Supplementary material

15-year variability of desert dust optical depth on global and regional scales

Stavros-Andreas Logothetis¹, Vasileios Salamalikis¹, Antonis Gkikas² Stelios Kazadzis^{3,4}, Vassilis Amiridis² and Andreas Kazantzidis¹

¹Laboratory of Atmospheric Physics, Department of Physics, University of Patras, 26500 Patras, Greece ²Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Athens, 15236, Greece ³Physics - Meteorology Observatory Davos, Word Radiation Center, Switzerland

⁴Institute of Environmental Research and Sustainable Development, National Observatory of Athens, Greece

Correspondence to: Andreas Kazantzidis (akaza@upatras.gr)

Table S1: Seasonal trends over 12 regions of interest. Each column includes: the range of DOD trend (yr^{-1}) and the median DOD trend. Non-available values are shown in blanc cells. The domains of the regions are depicted in Fig. 3.

Region	Winter (DJF)	Spring (MAM)	Summer (JJA)	Autumn (SON)
Central Sahara Desert	-0.007-0.017, 0.004	-0.025-0.027, 0.007	-0.018-0.031, 0.007	-0.014-0.019, 0.005
Western Sahara Desert	-0.009-0.013, 0.004	-0.021-0.022, -0.006	-0.028-0.017, -0.008	-0.016-0.009, -0.004
Eastern Sahara Desert	-0.011-0.007, -0.003	-0.017-0.013, -0.004	-0.020-0.012, -0.003	-0.014-0.006, -0.003
Bodélé Depression		-0.038-0.015, -0.014	-0.025-0.014, -0.011	-0.028-0.011, -0.011
North Arabian Peninsula	-0.011-0.005, -0.003	-0.016-0.026, -0.003	-0.019-0.026, 0.005	-0.010-0.016, 0.004
South Arabian Peninsula	-0.013-0.012, 0.002	-0.019-0.026, 0.006	-0.020-0.024, 0.006	-0.016-0.013, 0.003
East Middle East	-0.011-0.007, 0.002,	-0.022-0.020, 0.004	-0.032-0.016, -0.005	-0.025-0.013, 0.002
East Tropical Atlantic	-0.010-0.022, 0.003	-0.022-0.022, -0.002	-0.029-0.019, 0.00	-0.012-0.014, -0.002
Mediterranean	-0.014-0.009, -0.001	-0.032-0.009, -0.002	-0.035-0.011, -0.002	-0.015-0.004, -0.002
Thar Desert	-0.007-0.002, -0.004	-0.024-0.004, -0.012	-0.0470.001, -0.021	-0.013-0.003, -0.005
Taklamakan Desert	-0.005-0.010, -0.003		-0.027-0.019, -0.006	
Gobi Desert	-0.010-0.006, -0.002	-0.023-0.014, -0.005	-0.011-0.005, -0.002	-0.005-0.012, 0.001

Figure S1: Same as Fig. 1 at 1° x 1° spatial resolution.

Figure S2: Histograms showing the differences between geometric-based and arithmetic-based trends for (a) AOD and (b) DOD at 0.1° x 0.1° and (c) AOD and (d) DOD at 1° x 1° over land.

Figure S3: Same as Fig. S2 over land.

Figure S4: Global distribution of total number of months at (a) 0.1° x 0.1° and (b) 1° x 1° spatial resolution.

Figure S5: Same as Fig. 1 without applying any temporal criteria (Sect 2.2).

Figure S6: Global maps of temporal trends uncertainties, at $0.1^{\circ} \times 0.1^{\circ}$ spatial resolution, using Eq. (3) for AOD (a and c) and DOD (b and d). Upper panel (a, b) shows the arithmetic-based trends while the bottom panel (c, d) indicates the geometric-based trends.

Figure S7: Same as Fig. S6 at 1° x 1° spatial resolution.

Figure S8: Global maps of $|\omega/\sigma_{\omega}|$ ratio, at 0.1° x 0.1° spatial resolution for AOD (a and c) and DOD (b and d). Upper panel (a, b) shows the arithmetic-based trends while the bottom panel (c, d) indicates the geometric-based trends.

Figure S9: Same as Fig. S8 at 1° x 1° spatial resolution.

Figure S10: Global maps of lag-1 autocorrelation coefficient, at $0.1^{\circ} \ge 0.1^{\circ}$ spatial resolution for AOD (a and c) and DOD (b and d). Upper panel (a, b) shows the arithmetic-based trends while the bottom panel (c, d) indicates the geometric-based trends.

Figure S11: Same as Fig. S10 at 1° x 1° spatial resolution.

Figure S12: Same as Fig. S5 at 1° x 1° spatial resolution.

Figure S13: Same as Fig. 2 at 1° x 1° spatial resolution.

Figure S14: Total number of months at (a) December-January-February (DJF), (b) March-April-May (MAM), (c) June-July-August (JJA) and (d) September-October-November (SOV) at 0.1° x 0.1° spatial resolution.

Figure S15: Same as Fig. 4 for AOD.