
Response to Referee comments for acp-2021-420 
 
A climatology of trade-wind cumulus cold pools and their link to mesoscale cloud 
organization, by Raphaela Vogel, Heike Konow, Hauke Schulz, and Paquita Zuidema 
 
We thank the three referees for their insightful comments and their positive evaluation of our 
manuscript. The referees raise a few important issues that we are happy to learn about and 
to address in our revision. The specific comments of the referees are addressed step-by-step 
below, with our responses inserted in red font.  
Additional comments from referees 1 & 2 in the annotated manuscript are added as 
supplement. Please note that we also included a tracked-changes version of the manuscript, 
with the changes indicated in blue and red (for crossed out sentences).  
 
 
Anonymous Referee #1 
 
Very detailed analysis of valuable observations of cold pools in trade wind regions. I 
appreciate the extensive analysis, combining different measurements and allowing to 
compare and link cloud properties to cold pool properties. I find however, this last point 
could be strengthened more. 
 
Main critique points: 
 
1. a bit more answering the “why” about correlations found, especially between cloud cover 
statistics and cold pool properties in conclusion would make the study more valuable 
(reference to theoretical or simulation studies). 
Throughout the results and discussion sections, we added more discussion and physical 
interpretation of the relationships and correlations found, also in response to the specific 
questions in the annotated manuscript. We also relate our results more thoroughly to the 
previous literature on tropical oceanic cold pools, and formulate more specific hypotheses. 
 
Regarding the variation of cloud statistics with the cold pool characteristics, we now state more 
explicit hypotheses regarding the connection between cold-pool strength and proximity to the 
potential parent convection: 
“Overall, Figure 4 indicates that clouds and rain are nearer tmin in the strongest cold pools, 
and nearer tmax for the weakest cold pools. A potential explanation for this observation is that 
stronger cold pools are running further ahead of their stronger parent convection, while the 
weaker parent convection of the weaker cold pools might have already dissipated. [...].” 
 
Another example is that we added a comparison to cloud-base updraft vertical velocities from 
the literature to argue that the gust-front vertical velocities are very likely strong enough to 
trigger new convection (see also main comment 6).  
 
2. The point that cold pools are responsible for extending the daily cycle of shallow 
convection into the afternoon is made very prominent (abstract, result section, 
conclusions). However I am missing some more mechanistic explanation here. I cannot 
really follow the reasoning in Sec. 3.3, since the precipitation reference cited does not 
exclude cold pool effects. Can you extend a bit more here? Are you inferring that the cold 
pools are strong enough to trigger new convection later in the day (as in deep convection 
regions) or are you rather saying that the cold pools slow down convection and thereby 
stretch the convectively active time period over a longer time due to their inhibitive 
effects? 
We argue that cold pools help extend the diel cycle of shallow convection through the 
triggering of new convection later in the day. As clarified in the revised manuscript, we think 



that our cold pools are strong enough to trigger new convection and subsequent cold pools 
into the early afternoon (see also comment 6 below). We clarified this paragraph as follows: 
 
“The period of enhanced cold-pool occurrence between 23-15 LT and its peak at 14 LT extend 
much further into the day compared to the period of enhanced mean background rain rate 
between about 03-06 LT during RICO and EUREC4A (Nuijens et al. 2009, Radtke et al. 2021), 
suggesting that cold pools help extend the diel cycle of shallow convection into the early 
afternoon. Also the diel cycle of cloud cover seems to be slightly extended in cold-pool periods, 
with CCtot decreasing below the diel mean about 4 h later compared to the climatological CC. 
The likely reason for the extension of convection into the afternoon is that the cold pools are 
successful in triggering new convection, which can again induce new cold pools that trigger 
further convection. Thereby, cold pools reinforce each other, which is supported by the shorter 
median interval between subsequent cold pools of 121 min between 07-14 LT compared to 
182 min between 22-04 LT.  
 
The importance of cold pools in triggering new convection is well established in the literature 
and can occur through mechanic lifting or moisture accumulations, both of which are favoured 
when multiple cold pools collide (Rotunno et al., 1988; Tompkins, 2001; Feng et al., 2015; 
Torri and Kuang, 2019; Meyer and Haerter, 2020). Rochetin et al. (2021) also found a diel 
cycle of cold-pool occurrence near Barbados in realistic LES with the ICON model at 2.5 km 
grid spacing, however, without the pronounced extension into the afternoon observed at BCO 
(see their Figure 16D). This might be due to gust front vertical velocities being poorly-resolved 
at kilometre-scale resolutions, which leads to too little convective triggering and deficits in rain 
and convective organization as simulations over Germany show (Hirt and Craig, 2021).” 
 
3. Cold pool detection: it seems that the algorithm detects also very long-lasting 
temperature deviations that are more likely connected to meso-scale cold fronts than cold 
pools (Fig 2., Fish). How did you make sure that no frontal temperature drops were 
detected as cold pools? Did such outliers only occur in connection with the Fish pattern? 
Please also extend a bit on how these outliers could be avoided in your algorithm? 
It is true that the Fish pattern is tightly linked to trailing cold fronts of extratropical origins 
(Aemisegger et al., 2021; Schulz et al., 2021), and the cold pools in the Fish case also have 
a more frontal character with longer-lasting showers and downdrafts compared to the other 
patterns. However, also in the case of the Fish cold pools, we think the temperature drop is 
mostly associated with the evaporating precipitation that drives strong downdrafts (and not 
with cold-air advection), and thus in line with our cold-pool definition and comparable to the 
other cold pools. In the example case of Figure 2, this is evident from the quickly recovering 
temperature as soon as the rain associated with the first cold pool stopped. We therefore see 
it as benefit of the algorithm that such Fish cold pools are reliably detected, an impression that 
is also shared by the second referee.  
Nevertheless, we cannot exclude that the frontal system contributed slightly to the temperature 
difference, and the adjusted discussion of the Fish example case is as follows: 
 
“The Fish day features a 6h long cold pool associated with steady and intense rain (maximum 
RR of 11.6mmh−1), continued strong downdrafts and very large humidity throughout its entire 
duration. The temperature fully recovers within about 20 min of the cold-pool end, and 3 h 
later two subsequent pronounced cold pools follow that are again characterized by continued 
precipitation and downdrafts. The satellite image shows the fish-bone like cloud band typically 
associated with the Fish pattern, which is strongly connected to trailing cold fronts of 
extratropical origins (Aemisegger et al., 2021; Schulz et al., 2021). The more front-like 
character of the Fish cold pools with steady showers and downdrafts is clearly evident. While 
most of the cooling is expected to stem from the evaporating precipitation, we cannot 
rule out a small cooling contribution related to a larger-scale temperature contrast 
between South and North of the Fish cloud band (see also Schulz et al., 2021).” 
 



When we tested the algorithm, we found that the requirement of an abrupt temperature is 
usually enough to exclude cases of more slowly decreasing temperature associated with 
fronts. And while we didn’t check all cases, we do think that such outliers are limited to the 
Fish pattern.  
 
4. Both the result and conclusion sections lack some background information regarding 
hypotheses and motivation about the choice of observables and tested correlations (e.g., 
testing the variation of cold pool properties with other variables, such as CTH). 
We answered this comment together with main comment 1, please refer to this answer for 
comment 4. 
 
5. The Result section about cold pool properties conditioned on the different cloud types 
should be rewritten, since it’s a bit hard to read (sentence structure). 
We restructured the discussion of Figure 4 and more explicitly distinguish the different cloud 
type classifications discussed (e.g. LCL vs. precipitating cloud segments). As we also clarified 
certain ambiguities with definitions of the cloud variables, the discussion should now be more 
accessible.  
 
6. Convection triggering: I would appreciate some general reflection on whether you think 
that the measured weak updrafts (strengths of below 1m/s) that travel with the cold pool 
front (i.e., are not stationary) are sufficient to trigger convection? 
The gust-front vertical velocities found in this study are much larger compared to the average 
cloud-base (updraft) vertical velocities associated with trade cumuli (e.g. as published by 
Sakradzija and Klingebiel 2020 or Klingebiel et al. 2021 based on BCO Doppler radar 
observations). We don’t think that the missing stationarity is an issue for the triggering, as 
there is always a strong background flow in the trades and the fronts nevertheless represent 
coherent features that are sustained for some time. 
We thus expect the cold pools to be sufficient to trigger new convection at the front. We added 
a few sentences to clarify this: 
 
"The median w_max450 at the gust front edge (see Table 1) is with 1 m s−1 much larger than 
the averaged hourly in-cloud vertical velocities near cloud base measured by the BCO Doppler 
radar, which has a peak density at 0.2 m s−1 and maxima of 0.6 m s−1 (Klingebiel et al., 
2021). 1 m s−1 also marks the upper tail of cloud-base averaged updraft vertical velocities 
(see Figure 4b of Sakradzija and Klingebiel, 2020). This suggests that the gust-front vertical 
velocity maxima are very relevant for triggering new convection in the trade cumulus regime. 
" 
 
7.  Section 4 is a very interesting section, since the cold pool properties conditioned on the 
mesoscale situation is the main new part in this study. The text is however difficult to 
read, some simplifying sentence structure would be beneficial, mostly l. 435 ff. The text 
would further benefit from being purely descriptive relating the conditional statistics to the 
cloud properties of the respective patterns. E.g., how is the lower cold pool fraction of 
Gravel compared to Flower related to the cloud and cold pool properties in the two 
situations? Try to connect the different panels in Figure 7. 
We completely restructured the paragraphs discussing Figures 7 and 8 to focus on the most 
important results and to omit details that could distract the reader. We also moved the 
paragraphs discussing the four example days to Section 2.5.  
 
Furthermore, we add some more explanations relating the patterns-specific cloud and cold 
pool properties: 
“The climatological differences in CTH of the patterns correspond very well with their 
differences in the cold-pool fraction (Figure 7b), with Sugar having clearly the shallowest mean 
C T H and the lowest cold-pool fraction, separated by a step-change from Gravel, followed 
closely by Flowers and Fish. The two patterns with the largest cold-pool fraction, Fish and 



Flowers, also have the largest mean cloud object sizes (Bony et al., 2020), suggesting that 
cloud size and cold-pool occurrence are positively correlated (Schlemmer and Hohenegger, 
2014).” 
 
Comments to Sections: 
 
1. Introduction: 

⁃ missing: difference climatology (overview) winter vs. summer trades 
We know explicitly mention that we focus most of the analyses on the winter season, and 
added the following sentence at the end of the second-from-last paragraph: 
 
“To focus on trade cumulus cold pools, we limit most of our analysis to the winter regime from 
December to April, as in summer the intertropical convergence zone is often close to Barbados 
and convection is much deeper (Brueck et al. 2015).” 
 

⁃ review about cold pools in shallow convection a bit short: there are more papers that 
should be cited and summarised (e.g., Glassmeier and Feingold, 2017) 

Apart from more through coparisons to the literature throughout the manuscript (see answer 
to main comment 1), we also included more stratocumulus papers in the introduction, focusing 
on the relationship of cold pools/rain and the mesoscale organization pattern. The third 
paragraph of the introduction now reads: 
 
“For the pattern Fish with its very large-scale fish-bone structures that are tightly linked to 
extratropical dry intrusions (Aemisegger et al., 2021; Schulz et al., 2021), cold pools are likely 
to give the cloudy part its skeletal structure, while the overall system is forced by the large-
scale dynamics into its linear alignment. Observations of drizzling stratocumulus often 
show cold pools being dragged along with a larger system without initiating its 
mesoscale organization (Wilbanks et al., 2015). Contrastingly, for the Gravel pattern, the 
large-scale influence may be less important and also more homogeneous. Thus, cold pools 
likely play an important role in creating and maintaining this pattern, similar to the strong 
influence of rain (and indirectly also cold pools) on the transition from closed- to open-
cell stratocumulus (Xue et al., 2008; Wang and Feingold, 2009; Glassmeier and 
Feingold, 2017). Before we can understand the different roles that cold pools play in these 
patterns, we need to understand whether and how cold-pool characteristics differ among 
them.” 
 
2. Methodology: 

⁃ Some ambiguities with definitions of cloud variables (see comments in text) 
We clarified these ambiguities in the text, together with similar comments from referee 2. See 
also our answers to these comments in the annotated manuscript. 

⁃ How are the “overall” cloud variables defined: as the mean over all pixels in a cloud 
entity? Please clarify. 

We applied many changes to this paragraph and we now only mention the overall cloud-base 
height (cbhID), which refers to the lowest cloud-base height of a cloud object. We changed the 
sentence in question as follows: 
“To focus on clouds connected to the trade-wind layer, only cloud objects with a lowest cloud-
base height (cbhID) smaller than 4 km are considered in the analysis.” 
 

⁃ There is some confusion about the definition of CBH: is it a time series, indicating the 
cloud base height of the lowest cloud at each time step (this is how I understand the 
definition on l. 96), which however stands in contrast to using the “lowest CBH” as 
stated in the legend of Figure 2? 

Yes, CBH is a timeseries indicating the height of the lowest cloudy pixel of a 1-min averaged 
radar profile. The same is true for the first part of the Gravel day in Figure 2, with the exception 



that the data used is from the ceilometer in this case (as the radar wasn’t running). We 
changed the legend to: 
“On the Gravel day the radar did not work prior to 12 LT and the first ceilometer cloud base 
(CBH1) is shown instead.” 
 

⁃ vertical velocity (l. 117): are these pixel-by-pixel values or mean values over one radar 
profile or timeseries? 

These are 1-min averaged values over several lidar profiles. We clarified as follows: 
“We derive 1-min timeseries of both the average vertical velocity in the sub-cloud layer...” 
 

⁃ What is morphological closing? 
Morphological closing is an image processing method that removes noise e.g. due to 
measurement interruptions. 
The sentence is clarified by adding some more context:  
[..] morphological closing is applied to remove noise from measurement interruptions. 
 

⁃ Splitting of cloud cover: Based on what are the threshold values for CBH chosen? 
Based on what is this distinction made, I assume the overall cloud variables and not 
the pixel-by-pixel cloud base? Can you give some more details? 

We use the same thresholds as in Nuijens et al. 2014 and Klingebiel et al. 2021 to distinguish 
precipitating clouds from LCL clouds and clouds further aloft. The distinction is made based 
on the profile-by-profile cloud base in the main text. In Appendix A, we also show the same 
split up based on the overall cbh_ID, which adds complementary information.  
 
We added a bit more detail and restructured the sentences to: 
 
“Following Nuijens et al. (2014), CC is further split up into contributions from cloud segments 
with different CBH, which represent cloudiness near the lifting-condensation level (CClcl; 300 
m < CBH ≤ 1 km), and cloudiness aloft such as stratiform layers or edges of deeper cumuli 
(CCaloft; 1 km < CBH ≤ 4 km). We also introduce a third category of precipitating cloud 
segments if CBH ≤ 300 m (CCprcp, same threshold as in Klingebiel et al., 2021). A given 1-
min HF profile can only count to one of the three categories, such that e.g. a 2km deep cloud 
with a CBH<300m will only be counted in the CCprcp category. Note that the above 
classification into the different CBH categories does not consider the cloud objects and all HF 
profiles are classified independently. A similar analysis accounting for the cloud objects by 
classifying CC contributions of different cloud types by their cbhID is shown in Appendix A.” 
 

⁃ Why does the SNR have a unit, shouldn't it be without unit (l.112)? what is meant by 
smaller; shouldn't larger absolute values (i.e., smaller than -18.3dB) mean better SNR? 

dB is a logarithmic dimensionless unit. It is computed from the intensity as follows: 
SNR=10*log10(intensity-1) 
The larger the SNR, the better the measurement quality. This is the reason for which we 
discard measurements with an SNR smaller than -18.3dB.  
 

⁃ Figure 2.3, Fish example: how do you interpret the detected cold pool existing over 
more than 6h. I don't think this temperature anomaly should be detected as cold pool 
but rather represents some meso-scale (cold) front as also indicated by the satellite 
snapshot? (see major point regarding cold pool detection algorithm) 

Please refer to our answer for the major point regarding cold pool detection algorithm above.  
 

⁃ Winter vs. summer trades: the logic derived why to use winter trade statistics makes 
sense. However, based on what is it decided whether or not to consider only winter 
trades (l. 195: “for most of the analysis…”)? Can you be more specific here? 



The main motivation for focusing on the winter trades is that trade cumuli predominate in 
winter. In summer, the ITCZ is often in close proximity of Barbados and convection is much 
deeper. As mentioned in L203-207, we could have achieved the goal to focus on trade 
cumulus cold pools only by excluding periods of deep convection, but at the expense of many 
more excluded cold pools (as the radar wasn’t running about half of the time). 
 
We added some more motivation regarding the winter focus in the Introduction (see also our 
answer related to the same comment under ‘1. Introduction’ above). 
 

⁃ noprevWI criterion (Sec. 2.5): The definition of the criterion is ambiguous (l. 203): do 
you mean that there could be a cold pool detected in the preceding hour, but it has to 
be terminated, or that no cold pool can be present? How does that conflict with your 
discussion about the ambiguity of the algorithm about determining the cold pool end? 

Yes, there could be a cold pool in the prior hour, but the temperature has to be recovered by 
at least deltaT/e. This doesn't conflict with the previous discussion, as cold pools are only 
referred to as recovered in case their t_end is well defined (see L 159). 
 
3. Results: 

⁃ Horizontal wind anomaly (l. 242): the value of 1.14m/s seems very low, specifically 
since you're measuring the combination of cold pool propagation speed and its internal 
circulation. Do you have any thoughts on that? 

The value is quite low as it is computed from the 10-min filtered wind speed data. We now 
added the unfiltered wind speed maxima in Table 1 and they are more than twice as large for 
the median anomaly (2.81 m/s). This value is in line with values from RICO and EUREC4A 
(Zuidema et al. 2012, Touzé-Peiffer et al. 2021). 
 

⁃ You state that the front duration explains a lot of the variation in temperature anomaly. 
Is the front duration correlated with horizontal wind anomaly, such that longer duration 
can be translated to spatially wider cold pool front, such that your finding can be 
expressed as that colder (stronger) cold pools have wider fronts? Do you have an 
understanding, what causes differences in the front duration? Is it correlated with it 
correlated with the rain duration or intensity? 

The rain duration is indeed an important predictor of the cold pool strength and explains even 
more variability in ∆T (R2=0.364) than the downdraft strength (R2=0.23). The rain duration is 
well correlated with the front duration (R=0.47) and explains considerably more variability in 
∆T then the accumulated rain in the front, suggesting that the rain intensity might be less 
important, or also not as well sampled. On the other hand, the front duration is not very strongly 
correlated with the wind speed anomaly (R=0.32), indicating that stronger cold pools are not 
necessarily wider cold pools. 
 
We adjusted the paragraph as follows: 
“The rain duration in the front is the diagnostic that explains most variability in ∆T (R2=0.364), 
partly because it is well correlated (R=0.47) with the front duration, which itself explains a 
comparable amount of variability in ∆T (R2=0.357). That the accumulated rain amount in the 
front explains less variability in ∆T (R2=0.23) than the rain duration indicates that the rain 
intensity is of secondary importance. Another important predictor of ∆T is the downdraft 
strength wminSCL (R2=0.23), which together with the front duration explains 50% of the 
variability in ∆T for the noprevWI set.” 
 

⁃ Temperature recovery time of 16min (l. 277): how can I see this numerical value from 
the figure (or elsewhere)? How did you derive it? 

This is not evident from the figure and we added "(not shown)". It is computed by averaging 
the recovery time (i.e. time until temperature recovered by dT/e) of all recovering cold pools 
(i.e. cold pools that recover by dT/e before the next temperature drop). 



 
⁃ Humidity recovery (l. 28): I do not fully understand your reasoning here. Are you 

speaking about enhanced surface fluxes in the cold pool interior that are trapped in the 
boundary layer? 

Here we mostly refer to the shallowness of the mixed layer inside cold pools (see Rochetin et 
al., 2021 and Touzé-Pfeiffer et al., 2021). So the surface latent heat fluxes are distributed over 
a shallower layer, which allows for a faster recovery of the humidity. 
We added: ... 'anmalously' [shallow mixed layer] to clarify this.  
 

⁃ Updraft strength: I am not sure I agree with your conclusion on l. 312 about the 
convection triggering. Do you think updraft strengths of below 1m/s that travel with the 
cold pool front (i.e., are not stationary) are sufficient to trigger convection? 

Yes, we think that these vertical velocities are relevant for triggering new convection, as they 
are much larger than typical in-cloud vertical velocities at cloud base. This is an important 
point that we clarify in the revised manuscript as follows: 
 
"The median w_max450 at the gust front edge (see Table 1) is with 1 m s−1 much larger than 
the averaged hourly in-cloud vertical velocities near cloud base measured by the BCO Doppler 
radar, which has a peak density at 0.2 m s−1 and maxima of 0.6 m s−1 (Klingebiel et al., 
2021). 1 m s−1 also marks the upper tail of cloud-base averaged updraft vertical velocities 
(see Figure 4b of Sakradzija and Klingebiel, 2020). This suggests that the gust-front vertical 
velocity maxima are very relevant for triggering new convection in the trade cumulus regime." 
 

⁃ Comparison to DYNAMO (l. 320ff): please complement the qualitative comparison with 
quantitative indications / statements. 

We made the comparison more quantitative as follows: 
“[...], just with slightly larger mean across-front temperature and humidity decreases (−1.3 K 
and −0.6 g kg−1 during DYNAMO compared to −1.15 K and −0.25 g kg−1 at BCO) and larger 
mid-front wind speed increases (about 1.5 m s−1 compared to 1 m s−1 ) during DYNAMO due 
to the deeper convection. Furthermore, during DYNAMO the increases in specific humidity at 
the beginning of the front are hardly present, and the wind speed remains elevated by 0.4 m 
s−1 in the wake of the DYNAMO cold pools (de Szoeke et al., 2017), whereas at BCO the 
wind speed decreases below the value at tmax in the wake.” 
 

⁃ Figure 3: connection between variables (within cold pool) should be discussed more 
in text 

The connection between the different variables is now discussed more prominently in different 
sections, and also in Section 3.1, where we added the following sentence: 
“[The strongest cold pools last longer, follow each other more quickly (lower ∆tnextcp), and 
are associated with deeper clouds, more rain, stronger downdrafts, humidity drops and wind 
gusts, and larger positive vertical velocities at the beginning of the front compared to weaker 
cold pools]. This agrees well with the conceptual picture of deeper clouds producing more rain 
and having a larger potential for rain evaporation, which drives stronger downdrafts that bring 
down more dry air from further aloft, and which induces a stronger cooling and a stronger gust 
front that is associated with stronger rising motion at its leading edge.” 
 

⁃ Figure 4b: Is a decrease in CBH an indicator of different cloud type? Why is the CC 
larger for stronger compared to weaker cold pools? Are parent clouds that formed the 
weaker cold pools already dissipated? 

Figure 4b shows the composite mean CBH and as such reflects that a large portion of the 
front of cold pools is associated with very shallow CBH below 500m, indicative of the 
abundance of precipitating clouds (as confirmed by Figure 4d). 
Stronger cold pools are associated with above average contributions of precipitating clouds 
and clouds aloft (4d,e). We also hypothesize that this is due to the parent convection of 



stronger cold pools moving over BCO, while the parent convection of weaker cold pools might 
have already dissipated. We added the following discussion: 
 
“Overall, Figure 4 indicates that clouds and rain are nearer t_min in the strongest cold pools, 
and nearer t_max for the weakest cold pools. A potential explanation for this observation is 
that stronger cold pools are running further ahead of their stronger parent convection, while 
the weaker parent convection of the weaker cold pools might have already dissipated. 
However, drawing such conclusions from single-point observations is tricky, as the influence 
of the life cycle stage and the overall cold- pool strength on the observed cold-pool 
characteristics cannot be disentangled. Nevertheless, some information about different cloud 
types populating the cold-pool front or wake can be derived by analysing the CC contributions 
grouped by the overall CBH of the segmented cloud objects (see Appendix A and Section 
2.1). We find that the peak in CC_lcl at t_max is mainly due to edges of precipitating clouds 
that have a CBH > 300m. Assuming that this cloud population represents the clouds evident 
as mesoscale arcs in satellite imagery, this suggests that the cloudiness at the gust front is 
mostly characterized by well-developed precipitating clouds. [...].”  
 

⁃ Figure 4c: How do you interpret that the cloud cover increases immediately over the 
cold pool front and rain is falling during front passage? Are the cold pool fronts close 
to the rain cell, almost as if the meso-scale arcs form squall-line like structures with the 
cold pools propagating right ahead of the arc? Do you relate the precipitation falling 
“over” the front to the parent rain cell (that produced the cold pool) or can it be attributed 
to a new rain cell that was triggered by the cold pool? 

As already explained in the previous answer, we hypothesize that the precipitation falling over 
the end of the front is mostly related to the parent convection triggering the cold pool. We plan 
to investigate this in more detail in the future with the aid of GOES-16 ABI satellite images, 
which might help collocate the clouds sampled at BCO with the broader view of the entire cold 
pool seen from space. 
 

⁃ Figure 5: How can the pretty pronounced negative values in U-U(t_max) in the wake 
of the cold pool fronts be interpreted? 

The winter season at Barbados is characterized by very steady easterlies. So the positive 
wind speed anomalies inside the cold-pool front show that cold pools are mostly pushing 
forward with the wind in the front, whereas the negative anomalies in the wake suggests they 
on average tend to push backward into the wind after tmin. We already discuss this in what is 
now L342ff: 
"As the cold pools spread into a strong background easterly flow (mean wind direction at t_max 
is 86º, not shown), the wind speed anomalies show that the cold pools on average push 
forward into the wind until tmax, and backward after tmin. For some cold pools, t_min might 
thus mark the center of the divergent flow and indicate that the parent convection passed over 
BCO." 
 
And mention this potential explanation again in the discussion of Figure 5: 
“Notable is again the occurrence of pronounced negative values of the wind speed anomaly 
after tmin, which suggests that some cold pools push backward into the mean wind.” 
 

⁃ Comparison to “average” winter trades: please complement text with numerical values 
and references (l. 360, 361) 

The reference here is to the climatological average of all winter months of the period 2012-
2021, computed from the radar data used throughout the paper. To make this more clear and 
quantitative, we changed the paragraph to:   
 
"Figure 4a-f also indicate the respective mean CTH, CBH and CCs for all the winter months 
of the period 2012-2021. They show that cold-pool periods are much cloudier than the average 
winter conditions at BCO, with the average in-front CC being twice as large as the 10-year 



climatological mean. Cold-pool periods also have much deeper clouds than the climatological 
mean of about 2 km, which is expected as it needs deeper precipitating clouds to form cold 
pools. The enhanced CC in the wake of cold pools compared to the long-term mean is 
nevertheless surprising, as convection might be expected to be suppressed in the cold-pool 
wake. " 
 

⁃ Figure 6a: Not being familiar with trade shallow convection diurnal cycle: can you 
extend a bit on how the strong increase in cold pool frequency right before midnight 
can be explained (Fig. 6a)? Is it related to the increased CTH during the night, leading 
to an increase in rain intensity and thus increased frequency (and strength) of cold 
pools? Please extend a bit. 

Yes, this is the reason.  
“There are clearly fewer cold pools and a lower hourly cold-pool frequency between 16-22 LT 
compared to the rest of the day. Just before midnight, the cold-pool frequency strongly 
increases in response to the night-time increase in cloud cover, cloud depth and rain rate (see 
green lines in panels e-i and Vial et al. (2019)). The cold-pool occurrence remains strongly 
elevated between 2 LT and 15LT, with a peak at 14 LT.” 
 

⁃ Daily Cycle: are there any conclusions be drawn regarding the causal structure of the 
cold pool - cloud coupling? Would you, combining the reasoning in paragraph 3.3 and 
the observed diurnal cycle, conclude that the cold pool - cloud coupling is mainly a 
"one way street", where the cold pools are strongly influenced by the clouds (strength 
etc.), while there is a minor feedback from the cold pools back to the clouds pointing 
to a negligible cloud triggering effect due to cold pools? 

No, we wouldn't conclude that. In contrast, we argue that cold pools help extend the diel cycle 
of shallow convection through the triggering of new convection. As clarified in the revised 
manuscript, we think that cold pools are strong enough to trigger new convection and 
subsequent cold pools into the early afternoon. Please refer to main comment 3 for our 
adjustments in the manuscript.  
 

⁃ Figure 6b, c: Panels b, c show large jumps in the mean timeseries right at 19-20:00. Is 
that an artefact of the splitting of the time series at that hour? 

No, this isn’t an artifact of splitting the time series. In Figure 6, we didn’t apply a running 
average too smooth the timeseries and large jumps are also apparent at other times (e.g., 
between 1-3LT in panel g for w_min.SCL. 
 

⁃ Figure 6: in contrast to the previous paragraph, where stronger cold pools are 
associated with higher CTH, this correlation doesn't show up here: higher CTH 20:00-
08:00 vs. (slightly) stronger cold pools 08:00-17:00. How should that be understood? 

It is indeed a bit surprising that the cold-pool strength is not enhanced during the night when 
the CTH but also the rain rate tend to be enhanced. In the next section we argue that this is 
linked to daytime cold pools being mostly associated with the Fish pattern, which tend to be 
stronger than cold pools from the other patterns.  
 
4. Relationship to mesoscale pattern  

⁃ Figure 8: The same arrangement of sub-panels according to the variables as in Fig. 4 
would be helpful for easier comparison. Why aren’t you showing all variables shown in 
Fig. 4? 

We didn’t show all panels of Figure 4, as much of this information is already contained in the 
box plot, and we only wanted to highlight the most important aspects.  
 

⁃ Figure 8e-h: colorbar missing 
We added the color bar also in this figure and removed the reference to Figure 4.  
 



⁃ What are the main findings of Fig. 8? Can you highlight this more in the text?  
We restructured the discussion of Fig. 8 to highlight the main findings more concisely. The 
paragraphs now read: 
 
“Figure 8 shows the differences in the temporal structures of cloud properties associated with 
the cold-pool passages for the four patterns. Fish and Flowers have the largest CC (8a) due 
to larger contributions of CCaloft (8c), which are associated with frequent stratiform layers 
near 1.5-2 km (8f,h). C Clcl (8b) and C Cprcp (not shown) instead are fairly similar among the 
patterns. The CC of Fish cold pools hardly changes across the cold-pool passage, whereas 
the onset of the cold-pool front is much more clearly evident for the Gravel and even more for 
the Sugar CC (also see the time-height composites in Figure 8e-h). The CC in the wake of 
Sugar cold-pools also decreases most rapidly back to its pre-front value. Fish tends to have 
the deepest mean CTH associated with the cold-pool periods, closely followed by Gravel and 
Flowers. Again, the mean CTH of Gravel and Sugar cold pools increase most rapidly in the 
front compared to the other patterns.  
 
For all patterns, the cold-pool periods are characterized by significantly deeper clouds and 
larger CC compared to the pattern average (indicated by the dashed lines on the far-left of 8a-
d). Nevertheless, the climatological differences in CC, CCaloft and CTH among the different 
patterns (Schulz et al., 2021; Vial et al., 2021; Bony et al., 2020) also remain during cold-pool 
periods, indicating the robustness of the pattern-specific cloud macrophysical properties.” 
 

⁃ Number of cold pools (Figs. 7a, 9a): wouldn’t it make sense to show some kind of 
normalised number of cold pools that allows to understand how the cold pools “density” 
varies among the different mesoscale patterns? E.g., normalising the number of cold 
pools shown (which is, if I understand correctly, the sum of all detected cold pools 
given a certain weather situation?) by the relative occurrence of the cloud pattern. 

Normalizing the cold pool number by the pattern occurrence frequency is indeed very 
important, as the pattern frequencies are very different. This is what is shown in Figures 7b 
and 9c. To make sure the readers understand that we make this distinction, we restructured 
the paragraphs to highlight the most important aspects and left away a lot of the more detailed 
explanations. 
 

⁃ Fig. 8, 9: how is the number of cold pools related to the number of clouds (entities) in 
the different trade cumuli patterns? 

We didn’t look at this explicitly, but as Fish and Flowers tend to be associated with larger mean 
object sizes (see Bony et al. 2020) but fewer cloud objects, and as Fish and Flowers have the 
largest cold-pool frequencies, we’d expect a slight anti-correlation between the number of 
clouds and the number of cold pools.  
 
5. Conclusions: 
Summer cold pools: How do the weaker updrafts fit with stronger temperature drops?  
This is indeed somewhat surprising, and we don't have a good explanation for it. The wind 
shear is different in the summer vs. the winter trades (Brueck et al. 2015 JAS), such that the 
weaker updrafts might be related to wind shear effects on the vortical circulation. A more in-
depth analysis of the circulation in the cold-pool front might provide an answer, something we 
plan for the future. 
 
Please also note the supplement to this comment: 
https://acp.copernicus.org/preprints/acp-2021-420/acp-2021-420-RC1-supplement.pdf 
We answered all supplementary comments directly in the annotated manuscript. 
 
  

https://acp.copernicus.org/preprints/acp-2021-420/acp-2021-420-RC1-supplement.pdf


Anonymous Referee #2 
 
The authors present a careful study of thousands of cold pools from a long and detailed 
record of observations from the Barbados Cloud Observatory. As well as the excellent 
statistics from a data set of this size, vertical profiles of hydrometeor fraction are a novel 
an interesting addition to the study. Summer cold pools resemble those previously found 
for deep convection, while winter trade wind conditions have cold pools with positive water 
vapor anomalies at the head of their fronts. Cold pool occurrence and shape are also 
diagnosed according to the diel cycle and cloud pattern classification (Sugar, Gravel, 
Flowers, Fish) of Stevens et al. 2020. 
 
The paper presents long and detailed analysis. At times I would have liked it to state the 
results more succinctly, yet overall I found it interesting, and readers will be able to find a 
great of deal of detail when they want it. I recommend publication with minor revisions. In 
the annotated PDF I have included some minor comments on the science and line edits 
intended to improve clarity and readability. 
 
We thank the referee for the positive assessment. In response to the comments of all three 
referees, we added some more physical explanations and hypotheses to interpret the 
correlations found. We also put the results more in context of the previous literature. 
Furthermore, we shortened and sharpened certain parts that were somewhat lengthy, which 
will ease the reading. 
 
Please also note the supplement to this comment: 
https://acp.copernicus.org/preprints/acp-2021-420/acp-2021-420-RC2-supplement.pdf 
We answered all the specific comments directly in the annotated manuscript. 
 
 
  



Anonymous Referee #3 
 
The paper presents a climatology of trade-wind cumuli based on more than ten years of 
data from the Barbados Cloud Observatory. Moreover, it makes an attempt to link the cold-
pool characteristics to the mesoscale cloud organization. The paper is well written, 
logically organized and presents very interesting results. It is very nice to see a cold-pool 
climatology based on observational data over such a long time span. I only have some 
minor comments. 
 
- Doppler Lidar data: did the authors encounter any issues with the data retrieved by the 
Doppler Lidar during rainy periods? Often, these periods are discarded from the 
records. Moreover, the aerosol load can be reduced significantly after rainy periods, 
deteriorating the signal quality. 
Doppler lidar vertical velocity retrievals are usually very reliable also in rainy periods, see e.g. 
Zhu et al. 2021 (GRL, doi: 10.1029/2020GL090682). We didn’t encounter problems with the 
Doppler lidar retrievals in rainy periods and didn’t discard data due to a potential rain 
contamination. Both the composite temporal structure in Figure 3h and also the vertical 
velocity profiles at the bottom of the radar reflectivity panels of the example cases in Figure 2 
indicate that the negative vertical velocities are well sampled in rainy periods (note e.g. the 
pronounced downdrafts and apparently good data quality during the strongly precipitating 
period of the Fish day between 05-11:30LT).  
The points you raise might nevertheless be an issue in some cases, like potentially in the 
Flowers example case around 13LT, where the SNR is too low during the rainy period and 
also right after (potentially due to reduced aerosol loading). So we added a few sentences 
discussing these issues in Section 2.1: 
 
“Doppler lidar vertical velocities are commonly considered reliable also in rainy periods (see 
e.g. Zhu et al. 2021). We did not encounter problems with the Doppler lidar retrievals in rainy 
periods and Figure 2 and Figure 3h later show that the negative vertical velocities associated 
with downdrafts are generally well captured.”  
 
- Cold-pool detection algorithm and analyzed near-surface variables: I was missing 
surface-pressure in the list of analyzed variables. Already in the cold-pool detection 
algorithm it could be included as an additional criterion to identify a cold pool, but it 
would definitely be worth adding it to the list of analyzed variables. Increases in surface 
pressure in connection with the cold pool can give a hint on the spreading cold-air 
mass. While wind speed is shown, wind direction could be a further interesting 
candidate. 
For the cold-pool detection, we decided to focus on the temperature drop alone in order not 
to bias the moisture signal of the cold pool. We agree that the surface pressure or also the 
buoyancy could already be included in the cold-pool detection. We checked how the results 
depend on using theta_v instead of temperature, but only found very minor quantitative 
differences (not shown).  
 
In the course of the study, we analyzed the changes in wind direction and surface pressure 
and motivated by your comment, we now also include the maximum pressure anomaly ('pmax) 
and the mean wind direction change ('wdirmean) in Table 1. The figure below shows that the 
cold-pool associated changes in the surface pressure anomalies (pres.SRF) and mean wind 
direction (wdir.SRF) are also pronounced. As Figure 3 already has eight panels, we decided 
not to include additional wind direction and surface pressure panels.  
 



 
 
 
- Mesoscale cloud organization: The neural-network based classification on the 
brightness temperature from the GOES-16 Satellite is an interesting dataset to classify 
mesoscale cloud organization, and the catchy names of the identified patterns are 
intriguing. Yet, to have a more general classification and to add information to this one 
single dataset I suggest to widen the classification to more classical approaches such as 
e.g. spectral analyses (e.g. Wood and Harmann, 2006). 
Extending the analysis to another classification method is a good suggestion. However, the 
Wood and Hartmann (2006) classification doesn’t work well for trade cumulus with cloud layers 
deeper than ~2 km, as the cellular but disorganized category strongly dominates in the trade-
wind regions and hardly any open and practically no closed cell organizations occur (see 
Muhlbauer et al., 2014 ACP). In general, there are no well-established methods for 
characterizing trade cumulus mesoscale organization at the moment. An effort to 
systematically compare different classification methods is currently undertaken by Isabel 
McCoy, Hauke Schulz, Leif Denby and others. Such a comparison will help gear a future study 
to include also other classifications of trade cumulus organization. 
 
In a recent study (Vial, Vogel and Schulz, 2021 QJRMS), we compared the diurnal cycles of 
the four organization patterns using two different automated classification methods: the same 
neural-network classification as used here and also an independent classification of the four 
patterns based on the Iorg clustering index and the object size (“Iorg/S” method, following 
Bony et al., 2020 GRL). The two independent methods yielded qualitatively similar results, 
which improves confidence in the pattern classification. Here we only focus on the neural 
network labels, as the Iorg/S method can only be used on relatively large domains (e.g. 
10ºx10º) and not for a specific location such as the BCO.  
 
Technical comments: 
 
- Table 1: please specify ΔTunfil. Specified! 
- Caption to Table 1: I suggest to replace "How the ..." with “The computation of the 
diagnostics”. Changed, thanks for the suggestion. 
- Line 235: add full stop after "mentioned" changed 
- Line 265: replace "like" with "such as". changed 
- Line 328: another study that has looked at the moisture origin within cold pools in 
detail is Schlemmer and Hohenegger (2016). We added the citation as follows:  
“The initial increase in humidity at the edge of the front at BCO might be explained by enhanced 
surface fluxes due to the strengthening winds (Langhans2015,Torri2016), by moisture advection 
(Schlemmer and Hohenegger, 2016), or by an accumulation of moisture from evaporation...” 
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Abstract. We present a climatology of trade cumulus cold pools and their associated meteorological perturbations based on

more than ten years of in-situ and remote sensing data from the Barbados Cloud Observatory. Cold pools are identified by

abrupt drops in surface temperature, and the mesoscale organization pattern is classified by a neural network algorithm based

on GOES-16 ABI infrared images. We find cold pools to be ubiquitous in the winter trades—they are present about 7.8%

of the time and occur on 73% of days. Cold pools with stronger temperature drops (�T ) are associated with deeper clouds,5

stronger precipitation, downdrafts and humidity drops, stronger wind gusts and updrafts at the onset of the front, and larger

cloud cover compared to weaker cold pools. The downdraft strength together with the cold-pool front duration explains 50%

of the variability in �T .

The mesoscale organization pattern has a strong influence on the occurrence frequency of cold pools. Fish has the largest

cold-pool fraction (12.8% of time), followed by Flowers and Gravel (9.9% and 7.2%), and lastly Sugar (1.6%). Fish cold pools10

are also significantly stronger and longer-lasting compared to the other patterns, while Gravel cold pools are associated with

significantly stronger updrafts and deeper cloud-top height maxima. The daily cycle of the occurrence frequency of Gravel,

Flowers, and Fish can explain a large fraction of the daily cycle in the cold-pool occurrence, as well as the pronounced extension

of the daily cycle of shallow convection into the early afternoon by cold pools. Overall, we find cold-pool periods to be 90%

cloudier relative to the average winter trades. Also the wake of cold pools is characterized by above-average cloudiness,15

suggesting that mesoscale arcs enclosing broad clear-sky areas are an exception. A better understanding of how cold pools

interact with and shape their environment could therefore be valuable to understand cloud cover variability in the trades.

1 Introduction

Satellite images in the trades usually show very beautiful and diverse cloud structures over the dark blue ocean. Recurrent20

features in these images are mesoscale arcs of cumuli that encircle either clear-sky areas or extensive stratiform cloud decks.
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The mesoscale arcs result from spreading cold pools that have favourable conditions at their gust front for triggering new

convection. Convective cold pools are generated by the evaporation of precipitation into unsaturated downdrafts, spreading out

at the surface as a density current. Cold pools are not only important for the triggering of new and often deeper convection

(Schlemmer and Hohenegger, 2014; Feng et al., 2015; Rowe and Houze Jr., 2015), but might also play a role in regulating25

cloud cover in this regime responsible for much of the uncertainty in climate sensitivity (Bony and Dufresne, 2005; Vial et al.,

2013). Here we use ground-based in-situ and remote sensing data from the Barbados Cloud Observatory (BCO) to study the

climatology of trade-wind cumulus cold pools and to investigate its link to the pattern of mesoscale cloud organization.

Many studies addressing oceanic cold pools have focused on deep convection (Zuidema et al., 2017). In the trades, detailed

case studies for two weeks of the Rain in Cumulus over the Ocean (RICO) campaign have advanced our understanding of cold30

pools from shallow convection (Zuidema et al., 2012). They showed that the deepest clouds and strongest radar signals occurred

in the moistest tercile of water vapour paths, and that precipitation-driven downdrafts can introduce additional gradients in the

thermodynamic structure. More recently, analyses of data from the Elucidating the Role of Clouds-Circulation Coupling in

Climate (EUREC4A) field campaign (Bony et al., 2017; Stevens et al., 2021), which took place in January and February 2020

upstream Barbados, reveal that cold pools are frequent in the winter trades and can be well-detected from soundings due35

to their very shallow mixed layers (Touzè-Peiffer et al., 2021). What is missing is a longterm climatology of trade cumulus

cold pools, along with a description of the changes in cloud properties and sub-cloud layer dynamics associated with the

cold-pool passages. Such a climatology is particularly pertinent given the need for a reference dataset for comparison against

increasingly-available high-resolution simulations (Stevens et al., 2019; Rochetin et al., 2021).

Renewed interest in trade cumulus cold pools is also motivated by recent advances in characterizing patterns of mesoscale40

cloud organization. Stevens et al. (2020) classified 900 satellite images in the North Atlantic trades and identified four promi-

nent patterns of mesoscale cloud organization—Sugar, Gravel, Flowers and Fish. The horizontal structure of the latter three

patterns is intrinsically linked to the occurrence of mesoscale arcs and hence cold pools. The four patterns differ not only in

their horizontal structure, but also in cloud cover, cloud depth and precipitation (Bony et al., 2020; Schulz et al., 2021; Vial

et al., 2021). These differences likely also manifest in different cold-pool characteristics. Furthermore, cold pools might play45

different roles in creating and maintaining these patterns. For the pattern Fish with its very large-scale fish-bone structures that

are tightly linked to extratropical dry intrusions (Aemisegger et al., 2021; Schulz et al., 2021), cold pools are likely to give the

cloudy part its skeletal structure, but the overall system is forced by the large-scale into its linear alignment. Contrastingly, for

the Gravel pattern, the large-scale influence may be less important and also more homogeneous, such that the cold pools likely

play an important role in creating and maintaining this pattern. Before we can understand the different roles that cold pools50

play in these patterns, we need to understand whether and how cold-pool characteristics differ among them.

This paper presents the first longterm climatology of trade-wind cumulus cold pools and addresses the following research

questions:

1. How frequent are cold pools in the trade cumulus regime, and with which changes in the surface meteorology, cloudiness

and vertical velocity are they associated?55
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2. How do cold-pool characteristics covary with the pattern of mesoscale organization?

We use more than ten years of surface meteorology and ground-based remote sensing data from the BCO (Stevens et al.,

2016). Clouds, their precipitation and therefore likely also cold pools at the BCO were shown to be representative across the

trades (Medeiros and Nuijens, 2016). Cold pools are identified by abrupt drops in surface temperature, and the pattern of

mesoscale organization is classified by a neural network algorithm based on infrared satellite images (Schulz et al., 2021).60

The next section presents the data sources and explains the cold-pool detection algorithm and the selection criteria. In

Section 3, we present the cold-pool climatology and analyse the temporal structure of the cold-pool passages and its associated

changes in meteorology and cloudiness. Section 4 discusses differences between the cold-pool properties of the different

mesoscale organization patterns. Conclusions are presented in Section 5.

2 Data and Methods65

2.1 BCO data

We use in-situ and ground-based remote sensing data from the BCO (Stevens et al., 2016), which is operated by the Max Planck

Institute for Meteorology together with the Caribbean Institute for Meteorology and Hydrology since April 2010. The BCO

is located atop a 17 m cliff on an eastward promontory of Barbados called Deebles Point (13.16�N, 59.43�W), and samples

nearly undisturbed Atlantic trade-wind conditions. We use surface meteorology and micro-rain radar (MRR) data from January70

2011, cloud radar data from January 2012, and Doppler lidar data from March 2016 until March 2021. All data is aggregated

into 1-min averages. The instruments used and meteorological variables derived are explained in the following. More details

about the BCO and its instrumentation can be found in Nuijens et al. (2014) and Stevens et al. (2016).

Surface meteorology

A Vaisala WXT520 sensor mounted on a 5 m mast measures temperature, relative humidity, barometric pressure, wind speed75

and wind direction. We discard temperature measurements exceeding 35�C and pressure measurements lower than 980 hPa, as

they are outside the expected range of variability at the BCO.

Micro-rain radar (MRR)

The MRR is a vertically-pointing frequency-modulated continuous-wave radar operating at 24 GHz (K band). The MRR has

a sampling frequency of 10 s (here averaged to 1 min) and a range gate of 30 m up to a height of 3 km. Rain rates lower than80

0.03 mm h�1 are below the noise level and set to zero. We derive the mean rain rate (RR) and the rain intensity (Rint; i.e. the

rain rate during periods of rain) in a given period from data at 325 m above ground (the lowest level with reliable data). The

MRR is also used to compute the rain frequency (Rfreq), which is set to 1 when a RR >0.05 mm h�1 is measured in at least

five range gates in the lowest 3 km (following Nuijens et al., 2014). A few instances with unrealistically large RR exceeding

200 mm h�1 are set to NA.85

Cloud radar
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Vertical profiles of hydrometeors (i.e. cloud and rain droplets) at approx. 30 m vertical resolution are derived from two

35.5 GHz (Ka-Band) Doppler cloud radars. Radar returns with an equivalent radar reflectivity lower than�50 dBZ are removed

to eliminate signal from sea salt aerosol (Klingebiel et al., 2019). To identify individual 2D cloud entities, a cloud segmentation

algorithm is applied (Konow, 2020). Radar reflectivity is converted to a binary mask and morphological closing is applied. The90

resulting mask is used to segment cloud entities with connected components analysis with 8-connectivity. A minimum cloud

size of four pixels is applied, everything smaller than four pixels is discarded as clutter. For the resulting cloud entities, the

overall cloud-base height (cbhID), overall cloud-top height and the cloud length (i.e. the duration times the wind extrapolated

from the surface to cloud base assuming a power law) are determined. To focus on clouds connected to the sub-cloud and

trade-wind layer, cloud entities with a cbhID>4 km are excluded.95

From the remaining clouds, we derive timeseries of the hydrometeor fraction, the lowest cloud-base height (CBH) and the

highest cloud-top height (CTH) for every radar profile. The cloud cover is further split up into contributions from precipitating

cloud segments if CBH  300 m (CCprcp), from cloudiness near the lifting-condensation level (CClcl; 300 m < CBH 
1 km), and from cloudiness aloft (CCaloft; 1 km < CBH  4 km). The latter two categories were also used in many previous

studies (e.g Nuijens et al., 2014; Vial et al., 2019). A given radar profile can only count to one of the three categories, such that100

e.g. a 2 km deep cloud with a CBH<300 m will only be counted in the CCprcp category. Note that the above classification

into the different CBH categories does not account for the information of the cloud entity and all radar profiles are classified

independently. A similar analysis accounting for the cloud entity by classifying cloud cover contributions of different cloud

types by their cbhID is shown in Appendix A.

From the cloud radar we also derive a deep-cloud mask, which is set to 1 if a radar signal between 4.5–8 km is detected.105

With this deep-cloud mask, periods of active deep convection reaching above the melting level can be omitted, while periods

with only cirrus-clouds are retained.

Doppler lidar

The vertical velocity in the sub-cloud layer is measured by two Halo Photonics Streamline Pro Doppler wind lidar systems

at 30 m vertical resolution. The Doppler lidars measure vertical velocities of up to ±20 m s�1 with a 1500 nm laser in altitudes110

from about 50 m to 1 km, depending on the atmospheric conditions and the aerosol loading. The precision is <20 cm s�1 for

a signal-to-noise ratio (SNR) of -17 dB. Measurements with a SNR smaller than -18.3 dB are discarded. Data from the first

system that was operated in vertically-pointing mode with a temporal resolution of 1.3 s is used from March 2016 to October

2019. A second system is operated in horizontally-scanning mode since February 2019 and has a temporal resolution of 3 s,

with 2 out of 7 profiles measured in vertically-pointing mode. Vertical data from this second lidar is used from November 2019115

to March 2021.

We derive both the average vertical velocity in the sub-cloud layer (SCL) as the mean over 15 range gates from 75-495 m

(wSCL), and the vertical velocity near the sub-cloud layer top at 450 m as the mean over the four range gates from 405-495 m

(w450).
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2.2 Machine learning classification of mesoscale cloud organization patterns120

The pattern of mesoscale cloud organization at BCO for the period January 2018 to March 2021 is classified by a neural

network algorithm applied to infrared satellite images from the Geostationary Operational Environmental Satellite 16 (GOES-

16). We use 30-minute brightness temperature retrievals from the 10.35µm-channel at a spatial resolution of 2 km from the

Advanced Baseline Imager (ABI) Level 1b data product (GOES-R Calibration Working Group and GOES-R Series Program,

2017), over a large domain including Barbados (45°W-66°W, 9.3°N-23.3°N).125

The neural network based on the Retinanet algorithm (Lin et al., 2017) has been initially trained on and applied to visible

images in Rasp et al. (2020), and later retrained and applied to infrared images by Schulz et al. (2021). The use of infrared

images also allows study of the diurnal cycle of the mesoscale organization (Vial et al., 2021). The classifications of the

neural network are rectangles of various sizes that belong to either the Sugar, Gravel, Flowers or Fish pattern. We select every

classified rectangle that overlaps with the BCO location. Periods without a classification are labelled as ’No’. For conditioning130

on cold pools, the 30-min data is downscaled to 1-min by using a given pattern for the 15 min before to after the classification

time. If a given pattern is present for more than 75% of the duration of a cold pool, the pattern is attributed to this cold pool.

At any given time, multiple rectangles of different sizes of the same and of different patterns can occur. Multiple rectangles

of the same pattern are combined and counted only once, while multiple rectangles of different patterns are counted sepa-

rately. This leads to timesteps being classified e.g. as both Gravel and Flowers. Excluding situations with multiple patterns135

only marginally influences the results, but reduces the sample size considerably (as previously noted in Vial et al., 2021).

Ambiguities in the classification can be physical—for example due to regime transitions or similarities between patterns—or

related to ambiguities introduced to the neural network by disagreement in the human classifications. The occurrence of mul-

tiple patterns can be reduced if a stricter threshold is used for the agreement score representing the confidence of the neural

network prediction (here set to 0.4 as in Schulz et al., 2021; Vial et al., 2021), but this again reduces the sample size.140

2.3 Cold-pool detection algorithm

We detect cold pools by identifying abrupt drops in the surface temperature timeseries following Vogel (2017). We first filter

the 1-min averaged temperature timeseries with an 11-minute running average. We then classify all temperature drops �T =

Tfil(t)�Tfil(t�1) <�0.05 K (per minute) in the filtered timeseries as a cold-pool candidate (see Figure 1 for an illustration).

For every candidate cold pool, we detect the time of the cold-pool front onset (tmax), the time of the minimum temperature145

(tmin), and the end of the cold pool (tend) as follows:

1. tmax: the onset of the cold-pool front tmax is defined as the last instance of �T > 0 K within 20 min before the initial

abrupt temperature drop. If the temperature is falling continuously in this period, tmax is chosen as the time of the

maximum temperature (that is, 20 min before the abrupt temperature drop). We refer to the smoothed temperature at

tmax as Tmax.150
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2. tmin: the time of the minimum filtered temperature Tmin marks the end of the cold-pool front and is identified as the

minimum of contiguous temperature minima. Subsequent candidate cold pools with �T <�0.05 K occurring within

20 min of the previous minimum are combined if the temperature does not rise by more than 0.5 K above the previous

minimum in between.

3. tend: the end of a cold pool is defined either as the minimum of (a) the time when the filtered temperature first exceeds155

its minimum by �T/e, where �T = Tmax�Tmin, or (b) the onset of the next cold pool. If using condition (a) or (b)

leads to any temperature between tmin and tend to be smaller than Tmin�0.1 K, then tend is defined as (c) the time when

the filtered temperature first decreases again after increasing for some time following tmin. Cold pools with tend defined

by (a) are referred to as recovered.

The period between tmax and tmin is referred to as the cold-pool front, and the period between tmin and tend as the cold-pool160

wake.
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Figure 1. Illustration of the cold-pool detection algorithm. (top) 11-min filtered Tfil (thick line) and 1-min raw surface temperature (thin

line), and (bottom) filtered temperature difference �T , along with the threshold of -0.05 K used (dashed). The detected cold-pool fronts and

wakes are indicated in dark grey (tmax to tmin) and light grey (tmin to tend), with the corresponding �T indicated at the top. The dark red

lines in the top panel show the analysis periods used for computing the diagnostics (see Section 2.5).

Our cold-pool detection algorithm is similar to the one used by de Szoeke et al. (2017), but with the important modification

that we only identify cold pools for situations with abrupt temperature drops. With our algorithm we thus both filter out tur-

bulent fluctuations and advective or diurnal patterns of temperature variability. The threshold of �T <�0.05 K is subjectively

chosen based on visual impression and represents distinct variations in temperature. For an 11-min averaging window, a �T of165

�0.05 K corresponds to about 2% of the data. Figure 2 shows example cold pools for all patterns and illustrates the workings

of the algorithm. In next subsection we briefly discuss the strengths and weaknesses of the algorithm based on these examples.
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Figure 2. BCO time series and satellite images for 18 h of four cold-pool days representative of the four patterns. Shown are timeseries of

filtered surface temperature and specific humidity, MRR RR, and time-height plots of Doppler lidar vertical velocity and radar reflectivity.

On the Gravel day the radar did not work prior to 12 LT and the lowest CBH from the ceilometer is shown instead. The x-axis shows local

time and the detected cold-pool fronts and wakes are indicated in grey and light grey, with �T indicated at the bottom. Visible satellite

images from 10-15�N and 60-55�W from MODIS Aqua (Sugar day) and GOES-16 ABI (other days), with the respective recording times

indicated by the orange lines in the temperature panels. The BCO is located near the easternmost tip of Barbados (outlined in yellow).
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2.4 Example cases

Timeseries of example cold-pool days along with corresponding satellite images are shown for every pattern in Figure 2. The

example cases highlight how well the detection algorithm works in these diverse situations. Abrupt strong temperature drops170

are reliably detected, successive fronts sensibly combined into one single cold pool, and even the 6 h long cold pool with frontal

character on the Fish day is correctly identified.

The example cases also indicate some challenges of the cold-pool identification. Although they look like cold pools, some

temperature drops on the Gravel and Sugar day are not identified as cold pools because they are either not abrupt enough

(�T >�0.05 K) or not strong enough (�T >�0.4 K). The difficulty in defining the end of the cold-pool wake is illustrated175

in the Fish case: the cold pool starting shortly before 16 LT lasts until well after 18 LT, but the temperature drop near 17 LT

causes a premature end of the cold pool, as such a temperature drop could also be caused by the daily cycle in temperature.

The cold-pool end definition could be improved by an additional rain or downdraft requirement, to more robustly distinguish

between cold-pool activity and other processes. Because most analyses and diagnostics computed in this study focus entirely

on the cold-pool front (see next section), not fully representing the wake of rare long-lasting cold pools is a minor issue and180

only influences the overall cold-pool fraction and the duration statistics.

As mentioned in Section 2.2, the organization pattern definition is not unambiguous and also among the example days shown

in Figure 2 some cold pools pertain to multiple patterns. For the Flowers case, the 2 h at the beginning and end of the period

shown are also classified respectively as Gravel and Fish. In the Sugar case, only the period between 9-16 LT is exclusively

classified as Sugar, while the periods before and after are also partly classified as Gravel. Most surprisingly, the textbook Gravel185

day is also entirely classified as Flowers, and also setting a stricter agreement score of 0.5 leaves half of the day co-classified

as Flowers. This indicates that distinguishing Gravel from Flowers can be particularly challenging (as also shown in Vial et al.,

2021). The Fish day is very confidently classified and no other pattern is detected for the entire day.

2.5 Selection criteria and diagnostics

For the subsequent analyses, we apply a number of selection criteria to make the comparison of cold pools more robust. Namely,190

we only consider cold pools with �T <�0.4 K and less than two missing values in the filtered temperature timeseries during

the entire cold-pool duration (set all with 9234 cold pools). For the analyses of the cold-pool properties we further apply a

criterion of no non-recovered cold pool in the hour prior to the cold-pool onset (set noprev with 8772 cold pools), which selects

cold pools moving into an initially undisturbed atmosphere that is not modified by previous convection. For most of the analyses

we also focus on the dry winter regime from December-April (set noprevWI with 3889 cold pools), which is characterized by195

steady easterlies, subsiding large-scale motion in the free troposphere and the predominance of shallow trade-wind convection

(Brueck et al., 2015).

As shown in the brackets, all these selection criteria reduce the cold-pool sample size considerably. They represent a trade-

off between assuring a robust and unbiased sample to address our research questions, while not being unnecessarily strict and

removing too many cold pools. The selection criteria are thus somewhat subjective and also differ among studies. For example,200
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Chandra et al. (2018) used the criterion of no rain in the hour prior to the cold-pool onset to select cold pools unmodified by

previous convection, whereas we achieve the same goal with the criterion of no non-recovered cold pool in the prior hour,

which excludes about 2500 less cold pools in our case. Instead of focusing on the winter regime, we could have also set a

criterion based on the cloud-top height to focus on trade cumulus cold pools. However, as this would restrict the analysis to

periods when the radar is running, and—as we are relying on single-site measurements—the parent convection might not move205

over the BCO in its entirety, we would likely exclude too many cold pools with a CTH criterion, without even being sure

that periods of deep convection are really excluded. Despite the rather strict criteria applied here, the long timeseries leads to a

much larger number of cold pools analysed than in previous studies.

Another potential sampling issue regarding the single-site measurements is that it is not clear at which stage of its lifecycle

we sample the cold pool, and where we sample it with respect to its center. Assuming isotropic wind variations around the210

cold-pool center, which in case of little wind shear is a good approximation (Touzè-Peiffer et al., 2021), the change in wind

direction from the mean direction prior to the cold-pool onset could give a hint as to the location relative to the cold-pool center.

However, due to our large sample size potential biases are likely to be small.

If not mentioned differently, the cold-pool diagnostics are computed either as the minimum difference (�Xmin) or maximum

difference (�Xmax) of a variable X between its value at tmax and the values between tmax + 1 and min(tend, tmin + 20).215

Similarly, Xmean or Xmax are the mean or maximum of variable X over the same analysis period (indicated in dark red in

Figure 1). For the Doppler lidar vertical velocities, we diagnose wmaxSCL (wmax450) as the maximum wSCL (w450) in the first

half of the front (including the last 10 min before tmax), and wminSCL as the minimum wSCL in the second half of the front

(including the first 10 min after tmin). Unless otherwise stated, the surface meteorology diagnostics are computed from the

11-min filtered timeseries.220

Along with most diagnostics and composites we show the standard error (SE), which measures how well the median or mean

of a given sample can be estimated. The SE of the median is computed as IQR/
p

n, where IQR represents the inter-quartile

range and n the sample size, and the SE of the mean as �/
p

n, where � is the standard deviation. As not all instruments

were running all the time, some diagnostics are only available for a subset of the cold pools and the sample size is adjusted

accordingly when computing the SE.225

3 Cold-pool climatology

In this section we present the climatology of trade cumulus cold pools detected at BCO for the winter seasons of the years

2011-2021. The first subsection presents general statistics, followed by a discussion of the composite temporal structure of the

cold pools in Section 3.2. The daily cycle of cold-pool statistics is shown in Section 3.3. While our focus lies on the winter

regime, Appendix B also briefly discusses the seasonal cycle of the cold-pool statistics.230
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3.1 General statistics

In total we detect 3889 cold pools that meet the criteria of �T <�0.4 K and less than two missing values in Tfil in the winter

seasons considered. We find that cold pools are very frequent at BCO and on 73% of days at least one cold pool is detected.

The BCO is on average affected by cold pools during 7.8% of the day (i.e. 112 min) and by a cold-pool front during 4.4%

of the day, with the medians being about one-third smaller than the means mentioned The mean cold-pool fraction of 8.6%235

for January and February 2011-2021 is also very close to the 7% found by Touzè-Peiffer et al. (2021) during the EUREC4A

campaign in January and February 2020, despite their very different method defining cold pools in atmospheric soundings

based on a mixed-layer depth criterion.

Table 1. Table showing median±IQR of various cold-pool properties for the noprevWI set of cold pools, as well as the 25% strongest

(�T <�1.39 K) and weakest (�T >�0.61 K) cold pools of this set. How the diagnostics are computed is explained in Section 2.5 and in

the text.

noprevWI strong weak

# 3889 972 972

�T [K] -0.89±0.78 -1.82±0.67 -0.5±0.1

�Tunfil [K] -1.2±0.8 -2.16±0.66 -0.79±0.17

�qmin [gkg�1] -0.43±0.65 -0.55±0.81 -0.36±0.54

�qmax [gkg�1] 0.2±0.41 0.29±0.51 0.12±0.3

�✓e,min [K] -2.05±2.08 -3.3±2.25 -1.35±1.35

�✓v,min [K] -0.96±0.81 -1.92±0.7 -0.55±0.14

�Umax [ms�1] 1.14±1.55 2±1.97 0.7±0.99

Rint [mmh�1] 0.9±1.76 1.45±2.42 0.41±0.95

RRmean [mmh�1] 0.05±0.38 0.39±1.06 0±0.04

CTHmax [km] 3.04±1.11 3.56±1.2 2.66±0.96

CTHmean [km] 2.32±0.88 2.74±0.81 2.03±0.89

wminSCL [ms�1] -0.55±1.56 -1.89±2.42 -0.27±0.51

wmaxSCL [ms�1] 0.91±0.62 1.1±0.7 0.78±0.54

wmax450 [ms�1] 0.98±0.81 1.27±0.99 0.79±0.66

length [km] 13.34±9.49 18.65±10.94 10.01±6.03

�tnextcp [min] 117±426 85±245 158±725

dur [min] 33±22 47±29 25±12

front dur [min] 19±12 29±19 15±4

Table 1 presents statistics of the most important cold-pool properties for the set of winter cold pools with no non-recovered

cold pool in the prior hour (noprevWI). It shows that 50% of the cold pools have a temperature drop exceeding 0.9 K across240
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the front (the unfiltered temperature drop is 0.3 K stronger), a �qmax exceeding 0.2 g kg�1 and a �qmin below �0.43 g kg�1,

decreases in ✓e and ✓v exceeding �2.1 K and �0.96 K, respectively, and a �Umax larger than 1.14 m s�1. The median rain

intensity measured by the MRR is 0.9 mm h�1. Furthermore, 50% of the cold pools are associated with a maximum cloud-top

height exceeding 3 km, and wmaxSCL and wminSCL of 0.9 m s�1 and�0.55 m s�1 near the onset and end of the front, respectively.

The average cold-pool duration is 33 min, of which a bit more than half of the time pertains to the front. Multiplying the duration245

with the surface wind speed yields a median cold-pool length larger than 13.3 km.

The IQR shows that all these medians are associated with substantial variability, especially for the humidity and rain

variables. However, focusing on the winter regime generally reduces the IQR of the diagnostics compared to all seasons (not

shown), suggesting that this criterion indeed results in a more homogeneous cold-pool sample representative of the trade-

cumulus regime. The median duration of 33 min and length of about 13.3 km of the cold pools may seem small compared to250

satellite imagery, in which mesoscale cold-pool arcs can easily span 100 km. Also the largest 2% of cold pools are hardly larger

than 40 km. The smaller cold-pool sizes found here are likely due to the algorithm sampling mostly the edge of the cold pools,

and due to the challenges of defining the cold-pool end purely based on the surface temperature timeseries (see discussion in

Section 2.4).

Table 1 also compares the median±IQR of the 25% strongest and weakest cold pools in terms of �T . The strongest cold255

pools last longer, follow each other more quickly (lower �tnextcp), and are associated with deeper clouds, more rain, stronger

downdrafts, humidity drops and wind gusts, and larger positive vertical velocities at the beginning of the front compared to

weaker cold pools. Similar but slightly smaller differences between stronger and weaker cold pools are found when comparing

cold pools associated with the 25% strongest versus weakest downdrafts or the 25% deepest versus shallowest CTHmax (not

shown). The downdraft strength wminSCL is the diagnostic that correlates best with �T (R2=0.23), and together with the front260

duration it explains a lot of the variability in �T for the noprevWI set (multiple R2=0.49). The 25 and 75% quartiles of wminSCL

also distinguish the rain diagnostics best.

That CTHmax also distinguishes the cold-pool properties very well indicates that the parent convection triggering the cold

pool is sampled well by the single-point measurements. The CTH usually scales with the precipitation amount for trade cumuli

(Byers and Hall, 1955; Kubar et al., 2009; Nuijens et al., 2009), so other factors like the environmental humidity do not seem265

to influence rain evaporation and downdraft strength much further. We also compared the properties of the 25% driest and

moistest cold pools in terms of �qmin (not shown), which does not strongly distinguish other cold-pool properties, not even

the RR that was shown to be particularly related to �qmin in the literature (Barnes and Garstang, 1982). The specific humidity

signal is generally also very variable and the response to the cold-pool onset hard to define in one diagnostic, as will be shown

next.270

3.2 Composite temporal structure

Figure 3 shows the composite mean temporal structure of the perturbations associated with the cold-pool passages. To facilitate

the comparison of different cold pools, we use a normalized time coordinate in the cold-pool front with values mapped onto
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raphaelavogel
Sticky Note
Section 4 shows that stronger cold pools tend to be associated with the Fish pattern and generally deeper clouds, whereas weak cold pools tend to be associated with the Sugar pattern and shallower clouds. 
But as we don't know at which lifecycle stage we sample a cold pool, we cannot directly associate a cold pool with a cloud regime.

raphaelavogel
Sticky Note
We removed multiple.

raphaelavogel
Sticky Note
In fact and as written in the paragraph below, we think that the cold-pool length is actually underestimated here, as we mostly sample the edge of the cold pool and also have a rather conservative cold-pool end criterion. 

We restructured the paragraph and expand on the topic a bit more in the revised manuscript.

Please also refer to the answer to the wind anomaly question in the response to reviewers file (1. specific comment to Section 3).

raphaelavogel
Sticky Note
We clarified the definition of the normalized time coordinate by modifying the sentence as follows:

"we use a normalized time coordinate within the cold-pool front with values after tmax and before tmin mapped onto 20 points (the median front duration), similar to previous studies (Young et al., 1995; de Szoeke 
et al., 2017; Zuidema et al., 2017)."

raphaelavogel
Sticky Note
Yes, the rain duration and the front duration are correlated with a correlation coefficient R=0.47. 

See our detailed response in the response-to-reviewer document (regarding the result section 3). 

raphaelavogel
Sticky Note
The value is indeed quite low as it is computed from the 10-min filtered wind speed data. We now added the unfiltered wind speed maxima in Table 1 and they are more than twice as large for the median anomaly (2.81 m/s). This value is in line with values from RICO and EUREC4A (Zuidema et al. 2012, Touzé-Peiffer et al. 2021).




20 points (the median front duration), similar to previous studies (Young et al., 1995; de Szoeke et al., 2017; Zuidema et al.,

2017).275
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Figure 3. Composite mean temporal structure of anomalies relative to the cold-pool onset (tmax) for the surface properties (a) temperature,

(b) specific humidity, (c) equivalent potential temperature, (d) relative humidity, and (e) wind speed, as well as absolute values of (f) the

MRR rain frequency and (g) rain rate, and (h) the vertical velocity at 450 m height. The black line shows the mean structure of all cold pools

matching the noprevWI criterion, and the red and blue lines show the mean for the 25% strongest and weakest cold pools, respectively. The

dotted lines show the mean±1 SE. Vertical and horizontal reference lines are added to indicate tmax, tmin and 0.

The temperature of the composite-mean cold pool, after increasing slightly before tmax, decreases rapidly in the front and

recovers by �T/e within 16 min after tmin. The temperature remains about 0.5 K below Tmax in the hour after the frontal

passage. The temperature drop in the front of the 25% strongest cold pools is by definition stronger, but with a mean tendency

of �0.070 K min�1 also more than twice as abrupt compared to the weakest cold pools. The strongest cold pools also take

longer to recover than the weakest.280

The temporal structure of the specific humidity response is intriguing. The composite-mean humidity starts to increase

already 8 min before tmax and increases by about 0.2 g kg�1 until tmax. In the first quarter of the front, the humidity increases

by another 0.2 g kg�1, before it drops to its minimum of �0.25 g kg�1 at tmin, which is hardly lower than the pre-front value.

The humidity recovers much more quickly than the temperature and remains slightly elevated compared to its pre-front value
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do you mean exponentially? please define

Highlight
how can I see this numerical value from the figure (or elsewhere)? How did you derive it?

Highlight
Wouldn't it make more sense to refer here to a moisture increase of almost 0.4g/kg since the base line before the cold pool is below the reference at t_max?

Text Box
very interesting that the pre-frontal peak shows this little variance

Text Box
interesting that the stronger cold pools "live" in a rather moisture than drier environment.

Text Box
interesting, that no increase observed before t_max

raphaelavogel
Sticky Note
e refers to Euler's number here. We explicitly write that now in Sec 2.3!

raphaelavogel
Sticky Note
This is not evident from the figure and we added "(not shown)".
It is computed by averaging the recovery time (i.e. time until temperature recovered by dT/e) of all recovering cold pools (i.e. cold pools that recover by dT/e before the next temperature drop) . 

raphaelavogel
Sticky Note
Taken together, the two sentences refer to a 0.4 g/kg increase. We prefered to separate the increases before and after tmax, because the prior increase is partly related to increasing saturation specific humidity with increasing temperature.
A more detailed analysis of the humidity structure will be part of a future study.



in the hour after. The fast humidity recovery might be due to the trapping of surface moisture fluxes in the shallow mixed285

layer typically associated with cold pools (Touzè-Peiffer et al., 2021). Another reason might be continued evaporation of

precipitation, which would cool and moisten the air in the cold-pool wake and thus speed up the humidity recovery but slow

down the temperature recovery.

The specific humidity response of the strongest cold pools only differs significantly from the weakest cold pools at tmin,

with the humidity drop at tmin being about�0.4 g kg�1 and thus about twice stronger than the drop for the weakest cold pools.290

If the entire set of cold pools including the summer season with deeper convection is used, the strongest cold pools have a

significantly weaker positive humidity anomaly at the beginning of the front, and a significantly faster and stronger humidity

reduction at tmin compared to the weakest cold pools (see Figure B1c-d). As discussed by de Szoeke et al. (2017), the humidity

increase just before tmax might be mostly due to the increasing saturation specific humidity associated with the increasing

temperature before tmax (as seen by the relative humidity anomaly in panel d being slightly below zero), and as such likely295

also related to the way we identify Tmax.

The temporal structure of the equivalent potential temperature is similar to the humidity structure, but with a stronger drop

across the front, and a stronger difference between the weaker and stronger cold pools governed by the temperature drops. The

relative humidity signal in the front is mostly governed by the temperature decrease, with RH being 8% larger at tmin for the

strongest cold pools. The in-front wind speed increase has a maximum in the middle of the front. After the frontal passage,300

the wind speed decreases slightly below the pre-front level. The strengthening winds in the front and the slackening winds in

the wake are again significantly more pronounced for the strongest cold pools, with a maximum of 1.5 m s�1 and a minimum

smaller �0.5 m s�1 in the front and wake compared to the value at tmax. Figure 3f-g show the composite mean Rfreq and RR

measured by the MRR. Both rain variables increase rapidly after the onset of the cold pool, peak towards the middle or end of

the front, and start to decrease shortly before tmin. The strongest cold pools have much larger rain rates and rain frequencies305

during the entire front compared to the weakest cold pools, and the rain frequency of the strongest cold pools also remains

strongly elevated until more than an hour after tmin.

The last panel of Figure 3 shows the Doppler lidar vertical velocity averaged over four 30 m range gates with mean height of

450 m (w450). The mean w450 peaks at the edge of the front with about 0.25 m s�1 and decreases rapidly to�0.3 m s�1 near the

end of the front, reflecting updrafts triggered at the cold-pool gust front and downdrafts driven by the evaporating precipitation310

inside the front, respectively. The strongest cold pools have significantly stronger downdrafts and also updrafts compared to the

weakest cold pools (see also Table 1), the latter highlighting the potentially enhanced triggering of new convection by stronger

cold pools. For the vertical velocity averaged over the entire sub-cloud layer (wSCL), the picture is similar, but the peak wmaxSCL

is slightly smaller for the strongest cold pools and more similar compared to the weaker cold pools (Table 1).

As already shown in Table 1, Figure 3 shows that the strongest cold pools are also the driest and the rainiest, and have the315

strongest wind and vertical velocity anomalies in the front. The relationships and timings discussed are mostly the same when

considering all cold pools meeting the noprev criterion (i.e. also including summer periods), just with larger anomalies and the

differences mentioned above for the humidity structure. The mean temporal structure for all variables—except for the specific

humidity and partly for the wind speed—is also similar to previous observations of tropical deep convective cold pools during
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do not fully understand your reasoning here. Are you speaking about enhanced surface fluxes in the cold pool interior?
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from Fig 3g, it seems that the rain duration is very limited beyond t_min for the weakest cold pools (blue line). How do you explain the recovery there? 

Highlight
would you say that a dynamical reason, i.e., due to moisture convergence ahead of the cold pool front, can be excluded considering the missing signal in horizontal velocity ahead of the cold pool front (Fig. 3e)?

Highlight
nice confirmation that the intervall between Tmax and Tmin actually catches the front which is (should be) characterised by vortical overturning internal circulation

Highlight
do you think updraft strengths of below 1m/s that exist at each location only for a very short time are sufficient to trigger convection?

raphaelavogel
Sticky Note
Here I mostly refer to the shallowness of the mixed layer inside cold pools (see Rochetin et al., 2021 and Touzé-Pfeiffer et al., 2021). So the surface latent heat fluxes are distributed over a shallower layer, which allows for a faster recovery of the humidity.

We added 'anmalously' [shallow mixed layer] 

raphaelavogel
Sticky Note
It's true that the rain frequencies decrease quite quickly after t_min for the weakest cold pools, and the vertical velocity w_450 becomes positive again, indicating that the downdrafts ceased at the end of the front. So the rain evaporation argument is more relevant for strongly precipitating cold pools and we modified the sentence as follows:

"Another reason in cases of more strongly precipitating cold pools might be continued evaporation of precipitation"

We answer this (and the above) comment in a bit more detail in the response-to-reviewer file (specific comments to Section 3). 

raphaelavogel
Sticky Note
Good point, thank you very much. We included this interpretation in the text.

raphaelavogel
Sticky Note
We would not exclude a dynamical reason for this, even though the composite wind speed signal before t_max is indeed small. We added the following sentence:

"A potential dynamical reason for the pre-front humidity increase could be due to moisture convergence ahead of the front (Schlemmer and Hohenegger 2016)."

raphaelavogel
Sticky Note
Yes, we think that these vertical velocities are relevant for triggering new convection, as they are much larger than typical in-cloud vertical velocities at cloud base. This is an important point that we clarify in the revised manuscript as follows:

"The median wmax450 at the gust front edge (see Table 1) is with 1 m s−1 much larger than the averaged hourly in-cloud vertical velocities near cloud base measured by the BCO Doppler radar, which has a peak density at 0.2 m s−1 and maxima of 0.6 m s−1 (Klingebiel et al., 2021). 1 m s−1 also marks the upper tail of cloud-base averaged updraft vertical velocities (see Figure 4b of Sakradzija and Klingebiel, 2020). This suggests that the gust-front vertical velocity maxima are very relevant for triggering new convection in the trade cumulus regime. "



the DYNAMO field campaign (de Szoeke et al., 2017; Chandra et al., 2018), just with slightly smaller anomalies at BCO due to320

the shallower convection. During DYNAMO, the increases in specific humidity at the beginning of the front are hardly present

and the humidity minima near tmin are much more pronounced compared to BCO. The mean in-front wind speed increase

is about 2 m s�1 and the wind speed also remains elevated in the wake of the DYNAMO cold pools (de Szoeke et al., 2017;

Chandra et al., 2018), whereas at BCO it decreases below the value at tmax in the wake. What might strengthen cold pools in

the trades despite the shallower parent convection is the drier cloud layer and free troposphere compared to the deep convective325

regions, which facilitates evaporation of precipitation and can strengthen downdrafts (Chandra et al., 2018).

The initial increase in humidity at the edge of the front at BCO might be explained by enhanced surface fluxes due to the

strengthening winds (Langhans and Romps, 2015; Torri and Kuang, 2016), or by an accumulation of moisture from evaporation

of precipitation of the parent convection, which was pushed to the edge of the front (Tompkins, 2001). Analyses of the various

isotope measurements made during the EUREC4A field campaign (Stevens et al., 2021) might help elucidate the origin of330

these moisture rings. This could also help understand why cloud-resolving models seem to have difficulties in representing the

humidity structure in the cold-pool front correctly (Chandra et al., 2018).

The cloud radars at BCO also allow study of how the cloud properties change across the cold-pool passage (Figure 4).

The mean cloud-top height (CTH) increases rapidly by ⇠ 500 m after the cold-pool onset and peaks at the end of the front.

CTH remains elevated by ⇠ 300 m compared to the pre-front value in the following hour. The 25% strongest cold pools are335

associated with significantly deeper clouds throughout the entire period shown, especially so at the end of the front, when the

CTH is on average higher than 3300 m. The cloud-base height (CBH) starts to decrease already slightly before tmax and

reaches its minimum near the end of the front at ⇠ 500 m. This decrease is due to the more frequent precipitation with very

low echo-base heights, and is most pronounced for the strongest cold pools.

The total hydrometeor cover (CC) increases rapidly at the beginning of the cold-pool front, remains about 25% larger340

compared to the pre-front value inside the front, and then decreases slowly in the wake. The mean CC of the 25% strongest

cold pools reaches nearly 100% at the end of the front and is significantly larger than the CC of the weakest cold pools during

the entire period shown, especially so in the wake. Figure 4d-f show that the enhanced CC of the strongest cold pools in the

prior hour is entirely due to cloud segments with CBH above 1 km (CCaloft), whereas the enhanced CC in the front and wake

of the strongest cold pools is mostly due to precipitating cloud segments with CBH below 300 m. The rapid increase in CC lcl345

up to its peak at tmax strongly contributes to the CC increase at the edge of the front. This peak is also larger for the strongest

cold pools, consistent with their larger w450 at tmax. CC lcl and CCaloft are lower at the end of the front for the strongest cold

pools, as the lowest CBH is mostly below 300 m and the cloud segments thus count to the CCprcp category (note that a given

time can only count to one of the three categories).

In Figure 4d-f the cloud cover is split into contributions from cloud segments with different CBH without accounting for350

the information of the cloud entity. Based on a similar analysis that accounts for the entity information (see Appendix A), we

find that the peak in CC lcl at tmax is mainly due to edges of precipitating clouds that have a CBH > 300 m. Assuming that

this cloud population represents the clouds evident as mesoscale arcs in satellite imagery, this suggests that the cloudiness at

the gust front is mostly characterized by well-developed precipitating clouds. The entity analysis also shows that more than
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Highlight
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Highlight
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Highlight
I would find this paragraph more helpful directly where Fig. 3b is discussed.

raphaelavogel
Sticky Note
We moved it to the discussion of Fig. 3b and also restructured the paragraphs. 

raphaelavogel
Sticky Note
see above

raphaelavogel
Sticky Note
We now added quantitative statements to the comparison:

"The mean temporal structure for all variables—except for the specific humidity and partly for the wind speed—is also similar to previous observations of tropical deep convective cold pools during the DYNAMO field campaign (de Szoeke et al., 2017; Chandra et al., 2018), just with slightly larger mean across-front temperature and humidity decreases (−1.3 K and −0.6 g kg−1 during DYNAMO compared to −1.15 K and −0.25 g kg−1 at BCO) and larger mid-front wind speed increases (about 1.5 m s−1 compared to 1 m s−1 ) during DYNAMO due to the deeper convection. Furthermore, during DYNAMO the increases in specific humidity at the beginning of the front are hardly present, and the wind speed remains elevated by 0.4 m s−1 in the wake of the DYNAMO cold pools (de Szoeke et al., 2017; Chandra et al., 2018), whereas at BCO the wind speed decreases below the value at tmax in the wake. "



raphaelavogel
Sticky Note
We hypothesize that this difference can be explained by the stronger cold pools during DYNAMO travelling further away from their parent convection, and the cold-pool center and parent convection thus being further away from tmin and the front during DYNAMO. We added this explanation in the revised manuscript. 



half of the CCaloft in the cold-pool wake is part of large precipitating clouds, and not from detached stratiform layers. This is355

also suggested by the time-height plots of the composite-mean hydrometeor fraction shown in Figure 4g-i. These panels nicely

summarize what was discussed in the previous paragraphs, and again highlight the differences between the 25% strongest and

weakest cold pools in terms of the cloud response.
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Figure 4. (a-f) Same as Figure 3, but for (a) cloud-top height, (b) cloud-base height, (c) total cloud cover, and the contribution to total cloud

cover from (d) CCprcp, (e) CClcl and (f) CCaloft. Also indicated is the climatological mean value for the winter periods of 2012-2020. (g-i)

Composite mean temporal structure of vertical hydrometeor fraction (HF) profiles for all noprevWI cold pools, as well as the 25% strongest

and weakest. The thin dashed line at 600 m height marks the average cloud-base height.
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Figure 5. Temporal structure of individual cold pools ranked according to their �T . Shown are all cold pools of noprevWI that have all

instruments running. The panels show anomalies relative to the cold-pool onset (tmax) for (a) temperature, (b) specific humidity, and (c)

wind speed, as well as absolute values of (d) the MRR rain frequency, (e) the cloud-top height, and (f) the vertical velocity averaged over the

sub-cloud layer.

Figure 4a-f also indicate the respective mean CTH , CBH and CCs for all the winter months of the period 2012-2021.

They show that cold-pool periods are much cloudier than the average winter trades. Cold-pool periods also have much deeper360

clouds, which is expected as it needs deeper precipitating clouds to form cold pools. The enhanced CC in the wake of cold
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Highlight
what values are used here to compare to as reference? References necessary.

Highlight
again, what is the reference? 

Sticky Note
how should / can the pretty pronounced negative values in U-U(t_max) in the wake of the cold pool fronts be interpreted? 

raphaelavogel
Sticky Note
The reference here is to the climatological average of all winter months of the period 2012-2021, as noted in the previous sentence. 

To make this more clear and quantitative, we changed it to:  

"Figure 4a-f also indicate the respective mean CTH, CBH and CCs for all the winter months of the period 2012-2021. They show that cold-pool periods are much cloudier than the average winter conditions at BCO, with the average in-front CC being twice as large as the 10-year climatological mean. Cold-pool periods also have much deeper clouds than the climatological mean of about 2 km, which is expected as it needs deeper precipitating clouds to form cold pools. The enhanced C C in the wake of cold pools compared to the long-term mean is nevertheless surprising, as convection might be expected to be suppressed in the cold-pool wake. "

raphaelavogel
Sticky Note
see reply above

raphaelavogel
Sticky Note
Again we hypothesize that after t_min some of the cold pool spreads against the background wind and the wind speed anomaly thus becomes negative. We added:

"Notable is again the occurrence of pronounced negative values of the wind speed anomaly after tmin, which suggests that some cold pools push backward into the mean wind"



pools compared to the long-term mean is nevertheless surprising, as convection might be expected to be suppressed in the cold-

pool wake. Mesoscale arcs encircling vast decks of deeper cumuli with stratiform layers therefore seem more representative

for periods of cold-pool activity than the more classical picture of trade cumulus cold pools as mesoscale arcs enclosing broad

clear-sky areas.365

Despite the various significant differences between the strongest and weakest cold pools highlighted in the previous para-

graphs, there is a lot of variability among individual cold pools. The variability is illustrated in Figure 5, which shows the

temporal structure of the most important variables for individual cold pools ranked according to their �T . Especially the in-

dividual differences in humidity and wind in the front and the beginning of the wake can by far exceed the mean differences

among the strongest and weakest cold pools shown in Figure 3. Tendencies of more frequent (and intense) rain, deeper clouds370

and stronger downdrafts near tmin of the stronger cold pools are nevertheless clearly evident. Especially the downdraft strength

seems to be systematically increasing for stronger temperature drops. Besides showing the CTH , Figure 5e also gives an

indication of the CC, again illustrating how cloudy the cold-pool periods are.

3.3 Daily cycle

The long timeseries also allows to study the variability of the cold-pool frequency and characteristics at the daily timescale.375

Figure 6 shows the daily variability of cold-pool properties for the noprevWI set. There are clearly fewer cold pools and a

lower hourly cold-pool frequency between 16-22 LT compared to the rest of the day. Three local maxima in both the cold-pool

frequency and number are present at 03, 09 and 14 LT. Also most cold-pool diagnostics show a pronounced daily variability.

During nighttime between about midnight and 04 LT, cold pools are associated with significantly deeper clouds, stronger mean

rain rates, stronger downdrafts and updrafts, larger CC, and slightly stronger humidity drops and weaker wind gusts compared380

to daytime cold pools between about 08-16 LT. There is also a hint of slightly stronger �T during nighttime compared to

daytime, but neither in the median nor in the 25% quartiles is this daily cycle significant. It is somewhat surprising that we find

no pronounced daily cycle in �T , although the daily cycle of e.g. wminSCL and CTHmax would suggest that �T should be

stronger at nighttime compared to daytime. There is a climatological background daily cycle in temperature of about 1.2 K due

to the daytime solar heating (minimum and maximum temperatures near 5 and 12 LT, respectively), but this should not affect385

the cloudy cold-pool periods much and would at best contribute to lower �T in the morning. Other diagnostics like �qmax

and Rint do not show a pronounced daily variability (not shown).

The pronounced daily variability in the cold-pool frequency and most diagnostics is not surprising given the distinct daily

cycle in trade cumulus cloudiness discussed in detail in Vial et al. (2019) based on both high-resolution simulations and

observations. The daily cycle of trade cumuli is characterized by larger CC and deeper clouds at the end of the night and390

smaller CC and shallower clouds in the afternoon. This is evident in the background climatological daily cycles indicated in

Figure 6e-i. The daily cycles of most cold-pool diagnostics have a similar phase and also amplitude as their background daily

cycles, but are shifted to much larger values (as indicated in the respective legends). For the vertical velocity diagnostics, also

the amplitude of the daily cycle is much larger compared to the background climatology.
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Figure 6. Daily cycles of important cold-pool diagnostics. (a) mean±1 SE of hourly cold-pool frequency as well as the number of cold

pools per hour, (b) �T , (c) �qmin, (d) �Umax, (e) CTHmax, (f) MRR RRmean, (g) wminSCL and (h) wmax450, and (i) CC tot, with cold pools

associated to a specific hour according to their tmax. In panels b-i the lines represent the 25%, 50%, and the 75% quartiles of the respective

variables and the shading represents the median±1 SE. Also indicated in green is the median climatological background daily cycle of 30-min

values of (e) maximum CTH , (g) minimum wSCL, (h) maximum w450, and (i) mean CC, shifted by the mean difference of the climatological

median compared to the cold-pool median to ease reading. Due to the infrequent rain, the median climatological RRmean is always 0 and

omitted in panel f.

The peaks in the cold-pool frequency at 09 and 14 LT are shifted by a few hours compared to the peak in the surface395

precipitation between 03-06 LT (Nuijens et al., 2009; Vial et al., 2019). This suggests that cold pools help extend the daily
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cycle of shallow convection into the early afternoon, which could be due to cold pools reinforcing each other and triggering

subsequent cold pools. This hypothesis is supported by the shorter median interval between subsequent cold pools of 121 min

between 07-14 LT compared to 182 min between 22-04 LT. Also the daily cycle of cloud cover seems to be slightly extended

into the morning, with CC tot decreasing below the daily mean about 4 h later compared to the climatological CC.400

Vial et al. (2021) also find the daily cycle of trade cumuli to be strongly linked to the daily cycle in the occurrence frequency

of the mesoscale organization patterns. Whether the cold-pool characteristics and their daily cycles are related to the pattern of

mesoscale organization will be discussed in the next section.

4 Relationship of cold-pool characteristics to mesoscale organization pattern

In this section we investigate whether the cold-pool frequency and characteristics depend on the pattern of mesoscale cloud405

organization. For this we condition the cold pools on the organization pattern present at BCO. As explained in Section 2.2, a

pattern is attributed to a cold pool if it is present during > 75% of the cold-pool duration. As multiple patterns can be present

at the same time, a cold pool can pertain to two (or rarely even three) patterns. Pattern labels are available from January 2018

to March 2021, and using the noprevWI criterion we end up with 1332 cold pools to be analysed

The four example cold-pool days in Figure 2 already shed some light on the differences in the cold-pool characteristics of410

the four patterns. The two Sugar cold pools stem from isolated precipitating deeper cumuli. The satellite image captures the

deeper cloud over BCO at the time of the first cold pool and also indicates some organization of the cumuli in lines upstream

BCO, while the canonical Sugar fields of shallow cumuli pass further North.

The textbook Gravel day is characterized by many short and often weak cold pools quickly following each other, interspersed

by stronger cold pools. The cold pools are associated with the presence of strongly precipitating deeper clouds (note that the415

radar did not work prior to 12 LT). The many cold pools present on this day clearly imprint their signature on the satellite image

in the form of mesoscale arcs.

The cold pools on the Flowers day are associated with the large cloud system whose stratiform layer reaches the BCO at

10 LT. Three cold pools are directly associated with the large system, with the first one starting at 11 LT showing a very strong

�T of �3.85 K. The large system has rain rates up to 3.6 mm h�1 and is announced by a weaker cold pool associated with the420

very thin mesoscale arc visible in the satellite image, which goes along with a strong increase in humidity of 1.3 g kg�1.

The Fish day features a 6 h long cold pool associated with steady and intense rain (maximum RR of 11.6 mm h�1), continued

strong downdrafts and very large humidity throughout its entire duration. The temperature fully recovers within about 20 min

of the cold-pool end, and 3 h later two subsequent pronounced cold pools follow that are again characterized by continued

precipitation and downdrafts. The satellite image shows the fish-bone like cloud band typically associated with the Fish pattern.425

The occurrence of the Fish pattern is strongly connected to trailing cold fronts of extratropical origins (Aemisegger et al., 2021;

Schulz et al., 2021). The more front-like character of the Fish cold pools with steady showers and downdrafts is clearly evident

in the example timeseries.
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Figure 7. Distributions of various cold-pool diagnostics conditioned on the organization patterns. (a) Number of cold pools, (b) cold-pool

fraction, (c) cold-pool duration, (d) time since tmin of the last cold pool, (e) �T , (f) �qmin, (g) �qmax, (h) �Umax, (i) MRR Rint, (j)

CTHmax, (k) wmax450 and (l) wminSCL. The different symbols in panels c-l represent the 25%, 50% and 75% quartiles of the respective

variables, the solid lines represent the median±1 SE, and the dotted horizontal reference lines show the median of the entire set (’tot’).

Besides the cold pools matching the noprevWI criterion, panel (b) also shows the fraction of cold pools for all seasons (’all’), for all seasons

but without periods of deep convection (’all.nodeep’), and excluding periods with multiple organization patterns (’WI.only’ and ’all.only’).

Figure 7 shows distributions of several cold-pool properties for the different patterns, including the ’No’ category and the

union of the five categories (’tot’). The most pronounced difference among the patterns lies in the occurrence frequency of430

cold pools. Most cold pools detected at BCO pertain to the Gravel pattern (458), followed by Fish (402) and Flowers (248).

As expected, only 36 cold pools are detected during Sugar periods. Many cold pools are also associated with the No category

(341). When we look at the fraction of time a given pattern is subject to a cold pool, the picture changes and the Fish pattern is
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associated with the largest cold-pool fraction (12.8% of time), followed by Flowers and Gravel (9.9% and 724%, respectively).

Again, Sugar has clearly the lowest cold-pool fraction (1.6%).435

Figure 7b also shows the cold-pool fractions using different selection criteria, namely that only one pattern is allowed at

a time (’.only’; excluding cold pools that pertain to multiple patterns), that all noprev cold pools from all seasons are used

(rather than only from the winter months; ’all’), and that periods of deep convection in all seasons are excluded (’all.nodeep’;

i.e. no cold pools with any radar signal between 4.5–8 km). For the Gravel pattern, these different criteria hardly influence

the cold-pool fraction, whereas for Flowers and Sugar the different sets of criteria tend to change the cold-pool fraction. For440

Flowers, the cold-pool fraction in winter reduces to 8.6% if periods with multiple patterns and their cold pools are excluded.

Only 85 cold pools are left for Flowers.only, while the rest are shared with Gravel (86), Fish (80) and a few also with Sugar (7).

While excluding periods of multiple patterns more than halves the cold-pool fraction for Sugar (to 0.8%, mostly due to overlap

with the Gravel pattern), considering all seasons nearly doubles the cold-pool fraction of Sugar. Despite these differences, the

four patterns remain distinct in their cold-pool fractions independent of the criteria considered. The cold-pool fraction of the445

No category in winter is with 6.4% also substantial. The No category is particularly sensitive to the inclusion of all seasons,

and in summer with more frequent deep convection most cold pools pertain to the No category (not shown). Excluding periods

of deep clouds (’all.nodeep’) therefore mostly affects the No category, as deep convection is usually absent when patterns are

detected.

That Gravel has the largest number of cold pools but only the third largest cold-pool fraction is partly due to Gravel being the450

most frequent pattern at BCO (a total of 178 days out of the 18 winter months considered, compared to 113 Fish, 78 Flowers

and 72 Sugar days), and partly because Gravel cold pools on average last 6 min shorter than Fish cold pools (Figure 7c). With a

median duration of 37 min, Fish has the significantly longest-lasting cold pools of all patterns. Cold pools in the Fish case also

follow each other most rapidly, with a median of 124 min separating individual cold pool fronts (Figure 7d). Also for Flowers

and Gravel do cold pools follow each other quickly, whereas much more time passes between cold pools for Sugar and No. The455

same picture emerges when considering the cold-pool length (i.e. the duration multiplied by the surface wind speed): Fish cold

pools are with a median size of 13.8 km slightly larger than Gravel and Flowers cold pools (both about 12.6 km, not shown).

Figure 7e-i show the differences in the surface meteorology, rain and cloud response associated with cold pools for the

different patterns. Fish has the strongest median �T and the strongest downdrafts of all patterns, and also a stronger �Umax

compared to Gravel and Flowers. Gravel cold pools are associated with significantly larger CTHmax and stronger updrafts460

compared to the other patterns. For the humidity and rain diagnostics, the differences between Gravel, Flowers and Fish cold

pools are minor. Sugar cold pools generally have the weakest cold-pool signatures. Contrastingly, the cold pools of the No

category show no significant differences compared to Gravel, Fish and Flowers for most of the statistics.

If cold pools with multiple patterns are excluded, the strongest differences in the diagnostics occur for Flowers and Sugar,

as their sample sizes become very small. For Flowers.only cold pools, �qmax is significantly larger compared to the other465

patterns (not shown), and �T becomes comparable to the Fish and wmax450 comparable to Gravel cold pools. The Sugar.only

cold-pool sample tends to have smaller cold-pool anomalies compared to when multiple patterns are allowed (except for the

median �Umax and wmax450), but the small sample of 11 Sugar.only cold pools does not allow for robust conclusions here. We
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find similar differences in the cold-pool samples when the neural network agreement score is increased to 0.5 (instead of the

default 0.4).470
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Figure 8. Composite mean temporal structure of the four organization patterns and the No category. Shown are (a) total CC, the contribution

to total CC from (b) CClcl and (c) CCaloft, and (d) the CTH . The dotted lines show the mean±1 SE. Also indicated on the far-left of panels

a-d are the climatological mean values per pattern for the corresponding winter periods of 2018-2021. Panels e-h show the mean temporal

structure of the vertical hydrometeor fraction profiles for the four patterns. The colour scale is the same as in Figure 4.

Figure 8a-d shows the differences in the temporal structures of cloud properties for the four patterns. They show that also

during the cold-pool periods, the climatological differences in CC and CTH among the different patterns remain (see also

Schulz et al., 2021; Vial et al., 2021; Bony et al., 2020). Fish has the largest CC, closely followed by Flowers1, and then Gravel

and Sugar. The CC differences are mostly due to the differing contributions of CCaloft, whereas CClcl is fairly similar among

the patterns both for the cold-pool periods and the climatological mean (Schulz et al., 2021). Also the temporal structure of475

1Whether Fish or Flowers have the larger mean CC depends on the dataset and the period considered (Bony et al., 2020; Schulz et al., 2021; Vial et al.,

2021)
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CCprcp is similar for all patterns during the cold-pool period (not shown), and resembles the mean structure of all cold pools

shown in Figure 3d. For all patterns, the cold-pool periods are characterized by significantly deeper clouds and larger CC

compared to the pattern average.

The CC of Fish cold pools hardly changes across the cold-pool passage, whereas the onset of the cold-pool front is much

more clearly evident for the Gravel and even more for the Sugar CC. The CC in the wake of Sugar cold-pools also decreases480

most rapidly back to its pre-front value. Fish also tends to have the deepest mean CTH associated with the cold-pool periods,

closely followed by Gravel and Flowers. The mean CTH of Gravel cold pools increases more rapidly in the front compared

to Flowers and Fish, but also decreases a bit faster in the wake of the cold pools. Again, the cold-pool onset has the strongest

CTH imprint for the Sugar pattern, with a mean CTH increase exceeding 1 km between tmax and tmin.

The differences in the cloud properties of the different patterns associated with the cold-pool passages are again summarized485

in the time-height composite hydrometeor fraction plots (Figure 8e-h). They show the strongly enhanced CCaloft of Fish

and Flowers cold pools that is mostly associated with more frequent stratiform layers near 1.5-2 km. The more pronounced

influence of the cold-pool onset on the CC and CTH for Sugar and Gravel compared to Flowers and Fish, as well as the

overall higher CTH for Fish are also clearly evident.
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Figure 9. Daily cycles of (a) number of cold pools, (b) hours of data for the different organization patterns, and (c) hourly fraction in cold

pool (solid) and in cold-pool front (dashed). A 5-hourly running mean is applied to smooth the data. The daily means are indicated on the

left side of each panel.

As mentioned before, Vial et al. (2021) find the daily cycle of trade cumuli to be strongly linked to the daily cycle in the490

occurrence frequency of the mesoscale organization patterns. Figure 9a shows strong daily variations of the number of cold

pools associated with the different patterns. These variations are strongly connected to the daily cycles in the occurrence fre-

quency of the patterns (Figure 9b and Vial et al., 2021). The maximum number of Gravel cold pools occurs just after midnight,

followed by Flowers around 7 LT, and Fish cold pools at 10 LT. The number of Sugar cold pools is very low throughout the

day.495
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Figure 9a suggests that the extension of the daily cycle of convection into the early afternoon due to cold pools may largely

be explained by the Fish pattern, together with a substantial contribution of the No category to the peak at 14 LT. Despite

the strong connection between the daily phasings of Figure 9a-b, especially the Fish pattern also shows a daily cycle of the

cold-pool fraction with a peak in the afternoon (Figure 9c), which is broadly in phase with the occurrence frequency. The daily

cycle in the cold-pool fraction might be due to cold pools lasting a while once they are formed, which is supported by the500

much weaker daily cycles of the cold-pool front fraction (dashed lines in Figure 9c). Once present, cold pools often trigger

new cold pools, as indicated by the 33% shorter interval between subsequent fronts during daytime compared to nighttime

(see discussion in Section 3.3). From the present analyses, it is difficult to disentangle causal relationships between the pattern

occurrence, cold pools, and the daily cycle. It is also difficult to pin down the evolution from one pattern to another, and the

role of cold pools therein. As the number of cold pools per pattern and hour is quite low (especially in the case of Flowers),505

more data is needed to draw robust conclusions on this.

The pattern-associated daily phasing of the cold-pool number might give a clue about why �T varies little on the daily

timescale (Figure 6c), although the daily cycle of most cold-pool properties would suggest that �T should be stronger at night

compared to day. The daytime Fish pattern has significantly stronger �T compared to the nighttime Gravel pattern (Figure 7e),

which might compensate for the opposite expectation due to the daily phasing of CTHmax and wminSCL.510

5 Conclusions

This paper presents a longterm climatology of trade cumulus cold pools based on more than ten years of in-situ and ground-

based remote sensing data from the Barbados Cloud Observatory (BCO; Stevens et al., 2016). Cold pools are detected by

abrupt drops in low-pass filtered temperature timeseries and their associated changes in surface meteorology, cloudiness and

sub-cloud layer dynamics are extracted. The cold-pool climatology is combined with a neural network classification of the515

four mesoscale organization patterns Sugar, Gravel, Flowers and Fish (Stevens et al., 2020) based on GOES-16 ABI infrared

images (Schulz et al., 2021). To focus on trade cumulus cold pools, most analyses are restricted to the set of 3889 cold pools

detected in the dry winter regime from December to April that have no non-recovered cold pool in the hour prior to their onset.

We find cold pools to be ubiquitous in the winter trades—they are present about 7.8% of the time and on more than 73% of

days at least one cold pool is detected. The average cold-pool passage is characterized by a 0.9 K temperature drop, a 0.2 g kg�1520

humidity increase at the onset and a�0.4 g kg�1 humidity decrease at the end of the front, wind speed increases of 1.15 m s�1,

and rain intensities of 0.9 mm h�1. The vertical velocity at the sub-cloud layer top shows a pronounced peak of 1 m s�1 near

the cold-pool onset and sub-cloud layer averaged downdrafts of �0.55 m s�1 near the end of the front. Strong signals of cold-

pool passages are also found for all cloud macrophysical properties analysed: cloud-top height increases, cloud-base height

decreases (due to the very frequent precipitation), and cloud cover increases with the cold-pool onset. Cloudiness at the gust525

front is mostly due to cloud segments near the lifting-condensation level that pertain to larger precipitating cloud entities.

Similarly, cloud segments with bases above 1 km in the cold-pool wake are mostly part of large precipitating clouds, and not

from detached stratiform layers.
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The strength of the cold-pool signature depends strongly on the intensity of the temperature drops (�T ). Cold pools with

stronger �T are associated with deeper clouds, stronger precipitation, downdrafts, and humidity drops, stronger wind gusts530

and updrafts at the edge of the front, and larger cloud cover compared to cold pools with weaker �T . Stronger cold pools also

last significantly longer and follow each other more quickly than weaker cold pools. We find that also the minimum vertical

velocity averaged over the sub-cloud layer and the maximum cloud-top height distinguish stronger and weaker cold pools very

well. Especially the downdraft strength is a very robust indicator of cold-pool strength and together with the cold-pool front

duration it explains 50% of the variability in �T .535

The cold-pool frequency and characteristics also show pronounced daily variability. There are significantly less cold pools

and a lower cold-pool frequency between 16-22 LT compared to the rest of the day. We find that cold pools extend the daily

cycle of convection into the early afternoon, with a peak in both the cold-pool number and fraction at 14 LT. Also most cold-

pool diagnostics show a pronounced daily cycle, with significantly deeper clouds, stronger mean rain rates, stronger downdrafts

and updrafts, larger cloud cover, slightly stronger humidity drops and weaker wind gusts associated with nighttime compared540

to daytime cold pools. The phase of these daily signatures is consistent with their background climatological daily cycle, but

shifted to much larger values. For the vertical velocity minima and maxima, also the amplitude of the daily cycle is much more

pronounced during cold-pool periods.

In the wet summer regime, cold-pools are about 30% more frequent relative to the average winter regime. Summer cold

pools are also associated with significantly stronger temperature and humidity drops, deeper clouds and stronger downdrafts—545

consistent with the frequent deep convection and stronger precipitation of this season (Brueck et al., 2015). On the other hand,

the summer cold pools have weaker updrafts and humidity maxima at the beginning of the front, suggesting that they might

be less effective in triggering new convection. While the temporal structure of cold-pool passages for most meteorological

variables in both seasons resemble those of previous observations of tropical deep convective cold pools (de Szoeke et al.,

2017; Chandra et al., 2018; Zuidema et al., 2017), especially the humidity structure and also the generally larger anomalies550

render the summer cold pools more similar to the deep convective cold pools from previous studies.

We also analysed if the cold-pool frequency and characteristics depend on the pattern of mesoscale cloud organization. The

most pronounced difference among the patterns lies in the occurrence frequency of cold pools, with Fish having the largest

cold-pool fraction (12.8% of time), followed by Flowers and Gravel (9.9% and 7.2%, respectively). As expected, the cold-pool

fraction of Sugar is negligible (1.6%). Fish cold pools last significantly longer than cold pools from all the other patterns,555

and they are also associated with the strongest temperature drops and downdrafts. Gravel cold pools are associated with the

strongest updrafts at the cold-pool onset and the deepest cloud-top height maxima.

Given the distinct daily cycle in the occurrence frequency of the four patterns found in Vial et al. (2021), it is not surprising

that we find strong daily variations of the number of cold pools associated with the different patterns. The maximum number

of Gravel cold pools occurs around midnight, followed by Flowers around 7 LT, and Fish cold pools around 10 LT, in line with560

the daily cycles in the occurrence frequency of the patterns. The Gravel, Flowers and Fish cold pools can thus explain a large

fraction of the daily cycle in the cold-pool occurrence, as well as their extension into the early afternoon. Note also that the

unclassified cold pools have a non-negligible contribution to the peak at 14 LT. Interestingly, the climatological differences in
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the cloud cover and cloud-top height among the different patterns are also present during cold-pool periods—the overall cloud

cover and cloud-top height for all patterns is just enhanced compared to their respective climatological values.565

This study paves the way for more in-depth analyses of the cold-pool properties and their relation to the environment in

the trades. Especially the complex humidity signals deserve a more detailed investigation, also using data from the recent

EUREC4A field campaign (Stevens et al., 2021) and from realistic large-eddy simulations. Together with the vertical velocity

statistics, the humidity anomalies can help shed light on the triggering of new convection at the cold-pool front Additional

measurements of the mixed-layer depth from radiosondes and the Raman or Doppler lidar could help refine the cold-pool end570

definition, which is only poorly constrained by the surface temperature data. Such additional data could also provide interesting

insight into the cold-pool recovery process. A systematic matching with satellite imagery would also help collocate the clouds

sampled at BCO with the broader view of the entire cold pool seen from space.

Overall, we find that the cold-pool periods are about 90% cloudier relative to the average winter trades. The larger cloudi-

ness is mostly due to larger cloud cover from precipitating and stratiform cloud segments. Also the wake of cold pools is575

characterized by above average cloudiness, indicating that the classical image of trade cumulus cold pools as mesoscale arcs

enclosing broad clear-sky areas is rather the exception than the rule. Our study suggests that a better understanding of how

trade-cumulus cold pools interact with and shape their environment is important to understand the variability in cloud cover

and cloud organization in the trade-wind regime.

Code and data availability. The BCO data used in the analysis and other supplementary information that may be useful to reproduce the580

present study are avalaible from the first author on request. The GOES-16 ABI data are publicly available online at doi.org/10.7289/V5BV7DSR.

The satellite images in Figure 2 are retrieved from the imagery of the Earth Observing System Data and Information System (EOSDIS) World-

view Snapshots application (https://wvs.earthdata.nasa.gov, last access: 21 March 2021), and from the NASA ATOMIC-EUREC4A GOES-16

ABI imagery (https://satcorps.larc.nasa.gov/cgi-bin/site/showdoc?docid=22&lkdomain=Y&domain=FEXP-ATOMIC-SATIMG, last access

21 March 2021).585

Appendix A: Cloud cover contributions from different types of cloud entities

The contributions to total cloud cover from clouds at different height levels can either be computed by classifying every radar

profile independently based on its CBH (see Figure 4d-f), or—if a cloud segmentation mask is available—by classifying the

entire cloud entities according to their cbhID (i.e. their overall lowest CBH). As both approaches can provide valuable insights,

Figure A1 also shows the temporal structure of the cold-pool signatures for the latter classification method. For this, the cloud590

cover is again split up into contributions from precipitating clouds with cbhID  300 m (CCID.prcp), LCL clouds (CCID.lcl;

300 m < cbhID  1 km), and stratiform clouds (CCID.aloft; 1 km < cbhID  4 km). The difference between CCID.prcp and

CCprcp is that edges or slanted sides of precipitating clouds that have a CBH > 300 m are counted in their entirety to the

CCID.prcp category, while they would be counted in the CClcl or CCaloft category if the cloud ID was not considered. Due to

26

https://doi.org/10.5194/acp-2021-420
Preprint. Discussion started: 1 June 2021
c� Author(s) 2021. CC BY 4.0 License.

Highlight
interesting finding

raphaelavogel
Sticky Note
Thanks!



the potential presence of cloud entities at different heights, the sum of the three height categories (CC ID.tot) can be larger than595

one.

0.
6

0.
8

1.
0

C
C

ID
.to

t [
−]

−60 −40 −20 tmax tmin 20 40 60

(a)

0.
3

0.
5

0.
7

0.
9

C
C

ID
.p

rc
p [
−]

−60 −40 −20 tmax tmin 20 40 60

(b)

0.
00

0.
10

0.
20

C
C

ID
.lc

l [−
]

−60 −40 −20 tmax tmin 20 40 60

all
25% strongest
25% weakest

(c)

0.
05

0.
15

C
C

ID
.a

lo
ft [
−]

−60 −40 −20 tmax tmin 20 40 60

(d)

Figure A1. Same as Figure 3, but for (a) CC ID.tot, (b) CC ID.prcp, (c) CC ID.lcl, (d) CC ID.aloft, for all cold pools of noprevWI and the 25%

strongest and weakest cold pools.

CCID.prcp already starts to increase before tmax and continues to increase until the middle of the front for all the cold-

pool sets shown. For the 25% strongest cold pools, the end of the front is entirely covered by precipitating clouds. CCID.lcl

in Figure A1c for all sets is relatively stable at about 17.5% before the cold-pool onset, decreases abruptly after tmax to a

minimum near tmin, and then slowly recovers back to the pre-front value. CCID.lcl shows the strongest impact when the cloud600

entities are considered through the cbhID and thus the strongest difference to the structure of CClcl (Figure 4e). The absence of

a peak in CCID.lcl near tmax indicates that the CClcl peak there is almost entirely due to edges of precipitating clouds with a

CBH > 300 m, and not due to (not-yet or) non-precipitating trade cumuli.

The temporal structure of CCID.aloft resembles the structure of CCaloft (Figure 4f), yet with substantially lower coverage

as most cloud segments with CBH > 1 km are connected to a precipitating core. This shows that nearly half of the CCaloft in605

the cold-pool wake is part of large precipitating clouds, and not from detached stratiform layers.

Appendix B: Seasonal cycle of cold-pool characteristics

While this study focuses on the cold-pool climatology of the winter regime, it is also interesting to look at the seasonal cycle

of the cold-pool characteristics at BCO. Using all cold pools of the noprev category, we find the largest median %-of-day in610

cold pool in the summer months from July-November, and another peak in January (Figure B1a). Only 13% of days have no

cold pool at all in summer, compared to 27% in winter. The same monthly variability is found for the %-of-day in front, but

with 45% lower values due to the shorter duration of the front compared to the entire cold pool (not shown).
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Figure B1. Monthly and seasonal distribution of important cold-pool diagnostics. (a) %-of-day in cold-pool, (b) �T , (c) �qmin, (d) �qmax,

(e) CTHmax, (f) MRR Rint, (g) wminSCL and (h) wmax450, and (i) CC tot. The lines represent the 25%, 50%, and the 75% quartiles of the

respective variables, the shading represents the median±1 SE, and the points show the average distribution for the five winter (w; December-

April) and summer months (s; July-November).

Figure B1b-i show the monthly distributions of various cold-pool properties, as well as averages over the five winter and

summer months, respectively. They show that the summer cold pools are on average characterized by significantly stronger615

�qmin, CTHmax and Rint, as well as slightly stronger �T and wminSCL, consistent with the relationships discussed in Sec-

tion 3. However, wmax450 is significantly lower by 0.2 m s�1 and �qmax by 0.1 g kg�1 in summer compared to winter, indicating

that cold pools in summer might be less successful in triggering new convection. Furthermore, CC tot of summer cold pools
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is also significantly smaller compared to winter cold pools by about 10%. The differences in the cold-pool characteristics be-

tween the summer and winter regime are not surprising, as the summer regime is referred to as the wet season in Barbados620

and characterized by frequent deep convection and much larger precipitation (Brueck et al., 2015). When excluding periods of

deep convection (defined by the presence of a radar signal between 4.5–8 km), the number of cold pools detected in summer

strongly decreases compared to winter, and the median summer cold pool also becomes weaker compared to the median winter

cold pool (not shown).
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Abstract. We present a climatology of trade cumulus cold pools and their associated meteorological perturbations based on

more than ten years of in-situ and remote sensing data from the Barbados Cloud Observatory. Cold pools are identified by

abrupt drops in surface temperature, and the mesoscale organization pattern is classified by a neural network algorithm based

on GOES-16 ABI infrared images. We find cold pools to be ubiquitous in the winter trades—they are present about 7.8%

of the time and occur on 73% of days. Cold pools with stronger temperature drops (�T ) are associated with deeper clouds,5

stronger precipitation, downdrafts and humidity drops, stronger wind gusts and updrafts at the onset of the front, and larger

cloud cover compared to weaker cold pools. The downdraft strength together with the cold-pool front duration explains 50%

of the variability in �T .

The mesoscale organization pattern has a strong influence on the occurrence frequency of cold pools. Fish has the largest

cold-pool fraction (12.8% of time), followed by Flowers and Gravel (9.9% and 7.2%), and lastly Sugar (1.6%). Fish cold pools10

are also significantly stronger and longer-lasting compared to the other patterns, while Gravel cold pools are associated with

significantly stronger updrafts and deeper cloud-top height maxima. The daily cycle of the occurrence frequency of Gravel,

Flowers, and Fish can explain a large fraction of the daily cycle in the cold-pool occurrence, as well as the pronounced extension

of the daily cycle of shallow convection into the early afternoon by cold pools. Overall, we find cold-pool periods to be 90%

cloudier relative to the average winter trades. Also the wake of cold pools is characterized by above-average cloudiness,15

suggesting that mesoscale arcs enclosing broad clear-sky areas are an exception. A better understanding of how cold pools

interact with and shape their environment could therefore be valuable to understand cloud cover variability in the trades.

Copyright statement. TEXT

1 Introduction

Satellite images in the trades usually show very beautiful and diverse cloud structures over the dark blue ocean. Recurrent20

features in these images are mesoscale arcs of cumuli that encircle either clear-sky areas or extensive stratiform cloud decks.
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The mesoscale arcs result from spreading cold pools that have favourable conditions at their gust front for triggering new

convection. Convective cold pools are generated by the evaporation of precipitation into unsaturated downdrafts, spreading out

at the surface as a density current. Cold pools are not only important for the triggering of new and often deeper convection

(Schlemmer and Hohenegger, 2014; Feng et al., 2015; Rowe and Houze Jr., 2015), but might also play a role in regulating25

cloud cover in this regime responsible for much of the uncertainty in climate sensitivity (Bony and Dufresne, 2005; Vial et al.,

2013). Here we use ground-based in-situ and remote sensing data from the Barbados Cloud Observatory (BCO) to study the

climatology of trade-wind cumulus cold pools and to investigate its link to the pattern of mesoscale cloud organization.

Many studies addressing oceanic cold pools have focused on deep convection (Zuidema et al., 2017). In the trades, detailed

case studies for two weeks of the Rain in Cumulus over the Ocean (RICO) campaign have advanced our understanding of cold30

pools from shallow convection (Zuidema et al., 2012). They showed that the deepest clouds and strongest radar signals occurred

in the moistest tercile of water vapour paths, and that precipitation-driven downdrafts can introduce additional gradients in the

thermodynamic structure. More recently, analyses of data from the Elucidating the Role of Clouds-Circulation Coupling in

Climate (EUREC4A) field campaign (Bony et al., 2017; Stevens et al., 2021), which took place in January and February 2020

upstream Barbados, reveal that cold pools are frequent in the winter trades and can be well-detected from soundings due35

to� their� very� shallow� mixed� layers� (Touzè-Peiffer� et� al.,� 2021).� What� is� missing� is� a� MPOH�UFSN� climatology� of� trade�
cumulus�cold� pools,� along�with� a� description� of� the� changes� in� cloud� properties� and� sub-cloud� layer� dynamics� associated�
with� the� cold-pool� passages.� Such� a� climatology� is� particularly� pertinent� given� the� need� for� a� reference� dataset� for�
comparison�against�increasingly-available�high-resolution�simulations�(Stevens�et�al.,�2019;�Rochetin�et�al.,�2021).

Renewed interest in trade cumulus cold pools is also motivated by recent advances in characterizing patterns of mesoscale40

cloud organization. Stevens et al. (2020) classified 900 satellite images in the North Atlantic trades and identified four promi-

nent patterns of mesoscale cloud organization—Sugar, Gravel, Flowers and Fish. The horizontal structure of the latter three

patterns is intrinsically linked to the occurrence of mesoscale arcs and hence cold pools. The four patterns differ not only in

their horizontal structure, but also in cloud cover, cloud depth and precipitation (Bony et al., 2020; Schulz et al., 2021; Vial

et al., 2021). These differences likely also manifest in different cold-pool characteristics. Furthermore, cold pools might play45

different roles in creating and maintaining these patterns. For the pattern Fish with its very large-scale fish-bone structures that

are tightly linked to extratropical dry intrusions (Aemisegger et al., 2021; Schulz et al., 2021), cold pools are likely to give the

cloudy part its skeletal structure, but the overall system is forced by the large-scale into its linear alignment. Contrastingly, for

the Gravel pattern, the large-scale influence may be less important and also more homogeneous, such that the cold pools likely

play an important role in creating and maintaining this pattern. Before we can understand the different roles that cold pools50

play�in�these�patterns,�we�need�to�understand�whether�and�how�cold-pool�characteristics�differ�among�them.

This�paper�presents�the�first�MPOH�UFSN�climatology�of�trade-wind�cumulus�cold�pools�and�addresses�the�following�research�
questions:

1. How frequent are cold pools in the trade cumulus regime, and with which changes in the surface meteorology, cloudiness

and vertical velocity are they associated?55
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2. How do cold-pool characteristics covary with the pattern of mesoscale organization?

We use more than ten years of surface meteorology and ground-based remote sensing data from the BCO (Stevens et al.,

2016). Clouds, their precipitation and therefore likely also cold pools at the BCO were shown to be representative across the

trades (Medeiros and Nuijens, 2016). Cold pools are identified by abrupt drops in surface temperature, and the pattern of

mesoscale organization is classified by a neural network algorithm based on infrared satellite images (Schulz et al., 2021).60

The next section presents the data sources and explains the cold-pool detection algorithm and the selection criteria. In

Section 3, we present the cold-pool climatology and analyse the temporal structure of the cold-pool passages and its associated

changes in meteorology and cloudiness. Section 4 discusses differences between the cold-pool properties of the different

mesoscale organization patterns. Conclusions are presented in Section 5.

2 Data and Methods65

2.1 BCO data

We use in-situ and ground-based remote sensing data from the BCO (Stevens et al., 2016), which is operated by the Max Planck

Institute for Meteorology together with the Caribbean Institute for Meteorology and Hydrology since April 2010. The BCO

is located atop a 17 m cliff on an eastward promontory of Barbados called Deebles Point (13.16�N, 59.43�W), and samples

nearly undisturbed Atlantic trade-wind conditions. We use surface meteorology and micro-rain radar (MRR) data from January70

2011, cloud radar data from January 2012, and Doppler lidar data from March 2016 until March 2021. All data is aggregated

into 1-min averages. The instruments used and meteorological variables derived are explained in the following. More details

about the BCO and its instrumentation can be found in Nuijens et al. (2014) and Stevens et al. (2016).

Surface meteorology

A Vaisala WXT520 sensor mounted on a 5 m mast measures temperature, relative humidity, barometric pressure, wind speed75

and wind direction. We discard temperature measurements exceeding 35�C and pressure measurements lower than 980 hPa, as

they are outside the expected range of variability at the BCO.

Micro-rain radar (MRR)

The MRR is a vertically-pointing frequency-modulated continuous-wave radar operating at 24 GHz (K band). The MRR has

a sampling frequency of 10 s (here averaged to 1 min) and a range gate of 30 m up to a height of 3 km. Rain rates lower than80

0.03 mm h�1 are below the noise level and set to zero. We derive the mean rain rate (RR) and the rain intensity (Rint; i.e. the

rain rate during periods of rain) in a given period from data at 325 m above ground (the lowest level with reliable data). The

MRR is also used to compute the rain frequency (Rfreq), which is set to 1 when a RR>0.05 mm h�1 is measured in at least

five range gates in the lowest 3 km (following Nuijens et al., 2014). A few instances with unrealistically large RR exceeding

200 mm h�1 are set to NA.85

Cloud radar
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Vertical profiles of hydrometeors (i.e. cloud and rain droplets) at approx. 30 m vertical resolution are derived from two

35.5 GHz (Ka-Band) Doppler cloud radars. Radar returns with an equivalent radar reflectivity lower than �50 dBZ are removed

to eliminate signal from sea salt aerosol (Klingebiel et al., 2019). To identify individual 2D cloud entities, a cloud segmentation

algorithm is applied (Konow, 2020). Radar reflectivity is converted to a binary mask and morphological closing is applied. The90

resulting mask is used to segment cloud entities with connected components analysis with 8-connectivity. A minimum cloud

size of four pixels is applied, everything smaller than four pixels is discarded as clutter. For the resulting cloud entities, the

overall cloud-base height (cbhID), overall cloud-top height and the cloud length (i.e. the duration times the wind extrapolated

from the surface to cloud base assuming a power law) are determined. To focus on clouds connected to the sub-cloud and

trade-wind layer, cloud entities with a cbhID>4 km are excluded.95

From the remaining clouds, we derive timeseries of the hydrometeor fraction, the lowest cloud-base height (CBH) and the

highest cloud-top height (CTH) for every radar profile. The cloud cover is further split up into contributions from precipitating

cloud segments if CBH  300 m (CCprcp), from cloudiness near the lifting-condensation level (CClcl; 300 m < CBH 
1 km), and from cloudiness aloft (CCaloft; 1 km < CBH  4 km). The latter two categories were also used in many previous

studies (e.g Nuijens et al., 2014; Vial et al., 2019). A given radar profile can only count to one of the three categories, such that100

e.g. a 2 km deep cloud with a CBH<300 m will only be counted in the CCprcp category. Note that the above classification

into the different CBH categories does not account for the information of the cloud entity and all radar profiles are classified

independently. A similar analysis accounting for the cloud entity by classifying cloud cover contributions of different cloud

types by their cbhID is shown in Appendix A.

From the cloud radar we also derive a deep-cloud mask, which is set to 1 if a radar signal between 4.5–8 km is detected.105

With this deep-cloud mask, periods of active deep convection reaching above the melting level can be omitted, while periods

with only cirrus-clouds are retained.

Doppler lidar

The vertical velocity in the sub-cloud layer is measured by two Halo Photonics Streamline Pro Doppler wind lidar systems

at 30 m vertical resolution. The Doppler lidars measure vertical velocities of up to ±20 m s�1 with a 1500 nm laser in altitudes110

from about 50 m to 1 km, depending on the atmospheric conditions and the aerosol loading. The precision is <20 cm s�1 for

a signal-to-noise ratio (SNR) of -17 dB. Measurements with a SNR smaller than -18.3 dB are discarded. Data from the first

system that was operated in vertically-pointing mode with a temporal resolution of 1.3 s is used from March 2016 to October

2019. A second system is operated in horizontally-scanning mode since February 2019 and has a temporal resolution of 3 s,

with 2 out of 7 profiles measured in vertically-pointing mode. Vertical data from this second lidar is used from November 2019115

to March 2021.

We derive both the average vertical velocity in the sub-cloud layer (SCL) as the mean over 15 range gates from 75-495 m

(wSCL), and the vertical velocity near the sub-cloud layer top at 450 m as the mean over the four range gates from 405-495 m

(w450).
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2.2 Machine learning classification of mesoscale cloud organization patterns120

The pattern of mesoscale cloud organization at BCO for the period January 2018 to March 2021 is classified by a neural

network algorithm applied to infrared satellite images from the Geostationary Operational Environmental Satellite 16 (GOES-

16). We use 30-minute brightness temperature retrievals from the 10.35µm-channel at a spatial resolution of 2 km from the

Advanced Baseline Imager (ABI) Level 1b data product (GOES-R Calibration Working Group and GOES-R Series Program,

2017), over a large domain including Barbados (45°W-66°W, 9.3°N-23.3°N).125

The neural network based on the Retinanet algorithm (Lin et al., 2017) has been initially trained on and applied to visible

images in Rasp et al. (2020), and later retrained and applied to infrared images by Schulz et al. (2021). The use of infrared

images also allows study of the diurnal cycle of the mesoscale organization (Vial et al., 2021). The classifications of the

neural network are rectangles of various sizes that belong to either the Sugar, Gravel, Flowers or Fish pattern. We select every

classified rectangle that overlaps with the BCO location. Periods without a classification are labelled as ’No’. For conditioning130

on cold pools, the 30-min data is downscaled to 1-min by using a given pattern for the 15 min before to after the classification

time. If a given pattern is present for more than 75% of the duration of a cold pool, the pattern is attributed to this cold pool.

At any given time, multiple rectangles of different sizes of the same and of different patterns can occur. Multiple rectangles

of the same pattern are combined and counted only once, while multiple rectangles of different patterns are counted sepa-

rately. This leads to timesteps being classified e.g. as both Gravel and Flowers. Excluding situations with multiple patterns135

only marginally influences the results, but reduces the sample size considerably (as previously noted in Vial et al., 2021).

Ambiguities in the classification can be physical—for example due to regime transitions or similarities between patterns—or

related to ambiguities introduced to the neural network by disagreement in the human classifications. The occurrence of mul-

tiple patterns can be reduced if a stricter threshold is used for the agreement score representing the confidence of the neural

network prediction (here set to 0.4 as in Schulz et al., 2021; Vial et al., 2021), but this again reduces the sample size.140

2.3 Cold-pool detection algorithm

We detect cold pools by identifying abrupt drops in the surface temperature timeseries following Vogel (2017). We first filter

the 1-min averaged temperature timeseries with an 11-minute running average. We then classify all temperature drops �T =

Tfil(t)�Tfil(t�1)<�0.05K (per minute) in the filtered timeseries as a cold-pool candidate (see Figure 1 for an illustration).

For every candidate cold pool, we detect the time of the cold-pool front onset (tmax), the time of the minimum temperature145

(tmin), and the end of the cold pool (tend) as follows:

1. tmax: the onset of the cold-pool front tmax is defined as the last instance of �T > 0K within 20 min before the initial

abrupt temperature drop. If the temperature is falling continuously in this period, tmax is chosen as the time of the

maximum temperature (that is, 20 min before the abrupt temperature drop). We refer to the smoothed temperature at

tmax as Tmax.150
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2. tmin: the time of the minimum filtered temperature Tmin marks the end of the cold-pool front and is identified as the

minimum of contiguous temperature minima. Subsequent candidate cold pools with �T <�0.05K occurring within

20 min of the previous minimum are combined if the temperature does not rise by more than 0.5 K above the previous

minimum in between.

3. tend: the end of a cold pool is defined either as the minimum of (a) the time when the filtered temperature first exceeds155

its minimum by �T/e, where �T = Tmax �Tmin, or (b) the onset of the next cold pool. If using condition (a) or (b)

leads to any temperature between tmin and tend to be smaller than Tmin�0.1K, then tend is defined as (c) the time when

the filtered temperature first decreases again after increasing for some time following tmin. Cold pools with tend defined

by (a) are referred to as recovered.

The period between tmax and tmin is referred to as the cold-pool front, and the period between tmin and tend as the cold-pool160

wake.
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Figure 1. Illustration of the cold-pool detection algorithm. (top) 11-min filtered Tfil (thick line) and 1-min raw surface temperature (thin

line), and (bottom) filtered temperature difference �T , along with the threshold of -0.05 K used (dashed). The detected cold-pool fronts and

wakes are indicated in dark grey (tmax to tmin) and light grey (tmin to tend), with the corresponding �T indicated at the top. The dark red

lines in the top panel show the analysis periods used for computing the diagnostics (see Section 2.5).

Our cold-pool detection algorithm is similar to the one used by de Szoeke et al. (2017), but with the important modification

that we only identify cold pools for situations with abrupt temperature drops. With our algorithm we thus both filter out tur-

bulent fluctuations and advective or diurnal patterns of temperature variability. The threshold of �T <�0.05K is subjectively

chosen based on visual impression and represents distinct variations in temperature. For an 11-min averaging window, a �T of165

�0.05K corresponds to about 2% of the data. Figure 2 shows example cold pools for all patterns and illustrates the workings

of the algorithm. In next subsection we briefly discuss the strengths and weaknesses of the algorithm based on these examples.
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Figure 2. BCO time series and satellite images for 18 h of four cold-pool days representative of the four patterns. Shown are timeseries of

filtered surface temperature and specific humidity, MRR RR, and time-height plots of Doppler lidar vertical velocity and radar reflectivity.

On the Gravel day the radar did not work prior to 12 LT and the lowest CBH from the ceilometer is shown instead. The x-axis shows local

time and the detected cold-pool fronts and wakes are indicated in grey and light grey, with �T indicated at the bottom. Visible satellite

images from 10-15�N and 60-55�W from MODIS Aqua (Sugar day) and GOES-16 ABI (other days), with the respective recording times

indicated by the orange lines in the temperature panels. The BCO is located near the easternmost tip of Barbados (outlined in yellow).
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2.4 Example cases

Timeseries of example cold-pool days along with corresponding satellite images are shown for every pattern in Figure 2. The

example cases highlight how well the detection algorithm works in these diverse situations. Abrupt strong temperature drops170

are reliably detected, successive fronts sensibly combined into one single cold pool, and even the 6 h long cold pool with frontal

character on the Fish day is correctly identified.

The example cases also indicate some challenges of the cold-pool identification. Although they look like cold pools, some

temperature drops on the Gravel and Sugar day are not identified as cold pools because they are either not abrupt enough

(�T >�0.05K) or not strong enough (�T >�0.4K). The difficulty in defining the end of the cold-pool wake is illustrated175

in the Fish case: the cold pool starting shortly before 16 LT lasts until well after 18 LT, but the temperature drop near 17 LT

causes a premature end of the cold pool, as such a temperature drop could also be caused by the daily cycle in temperature.

The cold-pool end definition could be improved by an additional rain or downdraft requirement, to more robustly distinguish

between cold-pool activity and other processes. Because most analyses and diagnostics computed in this study focus entirely

on the cold-pool front (see next section), not fully representing the wake of rare long-lasting cold pools is a minor issue and180

only influences the overall cold-pool fraction and the duration statistics.

As mentioned in Section 2.2, the organization pattern definition is not unambiguous and also among the example days shown

in Figure 2 some cold pools pertain to multiple patterns. For the Flowers case, the 2 h at the beginning and end of the period

shown are also classified respectively as Gravel and Fish. In the Sugar case, only the period between 9-16 LT is exclusively

classified as Sugar, while the periods before and after are also partly classified as Gravel. Most surprisingly, the textbook Gravel185

day is also entirely classified as Flowers, and also setting a stricter agreement score of 0.5 leaves half of the day co-classified

as Flowers. This indicates that distinguishing Gravel from Flowers can be particularly challenging (as also shown in Vial et al.,

2021). The Fish day is very confidently classified and no other pattern is detected for the entire day.

2.5 Selection criteria and diagnostics

For the subsequent analyses, we apply a number of selection criteria to make the comparison of cold pools more robust. Namely,190

we only consider cold pools with �T <�0.4K and less than two missing values in the filtered temperature timeseries during

the entire cold-pool duration (set all with 9234 cold pools). For the analyses of the cold-pool properties we further apply a

criterion of no non-recovered cold pool in the hour prior to the cold-pool onset (set noprev with 8772 cold pools), which selects

cold pools moving into an initially undisturbed atmosphere that is not modified by previous convection. For most of the analyses

we also focus on the dry winter regime from December-April (set noprevWI with 3889 cold pools), which is characterized by195

steady easterlies, subsiding large-scale motion in the free troposphere and the predominance of shallow trade-wind convection

(Brueck et al., 2015).

As shown in the brackets, all these selection criteria reduce the cold-pool sample size considerably. They represent a trade-

off between assuring a robust and unbiased sample to address our research questions, while not being unnecessarily strict and

removing too many cold pools. The selection criteria are thus somewhat subjective and also differ among studies. For example,200
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Chandra et al. (2018) used the criterion of no rain in the hour prior to the cold-pool onset to select cold pools unmodified by

previous convection, whereas we achieve the same goal with the criterion of no non-recovered cold pool in the prior hour,

which excludes about 2500 less cold pools in our case. Instead of focusing on the winter regime, we could have also set a

criterion based on the cloud-top height to focus on trade cumulus cold pools. However, as this would restrict the analysis to

periods when the radar is running, and—as we are relying on single-site measurements—the parent convection might not move205

over the BCO in its entirety, we would likely exclude too many cold pools with a CTH criterion, without even being sure

that periods of deep convection are really excluded. Despite the rather strict criteria applied here, the long timeseries leads to a

much larger number of cold pools analysed than in previous studies.

Another potential sampling issue regarding the single-site measurements is that it is not clear at which stage of its lifecycle

we sample the cold pool, and where we sample it with respect to its center. Assuming isotropic wind variations around the210

cold-pool center, which in case of little wind shear is a good approximation (Touzè-Peiffer et al., 2021), the change in wind

direction from the mean direction prior to the cold-pool onset could give a hint as to the location relative to the cold-pool center.

However, due to our large sample size potential biases are likely to be small.

If not mentioned differently, the cold-pool diagnostics are computed either as the minimum difference (�Xmin) or maximum

difference (�Xmax) of a variable X between its value at tmax and the values between tmax +1 and min(tend, tmin +20).215

Similarly, Xmean or Xmax are the mean or maximum of variable X over the same analysis period (indicated in dark red in

Figure 1). For the Doppler lidar vertical velocities, we diagnose wmaxSCL (wmax450) as the maximum wSCL (w450) in the first

half of the front (including the last 10 min before tmax), and wminSCL as the minimum wSCL in the second half of the front

(including the first 10 min after tmin). Unless otherwise stated, the surface meteorology diagnostics are computed from the

11-min filtered timeseries.220

Along with most diagnostics and composites we show the standard error (SE), which measures how well the median or mean

of a given sample can be estimated. The SE of the median is computed as IQR/
p
n, where IQR represents the inter-quartile

range and n the sample size, and the SE of the mean as �/
p
n, where � is the standard deviation. As not all instruments

were running all the time, some diagnostics are only available for a subset of the cold pools and the sample size is adjusted

accordingly when computing the SE.225

3 Cold-pool climatology

In this section we present the climatology of trade cumulus cold pools detected at BCO for the winter seasons of the years

2011-2021. The first subsection presents general statistics, followed by a discussion of the composite temporal structure of the

cold pools in Section 3.2. The daily cycle of cold-pool statistics is shown in Section 3.3. While our focus lies on the winter

regime, Appendix B also briefly discusses the seasonal cycle of the cold-pool statistics.230

9

reviewer
Cross-Out

reviewer
Inserted Text
azimuthally symmetric 

reviewer
Highlight

reviewer
Sticky Note
Systematic biases are not small, but random ones will average out well due to the sample size. It's not clear what bias you're talking about here. Wind shear in winter is fairly consistent. I imagine this might result in elongation of the cold pools in the downwind direction, and strengthening of the front where it is propagating upwind.

reviewer
Highlight
t_min? I'm not sure what you're trying to do here, so not sure if this is a mistake. Are you trying to measure the strength of the cold pool? Is max and min in ΔX_min and ΔX_max the maximum over all cold pools in the set, or over time within each cold pool?
Use max(ΔX) to differentiate e.g. t_max the time at which T = max(T). Edit this paragraph for clarity. Also, it could helps to say that this refers to statistics given in Table 1.

raphaelavogel
Sticky Note
changed

raphaelavogel
Sticky Note
True, some more detail is needed here. We made the following changes: 

Due to our large sample size, a potential random bias is likely to be small. The influence of wind shear on the propagation direction and characteristics of cold pools is an interesting topic for a future study.

raphaelavogel
Sticky Note
Yes, these diagnostics measure e.g. the strength of the cold pool humidity or temperature change. The ΔX_min are the maximum differences within each cold pool. 
These diagnostics are not only used in Table 1, but also in Figures 6, 7, and B1.

I clarified the paragraph as follows: 

If not mentioned differently, diagnostics for each cold pool are computed either as the minimum difference (∆Xmin) or maximum difference (∆Xmax) of a variable X across the cold-pool duration (e.g. ∆Xmax = max(X(tmax) − X((tmax + 1) : tend )). If the cold-pool wake lasts longer than 20 min, the diagnostics are computed only until 20 min after tmin to prevent problems in case of a poorly defined cold-pool end. Similarly, Xmean or Xmax are the mean or maximum of variable X over the same analysis period (indicated in dark red in Figure 1). For the Doppler lidar vertical velocities, we diagnose wmaxSCL (wmax450) as the maximum wSCL (w450) in the first half of the front (including the last 10 min before tmax), and wminSCL as the minimum wSCL in the second half of the front (including the first 10 min after tmin). 
Unless otherwise stated, the surface meteorology diagnostics are computed from the 11-min filtered timeseries. 




3.1 General statistics

In total we detect 3889 cold pools that meet the criteria of �T <�0.4K and less than two missing values in Tfil in the winter

seasons considered. We find that cold pools are very frequent at BCO and on 73% of days at least one cold pool is detected.

The BCO is on average affected by cold pools during 7.8% of the day (i.e. 112 min) and by a cold-pool front during 4.4%

of the day, with the medians being about one-third smaller than the means mentioned The mean cold-pool fraction of 8.6%235

for January and February 2011-2021 is also very close to the 7% found by Touzè-Peiffer et al. (2021) during the EUREC4A

campaign in January and February 2020, despite their very different method defining cold pools in atmospheric soundings

based on a mixed-layer depth criterion.

Table 1. Table showing median±IQR of various cold-pool properties for the noprevWI set of cold pools, as well as the 25% strongest

(�T <�1.39K) and weakest (�T >�0.61K) cold pools of this set. How the diagnostics are computed is explained in Section 2.5 and in

the text.

noprevWI strong weak

# 3889 972 972

�T [K] -0.89±0.78 -1.82±0.67 -0.5±0.1

�Tunfil [K] -1.2±0.8 -2.16±0.66 -0.79±0.17

�qmin [gkg�1] -0.43±0.65 -0.55±0.81 -0.36±0.54

�qmax [gkg�1] 0.2±0.41 0.29±0.51 0.12±0.3

�✓e,min [K] -2.05±2.08 -3.3±2.25 -1.35±1.35

�✓v,min [K] -0.96±0.81 -1.92±0.7 -0.55±0.14

�Umax [ms�1] 1.14±1.55 2±1.97 0.7±0.99

Rint [mmh�1] 0.9±1.76 1.45±2.42 0.41±0.95

RRmean [mmh�1] 0.05±0.38 0.39±1.06 0±0.04

CTHmax [km] 3.04±1.11 3.56±1.2 2.66±0.96

CTHmean [km] 2.32±0.88 2.74±0.81 2.03±0.89

wminSCL [ms�1] -0.55±1.56 -1.89±2.42 -0.27±0.51

wmaxSCL [ms�1] 0.91±0.62 1.1±0.7 0.78±0.54

wmax450 [ms�1] 0.98±0.81 1.27±0.99 0.79±0.66

length [km] 13.34±9.49 18.65±10.94 10.01±6.03

�tnextcp [min] 117±426 85±245 158±725

dur [min] 33±22 47±29 25±12

front dur [min] 19±12 29±19 15±4

Table 1 presents statistics of the most important cold-pool properties for the set of winter cold pools with no non-recovered

cold pool in the prior hour (noprevWI). It shows that 50% of the cold pools have a temperature drop exceeding 0.9 K across240
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the front (the unfiltered temperature drop is 0.3K stronger), a �qmax exceeding 0.2 g kg�1 and a �qmin below �0.43 g kg�1,

decreases in ✓e and ✓v exceeding �2.1K and �0.96K, respectively, and a �Umax larger than 1.14 m s�1. The median rain

intensity measured by the MRR is 0.9 mm h�1. Furthermore, 50% of the cold pools are associated with a maximum cloud-top

height exceeding 3 km, and wmaxSCL and wminSCL of 0.9 m s�1 and �0.55m s�1 near the onset and end of the front, respectively.

The average cold-pool duration is 33 min, of which a bit more than half of the time pertains to the front. Multiplying the duration245

with the surface wind speed yields a median cold-pool length larger than 13.3 km.

The IQR shows that all these medians are associated with substantial variability, especially for the humidity and rain

variables. However, focusing on the winter regime generally reduces the IQR of the diagnostics compared to all seasons (not

shown), suggesting that this criterion indeed results in a more homogeneous cold-pool sample representative of the trade-

cumulus regime. The median duration of 33 min and length of about 13.3 km of the cold pools may seem small compared to250

satellite imagery, in which mesoscale cold-pool arcs can easily span 100 km. Also the largest 2% of cold pools are hardly larger

than 40 km. The smaller cold-pool sizes found here are likely due to the algorithm sampling mostly the edge of the cold pools,

and due to the challenges of defining the cold-pool end purely based on the surface temperature timeseries (see discussion in

Section 2.4).

Table 1 also compares the median±IQR of the 25% strongest and weakest cold pools in terms of �T . The strongest cold255

pools last longer, follow each other more quickly (lower �tnextcp), and are associated with deeper clouds, more rain, stronger

downdrafts, humidity drops and wind gusts, and larger positive vertical velocities at the beginning of the front compared to

weaker cold pools. Similar but slightly smaller differences between stronger and weaker cold pools are found when comparing

cold pools associated with the 25% strongest versus weakest downdrafts or the 25% deepest versus shallowest CTHmax (not

shown). The downdraft strength wminSCL is the diagnostic that correlates best with �T (R2=0.23), and together with the front260

duration it explains a lot of the variability in �T for the noprevWI set (multiple R2=0.49). The 25 and 75% quartiles of wminSCL

also distinguish the rain diagnostics best.

That CTHmax also distinguishes the cold-pool properties very well indicates that the parent convection triggering the cold

pool is sampled well by the single-point measurements. The CTH usually scales with the precipitation amount for trade cumuli

(Byers and Hall, 1955; Kubar et al., 2009; Nuijens et al., 2009), so other factors like the environmental humidity do not seem265

to influence rain evaporation and downdraft strength much further. We also compared the properties of the 25% driest and

moistest cold pools in terms of �qmin (not shown), which does not strongly distinguish other cold-pool properties, not even

the RR that was shown to be particularly related to �qmin in the literature (Barnes and Garstang, 1982). The specific humidity

signal is generally also very variable and the response to the cold-pool onset hard to define in one diagnostic, as will be shown

next.270

3.2 Composite temporal structure

Figure 3 shows the composite mean temporal structure of the perturbations associated with the cold-pool passages. To facilitate

the comparison of different cold pools, we use a normalized time coordinate in the cold-pool front with values mapped onto
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20 points (the median front duration), similar to previous studies (Young et al., 1995; de Szoeke et al., 2017; Zuidema et al.,

2017).275
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Figure 3. Composite mean temporal structure of anomalies relative to the cold-pool onset (tmax) for the surface properties (a) temperature,

(b) specific humidity, (c) equivalent potential temperature, (d) relative humidity, and (e) wind speed, as well as absolute values of (f) the

MRR rain frequency and (g) rain rate, and (h) the vertical velocity at 450 m height. The black line shows the mean structure of all cold pools

matching the noprevWI criterion, and the red and blue lines show the mean for the 25% strongest and weakest cold pools, respectively. The

dotted lines show the mean±1 SE. Vertical and horizontal reference lines are added to indicate tmax, tmin and 0.

The temperature of the composite-mean cold pool, after increasing slightly before tmax, decreases rapidly in the front and

recovers by �T/e within 16 min after tmin. The temperature remains about 0.5 K below Tmax in the hour after the frontal

passage. The temperature drop in the front of the 25% strongest cold pools is by definition stronger, but with a mean tendency

of �0.070K min�1 also more than twice as abrupt compared to the weakest cold pools. The strongest cold pools also take

longer to recover than the weakest.280

The temporal structure of the specific humidity response is intriguing. The composite-mean humidity starts to increase

already 8 min before tmax and increases by about 0.2 g kg�1 until tmax. In the first quarter of the front, the humidity increases

by another 0.2 g kg�1, before it drops to its minimum of �0.25 g kg�1 at tmin, which is hardly lower than the pre-front value.

The humidity recovers much more quickly than the temperature and remains slightly elevated compared to its pre-front value
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in the hour after. The fast humidity recovery might be due to the trapping of surface moisture fluxes in the shallow mixed285

layer typically associated with cold pools (Touzè-Peiffer et al., 2021). Another reason might be continued evaporation of

precipitation, which would cool and moisten the air in the cold-pool wake and thus speed up the humidity recovery but slow

down the temperature recovery.

The specific humidity response of the strongest cold pools only differs significantly from the weakest cold pools at tmin,

with the humidity drop at tmin being about �0.4 g kg�1 and thus about twice stronger than the drop for the weakest cold pools.290

If the entire set of cold pools including the summer season with deeper convection is used, the strongest cold pools have a

significantly weaker positive humidity anomaly at the beginning of the front, and a significantly faster and stronger humidity

reduction at tmin compared to the weakest cold pools (see Figure B1c-d). As discussed by de Szoeke et al. (2017), the humidity

increase just before tmax might be mostly due to the increasing saturation specific humidity associated with the increasing

temperature before tmax (as seen by the relative humidity anomaly in panel d being slightly below zero), and as such likely295

also related to the way we identify Tmax.

The temporal structure of the equivalent potential temperature is similar to the humidity structure, but with a stronger drop

across the front, and a stronger difference between the weaker and stronger cold pools governed by the temperature drops. The

relative humidity signal in the front is mostly governed by the temperature decrease, with RH being 8% larger at tmin for the

strongest cold pools. The in-front wind speed increase has a maximum in the middle of the front. After the frontal passage,300

the wind speed decreases slightly below the pre-front level. The strengthening winds in the front and the slackening winds in

the wake are again significantly more pronounced for the strongest cold pools, with a maximum of 1.5 m s�1 and a minimum

smaller �0.5m s�1 in the front and wake compared to the value at tmax. Figure 3f-g show the composite mean Rfreq and RR

measured by the MRR. Both rain variables increase rapidly after the onset of the cold pool, peak towards the middle or end of

the front, and start to decrease shortly before tmin. The strongest cold pools have much larger rain rates and rain frequencies305

during the entire front compared to the weakest cold pools, and the rain frequency of the strongest cold pools also remains

strongly elevated until more than an hour after tmin.

The last panel of Figure 3 shows the Doppler lidar vertical velocity averaged over four 30 m range gates with mean height of

450 m (w450). The mean w450 peaks at the edge of the front with about 0.25 m s�1 and decreases rapidly to �0.3m s�1 near the

end of the front, reflecting updrafts triggered at the cold-pool gust front and downdrafts driven by the evaporating precipitation310

inside the front, respectively. The strongest cold pools have significantly stronger downdrafts and also updrafts compared to the

weakest cold pools (see also Table 1), the latter highlighting the potentially enhanced triggering of new convection by stronger

cold pools. For the vertical velocity averaged over the entire sub-cloud layer (wSCL), the picture is similar, but the peak wmaxSCL

is slightly smaller for the strongest cold pools and more similar compared to the weaker cold pools (Table 1).

As already shown in Table 1, Figure 3 shows that the strongest cold pools are also the driest and the rainiest, and have the315

strongest wind and vertical velocity anomalies in the front. The relationships and timings discussed are mostly the same when

considering all cold pools meeting the noprev criterion (i.e. also including summer periods), just with larger anomalies and the

differences mentioned above for the humidity structure. The mean temporal structure for all variables—except for the specific

humidity and partly for the wind speed—is also similar to previous observations of tropical deep convective cold pools during
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the DYNAMO field campaign (de Szoeke et al., 2017; Chandra et al., 2018), just with slightly smaller anomalies at BCO due to320

the shallower convection. During DYNAMO, the increases in specific humidity at the beginning of the front are hardly present

and the humidity minima near tmin are much more pronounced compared to BCO. The mean in-front wind speed increase

is about 2 m s�1 and the wind speed also remains elevated in the wake of the DYNAMO cold pools (de Szoeke et al., 2017;

Chandra et al., 2018), whereas at BCO it decreases below the value at tmax in the wake. What might strengthen cold pools in

the trades despite the shallower parent convection is the drier cloud layer and free troposphere compared to the deep convective325

regions, which facilitates evaporation of precipitation and can strengthen downdrafts (Chandra et al., 2018).

The initial increase in humidity at the edge of the front at BCO might be explained by enhanced surface fluxes due to the

strengthening winds (Langhans and Romps, 2015; Torri and Kuang, 2016), or by an accumulation of moisture from evaporation

of precipitation of the parent convection, which was pushed to the edge of the front (Tompkins, 2001). Analyses of the various

isotope measurements made during the EUREC4A field campaign (Stevens et al., 2021) might help elucidate the origin of330

these moisture rings. This could also help understand why cloud-resolving models seem to have difficulties in representing the

humidity structure in the cold-pool front correctly (Chandra et al., 2018).

The cloud radars at BCO also allow study of how the cloud properties change across the cold-pool passage (Figure 4).

The mean cloud-top height (CTH) increases rapidly by ⇠ 500m after the cold-pool onset and peaks at the end of the front.

CTH remains elevated by ⇠ 300m compared to the pre-front value in the following hour. The 25% strongest cold pools are335

associated with significantly deeper clouds throughout the entire period shown, especially so at the end of the front, when the

CTH is on average higher than 3300 m. The cloud-base height (CBH) starts to decrease already slightly before tmax and

reaches its minimum near the end of the front at ⇠ 500m. This decrease is due to the more frequent precipitation with very

low echo-base heights, and is most pronounced for the strongest cold pools.

The total hydrometeor cover (CC) increases rapidly at the beginning of the cold-pool front, remains about 25% larger340

compared to the pre-front value inside the front, and then decreases slowly in the wake. The mean CC of the 25% strongest

cold pools reaches nearly 100% at the end of the front and is significantly larger than the CC of the weakest cold pools during

the entire period shown, especially so in the wake. Figure 4d-f show that the enhanced CC of the strongest cold pools in the

prior hour is entirely due to cloud segments with CBH above 1 km (CCaloft), whereas the enhanced CC in the front and wake

of the strongest cold pools is mostly due to precipitating cloud segments with CBH below 300 m. The rapid increase in CC lcl345

up to its peak at tmax strongly contributes to the CC increase at the edge of the front. This peak is also larger for the strongest

cold pools, consistent with their larger w450 at tmax. CC lcl and CCaloft are lower at the end of the front for the strongest cold

pools, as the lowest CBH is mostly below 300 m and the cloud segments thus count to the CCprcp category (note that a given

time can only count to one of the three categories).

In Figure 4d-f the cloud cover is split into contributions from cloud segments with different CBH without accounting for350

the information of the cloud entity. Based on a similar analysis that accounts for the entity information (see Appendix A), we

find that the peak in CC lcl at tmax is mainly due to edges of precipitating clouds that have a CBH > 300 m. Assuming that

this cloud population represents the clouds evident as mesoscale arcs in satellite imagery, this suggests that the cloudiness at

the gust front is mostly characterized by well-developed precipitating clouds. The entity analysis also shows that more than
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half of the CCaloft in the cold-pool wake is part of large precipitating clouds, and not from detached stratiform layers. This is355

also suggested by the time-height plots of the composite-mean hydrometeor fraction shown in Figure 4g-i. These panels nicely

summarize what was discussed in the previous paragraphs, and again highlight the differences between the 25% strongest and

weakest cold pools in terms of the cloud response.
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Figure 4. (a-f) Same as Figure 3, but for (a) cloud-top height, (b) cloud-base height, (c) total cloud cover, and the contribution to total cloud

cover from (d) CCprcp, (e) CClcl and (f) CCaloft. Also indicated is the climatological mean value for the winter periods of 2012-2020. (g-i)

Composite mean temporal structure of vertical hydrometeor fraction (HF) profiles for all noprevWI cold pools, as well as the 25% strongest

and weakest. The thin dashed line at 600 m height marks the average cloud-base height.
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Figure 5. Temporal structure of individual cold pools ranked according to their �T . Shown are all cold pools of noprevWI that have all

instruments running. The panels show anomalies relative to the cold-pool onset (tmax) for (a) temperature, (b) specific humidity, and (c)

wind speed, as well as absolute values of (d) the MRR rain frequency, (e) the cloud-top height, and (f) the vertical velocity averaged over the

sub-cloud layer.

Figure 4a-f also indicate the respective mean CTH , CBH and CCs for all the winter months of the period 2012-2021.

They show that cold-pool periods are much cloudier than the average winter trades. Cold-pool periods also have much deeper360

clouds, which is expected as it needs deeper precipitating clouds to form cold pools. The enhanced CC in the wake of cold
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pools compared to the long-term mean is nevertheless surprising, as convection might be expected to be suppressed in the cold-

pool wake. Mesoscale arcs encircling vast decks of deeper cumuli with stratiform layers therefore seem more representative

for periods of cold-pool activity than the more classical picture of trade cumulus cold pools as mesoscale arcs enclosing broad

clear-sky areas.365

Despite the various significant differences between the strongest and weakest cold pools highlighted in the previous para-

graphs, there is a lot of variability among individual cold pools. The variability is illustrated in Figure 5, which shows the

temporal structure of the most important variables for individual cold pools ranked according to their �T . Especially the in-

dividual differences in humidity and wind in the front and the beginning of the wake can by far exceed the mean differences

among the strongest and weakest cold pools shown in Figure 3. Tendencies of more frequent (and intense) rain, deeper clouds370

and stronger downdrafts near tmin of the stronger cold pools are nevertheless clearly evident. Especially the downdraft strength

seems to be systematically increasing for stronger temperature drops. Besides showing the CTH , Figure 5e also gives an

indication of the CC, again illustrating how cloudy the cold-pool periods are.

3.3 Daily cycle

The long timeseries also allows to study the variability of the cold-pool frequency and characteristics at the daily timescale.375

Figure 6 shows the daily variability of cold-pool properties for the noprevWI set. There are clearly fewer cold pools and a

lower hourly cold-pool frequency between 16-22 LT compared to the rest of the day. Three local maxima in both the cold-pool

frequency and number are present at 03, 09 and 14 LT. Also most cold-pool diagnostics show a pronounced daily variability.

During nighttime between about midnight and 04 LT, cold pools are associated with significantly deeper clouds, stronger mean

rain rates, stronger downdrafts and updrafts, larger CC, and slightly stronger humidity drops and weaker wind gusts compared380

to daytime cold pools between about 08-16 LT. There is also a hint of slightly stronger �T during nighttime compared to

daytime, but neither in the median nor in the 25% quartiles is this daily cycle significant. It is somewhat surprising that we find

no pronounced daily cycle in �T , although the daily cycle of e.g. wminSCL and CTHmax would suggest that �T should be

stronger at nighttime compared to daytime. There is a climatological background daily cycle in temperature of about 1.2 K due

to the daytime solar heating (minimum and maximum temperatures near 5 and 12 LT, respectively), but this should not affect385

the cloudy cold-pool periods much and would at best contribute to lower �T in the morning. Other diagnostics like �qmax

and Rint do not show a pronounced daily variability (not shown).

The pronounced daily variability in the cold-pool frequency and most diagnostics is not surprising given the distinct daily

cycle in trade cumulus cloudiness discussed in detail in Vial et al. (2019) based on both high-resolution simulations and

observations. The daily cycle of trade cumuli is characterized by larger CC and deeper clouds at the end of the night and390

smaller CC and shallower clouds in the afternoon. This is evident in the background climatological daily cycles indicated in

Figure 6e-i. The daily cycles of most cold-pool diagnostics have a similar phase and also amplitude as their background daily

cycles, but are shifted to much larger values (as indicated in the respective legends). For the vertical velocity diagnostics, also

the amplitude of the daily cycle is much larger compared to the background climatology.
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Figure 6. Daily cycles of important cold-pool diagnostics. (a) mean±1 SE of hourly cold-pool frequency as well as the number of cold

pools per hour, (b) �T , (c) �qmin, (d) �Umax, (e) CTHmax, (f) MRR RRmean, (g) wminSCL and (h) wmax450, and (i) CC tot, with cold pools

associated to a specific hour according to their tmax. In panels b-i the lines represent the 25%, 50%, and the 75% quartiles of the respective

variables and the shading represents the median±1 SE. Also indicated in green is the median climatological background daily cycle of 30-min

values of (e) maximum CTH , (g) minimum wSCL, (h) maximum w450, and (i) mean CC, shifted by the mean difference of the climatological

median compared to the cold-pool median to ease reading. Due to the infrequent rain, the median climatological RRmean is always 0 and

omitted in panel f.

The peaks in the cold-pool frequency at 09 and 14 LT are shifted by a few hours compared to the peak in the surface395

precipitation between 03-06 LT (Nuijens et al., 2009; Vial et al., 2019). This suggests that cold pools help extend the daily

18



cycle of shallow convection into the early afternoon, which could be due to cold pools reinforcing each other and triggering

subsequent cold pools. This hypothesis is supported by the shorter median interval between subsequent cold pools of 121 min

between 07-14 LT compared to 182 min between 22-04 LT. Also the daily cycle of cloud cover seems to be slightly extended

into the morning, with CC tot decreasing below the daily mean about 4 h later compared to the climatological CC.400

Vial et al. (2021) also find the daily cycle of trade cumuli to be strongly linked to the daily cycle in the occurrence frequency

of the mesoscale organization patterns. Whether the cold-pool characteristics and their daily cycles are related to the pattern of

mesoscale organization will be discussed in the next section.

4 Relationship of cold-pool characteristics to mesoscale organization pattern

In this section we investigate whether the cold-pool frequency and characteristics depend on the pattern of mesoscale cloud405

organization. For this we condition the cold pools on the organization pattern present at BCO. As explained in Section 2.2, a

pattern is attributed to a cold pool if it is present during > 75% of the cold-pool duration. As multiple patterns can be present

at the same time, a cold pool can pertain to two (or rarely even three) patterns. Pattern labels are available from January 2018

to March 2021, and using the noprevWI criterion we end up with 1332 cold pools to be analysed

The four example cold-pool days in Figure 2 already shed some light on the differences in the cold-pool characteristics of410

the four patterns. The two Sugar cold pools stem from isolated precipitating deeper cumuli. The satellite image captures the

deeper cloud over BCO at the time of the first cold pool and also indicates some organization of the cumuli in lines upstream

BCO, while the canonical Sugar fields of shallow cumuli pass further North.

The textbook Gravel day is characterized by many short and often weak cold pools quickly following each other, interspersed

by stronger cold pools. The cold pools are associated with the presence of strongly precipitating deeper clouds (note that the415

radar did not work prior to 12 LT). The many cold pools present on this day clearly imprint their signature on the satellite image

in the form of mesoscale arcs.

The cold pools on the Flowers day are associated with the large cloud system whose stratiform layer reaches the BCO at

10 LT. Three cold pools are directly associated with the large system, with the first one starting at 11 LT showing a very strong

�T of �3.85K. The large system has rain rates up to 3.6 mm h�1 and is announced by a weaker cold pool associated with the420

very thin mesoscale arc visible in the satellite image, which goes along with a strong increase in humidity of 1.3 g kg�1.

The Fish day features a 6 h long cold pool associated with steady and intense rain (maximum RR of 11.6 mm h�1), continued

strong downdrafts and very large humidity throughout its entire duration. The temperature fully recovers within about 20 min

of the cold-pool end, and 3 h later two subsequent pronounced cold pools follow that are again characterized by continued

precipitation and downdrafts. The satellite image shows the fish-bone like cloud band typically associated with the Fish pattern.425

The occurrence of the Fish pattern is strongly connected to trailing cold fronts of extratropical origins (Aemisegger et al., 2021;

Schulz et al., 2021). The more front-like character of the Fish cold pools with steady showers and downdrafts is clearly evident

in the example timeseries.
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Figure 7. Distributions of various cold-pool diagnostics conditioned on the organization patterns. (a) Number of cold pools, (b) cold-pool

fraction, (c) cold-pool duration, (d) time since tmin of the last cold pool, (e) �T , (f) �qmin, (g) �qmax, (h) �Umax, (i) MRR Rint, (j)

CTHmax, (k) wmax450 and (l) wminSCL. The different symbols in panels c-l represent the 25%, 50% and 75% quartiles of the respective

variables, the solid lines represent the median±1 SE, and the dotted horizontal reference lines show the median of the entire set (’tot’).

Besides the cold pools matching the noprevWI criterion, panel (b) also shows the fraction of cold pools for all seasons (’all’), for all seasons

but without periods of deep convection (’all.nodeep’), and excluding periods with multiple organization patterns (’WI.only’ and ’all.only’).

Figure 7 shows distributions of several cold-pool properties for the different patterns, including the ’No’ category and the

union of the five categories (’tot’). The most pronounced difference among the patterns lies in the occurrence frequency of430

cold pools. Most cold pools detected at BCO pertain to the Gravel pattern (458), followed by Fish (402) and Flowers (248).

As expected, only 36 cold pools are detected during Sugar periods. Many cold pools are also associated with the No category

(341). When we look at the fraction of time a given pattern is subject to a cold pool, the picture changes and the Fish pattern is
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associated with the largest cold-pool fraction (12.8% of time), followed by Flowers and Gravel (9.9% and 724%, respectively).

Again, Sugar has clearly the lowest cold-pool fraction (1.6%).435

Figure 7b also shows the cold-pool fractions using different selection criteria, namely that only one pattern is allowed at

a time (’.only’; excluding cold pools that pertain to multiple patterns), that all noprev cold pools from all seasons are used

(rather than only from the winter months; ’all’), and that periods of deep convection in all seasons are excluded (’all.nodeep’;

i.e. no cold pools with any radar signal between 4.5–8 km). For the Gravel pattern, these different criteria hardly influence

the cold-pool fraction, whereas for Flowers and Sugar the different sets of criteria tend to change the cold-pool fraction. For440

Flowers, the cold-pool fraction in winter reduces to 8.6% if periods with multiple patterns and their cold pools are excluded.

Only 85 cold pools are left for Flowers.only, while the rest are shared with Gravel (86), Fish (80) and a few also with Sugar (7).

While excluding periods of multiple patterns more than halves the cold-pool fraction for Sugar (to 0.8%, mostly due to overlap

with the Gravel pattern), considering all seasons nearly doubles the cold-pool fraction of Sugar. Despite these differences, the

four patterns remain distinct in their cold-pool fractions independent of the criteria considered. The cold-pool fraction of the445

No category in winter is with 6.4% also substantial. The No category is particularly sensitive to the inclusion of all seasons,

and in summer with more frequent deep convection most cold pools pertain to the No category (not shown). Excluding periods

of deep clouds (’all.nodeep’) therefore mostly affects the No category, as deep convection is usually absent when patterns are

detected.

That Gravel has the largest number of cold pools but only the third largest cold-pool fraction is partly due to Gravel being the450

most frequent pattern at BCO (a total of 178 days out of the 18 winter months considered, compared to 113 Fish, 78 Flowers

and 72 Sugar days), and partly because Gravel cold pools on average last 6 min shorter than Fish cold pools (Figure 7c). With a

median duration of 37 min, Fish has the significantly longest-lasting cold pools of all patterns. Cold pools in the Fish case also

follow each other most rapidly, with a median of 124 min separating individual cold pool fronts (Figure 7d). Also for Flowers

and Gravel do cold pools follow each other quickly, whereas much more time passes between cold pools for Sugar and No. The455

same picture emerges when considering the cold-pool length (i.e. the duration multiplied by the surface wind speed): Fish cold

pools are with a median size of 13.8 km slightly larger than Gravel and Flowers cold pools (both about 12.6 km, not shown).

Figure 7e-i show the differences in the surface meteorology, rain and cloud response associated with cold pools for the

different patterns. Fish has the strongest median �T and the strongest downdrafts of all patterns, and also a stronger �Umax

compared to Gravel and Flowers. Gravel cold pools are associated with significantly larger CTHmax and stronger updrafts460

compared to the other patterns. For the humidity and rain diagnostics, the differences between Gravel, Flowers and Fish cold

pools are minor. Sugar cold pools generally have the weakest cold-pool signatures. Contrastingly, the cold pools of the No

category show no significant differences compared to Gravel, Fish and Flowers for most of the statistics.

If cold pools with multiple patterns are excluded, the strongest differences in the diagnostics occur for Flowers and Sugar,

as their sample sizes become very small. For Flowers.only cold pools, �qmax is significantly larger compared to the other465

patterns (not shown), and �T becomes comparable to the Fish and wmax450 comparable to Gravel cold pools. The Sugar.only

cold-pool sample tends to have smaller cold-pool anomalies compared to when multiple patterns are allowed (except for the

median �Umax and wmax450), but the small sample of 11 Sugar.only cold pools does not allow for robust conclusions here. We
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find similar differences in the cold-pool samples when the neural network agreement score is increased to 0.5 (instead of the

default 0.4).470
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Figure 8. Composite mean temporal structure of the four organization patterns and the No category. Shown are (a) total CC, the contribution

to total CC from (b) CClcl and (c) CCaloft, and (d) the CTH . The dotted lines show the mean±1 SE. Also indicated on the far-left of panels

a-d are the climatological mean values per pattern for the corresponding winter periods of 2018-2021. Panels e-h show the mean temporal

structure of the vertical hydrometeor fraction profiles for the four patterns. The colour scale is the same as in Figure 4.

Figure 8a-d shows the differences in the temporal structures of cloud properties for the four patterns. They show that also

during the cold-pool periods, the climatological differences in CC and CTH among the different patterns remain (see also

Schulz et al., 2021; Vial et al., 2021; Bony et al., 2020). Fish has the largest CC, closely followed by Flowers1, and then Gravel

and Sugar. The CC differences are mostly due to the differing contributions of CCaloft, whereas CClcl is fairly similar among

the patterns both for the cold-pool periods and the climatological mean (Schulz et al., 2021). Also the temporal structure of475

1Whether Fish or Flowers have the larger mean CC depends on the dataset and the period considered (Bony et al., 2020; Schulz et al., 2021; Vial et al.,

2021)
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CCprcp is similar for all patterns during the cold-pool period (not shown), and resembles the mean structure of all cold pools

shown in Figure 3d. For all patterns, the cold-pool periods are characterized by significantly deeper clouds and larger CC

compared to the pattern average.

The CC of Fish cold pools hardly changes across the cold-pool passage, whereas the onset of the cold-pool front is much

more clearly evident for the Gravel and even more for the Sugar CC. The CC in the wake of Sugar cold-pools also decreases480

most rapidly back to its pre-front value. Fish also tends to have the deepest mean CTH associated with the cold-pool periods,

closely followed by Gravel and Flowers. The mean CTH of Gravel cold pools increases more rapidly in the front compared

to Flowers and Fish, but also decreases a bit faster in the wake of the cold pools. Again, the cold-pool onset has the strongest

CTH imprint for the Sugar pattern, with a mean CTH increase exceeding 1 km between tmax and tmin.

The differences in the cloud properties of the different patterns associated with the cold-pool passages are again summarized485

in the time-height composite hydrometeor fraction plots (Figure 8e-h). They show the strongly enhanced CCaloft of Fish

and Flowers cold pools that is mostly associated with more frequent stratiform layers near 1.5-2 km. The more pronounced

influence of the cold-pool onset on the CC and CTH for Sugar and Gravel compared to Flowers and Fish, as well as the

overall higher CTH for Fish are also clearly evident.
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Figure 9. Daily cycles of (a) number of cold pools, (b) hours of data for the different organization patterns, and (c) hourly fraction in cold

pool (solid) and in cold-pool front (dashed). A 5-hourly running mean is applied to smooth the data. The daily means are indicated on the

left side of each panel.

As mentioned before, Vial et al. (2021) find the daily cycle of trade cumuli to be strongly linked to the daily cycle in the490

occurrence frequency of the mesoscale organization patterns. Figure 9a shows strong daily variations of the number of cold

pools associated with the different patterns. These variations are strongly connected to the daily cycles in the occurrence fre-

quency of the patterns (Figure 9b and Vial et al., 2021). The maximum number of Gravel cold pools occurs just after midnight,

followed by Flowers around 7 LT, and Fish cold pools at 10 LT. The number of Sugar cold pools is very low throughout the

day.495
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Figure 9a suggests that the extension of the daily cycle of convection into the early afternoon due to cold pools may largely

be explained by the Fish pattern, together with a substantial contribution of the No category to the peak at 14 LT. Despite

the strong connection between the daily phasings of Figure 9a-b, especially the Fish pattern also shows a daily cycle of the

cold-pool fraction with a peak in the afternoon (Figure 9c), which is broadly in phase with the occurrence frequency. The daily

cycle in the cold-pool fraction might be due to cold pools lasting a while once they are formed, which is supported by the500

much weaker daily cycles of the cold-pool front fraction (dashed lines in Figure 9c). Once present, cold pools often trigger

new cold pools, as indicated by the 33% shorter interval between subsequent fronts during daytime compared to nighttime

(see discussion in Section 3.3). From the present analyses, it is difficult to disentangle causal relationships between the pattern

occurrence, cold pools, and the daily cycle. It is also difficult to pin down the evolution from one pattern to another, and the

role of cold pools therein. As the number of cold pools per pattern and hour is quite low (especially in the case of Flowers),505

more data is needed to draw robust conclusions on this.

The pattern-associated daily phasing of the cold-pool number might give a clue about why �T varies little on the daily

timescale (Figure 6c), although the daily cycle of most cold-pool properties would suggest that �T should be stronger at night

compared to day. The daytime Fish pattern has significantly stronger �T compared to the nighttime Gravel pattern (Figure 7e),

which might compensate for the opposite expectation due to the daily phasing of CTHmax and wminSCL.510

5� Conclusions

This�paper�presents�a�MPOH�UFSN�climatology�of�trade�cumulus�cold�pools�based�on�more�than�ten�years�of�in-situ�and�ground-

based� remote� sensing�data� from� the�Barbados�Cloud�Observatory� (BCO;�Stevens� et� al.,�2016).�Cold�pools� are�detected�by�
abrupt�drops�in�low-pass�filtered�temperature�timeseries�and�their�associated�changes�in�surface�meteorology,�cloudiness�and

sub-cloud layer dynamics are extracted. The cold-pool climatology is combined with a neural network classification of the515

four mesoscale organization patterns Sugar, Gravel, Flowers and Fish (Stevens et al., 2020) based on GOES-16 ABI infrared

images (Schulz et al., 2021). To focus on trade cumulus cold pools, most analyses are restricted to the set of 3889 cold pools

detected in the dry winter regime from December to April that have no non-recovered cold pool in the hour prior to their onset.

We find cold pools to be ubiquitous in the winter trades—they are present about 7.8% of the time and on more than 73% of

days at least one cold pool is detected. The average cold-pool passage is characterized by a 0.9 K temperature drop, a 0.2 g kg�1520

humidity increase at the onset and a �0.4 g kg�1 humidity decrease at the end of the front, wind speed increases of 1.15 m s�1,

and rain intensities of 0.9 mm h�1. The vertical velocity at the sub-cloud layer top shows a pronounced peak of 1 m s�1 near

the cold-pool onset and sub-cloud layer averaged downdrafts of �0.55 m s�1 near the end of the front. Strong signals of cold-

pool passages are also found for all cloud macrophysical properties analysed: cloud-top height increases, cloud-base height

decreases (due to the very frequent precipitation), and cloud cover increases with the cold-pool onset. Cloudiness at the gust525

front is mostly due to cloud segments near the lifting-condensation level that pertain to larger precipitating cloud entities.

Similarly, cloud segments with bases above 1 km in the cold-pool wake are mostly part of large precipitating clouds, and not

from detached stratiform layers.
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The strength of the cold-pool signature depends strongly on the intensity of the temperature drops (�T ). Cold pools with

stronger �T are associated with deeper clouds, stronger precipitation, downdrafts, and humidity drops, stronger wind gusts530

and updrafts at the edge of the front, and larger cloud cover compared to cold pools with weaker �T . Stronger cold pools also

last significantly longer and follow each other more quickly than weaker cold pools. We find that also the minimum vertical

velocity averaged over the sub-cloud layer and the maximum cloud-top height distinguish stronger and weaker cold pools very

well. Especially the downdraft strength is a very robust indicator of cold-pool strength and together with the cold-pool front

duration it explains 50% of the variability in �T .535

The cold-pool frequency and characteristics also show pronounced daily variability. There are significantly less cold pools

and a lower cold-pool frequency between 16-22 LT compared to the rest of the day. We find that cold pools extend the daily

cycle of convection into the early afternoon, with a peak in both the cold-pool number and fraction at 14 LT. Also most cold-

pool diagnostics show a pronounced daily cycle, with significantly deeper clouds, stronger mean rain rates, stronger downdrafts

and updrafts, larger cloud cover, slightly stronger humidity drops and weaker wind gusts associated with nighttime compared540

to daytime cold pools. The phase of these daily signatures is consistent with their background climatological daily cycle, but

shifted to much larger values. For the vertical velocity minima and maxima, also the amplitude of the daily cycle is much more

pronounced during cold-pool periods.

In the wet summer regime, cold-pools are about 30% more frequent relative to the average winter regime. Summer cold

pools are also associated with significantly stronger temperature and humidity drops, deeper clouds and stronger downdrafts—545

consistent with the frequent deep convection and stronger precipitation of this season (Brueck et al., 2015). On the other hand,

the summer cold pools have weaker updrafts and humidity maxima at the beginning of the front, suggesting that they might

be less effective in triggering new convection. While the temporal structure of cold-pool passages for most meteorological

variables in both seasons resemble those of previous observations of tropical deep convective cold pools (de Szoeke et al.,

2017; Chandra et al., 2018; Zuidema et al., 2017), especially the humidity structure and also the generally larger anomalies550

render the summer cold pools more similar to the deep convective cold pools from previous studies.

We also analysed if the cold-pool frequency and characteristics depend on the pattern of mesoscale cloud organization. The

most pronounced difference among the patterns lies in the occurrence frequency of cold pools, with Fish having the largest

cold-pool fraction (12.8% of time), followed by Flowers and Gravel (9.9% and 7.2%, respectively). As expected, the cold-pool

fraction of Sugar is negligible (1.6%). Fish cold pools last significantly longer than cold pools from all the other patterns,555

and they are also associated with the strongest temperature drops and downdrafts. Gravel cold pools are associated with the

strongest updrafts at the cold-pool onset and the deepest cloud-top height maxima.

Given the distinct daily cycle in the occurrence frequency of the four patterns found in Vial et al. (2021), it is not surprising

that we find strong daily variations of the number of cold pools associated with the different patterns. The maximum number

of Gravel cold pools occurs around midnight, followed by Flowers around 7 LT, and Fish cold pools around 10 LT, in line with560

the daily cycles in the occurrence frequency of the patterns. The Gravel, Flowers and Fish cold pools can thus explain a large

fraction of the daily cycle in the cold-pool occurrence, as well as their extension into the early afternoon. Note also that the

unclassified cold pools have a non-negligible contribution to the peak at 14 LT. Interestingly, the climatological differences in
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the cloud cover and cloud-top height among the different patterns are also present during cold-pool periods—the overall cloud

cover and cloud-top height for all patterns is just enhanced compared to their respective climatological values.565

This study paves the way for more in-depth analyses of the cold-pool properties and their relation to the environment in

the trades. Especially the complex humidity signals deserve a more detailed investigation, also using data from the recent

EUREC4A field campaign (Stevens et al., 2021) and from realistic large-eddy simulations. Together with the vertical velocity

statistics, the humidity anomalies can help shed light on the triggering of new convection at the cold-pool front Additional

measurements of the mixed-layer depth from radiosondes and the Raman or Doppler lidar could help refine the cold-pool end570

definition, which is only poorly constrained by the surface temperature data. Such additional data could also provide interesting

insight into the cold-pool recovery process. A systematic matching with satellite imagery would also help collocate the clouds

sampled at BCO with the broader view of the entire cold pool seen from space.

Overall, we find that the cold-pool periods are about 90% cloudier relative to the average winter trades. The larger cloudi-

ness is mostly due to larger cloud cover from precipitating and stratiform cloud segments. Also the wake of cold pools is575

characterized by above average cloudiness, indicating that the classical image of trade cumulus cold pools as mesoscale arcs

enclosing broad clear-sky areas is rather the exception than the rule. Our study suggests that a better understanding of how

trade-cumulus cold pools interact with and shape their environment is important to understand the variability in cloud cover

and cloud organization in the trade-wind regime.

Code and data availability. The BCO data used in the analysis and other supplementary information that may be useful to reproduce the580

present study are avalaible from the first author on request. The GOES-16 ABI data are publicly available online at doi.org/10.7289/V5BV7DSR.

The satellite images in Figure 2 are retrieved from the imagery of the Earth Observing System Data and Information System (EOSDIS) World-

view Snapshots application (https://wvs.earthdata.nasa.gov, last access: 21 March 2021), and from the NASA ATOMIC-EUREC4A GOES-16

ABI imagery (https://satcorps.larc.nasa.gov/cgi-bin/site/showdoc?docid=22&lkdomain=Y&domain=FEXP-ATOMIC-SATIMG, last access

21 March 2021).585

Appendix A: Cloud cover contributions from different types of cloud entities

The contributions to total cloud cover from clouds at different height levels can either be computed by classifying every radar

profile independently based on its CBH (see Figure 4d-f), or—if a cloud segmentation mask is available—by classifying the

entire cloud entities according to their cbhID (i.e. their overall lowest CBH). As both approaches can provide valuable insights,

Figure A1 also shows the temporal structure of the cold-pool signatures for the latter classification method. For this, the cloud590

cover is again split up into contributions from precipitating clouds with cbhID  300 m (CCID.prcp), LCL clouds (CCID.lcl;

300 m < cbhID  1 km), and stratiform clouds (CCID.aloft; 1 km < cbhID  4 km). The difference between CCID.prcp and

CCprcp is that edges or slanted sides of precipitating clouds that have a CBH > 300 m are counted in their entirety to the

CCID.prcp category, while they would be counted in the CClcl or CCaloft category if the cloud ID was not considered. Due to
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the potential presence of cloud entities at different heights, the sum of the three height categories (CC ID.tot) can be larger than595

one.
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Figure A1. Same as Figure 3, but for (a) CC ID.tot, (b) CC ID.prcp, (c) CC ID.lcl, (d) CC ID.aloft, for all cold pools of noprevWI and the 25%

strongest and weakest cold pools.

CCID.prcp already starts to increase before tmax and continues to increase until the middle of the front for all the cold-

pool sets shown. For the 25% strongest cold pools, the end of the front is entirely covered by precipitating clouds. CCID.lcl

in Figure A1c for all sets is relatively stable at about 17.5% before the cold-pool onset, decreases abruptly after tmax to a

minimum near tmin, and then slowly recovers back to the pre-front value. CCID.lcl shows the strongest impact when the cloud600

entities are considered through the cbhID and thus the strongest difference to the structure of CClcl (Figure 4e). The absence of

a peak in CCID.lcl near tmax indicates that the CClcl peak there is almost entirely due to edges of precipitating clouds with a

CBH > 300 m, and not due to (not-yet or) non-precipitating trade cumuli.

The temporal structure of CCID.aloft resembles the structure of CCaloft (Figure 4f), yet with substantially lower coverage

as most cloud segments with CBH > 1 km are connected to a precipitating core. This shows that nearly half of the CCaloft in605

the cold-pool wake is part of large precipitating clouds, and not from detached stratiform layers.

Appendix B: Seasonal cycle of cold-pool characteristics

While this study focuses on the cold-pool climatology of the winter regime, it is also interesting to look at the seasonal cycle

of the cold-pool characteristics at BCO. Using all cold pools of the noprev category, we find the largest median %-of-day in610

cold pool in the summer months from July-November, and another peak in January (Figure B1a). Only 13% of days have no

cold pool at all in summer, compared to 27% in winter. The same monthly variability is found for the %-of-day in front, but

with 45% lower values due to the shorter duration of the front compared to the entire cold pool (not shown).

27



0
5

10
15

(a)

month

%
−o

f−
da

y 
in

 c
p

●

●

●

●

●

●

01 03 05 07 09 11 w s

−1
.6

−1
.4

−1
.2

−1
.0

−0
.8

−0
.6

(b)

month

Δ
T 

[K
]

●

●

●

●

● ●

01 03 05 07 09 11 w s

−1
.2

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

(c)

month

Δ
q m

in
 [g

kg
−1

]

●

●

●

●

●

●

01 03 05 07 09 11 w s

0.
0

0.
1

0.
2

0.
3

0.
4

(d)

month

Δ
q m

ax
 [g

kg
−1

]

●

●

●

●

●

●

01 03 05 07 09 11 w s

30
00

50
00

70
00

90
00

(e)

month

C
TH

m
ax

 [m
]

● ●

●

●
●

●

01 03 05 07 09 11 w s

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(f)

month

R
in

t [
m

m
h−

1 ]

●
●

●

●

●

●

01 03 05 07 09 11 w s

−2
.0

−1
.5

−1
.0

−0
.5

(g)

month

w
m

in
SC

L [
m

s−
1 ]

●

●

●

●

●
●

01 03 05 07 09 11 w s

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(h)

month

w
m

ax
45

0 [
m

s−
1 ]

●

●

●

●

● ●

01 03 05 07 09 11 w s

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(i)

month

C
C

to
t [
−]

●

●

●

●

● ●

01 03 05 07 09 11 w s

Figure B1. Monthly and seasonal distribution of important cold-pool diagnostics. (a) %-of-day in cold-pool, (b) �T , (c) �qmin, (d) �qmax,

(e) CTHmax, (f) MRR Rint, (g) wminSCL and (h) wmax450, and (i) CC tot. The lines represent the 25%, 50%, and the 75% quartiles of the

respective variables, the shading represents the median±1 SE, and the points show the average distribution for the five winter (w; December-

April) and summer months (s; July-November).

Figure B1b-i show the monthly distributions of various cold-pool properties, as well as averages over the five winter and

summer months, respectively. They show that the summer cold pools are on average characterized by significantly stronger615

�qmin, CTHmax and Rint, as well as slightly stronger �T and wminSCL, consistent with the relationships discussed in Sec-

tion 3. However, wmax450 is significantly lower by 0.2 m s�1 and �qmax by 0.1 g kg�1 in summer compared to winter, indicating

that cold pools in summer might be less successful in triggering new convection. Furthermore, CC tot of summer cold pools
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is also significantly smaller compared to winter cold pools by about 10%. The differences in the cold-pool characteristics be-

tween the summer and winter regime are not surprising, as the summer regime is referred to as the wet season in Barbados620

and characterized by frequent deep convection and much larger precipitation (Brueck et al., 2015). When excluding periods of

deep convection (defined by the presence of a radar signal between 4.5–8 km), the number of cold pools detected in summer

strongly decreases compared to winter, and the median summer cold pool also becomes weaker compared to the median winter

cold pool (not shown).
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