprcp category(note
:
.
:::::
(Note

:
that a given time can only count to one of the three categories).

:
.)
:

In
::::::
Overall,

:
Figure 4 d-f the cloud cover is split into contributions from cloud segments with different CBH without

accounting for the information of
:::::::
indicates

::::
that

:::::
clouds

::::
and

::::
rain

:::
are

:::::
nearer

:::::
tmin ::

in
:::
the

::::::::
strongest

::::
cold

:::::
pools,

::::
and

:::::
nearer

:::::
tmax

::
for

:::
the

:::::::
weakest

::::
cold

:::::
pools.

::
A
::::::::
potential

::::::::::
explanation

:::
for

:::
this

::::::::::
observation

::
is

:::
that

:::::::
stronger

::::
cold

:::::
pools

:::
are

::::::
running

::::::
further

::::::
ahead

::
of450

::::
their

:::::::
stronger

:::::
parent

::::::::::
convection,

:::::
while

:::
the

::::::
weaker

::::::
parent

:::::::::
convection

::
of

:::
the

:::::::
weaker

::::
cold

:::::
pools

:::::
might

::::
have

:::::::
already

:::::::::
dissipated.

::::::::
However,

:::::::
drawing

::::
such

::::::::::
conclusions

:::::
from

::::::::::
single-point

:::::::::::
observations

::
is

:::::
tricky,

:::
as

:::
the

::::::::
influence

::
of

:::
the

:::
life

:::::
cycle

:::::
stage

::::
and

:::
the

:::::
overall

:::::::::
cold-pool

:::::::
strength

::
on

:
the cloud entity. Based on a similar analysis that accounts for the entity information (

:::::::
observed

::::::::
cold-pool

::::::::::::
characteristics

:::::
cannot

:::
be

:::::::::::
disentangled.

:::::
Some

::::::::::
information

:::::
about

:::::::
different

:::::
cloud

:::::
types

:::::::::
populating

:::
the

::::::::
cold-pool

:::::
front

::
or

::::
wake

:::
can

:::
be

::::::
derived

:::
by

::::::::
analysing

::
the

::::
CC

:::::::::::
contributions

:::::::
grouped

::
by

:::
the

::::::
overall

::::::
CBH

::
of

::
the

:::::::::
segmented

:::::
cloud

::::::
objects

:::::::
(cbhID,455

see Appendix A ), we
:::
and

:::::::
Section

::::
2.1).

:::
We

:
find that the peak in CC lcl at tmax is mainly due to edges of precipitating clouds

that have a CBH > 300 m. Assuming that this cloud population represents the clouds evident as mesoscale arcs in satellite

imagery, this suggests that the cloudiness at the gust front is mostly characterized by well-developed precipitating clouds. The
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entity
:::::
cloud

::::
types

:
analysis also shows that more than half of the CCaloft in the cold-pool wake is part of large precipitating

clouds, and not from detached stratiform layers. This is also suggested by the time-height plots of the composite-mean hy-460

drometeor fraction shown in Figure 4g-i. These panels nicely summarize what was discussed in the previous paragraphs, and

again highlight the differences between the 25% strongest and weakest cold pools in terms of the cloud response.
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Figure 4. (a-f) Same as Figure 3, but for (a) cloud-top height, (b) cloud-base height, (c) total cloud cover, and the contribution to total cloud

cover from (d) CCprcp, (e) CClcl and (f) CCaloft. Also indicated is the climatological mean value for the winter periods of 2012-2020. (g-i)

Composite mean temporal structure of vertical hydrometeor fraction (HF) profiles for all noprevWI cold pools, as well as the 25% strongest

and weakest. The thin dashed line at 600 m height marks the average cloud-base height.
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Temporal structure of individual cold pools ranked according to their ∆T . Shown are all cold pools of noprevWI that have

all instruments running. The panels show anomalies relative to the cold-pool onset (tmax) for (a) temperature, (b) specific

humidity, and (c) wind speed, as well as absolute values of (d) the MRR rain frequency, (e) the cloud-top height, and (f) the465

vertical velocity averaged over the sub-cloud layer.

Figure 4a-f also indicate the respective mean CTH , CBH and CCs for all the winter months of the period 2012-2021.

They show that cold-pool periods are much cloudier than the average winter trades
::::::::
conditions

:::
at

:::::
BCO,

::::
with

::::
the

:::::::
average

::::::
in-front

::::
CC

:::::
being

::::
twice

:::
as

::::
large

::
as

:::
the

:::::::
10-year

:::::::::::
climatological

:::::
mean. Cold-pool periods also have much deeper clouds

::::
than

:::
the

:::::::::::
climatological

:::::
mean

::
of

:::::
about

:::::
2 km, which is expected as it needs deeper precipitating clouds to form cold pools. The enhanced470

CC in the wake of cold pools compared to the long-term mean is nevertheless surprising, as convection might be expected to be

suppressed in the cold-pool wake. Mesoscale arcs encircling vast decks of deeper cumuli with stratiform layers therefore seem

more representative for periods of cold-pool activity than the more classical picture of trade cumulus cold pools as mesoscale

arcs enclosing broad clear-sky areas.
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Figure 5.
::::::
Temporal

:::::::
structure

::
of
::::::::

individual
::::

cold
:::::
pools

:::::
ranked

::::::::
according

::
to

::::
their

:::
∆T .

::::::
Shown

:::
are

::
all

::::
cold

::::
pools

:::
of

:::::::
noprevWI

::
that

::::
have

:::
all

::::::::
instruments

:::::::
running.

:::
The

::::::
panels

::::
show

::::::::
anomalies

::::::
relative

::
to

:::
the

:::::::
cold-pool

:::::
onset

:::::
(tmax)

::
for

:::
(a)

::::::::::
temperature,

::
(b)

::::::
specific

::::::::
humidity,

:::
and

:::
(c)

::::
wind

:::::
speed,

::
as

:::
well

::
as

::::::
absolute

:::::
values

::
of

:::
(d)

::
the

:::::
MRR

:::
rain

::::::::
frequency,

::
(e)

:::
the

:::::::
cloud-top

::::::
height,

:::
and

::
(f)

:::
the

:::::
vertical

:::::::
velocity

:::::::
averaged

:::
over

:::
the

:::::::
sub-cloud

::::
layer.

Despite the various significant differences between the strongest and weakest cold pools highlighted in the previous para-475

graphs, there is a lot of variability among individual cold pools. The variability is illustrated in Figure 5, which shows the

temporal structure of the most important variables for individual cold pools ranked according to their ∆T . Especially the in-
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dividual differences in humidity and wind in the front and the beginning of the wake can by far exceed the mean differences

among the strongest and weakest cold pools shown in Figure 3.
::::::
Notable

::
is

:::::
again

:::
the

:::::::::
occurrence

::
of

::::::::::
pronounced

:::::::
negative

::::::
values

::
of

:::
the

::::
wind

::::::
speed

:::::::
anomaly

::::
after

:::::
tmin,

:::::
which

::::::::
suggests

::::
that

::::
some

::::
cold

:::::
pools

:::::
push

::::::::
backward

::::
into

:::
the

:::::
mean

:::::
wind.

:
Tendencies480

of more frequent (and intense) rain, deeper clouds and stronger downdrafts near tmin of the stronger cold pools are neverthe-

less clearly evident. Especially the downdraft strength seems to be systematically increasing for stronger temperature drops.

Besides showing the CTH , Figure 5e also gives an indication of the CC, again illustrating how cloudy the cold-pool periods

are.

3.3 Daily
:::
Diel

:
cycle485

The long timeseries also allows to study the variability of the cold-pool frequency and characteristics at the daily timescale.

Figure 6 shows the daily
:::
diel

:
variability of cold-pool properties for the noprevWI set. There are clearly fewer cold pools and a

lower hourly cold-pool frequency between 16-22 LT compared to the rest of the day. Three local maxima in both
:::
Just

::::::
before

::::::::
midnight, the cold-pool frequency and number are present at 03, 09 and

::::::
strongly

::::::::
increases

::
in

:::::::
response

::
to

:::
the

:::::::::
night-time

:::::::
increase

::
in

::::
cloud

::::::
cover,

:::::
cloud

::::
depth

::::
and

:::
rain

::::
rate

:::
(see

:::::
green

:::::
lines

::
in

:::::
panels

:::
e-i

:::
and

:::::::::::::::
Vial et al. (2019)).

::::
The

::::::::
cold-pool

:::::::::
occurrence

:::::::
remains490

:::::::
strongly

:::::::
elevated

:::::::
between

::::
2 LT

:::
and

::::::
15 LT,

::::
with

:
a
::::
peak

::
at
:
14 LT.

Also most cold-pool diagnostics show a pronounced daily
:::
diel

:
variability. During nighttime between about midnight and

04 LT, cold pools are associated with significantly deeper clouds, stronger mean rain rates, stronger downdrafts and updrafts,

larger CC, and slightly stronger humidity drops and weaker wind gusts compared to daytime cold pools between about 08-

16 LT. There is also a hint of slightly stronger ∆T during nighttime compared to daytime, but neither in the median nor in the495

25% quartiles is this daily
:::
diel

:
cycle significant. It is somewhat surprising that we find no pronounced daily

:::
diel cycle in ∆T ,

although the daily
::::::
despite

:::
the

:::
diel

:
cycle of e.g. wminSCL and CTHmaxwould suggest that ∆T should be stronger at nighttime

compared to daytime. There is a climatological background daily
:::
diel

:
cycle in temperature of about 1.2 K due to the daytime

solar heating
::
of

:::
the

::::::
ground

::
at
:::::
BCO

:
(minimum and maximum temperatures near 5 and 12 LT , respectively

::::::::::
respectively,

:::
not

:::::
shown), but this should not affect the cloudy cold-pool periods much and would at best contribute to lower ∆T in the morning.500

Other diagnostics like ∆qmax and Rint do not show a pronounced daily
:::
diel

:
variability (not shown).

The pronounced daily
:::
diel

:
variability in the cold-pool frequency and most diagnostics is not surprising given the distinct

daily
:::
diel cycle in trade cumulus cloudiness discussed in detail in Vial et al. (2019) based on both

:::::::
realistic

:
high-resolution

simulations and
::::
both

:::::
BCO

:::
and

:::::::
satellite observations. The daily

:::
diel cycle of trade cumuli is characterized by larger CC and

deeper clouds at the end of the night and smaller CC and shallower clouds in the afternoon. This is evident in the background505

climatological daily
:::
diel cycles indicated in Figure 6e-i. The daily

:::
diel

:
cycles of most cold-pool diagnostics have a similar

phase and also amplitude as their background daily
:::
diel

:
cycles, but are shifted to much larger values (as indicated in the

respective legends). For the vertical velocity diagnostics, also the amplitude of the daily
:::
diel cycle is much larger compared to

the background climatology.
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Figure 6. Daily cycles of important cold-pool diagnostics. (a) mean±1 SE of hourly cold-pool frequency as well as the number of cold

pools per hour, (b) ∆T , (c) ∆qmin, (d) ∆Umax, (e) CTHmax, (f) MRR RRmean, (g) wminSCL and (h) wmax450, and (i) CC tot, with cold pools

associated to a specific hour according to their tmax. In panels b-i the lines represent the 25%, 50%, and the 75% quartiles of the respective

variables and the shading represents the median±1 SE. Also indicated in green is the median climatological background daily
::
diel

:
cycle

of 30-min values of (e) maximum CTH , (g) minimum wSCL, (h) maximum w450, and (i) mean CC, shifted by the mean difference of the

climatological median compared to the cold-pool median to ease reading. Due to the infrequent rain, the median climatological RRmean is

always 0 and omitted in panel f.

The peaks in the
:::::
period

::
of

::::::::
enhanced

:
cold-pool frequency at 09 and

::::::::
occurrence

::::::::
between

:::::::
23-15 LT

::::
and

::
its

:::::
peak

::
at 14 LT are510

shifted by a few hours
::::::
extend

:::::
much

::::::
further

::::
into

:::
the

:::
day

:
compared to the peak in the surface precipitation between

:::::
period
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::
of

::::::::
enhanced

:::::
mean

::::::::::
background

:::
rain

::::
rate

:::::::
between

:::::
about

:
03-06 LT (Nuijens et al., 2009; Vial et al., 2019). This suggests

:::::
during

:::::
RICO

:::
and

::::::::::
EUREC4A

::::::::::::::::::::::::::::::::::
(Nuijens et al., 2009; Radtke et al., 2021),

:::::::::
suggesting that cold pools help extend the daily

:::
diel cycle of

shallow convection into the early afternoon, which could be due to cold pools reinforcing each other and triggering subsequent

cold pools . This hypothesis
:
.
::::
Also

:::
the

::::
diel

:::::
cycle

::
of

:::::
cloud

:::::
cover

::::::
seems

::
to
:::

be
:::::::
slightly

::::::::
extended

::
in

::::::::
cold-pool

:::::::
periods,

:::::
with515

:::::
CC tot :::::::::

decreasing
:::::
below

:::
the

::::
diel

:::::
mean

:::::
about

:::
4 h

::::
later

::::::::
compared

::
to

:::
the

::::::::::::
climatological

::::
CC.

::::
The

:::::
likely

::::::
reason

:::
for

:::
the

::::::::
extension

::
of

:::::::::
convection

:::
into

:::
the

::::::::
afternoon

::
is
::::
that

:::
the

::::
cold

::::
pools

:::
are

:::::::::
successful

::
in

::::::::
triggering

::::
new

::::::::::
convection,

:::::
which

:::
can

:::::
again

::::::
induce

::::
new

:::
cold

:::::
pools

::::
that

::::::
trigger

::::::
further

:::::::::
convection.

::::::::
Thereby,

::::
cold

:::::
pools

::::::::
reinforce

::::
each

:::::
other,

:::::
which

:
is supported by the shorter median

interval between subsequent cold pools of 121 min between 07-14 LT compared to 182 min between 22-04 LT.

Also the daily cycle of cloud cover seems to be slightly extended into the morning, with CC tot decreasing below the daily520

mean about 4

:::
The

::::::::::
importance

::
of

:::::
cold

:::::
pools

::
in

:::::::::
triggering

::::
new

:::::::::
convection

:::
is

::::
well

::::::::::
established

::
in

:::
the

::::::::
literature

::::
and

:::
can

::::::
occur

:::::::
through

::::::::
mechanic

:::::
lifting

::
or

:::::::
moisture

:::::::::::::
accumulations,

::::
both

::
of

:::::
which

:::
are

:::::::
favoured

:::::
when

:::::::
multiple

::::
cold

:::::
pools

:::::
collide

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rotunno et al., 1988; Tompkins, 2001; Feng et al., 2015; Torri and Kuang, 2019; Meyer and Haerter, 2020).

:::::::::::::::::::::
Rochetin et al. (2021) also

:::::
found

::
a
::::
diel

:::::
cycle

::
of

::::::::
cold-pool

::::::::::
occurrence

::::
near

::::::::
Barbados

::
in

:::::::
realistic

::::
LES

::::
with

::::
the

:::::
ICON

::::::
model

:
at
::::

2.5 h later compared to the climatological CC.
:::
km

::::
grid

:::::::
spacing,

::::::::
however,

:::::::
without

::::
the

::::::::::
pronounced

::::::::
extension

::::
into

::::
the525

::::::::
afternoon

:::::::
observed

::
at
:::::
BCO

::::
(see

::::
their

::::::
Figure

:::::
16D).

::::
This

:::::
might

::
be

::::
due

::
to

::::
gust

::::
front

:::::::
vertical

::::::::
velocities

:::::
being

:::::::::::::
poorly-resolved

::
at

::::::::::::
kilometre-scale

::::::::::
resolutions,

::::::
which

::::
leads

:::
to

:::
too

::::
little

:::::::::
convective

:::::::::
triggering

:::
and

::::::
deficits

:::
in

:::
rain

::::
and

:::::::::
convective

::::::::::
organization

:::
as

:::::::::
simulations

::::
over

::::::::
Germany

:::::::
showed

:::::::::::::::::::
(Hirt and Craig, 2021).

Vial et al. (2021) also find the daily
:::
diel

:
cycle of trade cumuli to be strongly linked to the daily

:::
diel cycle in the occurrence

frequency of the mesoscale organization patterns. Whether the cold-pool characteristics and their daily
:::
diel

:
cycles are related530

to the pattern of mesoscale organization will be discussed in the next section.

4 Relationship of cold-pool characteristics to mesoscale organization pattern

In this section we investigate whether the cold-pool frequency and characteristics depend on the pattern of mesoscale cloud

organization. For this we condition the cold pools on the organization pattern present at BCO. As explained in Section 2.2, a

pattern
:::
cold

::::
pool

:
is attributed to a cold pool

:::::
pattern

:
if it is present during> 75% of the cold-pool duration. As multiple patterns535

can be present at the same time, a cold pool can pertain to two (or rarely even three) patterns
::
can

:::
be

::::::::
attributed

::
to

:::
one

::::
cold

::::
pool.

Pattern labels are available from January 2018 to March 2021, and using the noprevWI criterion we end up with
:::::
leaves

:
1332

cold pools to be analysed
:
.

The
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Figure 7.
::::::::::
Distributions

::
of

::::::
various

:::::::
cold-pool

:::::::::
diagnostics

:::::::::
conditioned

::
on

:::
the

:::::::::
organization

:::::::
patterns.

:::
(a)

::::::
Number

::
of

::::
cold

:::::
pools,

::
(b)

::::::::
cold-pool

::::::
fraction,

:::
(c)

:::::::
cold-pool

:::::::
duration,

:::
(d)

::::
time

::::
since

::::
tmin::

of
:::
the

:::
last

::::
cold

::::
pool,

:::
(e)

::::
∆T ,

::
(f)

::::::
∆qmin,

:::
(g)

::::::
∆qmax,

:::
(h)

:::::::
∆Umax,

::
(i)

:::::
MRR

:::
Rint,:::

(j)

:::::::
CTHmax,

:::
(k)

::::::
wmax450 :::

and
:::
(l)

::::::
wminSCL.

::::
The

::::::
different

:::::::
symbols

::
in
::::::

panels
::
c-l

:::::::
represent

:::
the

:::::
25%,

::::
50%

:::
and

::::
75%

:::::::
quartiles

::
of

:::
the

::::::::
respective

:::::::
variables,

:::
the

::::
solid

::::
lines

:::::::
represent

:::
the

:::::::::::
median±1 SE,

:::
and

:::
the

:::::
dotted

::::::::
horizontal

::::::::
reference

::::
lines

::::
show

:::
the

::::::
median

::
of

:::
the

:::::
entire

::
set

::::::
(’tot’).

::::::
Besides

::
the

::::
cold

::::
pools

:::::::
matching

:::
the

::::::::
noprevWI

:::::::
criterion,

::::
panel

:::
(b)

:::
also

:::::
shows

:::
the

::::::
fraction

::
of

:::
cold

:::::
pools

::
for

::
all

::::::
seasons

:::::
(’all’)

:::
and

::::::::
excluding

:::::
periods

::::
with

::::::
multiple

::::::::::
organization

::::::
patterns

::::::::
(’WI.only’

:::
and

::::::::
’all.only’).

:::
The

:::::::::
discussion

::
of

:::
the

:
four example cold-pool days in Figure 2 already shed some light on the differences in the cold-pool540

characteristics of the four patterns. The two Sugar cold pools stem from isolated precipitating deeper cumuli. The satellite

image captures the deeper cloud over BCO at the time of the first cold pool and also indicates some organization of the cumuli

in lines upstream BCO, while the canonical Sugar fields of shallow cumuli pass further North.
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The textbook Gravel day is characterized by many short and often weak cold pools quickly following each other, interspersed

by stronger cold pools. The cold pools are associated with the presence of strongly precipitating deeper clouds (note that the545

radar did not work prior to 12 LT). The many cold pools present on this day clearly imprint their signature on the satellite image

in the form of mesoscale arcs.

The cold pools on the Flowers day are associated with the large cloud system whose stratiform layer reaches the BCO at

10 LT. Three cold pools are directly associated with the large system, with the first one starting at 11 LT showing a very strong

∆T of −3.85 K. The large system has rain rates up to 3.6 mm h−1 and is announced by a weaker cold pool associated with the550

very thin mesoscale arc visible in the satellite image, which goes along with a strong increase in humidity of 1.3 g kg−1.

The Fish day features a 6 h long cold pool associated with steady and intense rain (maximum RR of 11.6 mm h−1),

continued strong downdrafts and very large humidity throughout its entire duration. The temperature fully recovers within

about 20 min of the cold-pool end, and 3 h later two subsequent pronounced cold pools follow that are again characterized by

continued precipitation and downdrafts. The satellite image shows the fish-bone like cloud band typically associated with555

the Fish pattern. The occurrence of the Fish pattern is strongly connected to trailing cold fronts of extratropical origins

(Aemisegger et al., 2021; Schulz et al., 2021). The more front-like character of the Fish cold pools with steady showers and

downdrafts is clearly evident in the example timeseries.

Distributions of various cold-pool diagnostics conditioned on the organization patterns. (a) Number of cold pools, (b)

cold-pool fraction, (c) cold-pool duration, (d) time since tmin of the last cold pool, (e) ∆T , (f) ∆qmin, (g) ∆qmax, (h) ∆Umax,560

(i) MRR Rint, (j) CTHmax, (k) wmax450 and (l) wminSCL. The different symbols in panels c-l represent the 25%, 50% and 75%

quartiles of the respective variables, the solid lines represent the median±1 SE, and the dotted horizontal reference lines show

the median of the entire set (’tot’). Besides the cold pools matching the noprevWI criterion, panel (b) also shows the fraction of

cold pools for all seasons (’all’), for all seasons but without periods of deep convection (’all.nodeep’), and excluding periods

with multiple organization patterns (’WI.only’ and ’all.only’).565

:::
For

:
a
::::::::
statistical

::::::::::
comparison,

:
Figure 7 shows distributions of several cold-pool properties for the different patterns, including

the ’No’ category and the union of the five categories (’tot’). The most pronounced difference among the patterns lies in the

occurrence frequency of cold pools. Most cold pools detected at BCO pertain to the Gravel pattern(458), followed by Fish

(402) and Flowers (248
:::::
Figure

:::
7a). As expected, only 36

:::
few

:
cold pools are detected during Sugar periods. Many cold pools

are also associated with the No category(341). .
:

570

When we look at the fraction of time a given pattern is subject to a cold pool
:::
cold

::::
pool

:::
is

:::::::
observed

:::
in

:
a
:::::

given
:::::::

pattern

::::::
(Figure

:::
7b), the picture changes and the Fish pattern is associated with the largest cold-pool fraction (12.8% of time), followed

by Flowers and Gravel (9.9% and 724
:::
7.2%, respectively). Again, Sugar has clearly the lowest cold-pool fraction (1.6%).

:::
The

::::::::
cold-pool

:::::::
fraction

::
of

:::
the

:::
No

:::::::
category

::
in

:::::
winter

::
is

::::
with

::::
6.4%

::::
also

:::::::::
substantial.

:
Figure 7b also shows the cold-pool fractions

using different selection criteria, namely that only one pattern is allowed at a time (’.only’; excluding cold pools that pertain575

:::
cold

:::::
pools

:::::::::
attributed to multiple patterns ),

::
are

::::::::
excluded

::
(
:::::
’.only’

:
),
::::
and that all noprev cold pools from all seasons are used

(rather than only from the winter months; ’all’), and that periods of deep convection in all seasons are excluded (’all.nodeep’;

i. e. no cold pools with any radar signal between 4.5–8 km). For the Gravel pattern, these different criteria hardly influence
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the cold-pool fraction, whereas for Flowers and Sugar the different sets of criteria tend to change the cold-pool fraction. For

Flowers, the cold-pool fraction in winter reduces to 8.6% if periods with multiple patterns and their cold pools are excluded.580

Only 85 cold pools are left for Flowers.only, while the rest are shared with Gravel (86), Fish (80) and a few also with Sugar (7).

While excluding periods of multiple patterns more than halves the cold-pool fraction for Sugar (to 0.8%, mostly due to overlap

with the Gravel pattern), considering all seasons nearly doubles the cold-pool fraction of Sugar. Despite these differences, the

:
.
:::
The

:
four patterns remain distinct in their cold-pool fractions independent of the criteria considered. The

::::
Only

::
for

::::::
Sugar

::::
(and

::
to

:
a
:::::
small

:::::
extent

::::
also

::::::::
Flowers)

:::
do

::::
these

:::::::
criteria

::::::
change

:::
the cold-pool fractionof the No category in winter is with 6.4% also585

substantial. The No category is particularly sensitive to the inclusion of all seasons, and
::
as in summer with more frequent deep

convection most cold pools pertain to the No category (not shown). Excluding periods of deep clouds (’all.nodeep’) therefore

mostly affects the No category, as deep convection is usually absent when patterns are detected.

That Gravel has the largest number of cold pools but only the third largest cold-pool fraction is partly due to Gravel being the

most frequent pattern at BCO (a total of 178 days out of the 18 winter months considered, compared to 113 Fish, 78 Flowers590

and 72 Sugar days), and partly because Gravel cold pools on average last 6 min shorter than Fish cold pools (Figure 7c).

With a median duration of 37 min, Fish has the significantly longest-lasting cold pools of all patterns,
:::::
which

::
is
::::::
tightly

::::::
linked

::
to

:::::::
frequent

::::::::::
long-lasting

::::
rain

::::::
events. Cold pools in the Fish case

:::::
pattern

:
also follow each other most rapidly, with a median

of 124 min separating individual cold pool fronts (Figure 7d). Also for Flowers and Graveldo
:
,
:
cold pools follow each other

quickly, whereas much more time passes between cold pools for Sugar and No. The same picture emerges when considering595

the cold-pool length (i.e. the duration multiplied by the surface wind speed): Fish cold pools are with a median size of 13.8 km

slightly larger than Gravel and Flowers cold pools (both about 12.6 km, not shown).

Figure 7e-i show the differences in the surface meteorology, rain and cloud response associated with cold pools for the

different patterns. Fish has the strongest median ∆T and the strongest downdrafts of all patterns ,
:::::
(7e,l), and also a stronger

∆Umax compared to Gravel and Flowers
:::
(7h). Gravel cold pools are associated with significantly larger CTHmax and stronger600

updrafts compared to the other patterns
::::
(7j,k). For the humidity and rain diagnostics ,

::::::
(7f,g,i), the differences between Gravel,

Flowers and Fish cold pools are minor. Sugar cold pools generally have the weakest cold-pool signatures. Contrastingly, the

cold pools of the No category show no significant differences compared to Gravel, Fish and Flowers for most of the statistics.

If cold pools with multiple patterns are excluded, the strongest differences in the diagnostics occur for Flowers and Sugar, as

their sample sizes become very small.For Flowers. only cold pools, ∆qmax is significantly larger compared to the other patterns605

(not shown), and ∆T becomes comparable to the Fish and wmax450 comparable to Gravel cold pools. The Sugar.only cold-pool

sample tends to have smaller cold-pool anomalies compared to when multiple patterns are allowed
::::::::
statistics.

:::::
These

::::::
results

:::
are

::::::
largely

:::::::::
insensitive

::
to

::::
both

::
an

:::::::
increase

::
in
:::
the

::::::
neural

:::::::
network

:::::::::
agreement

:::::
score

:::
(i.e.

:::::
using

:::
0.5

:::::::::
compared

::
to

:::
0.4,

:::
see

:::::::
Section

::::
2.2)

:::
and

::
to

:::
the

::::::::
exclusion

:::
of

:::::::
multiple

:::::::
patterns (except for the median ∆Umax and wmax450), but the small sample of 11 Sugar.only

cold pools does not allow for robust conclusions here. We find similar differences in the cold-pool samples when the neural610

network agreement score is increased to 0.5 (instead of the default 0.4
::::
Sugar

::::
and

::
to

:::::
some

::::::
degree

:::
also

::::::::
Flowers,

:::::
whose

:::::::
sample

::::
sizes

:::::::
become

::::
very

:::::
small,

:::
not

::::::
shown).
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Figure 8. Composite mean temporal structure of the four organization patterns and the No category. Shown are (a) total CC, the contribution

to totalCC from (b)CClcl and (c)CCaloft, and (d) theCTH . The dotted lines show the mean±1 SE. Also indicated on the far-left of panels

a-d are the climatological mean values per pattern for the corresponding winter periods of 2018-2021. Panels e-h show the mean temporal

structure of the vertical hydrometeor fraction profiles for the four patterns.The colour scale is the same as in Figure 4.

Figure 8 a-d shows the differences in the temporal structures of cloud properties
::::::::
associated

::::
with

:::
the

::::::::
cold-pool

::::::::
passages for

the four patterns. They show that also during the cold-pool periods, the climatological differences in CC and CTH among

the different patterns remain (see also Schulz et al., 2021; Vial et al., 2021; Bony et al., 2020). Fish has the
:::
Fish

::::
and

:::::::
Flowers615

::::
have

:::
the largest CC , closely followed by Flowers1, and then Gravel and Sugar. The CC differences are mostly due to the

differing
:::
(8a)

::::
due

::
to

:::::
larger

:
contributions of CCaloft , whereas

::::
(8c),

:::::
which

::::
are

:::::::::
associated

::::
with

:::::::
frequent

:::::::::
stratiform

::::::
layers

:::
near

::::::::
1.5-2 km

::::::
(8f,h).

:
CClcl is fairly similar among the patterns both for the cold-pool periods and the climatological mean

1Whether Fish or Flowers have the larger mean CC depends on the dataset and the period considered

(Bony et al., 2020; Schulz et al., 2021; Vial et al., 2021)
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(Schulz et al., 2021). Also the temporal structure of
::::
(8b)

:::
and

:
CCprcp is similar for all patterns during the cold-pool period (not

shown) , and resembles the mean structure of all cold pools shown in Figure 3d. For all patterns, the cold-pool periods are620

characterized by significantly deeper clouds and larger CC compared to the pattern average.

::::::
instead

:::
are

:::::
fairly

::::::
similar

::::::
among

::::
the

:::::::
patterns.

:
The CC of Fish cold pools hardly changes across the cold-pool passage,

whereas the onset of the cold-pool front is much more clearly evident for the Gravel and even more for the Sugar CC
::::
(also

:::
see

:::
the

::::::::::
time-height

:::::::::
composites

::
in
::::::

Figure
:::::
8e-h). The CC in the wake of Sugar cold-pools also decreases most rapidly back

to its pre-front value. Fish also tends to have the deepest mean CTH associated with the cold-pool periods, closely followed625

by Gravel and Flowers. The
::::::
Again,

:::
the mean CTH of Gravel cold pools increases more

:::
and

:::::
Sugar

::::
cold

:::::
pools

:::::::
increase

:::::
most

rapidly in the front compared to Flowers and Fish, but also decreases a bit faster in the wake of the cold pools. Again
::
the

:::::
other

:::::::
patterns.

:::
For

::
all

:::::::
patterns, the cold-pool onset has the strongest CTH imprint for the Sugar pattern , with a mean CTH increase

exceeding 1 km between tmax::::::
periods

:::
are

:::::::::::
characterized

:::
by

::::::::::
significantly

::::::
deeper

::::::
clouds

:::
and

::::::
larger

:::
CC

:::::::::
compared

::
to

:::
the

::::::
pattern630

::::::
average

:::::::::
(indicated

::
by

:::
the

::::::
dashed

::::
lines

:::
on

:::
the

::::::
far-left

::
of

:::::
8a-d).

:::::::::::
Nevertheless,

:::
the

::::::::::::
climatological

:::::::::
differences

::
in
:::::
CC,

::::::
CCaloft:

and

tmin.

The differences in the cloud properties of the different patterns associated with the
:::::
CTH

::::::
among

:::
the

::::::::
different

:::::::
patterns

::::::::::::::::::::::::::::::::::::::::::::::::
(Schulz et al., 2021; Vial et al., 2021; Bony et al., 2020) also

:::::::
remain

::::::
during cold-pool passages are again summarized in the

time-height composite hydrometeor fraction plots
::::::
periods,

:::::::::
indicating

::
the

:::::::::
robustness

::
of

:::
the

:::::::::::::
pattern-specific

:::::
cloud

::::::::::::
macrophysical635

::::::::
properties.

::::
The

::::::::::::
climatological

:::::::::
differences

::
in
::::::
CTH

::
of

:::
the

:::::::
patterns

:::::::::
correspond

::::
very

::::
well

::::
with

::::
their

::::::::::
differences

::
in

:::
the

::::::::
cold-pool

::::::
fraction

:
(Figure 8e-h). They show the strongly enhanced CCaloft of Fish and

:::
7b),

::::
with

:::::
Sugar

::::::
having

:::::::
clearly

:::
the

:::::::::
shallowest

::::
mean

::::::
CTH

::::
and

:::
the

::::::
lowest

::::::::
cold-pool

::::::::
fraction,

::::::::
separated

:::
by

:
a
:::::::::::

step-change
::::
from

:::::::
Gravel,

::::::::
followed

::::::
closely

:::
by

:::::::
Flowers

::::
and

::::
Fish.

::::
The

:::
two

:::::::
patterns

:::::
with

:::
the

::::::
largest

::::::::
cold-pool

::::::::
fraction,

::::
Fish

:::
and

:
Flowerscold pools that is mostly associated with more

frequent stratiform layers near 1.5-2 km. The more pronounced influence of the ,
::::
also

:::::
have

:::
the

::::::
largest

:::::
mean

:::::
cloud

::::::
object640

::::
sizes

::::::::::::::::
(Bony et al., 2020),

:::::::::
suggesting

:::
that

:::::
cloud

::::
size

:::
and

:
cold-pool onset on the CC and CTH for Sugar and Gravel compared

to Flowersand Fish, as well as the overall higher CTH for Fish are also clearly evident
:::::::::
occurrence

:::
are

::::::::
positively

:::::::::
correlated

:::::::::::::::::::::::::::::
(Schlemmer and Hohenegger, 2014).
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Figure 9. Daily cycles of (a) number of cold pools, (b) hours of data for the different organization patterns, and (c) hourly fraction in cold

pool (solid) and in cold-pool front (dashed). A 5-hourly running mean is applied to smooth the data. The daily
:::
diel means are indicated on

the left side of each panel.

As mentioned before, Vial et al. (2021) find the daily
:::
diel

:
cycle of trade cumuli to be strongly linked to the daily

:::
diel

:
cycle

in the occurrence frequency of the mesoscale organization patterns. Figure 9a shows strong daily
:::::
strong

:::
diel

:
variations of the645

number of cold pools associated with the different patterns. These variations are strongly connected to the daily
:::
diel

:
cycles in

the occurrence frequency of the patterns (Figure 9b and Vial et al., 2021). The maximum number of Gravel cold pools occurs

just after midnight, followed by Flowers around 7 LT, and Fish cold pools at 10 LT. The number of Sugar cold pools is very

low throughout the day.

Figure 9a suggests that the extension of the daily
:::
diel cycle of convection into the early afternoon due to cold pools may650

largely be explained by the Fish pattern, together with a substantial contribution of the No category to the peak at 14 LT.

Despite the strong connection between the daily
:::
diel phasings of Figure 9a-b, especially the Fish pattern also shows a daily

:::
diel

:
cycle of the cold-pool fraction with a peak in the afternoon (Figure 9c), which is broadly in phase with the occurrence

frequency. The daily
:::
diel cycle in the cold-pool fraction might be due to cold pools lasting a while once they are formed, which

is supported by the much weaker daily
:::
diel

:
cycles of the cold-pool front fraction (dashed lines in Figure 9c). Once present,655

cold pools often trigger new cold pools, as indicated
::::::::
suggested by the 33% shorter interval between subsequent fronts during

daytime compared to nighttime (see discussion in Section 3.3). From the present analyses, it is difficult to disentangle causal

relationships between the pattern occurrence, cold pools, and the daily
:::
diel

:
cycle. It is also difficult to pin down the evolution

from one pattern to another, and the role of cold pools therein. As the number of cold pools per pattern and hour is quite low

(especially in the case of Flowers), more data is needed to draw robust conclusions on this.660

The pattern-associated daily
:::
diel

:
phasing of the cold-pool number might give a clue about why ∆T varies little on the daily

timescale (Figure 6c), although the daily
:::
diel cycle of most cold-pool properties would suggest that ∆T should be stronger

at night compared to day. The daytime Fish pattern has significantly stronger ∆T compared to the nighttime Gravel pattern

(Figure 7e), which might compensate for the opposite expectation due to the daily
:::
diel

:
phasing of CTHmax and wminSCL.
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5 Conclusions665

This paper presents a longterm climatology of trade cumulus cold pools based on more than ten years of in-situ and ground-

based remote sensing data from the Barbados Cloud Observatory (BCO; Stevens et al., 2016). Cold pools are detected by

abrupt drops in low-pass filtered temperature timeseries and their associated changes in surface meteorology, cloudiness and

sub-cloud layer dynamics are extracted. The cold-pool climatology is combined with a neural network classification of the

four mesoscale organization patterns Sugar, Gravel, Flowers and Fish (Stevens et al., 2020) based on GOES-16 ABI infrared670

images (Schulz et al., 2021). To focus on trade cumulus cold pools, most analyses are restricted to the set of 3889 cold pools

detected in the dry winter regime from December to April that have no non-recovered cold pool in the hour prior to their onset.

We find cold pools to be ubiquitous in the winter trades—they are present about 7.8% of the time and on more than 73%

of days at least one cold pool is detected. The average cold-pool passage is characterized by a 0.9 K temperature drop, a

0.2 g kg−1 humidity increase at the onset and
:::
just

::::::
before

:::
and

:::::::
another

::::::::
0.2 g kg−1

::::::::
humidity

:::::::
increase

:::::
right

::::
after

:::
the

::::
front

::::::
onset,675

:::::::
followed

:::
by a −0.4 g kg−1 humidity decrease at the end of the front, wind speed

:::
and

:::::::
pressure

:
increases of 1.15 m s−1

:::
and

:::
9 Pa, and rain intensities of 0.9 mm h−1. The vertical velocity at the sub-cloud layer top shows a pronounced peak

::::::::::
pronounced

::::::
maxima

:
of 1 m s−1 near the cold-pool onsetand

:
,
:::::
which

::::
lies

::
in

:::
the

:::::
upper

:::
tail

::
of

:::::::::
cloud-base

::::::::
averaged

::::::
updraft

::::::::
velocities

::
at

:::::
BCO

:::::::::::::::::::::::
(Sakradzija et al., 2020) and

::::
thus

::
is

::::
very

:::::::
relevant

:::
for

::::::::
triggering

::::
new

::::::::::
convection.

::::
The

::::::
second

::::
half

:::
of

:::
the

::::
front

::
is
:::::::

marked
:::
by

sub-cloud layer averaged downdrafts of −0.55 m s−1near the end of the front. Strong signals of cold-pool passages are also680

found for all cloud macrophysical properties analysed: cloud-top height increases, cloud-base height decreases (due to the very

frequent precipitation), and cloud cover increases with the cold-pool onset. Cloudiness at the gust front is mostly due to cloud

segments near the lifting-condensation level that pertain to larger precipitating cloud entities. Similarly, cloud segments with

bases above 1 km in the cold-pool wake are mostly part of large precipitating clouds, and not from detached stratiform layers.

The strength of the cold-pool signature depends strongly on the intensity of the temperature drops (∆T ).
:::
The

::::
rain

:::::::
duration

::
in685

::
the

:::::
front

:
is
:::
the

::::
best

:::::::
predictor

:::
of

:::
∆T

:::
and

:::::::
explains

::::
36%

::
of

:::
its

:::::::::
variability.

:::
We

:::
find

:::
that

::::
also

:::
the

::::::::
minimum

::::::
vertical

:::::::
velocity

::::::::
averaged

:::
over

:::
the

:::::::::
sub-cloud

::::
layer

::::
and

:::
the

::::::::
maximum

:::::::::
cloud-top

:::::
height

:::::::::
distinguish

:::::::
stronger

::::
and

::::::
weaker

::::
cold

:::::
pools

::::
very

::::
well.

:
Cold pools

with stronger ∆T are associated with deeper clouds, stronger precipitation, downdrafts, and humidity drops, stronger wind

gusts and updrafts at the edge of the front, and larger cloud cover compared to cold pools with weaker ∆T . Stronger cold pools

also last significantly longer and follow each other more quickly than weaker cold pools
:
,
::::::::
indicating

::::
that

::::
they

:::
are

:::::
likely

:::::
more690

::::::::
successful

::
in

:::::::::
triggering

:::
new

:::::::::
convection

::::
than

:::::::
weaker

::::
cold

::::
pools. We find that also the minimum vertical velocity averaged over

the sub-cloud layer and the maximum cloud-top height distinguish stronger and weaker cold poolsvery well. Especially the

downdraft strength is a very robust indicator of cold-pool strength and together with the cold-pool front duration it explains

50% of
:::::
clouds

:::
and

::::
rain

::
to

:::
be

:::::
nearer

::
to

:::
the

::::::::::
temperature

:::::::::
minimum

::
in

:::
the

::::::::
strongest

::::
cold

:::::
pools,

:::::::
whereas

::::
they

:::::
tend

::
to

::
be

::::::
nearer

::
the

:::::
onset

::
of

:
the variability in ∆T

::::
front

::
in

::::::
weaker

::::
cold

::::::
pools.

::::
This

:::::::
suggests

::::
that

:::::::
stronger

::::
cold

:::::
pools

:::
are

::::::
running

::::::
further

::::::
ahead695

::
of

::::
their

:::::::
stronger

:::::
parent

::::::::::
convection,

:::::
while

:::
the

::::::
clouds

:::::::
forming

:::
the

::::::
weaker

::::
cold

:::::
pools

:::::
might

::::
have

::::::
already

:::::::::
dissipated.

The cold-pool frequency and characteristics also show pronounced daily
::::
show

::::::::::
pronounced

::::
diel variability. There are signif-

icantly less cold pools and a lower cold-pool frequency between 16-22 LT compared to the rest of the day. We find that cold
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pools extend the daily
:::
diel cycle of convection into the early afternoon, with a peak in both the cold-pool number and frac-

tion at 14 LT. Also most cold-pool diagnostics show a pronounced daily
:::
diel cycle, with significantly deeper clouds, stronger700

mean rain rates, stronger downdrafts and updrafts, larger cloud cover, slightly stronger humidity drops and weaker wind gusts

associated with nighttime compared to daytime cold pools. The phase of these daily
:::
diel signatures is consistent with their

background climatological daily
:::
diel cycle, but shifted to much larger values. For

:::
The

:::
diel

:::::::::
amplitude

::
of

:
the vertical velocity

minima and maxima , also the amplitude of the daily cycle is much more pronounced
::::::
maxima

::::
and

:::::::
minima

::
is

:::
also

:::::::
greater

during cold-pool periods.705

In the wet summer regime, cold-pools are about 30% more frequent relative to the average winter regime. Summer cold

pools are also associated with significantly stronger temperature and humidity drops, deeper clouds and stronger downdrafts—

consistent with the frequent deep convection and stronger precipitation of this season (Brueck et al., 2015). On the other hand,

the summer cold pools have weaker updrafts and humidity maxima at the beginning of the front, suggesting that they might

be less effective in triggering new convection. While the temporal structure of cold-pool passages for most meteorological710

variables in both seasons resemble those of previous observations of tropical deep convective cold pools (de Szoeke et al.,

2017; Chandra et al., 2018; Zuidema et al., 2017), especially the humidity structure and also the generally larger anomalies

render the summer cold pools more similar to the deep convective cold pools from previous studies.

We also analysed if the cold-pool frequency and characteristics depend on the pattern of mesoscale cloud organization. The

most pronounced difference among the patterns lies in the occurrence frequency of cold pools, with Fish having the largest715

cold-pool fraction (12.8% of time), followed by Flowers and Gravel (9.9% and 7.2%, respectively). As expected, the cold-pool

fraction of Sugar is negligible (1.6%). Fish cold pools last significantly longer than cold pools from all the other patterns,

and they are also associated with the strongest temperature drops and downdrafts. Gravel cold pools are associated with the

strongest updrafts at the cold-pool onset and the deepest cloud-top height maxima.

Given the distinct daily
:::
diel

:
cycle in the occurrence frequency of the four patterns found in Vial et al. (2021), it is not720

surprising that we find strong daily
:::
diel

:
variations of the number of cold pools associated with the different patterns. The

maximum number of Gravel cold pools occurs around midnight, followed by Flowers around 7 LT, and Fish cold pools around

10 LT, in line with the daily
:::
diel

:
cycles in the occurrence frequency of the patterns. The Gravel, Flowers and Fish cold pools

can thus explain a large fraction of the daily
:::
diel cycle in the cold-pool occurrence, as well as their extension into the early

afternoon. Note also that the unclassified cold pools have a non-negligible contribution to the peak at 14 LT. Interestingly,725

the climatological differences in the cloud cover and cloud-top height among the different patterns are also present during

cold-pool periods—the overall cloud cover and cloud-top height for all patterns is just enhanced compared to their respective

climatological values.

This study paves the way for more in-depth analyses of the cold-pool properties and their relation to the environment in

the trades. Especially the complex humidity signals deserve a more detailed investigation, also using data from the recent730

EUREC4A field campaign (Stevens et al., 2021) and from realistic large-eddy simulations. Together with the vertical velocity

statistics, the humidity anomalies can help shed light on the triggering of new convection at the cold-pool front
:
. Additional

measurements of the mixed-layer depth from radiosondes and the Raman or Doppler lidar could help refine the cold-pool end
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definition, which is only poorly constrained by the surface temperature data. Such additional data could also provide interesting

insight into the cold-pool recovery process. A systematic matching with satellite imagery would also help collocate the clouds735

sampled at BCO with the broader view of the entire cold pool seen from space.

Overall, we find that the cold-pool periods are about 90% cloudier relative to the average winter trades. The larger cloudi-

ness is mostly due to larger cloud cover from precipitating and stratiform cloud segments. Also the wake of cold pools is

characterized by above average cloudiness, indicating that the classical image of trade cumulus cold pools as mesoscale arcs

enclosing broad clear-sky areas is rather the exception than the rule. Our study suggests that a better understanding of how740

trade-cumulus cold pools interact with and shape their environment is important to understand the variability in cloud cover

and cloud organization in the trade-wind regime.

Code and data availability. The BCO data used in the analysis and other supplementary information that may be useful to reproduce the

present study are avalaible from the first author on request. The GOES-16 ABI data are publicly available online at doi.org/10.7289/V5BV7DSR.

The satellite images in Figure 2 are retrieved from the imagery of the Earth Observing System Data and Information System (EOSDIS) World-745

view Snapshots application (https://wvs.earthdata.nasa.gov, last access: 21 March 2021), and from the NASA ATOMIC-EUREC4A GOES-16

ABI imagery (https://satcorps.larc.nasa.gov/cgi-bin/site/showdoc?docid=22&lkdomain=Y&domain=FEXP-ATOMIC-SATIMG, last access

21 March 2021).

Appendix A: Cloud cover contributions from different types of cloud entities

The contributions to total cloud cover from clouds at different height levels can either be computed by classifying every radar750

profile independently based on its CBH (see Figure 4d-f), or—if a cloud segmentation mask is available—by classifying the

entire cloud entities according to their cbhID (i.e. their overall lowestCBH). As both approaches can provide valuable insights,

Figure A1 also shows the temporal structure of the cold-pool signatures for the latter classification method. For this, the cloud

cover is again split up into contributions from precipitating clouds with cbhID ≤ 300 m (CCID.prcp), LCL clouds (CCID.lcl;

300 m < cbhID ≤ 1 km), and stratiform clouds (CCID.aloft; 1 km < cbhID ≤ 4 km). The difference between CCID.prcp and755

CCprcp is that edges or slanted sides of precipitating clouds that have a CBH > 300 m are counted in their entirety to the

CCID.prcp category, while they would be counted in the CClcl or CCaloft category if the cloud ID was not considered. Due to

the potential presence of cloud entities at different heights, the sum of the three height categories (CC ID.tot) can be larger than

one.
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Figure A1. Same as Figure 3, but for (a) CC ID.tot, (b) CC ID.prcp, (c) CC ID.lcl, (d) CC ID.aloft, for all cold pools of noprevWI and the 25%

strongest and weakest cold pools.

CCID.prcp already starts to increase before tmax and continues to increase until the middle of the front for all the cold-760

pool sets shown. For the 25% strongest cold pools, the end of the front is entirely covered by precipitating clouds. CCID.lcl

in Figure A1c for all sets is relatively stable at about 17.5% before the cold-pool onset, decreases abruptly after tmax to a

minimum near tmin, and then slowly recovers back to the pre-front value. CCID.lcl shows the strongest impact when the cloud

entities are considered through the cbhID and thus the strongest difference to the structure of CClcl (Figure 4e). The absence of

a peak in CCID.lcl near tmax indicates that the CClcl peak there is almost entirely due to edges of precipitating clouds with a765

CBH > 300 m, and not due to (not-yet or) non-precipitating trade cumuli.

The temporal structure of CCID.aloft resembles the structure of CCaloft (Figure 4f), yet with substantially lower coverage

as most cloud segments with CBH > 1 km are connected to a precipitating core. This shows that nearly half of the CCaloft in

the cold-pool wake is part of large precipitating clouds, and not from detached stratiform layers.

770

Appendix B: Seasonal cycle of cold-pool characteristics

While this study focuses on the cold-pool climatology of the winter regime, it is also interesting to look at the seasonal cycle

of the cold-pool characteristics at BCO. Using all cold pools of the noprev category, we find the largest median %-of-day in

cold pool in the summer months from July-November, and another peak in January (Figure B1a). Only 13% of days have no

cold pool at all in summer, compared to 27% in winter. The same monthly variability is found for the %-of-day in front, but775

with 45% lower values due to the shorter duration of the front compared to the entire cold pool (not shown).
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Figure B1. Monthly and seasonal distribution of important cold-pool diagnostics. (a) %-of-day in cold-pool, (b) ∆T , (c) ∆qmin, (d) ∆qmax,

(e) CTHmax, (f) MRR Rint, (g) wminSCL and (h) wmax450, and (i) CC tot. The lines represent the 25%, 50%, and the 75% quartiles of the

respective variables, the shading represents the median±1 SE, and the points show the average distribution for the five winter (w; December-

April) and summer months (s; July-November).

Figure B1b-i show the monthly distributions of various cold-pool properties, as well as averages over the five winter and

summer months, respectively. They show that the summer cold pools are on average characterized by significantly stronger

∆qmin, CTHmax and Rint, as well as slightly stronger ∆T and wminSCL, consistent with the relationships discussed in Sec-

tion 3. However,wmax450 is significantly lower by 0.2 m s−1 and ∆qmax by 0.1 g kg−1 in summer compared to winter, indicating780

that cold pools in summer might be less successful in triggering new convection. Furthermore, CC tot of summer cold pools
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is also significantly smaller compared to winter cold pools by about 10%. The differences in the cold-pool characteristics be-

tween the summer and winter regime are not surprising, as the summer regime is referred to as the wet season in Barbados

and characterized by frequent deep convection and much larger precipitation (Brueck et al., 2015). When excluding periods of

deep convection (defined by the presence of a radar signal between 4.5–8 km), the number of cold pools detected in summer785

strongly decreases compared to winter, and the median summer cold pool also becomes weaker compared to the median winter

cold pool (not shown).
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