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Abstract. This study aims to investigate the global, regional and seasonal temporal dust changes as well as the effect of dust 11 

particles on total aerosol loading, using the Modis Dust AeroSol (MIDAS) fine resolution dataset. MIDAS delivers dust optical 12 

depth (DOD) at fine spatial resolution (0.1° x 0.1°) spanning from 2003 to 2017. Within this study period, the dust burden has 13 

been increased across Central Sahara (up to 0.023 yr−1) and Arabian Peninsula (up to 0.024 yr−1). Both regions observed their 14 

highest seasonal trends in summer (up to 0.031 yr−1). On the other side, declining DOD trends are encountered in Western 15 

(down to −0.015 yr−1) and Eastern (down to −0.023 yr−1) Sahara, Bodélé Depression (down to −0.021 yr−1), Thar (down to 16 

−0.017 yr−1) and Gobi (down to −0.011 yr−1) Deserts and Mediterranean Basin (down to −0.009 yr−1). At spring, the most 17 

negative seasonal trends are recorded in Bodélé Depression (down to −0.038 yr−1) and Gobi Desert (down to −0.023 yr−1) 18 

whereas in West (down to −0.028 yr−1) and East Sahara (down to −0.020 yr−1), and Thar Desert (down to −0.047 yr−1) at 19 

summer. Over western and eastern sector of Mediterranean Basin, the most negative seasonal trends are computed at summer 20 

(down to −0.010 yr−1) and spring (down to −0.006 yr−1), respectively. The effect of DOD on the total aerosol optical depth 21 

(AOD) change is determined by calculating the DOD to AOD trends ratio. Over Sahara Desert the median ratio values range 22 

from 0.83 to 0.95 whereas in other dust affected areas (Arabian Peninsula, South Mediterranean, Thar and Gobi Deserts) the 23 

ratio value is approximately 0.6. In addition, a comprehensive analysis of the factors effecting the sign, the magnitude and the 24 

statistical significance of the calculated trends is conducted. Firstly, the implications between the implementation of geometric 25 

mean instead of arithmetic mean to trend calculations are discussed revealing that the arithmetic-based trends tend to 26 

overestimate compared with the geometric-based trends both over land and ocean. Secondly, an analysis interpreting the 27 

differences in trend calculations under different spatial resolutions (fine and coarse) and time intervals is conducted. 28 

 29 
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1 Introduction 30 

Dust particles emitted from natural or anthropogenic sources are a major contributor to the atmospheric aerosol burden in 31 

terms of mass (Zender et al. 2004; Textor et al., 2006; Kok et al., 2017). Among aerosol properties, AOD describes adequately 32 

aerosols’ load, in optical terms, corresponding to the entire atmospheric column. The proportion of AOD attributed to dust 33 

particles consists the DOD. The spatiotemporal patterns of mineral particles are determined by the dust life cycle components, 34 

characterized by a pronounced heterogeneity (Mahowald et al., 2014). The main natural dust sources are located in the northern 35 

hemisphere (Goudie and Middleton., 2006), with Sahara region being the most dominant one (Prospero et al., 2002; Goudie 36 

and Middleton, 2006; Rajot et al., 2008; Alizadeh-Choobari et al., 2014a). Other active source areas of mineral particles are 37 

situated in the Middle East and the region stretching from Mesopotamia to the Oman coasts in south Arabian Peninsula 38 

(Prospero et al., 2002; Ginoux et al., 2012), in southwest Asia and Sistan Basin (Iran-Pakistan-Afghanistan) (Alizadeh-39 

Choobari et al., 2014b; Rashki et al., 2015), in Central Asia across the Karakum (Turkmenistan-Uzbekinstan) and Kyzylkum 40 

Deserts (southeast of the Aral sea in Uzbekistan) (Elguindi et al., 2016), in East Asia with Taklamakan (Tarim basin in 41 

northwest China) and Gobi (north China – south Mongolia) deserts (Ginoux et al., 2012), and in North America with Black 42 

Rock and Smoke, Great Salt Lake, and Chihuahuan and Sononan deserts (Ginoux et al., 2012). 43 

Mineral dust aerosols are uplifted, accumulated into the atmosphere, and transported over enormous distances (up to some 44 

thousands of kilometers) from their sources (Goudie and Middleton., 2006) driven by the prevailing winds. Schepanski et al. 45 

(2018) reported that the transport distance of dust particles is strongly related to their residence time, which is analogous to the 46 

dust lifetime, dust layer altitude, atmospheric circulation pattern, buoyancy and gravitational forces. van der Does et al. (2018) 47 

also denoted that strong winds, turbulence, electrostatic forces developed by dust particles’ charging, and thunderstorms or 48 

tropical cyclones may potentially enhance the residence time of dust aerosols into the atmosphere. On a seasonal basis, dust 49 

particles can be transported from north Africa towards the Atlantic Ocean reaching Caribbean, Central America, southern 50 

United States (in boreal summer) and South America (in spring and winter) (Griffin et al., 2002; Prospero and Lamb., 2003; 51 

Kalashnikova et al., 2008; Huang et al., 2010; Tsamalis et al., 2013; Prospero and Mayol-Bracero., 2013). Additionally, 52 

Saharan dust is advected towards the Mediterranean and Europe (Mona et al., 2006; 2012, Papayannis et al., 2008; Basart et 53 

al., 2009; Schepanski et al., 2018; Gkikas et al. 2015, 2016, Logothetis et al., 2020, 2021). 54 

During the last decades, numerous studies have been conducted using observations from various satellite sensors. Prospero 55 

et al. (2002) and Ginoux et al. (2012) identified the global dust sources relying on Total Ozone Mapping Spectrometer (TOMS, 56 

Torres et al., 2002) and Moderate Resolution Imaging Spectroradiometer (MODIS, Remer et al., 2008), respectively. More 57 

specifically, the studies of Prospero et al. (2002) and Ginoux et al. (2012) were based on the frequency of occurrence (FoO) 58 

of TOMS absorbing aerosol index (AAI) and MODIS-based DOD, respectively, exceeding defined thresholds. In addition, 59 

Ginoux et al. (2012) associated the dust frequency with three clusters such as hydrologic and non-hydrologic natural or 60 

anthropogenic in order to distinguish the dust origin. Similarly, at a regional scale, Schepanski et al. (2012) implemented a 61 

comprehensive analysis on the potential differences of Saharan dust active sources within the intercomparison of aerosol 62 
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properties observations derived from MODIS, Meteosat Second Generation (MSG) and Ozone Monitoring Instruments (OMI). 63 

Voss and Evan (2020) presented a global DOD climatology, both over land and ocean, using MODIS (Aqua and Terra) from 64 

2001 to 2018 and Advanced Very High Resolution Radiometer (AVHRR) over ocean from 1981 to 2018. Similarly, Clarisse 65 

et al. (2019) performed a global seasonal DOD climatology relying on Infrared Atmospheric Sounding Interferometer (IASI) 66 

retrievals, during the 2008−2017. Yu et al. (2019), derived DOD using MODIS, IASI and Multiangle Imaging 67 

Spectroradiometer (MISR) and in conjunction with dust vertical profiles from Cloud−Aerosol Lidar with Orthogonal 68 

Polarization (CALIOP) (Shikwambana and Sivakumar., 2018) investigated the dust deposition and loss frequency across the 69 

Tropical Atlantic Ocean on a seasonal basis. 70 

The investigation of dust loads’ variation at interannual time scales is quite critical for assessing the associated impacts 71 

on climate as well as the response of these tendencies to environmental factors. Since the majority of remote sensing 72 

instruments provide an AOD product, numerous studies on a global scale, are focused on the estimation of AOD temporal 73 

trends, which are not always representative of DOD, being mixed with other aerosol types (Zhang and Reid, 2010; de Meij et 74 

al., 2012; Hsu et al., 2012; Yoon et al., 2014; Pozzer et al., 2015; Alfaro-Contreras et al., 2017; Zhao et al., 2017; Che et al., 75 

2019) and regional scales (Guo et al., 2011; Li, 2014; Klingmüller et al., 2016; Floutsi et al., 2016; Dahutia et al., 2017; Hu et 76 

al., 2018; Zhang et al., 2018). Limited satellite studies are dedicated to the estimation of DOD temporal trends due to the 77 

deficiency to quantify accurately the portion of AOD attributed to DOD. Prior studies have investigated the interannual patterns 78 

of DOD over the “dusty” regions of the planet. Dust load has been increased across the Sahara Desert, based on MODIS-Aqua 79 

derived DOD dataset during 2003−2018 (Voss and Evan 2020). Notaro et al. (2015) detected a regime shift in dust activity 80 

between 1998−2005 (inactive dust period) and 2007−2013 (active dust period) across Arabian Peninsula, which is attributed 81 

to the prolonged drought along the Fertile Crescent. Through the synergy of MISR DODs and back trajectories, they revealed 82 

that the positive DOD anomalies (increased dust burden) are strongly connected with dust advection from the Fertile Crescent 83 

towards the Arabian Peninsula. These findings are consistent with the strong positive AOD (Klingmüller et al., 2016) and 84 

DOD (Voss and Evan 2020) trends reported in the area. Voss and Evan (2020), found a reduction of dust load across the 85 

Northern African coasts over the period 2001−2018, based on MODIS-Terra DOD dataset. Declining DOD trends have also 86 

been reported in Central Asia by Xi and Sokolik (2015), who analyzed MODIS and Sea-viewing Wide Field-of-view Sensor 87 

(SeaWiFs) DODs for a 15-year period (2000-2014). DOD trend sign is also abruptly changed from positive (1999-2009) to 88 

negative (2010−2016) over East Asia and North Pacific Ocean in springtime, based on Modern-Era Retrospective Analysis 89 

for Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 2017) measurements (Guo et al., 2019). Across South 90 

Asia, a negative shift in DOD interannual variation is recorded during the pre-monsoon season between 2008–2012 and 2013–91 

2017, based on CALIOP observations (Lakshmi et al., 2019). In the southern sector of the Gobi Desert, declining DOD trends 92 

are observed from MODIS and CALIOP DOD datasets during 2007−2019 (Song et al., 2021). 93 

This study's main objective is to investigate the dust temporal variations at global, regional, and seasonal scales, using the 94 

newly MIDAS DOD product from 2003–2017. A few aspects regarding the innovative points of this research are highlighted 95 

below to support the scientific contribution to the relevant research field. First, in contrast to the existing studies, this trend 96 
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analysis relies on fine spatial resolution data, making it feasible to depict in detail the spatial patterns of the DOD variations. 97 

Such information can be critical for interpreting the perturbations of the radiation fields, environmental impacts, and health 98 

effects attributed to dust particles. One more advantage of the high resolution DOD analysis is the flexibility of the final grid 99 

size selection depending on data availability, which is a critical aspect when satellite observations are used. MIDAS data can 100 

be easily upscaled at coarser spatial resolutions in order to match spaceborne observations, which have been commonly used 101 

in other trend analyses available in the literature (Hsu et al., 2012; Yoon et al., 2014; Notaro et al., 2015; Pozzer et al., 2015; 102 

Klingmüller et al., 2016; Alfaro-Contreras et al., 2017; Che et al., 2019; Guo et al., 2019; Voss and Evan 2020; Song et al., 103 

2021). In addition, fine spatial resolution data ensure a more realistic collocation with ground-based measurements for 104 

validating the obtained DOD trends. Second, quite a few studies concentrate on pure DOD (Xi and Sokolik 2015; Guo et al., 105 

2019; Lakshmi et al., 2019; Voss and Evan 2020; Song et al., 2021) rather than AOD to analyze the trends of mineral particles’ 106 

load. Even though the consideration of the latter parameter is quite reasonable across deserts, its representativeness over 107 

downwind areas is questionable due to the coexistence of other aerosol types. Such types can also affect the DOD trend 108 

uncertainty. In MIDAS, this issue is addressed by the adjustment of MODIS AOD to DOD in terms of the MERRA-2 dust 109 

fraction, while in other studies, aerosol size and natural optical properties, which their quality above land is downgraded, are 110 

used in parallel. Third, taking advantage that MIDAS provides DOD and quality assured AOD, their trends are discussed 111 

jointly for assessing the contribution of dust burden temporal variations to those of the total aerosol load. It should be mentioned 112 

that this is the first study assessing the effect of DOD to total AOD trends across the major desert dust areas of the planet, 113 

highlighting the potential role of desert dust particles in past, present, and future AOD trend studies. Fourth, the investigation 114 

of the potential impact on trends’ magnitude, sign, and statistical significance when different DOD aggregations (i.e. arithmetic 115 

mean vs. geometric mean) are considered among various spatial and temporal scales. Fifth, the DOD interannual variations 116 

are discussed for the entire study period on a seasonal basis and sub-periods for detecting alternations on DOD trends within 117 

the period of interest.  118 

The current paper is organized as follows. Sect. 2 describes the (i) MIDAS (Sect. 2.1) and (ii) AERONET (Sect. 2.2) 119 

datasets as well as the trend detection methodology (Sect. 2.3). The results section (Sect. 3) is divided into three sub-sections 120 

analyzing (i) the global AOD and DOD tendencies (3.1), along with the sensitivity analyses between arithmetic and geometric 121 

means (3.1.1), fine (0.1° x 0.1°) and coarse (1° x 1°) spatial resolutions (Sect. 3.1.2), MIDAS DOD and AEROENT retrievals 122 

(Sect. 3.1.3), and filtered and non-filtered data trend calculations (Sect. 3.1.4), (ii) global dust temporal trends on a seasonal 123 

basis (Sect. 3.2), and (iii) DOD temporal tendencies into specific regions (Sect. 3.3). Finally, a discussion focusing on the main 124 

findings of this study is presented in the summary and conclusion section (Sect. 4). The current study represents a practical 125 

implementation of the MIDAS dataset and aims to demonstrate its feasibility on the estimation of dust load variation at various 126 

temporal and spatial scales. 127 
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2 Data and Methods 128 

2.1 Modis Dust AeroSol (MIDAS) dataset 129 

MIDAS dataset (Gkikas et al., 2021a) provides columnar DOD at 550 nm, on a daily basis over the 15-year period 130 

spanning from 2003 to 2017, at a global scale and fine spatial resolution (0.1° x 0.1°). Its development has relied on the 131 

synergistic implementation of quality filtered AOD retrievals from MODIS-Aqua (Level 2; Collection 6.1) and MERRA-2 132 

dust fraction (MDF), both reported at 550 nm. More specifically, the multiplication of MODIS-Aqua AOD with MDF provides 133 

the MIDAS-DOD on MODIS native grid which is converted to an equidistant lat-lon projection. In order to justify the 134 

reliability of MDF, it has been evaluated against the corresponding portion provided by the LIVAS database (Amiridis et al., 135 

2013; 2015). Based on the aforementioned assessment analysis, it has been revealed an adequate representation of MERRA-2 136 

dust fraction, in optical terms, over the main dust sources and the outflow regions, in contrast to areas where dust presence is 137 

weak. MIDAS implements the MODIS aerosol products in which AOD is derived using the Dark Target (DT) and Deep Blue 138 

(DB) algorithms. Globally, these products have been thoroughly validated against AERONET, providing a very good 139 

agreement either over oceanic areas for DT (R=0.880; MAE=0.055; RMSE=0.083) or over land for DT (R=0.920; 140 

MAE=0.066; RMSE=0.107) and DB (R=0.904; MAE=0.062; RMSE=0.107) (Wei et al., 2019b). Therefore, the combination 141 

of highly accurate MODIS AODs (Wei et al., 2019b) and quite reliable MDF results in a trustworthy MIDAS DOD product 142 

as it has been justified via its evaluation against AERONET dust-like AOD and its intercomparison versus DOD derived by 143 

LIVAS and MERRA-2. For the former analysis, the ground-based AODs have been treated appropriately in order to resemble 144 

DOD, as much as possible, assuming that the contribution of fine mineral particles is negligible and trying to minimize the 145 

contribution of non-dust aerosol species to the columnar aerosol load. Under these assumptions, the evaluation metrics, both 146 

at global and station level, reveal a quite high level of agreement between the two datasets. At global scale, there is a high level 147 

of agreement between MIDAS and AERONET DODs as indicated by the high correlation (~0.9) and the low positive bias 148 

(0.004 or 2.7%). Across the ‘dust belt’, the correlation coefficients can reach up to 0.98 at station level whereas positive biases 149 

(mostly lower than 0.06) are found. Outside of this zone, the correlation reduces, and the biases of similar magnitude are 150 

switching to negative. Likewise, it has been evident a considerable consistency among MIDAS, LIVAS and MERRA-2 DODs 151 

at global and hemispherical scales, despite the different approaches applied for the DOD derivation, whereas the 152 

intercomparison results are regionally dependent. Summarizing, the reliability of the MIDAS DOD justified in Gkikas et al. 153 

(2021a) strengthens its applicability for investigating the temporal trends of dust aerosol burden over long-time periods and at 154 

various spatial scales.  155 

 156 

2.2 AERONET 157 

On a regional basis, the reliability of MIDAS DOD trends has been evaluated using ground-based measurements from 158 

AERONET (Holben et al., 1998). AERONET provides information for the spectral columnar AOD using direct spectral solar 159 
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irradiance. In addition, the physical and optical properties of aerosols can be derived by applying the Dubovik and King (2000) 160 

inversion algorithm. DOD ground-based measurements can be approached using AERONET retrievals, however, an aerosol 161 

classification scheme is mandatory. Through MIDAS evaluation procedure, the discrimination of dust load from non-dust 162 

aerosol species has been performed in terms of the Ångström wavelength exponent at 440-870 nm (AE440-870 nm) and the 163 

difference between single scattering albedo at 440 nm (SSA440 nm) and 675 nm (SSA675 nm). AE440-870 nm has been used as an 164 

indicator of particles size (coarse or fine aerosols) in numerous aerosol classification studies (Basart et al., 2009; Mielonen et 165 

al., 2009; Lee et al., 2010; Giles et al., 2012; Hamill et al., 2016; Zheng et al., 2017; Che et al., 2018; Logothetis et al., 2020). 166 

In addition, the aerosols origin can be acquired using either the difference between SSA at different wavelengths or specific 167 

spectral SSA thresholds. In Gkikas et al. (2021a), the pure dust conditions have been succeeded using a very restricted threshold 168 

limit of AE440-870 nm (≤ 0.75) along with a positive difference of SSA675 nm − SSA440 nm. Despite the favorable dust conditions 169 

retrieved through the SSA retrievals, the data availability strongly decreases causing difficulties in trend calculations. In the 170 

current study, the evaluation of MIDAS DOD trends is performed by using the AERONET coarse mode AOD at 500 nm, 171 

derived from the spectral deconvolution algorithm (SDA) (O'Neill et al., 2001, 2003). The performance of the SDA algorithm, 172 

in terms of segregating the fine and coarse aerosol modes, has been justified against ground-based observations (Kaku et al., 173 

2014). Only quality assured data (cloud-screened), including pre-field and post-field calibrations (Level 2.0, L2) from 174 

AERONET Version 3 (V3) (Giles et al., 2019) are used. It should be mentioned that cAOD does not represent profoundly the 175 

dust load due to the presence of sea-salt particles.  176 

  177 

2.3 Temporal trends methodology 178 

The spatiotemporal changes of dust particles’ burden, over the period 2003 – 2017, are investigated by calculating the 179 

annual trends derived by the monthly MIDAS DODs. At each grid-cell, the monthly DOD averages are calculated when the 180 

20% (≥ 6 days) of daily data are available (Hsu et al., 2012). Subsequently, at the grid points with more than 60 months 181 

available (5 out of 15 complete years) linear trends are calculated by the implementation of the following equation, 182 

𝑌𝑡 = 𝜇 + 𝑆𝑡 +𝜔𝑋𝑡 + 𝑁𝑡           (1) 183 

where Yt is the monthly averaged values, μ the offset term, St is the seasonal term (i.e. long-term monthly value), ω the linear 184 

trend and Nt the residuals. The seasonality is removed by subtracting St from Yt. The statistical significance of ω is derived 185 

according to Weatherhead et al. (1998). Nt follows a 1st-order autoregressive process (significant lag-1 autocorrelation),  186 

𝑁𝑡 = 𝜑𝑁𝑡−1 + 𝜀𝑡            (2) 187 

with εt is the white noise and φ the lag-1 autocorrelation coefficient. The standard deviation of the trend can be expressed as, 188 

𝜎𝜔 ≈
𝜎𝑁

𝑛3/2
√
1+𝜑

1−𝜑
            (3) 189 
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where σN is the standard deviation of Nt and n is the number of complete years depending on the data availability at each grid 190 

cell without always considering the entire period (i.e. a constant value of 15 years). When |ω/σω|>2, significant temporal trends 191 

are considered at a 95% confidence level. The methodology of Weatherhead et al. (1998) is commonly applied in numerous 192 

studies concerning the detection of temporal trends in AOD (Hsu et al., 2012; Babu et al., 2013; Li et al., 2014; Kumar et al., 193 

2015, 2018; Pozzer et al., 2015; Adesina et al., 2016; Alfaro-Contreras et al., 2017; Zhang et al., 2018; Ningombam et al., 194 

2019). Additionally, for comparison purposes with previous studies, AOD and DOD linear trends are calculated also at 1° 195 

spatial resolution. The re-gridding procedure from fine to coarse spatial resolution is implemented following Levy et al. (2009) 196 

(upper branch in Fig. 5 of their publication). For the calculation of regional trends (Sect. 3.3), the same approach is adopted. 197 

First, daily spatial grids of 0.1° are temporally averaged to create monthly data. Then, monthly grids with 1° spatial resolutions 198 

are generated using a weighted aggregation of monthly fine grids. The weighting factors are defined in terms of latitude. More 199 

specifically, this weighting scheme considers the fraction between the area covered by each fine grid-cell to the total available 200 

surface area within the coarse grid-cell.  201 

The appropriate selection of the statistical average metric (e.g. arithmetic or geometric mean) is reflected to the 202 

background probability distribution which the raw data are resembled. For instance, the vast majority of the studies focusing 203 

on AOD statistics have thoroughly consider that AOD follows a Gaussian distribution using the simple arithmetic mean for 204 

temporal and spatial aggregations. Nevertheless, the frequency distribution of AOD follows is more well fitted to the log-205 

normal distribution (O’ Neill et al., 2000). Sayer and Knobelspiesse (2019) designated that the calculation of the geometric 206 

instead of the arithmetic mean for obtaining temporal and spatial AOD trends may underestimate them comparing to those 207 

reported in the literature. Here, in order to investigate the potential differences on AOD and DOD temporal trends, a sensitivity 208 

analysis using both geometric and arithmetic mean is established. MIDAS dataset includes negative DOD values introduced 209 

from the applied Dark Target algorithm of MODIS AOD retrievals. Since zero or negative arguments of logarithm cannot be 210 

defined, all these values are overwritten to 0.0001 as suggested by Sayer and Knobelspiesse (2019).   211 
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3 Results 212 

This section is divided into three main parts. Sect. 3.1 describes the geographical distribution of AOD and DOD trends, 213 

at global scale, by performing simultaneously a sensitivity analysis on: (i) the aggregation metric (geometric vs. arithmetic 214 

mean), (ii) the spatial resolution (fine vs. coarse), (iii) MIDAS trends evaluation (DOD vs. cAOD trends), and (iv) the applied 215 

temporal criteria (filters vs no filters). In Sect. 3.2, focus is given on the seasonal DOD trends whereas in Sect 3.3 emphasis is 216 

given on DOD trends at 12 regions of interest. 217 

3.1 Global trends 218 

3.1.1 Geometric vs. arithmetic mean 219 

The overwhelming majority of the published AOD/DOD trend analysis studies have been relied on arithmetic mean in 220 

order to produce coarser spatial (e.g. 1° x 1°) and temporal (e.g. monthly values) resolutions. In this study, a sensitivity analysis 221 

on the aggregation method (i.e. arithmetic vs geometric mean), has been performed by utilizing the daily coarse spatial 222 

resolution (1° x 1°) MIDAS DODs. Figure 1 depicts the frequency histogram of MIDAS DODs in log scale using all the 223 

available data over the period 2003–2017. It is apparent that the shape of the DOD distribution is close to a log-normal 224 

distribution (Fig. 1). The latter considers the extreme dust episodes which force the distribution curve to be right-skewed. 225 

Arithmetic mean is about 4 times higher than the geometric mean, highlighting the importance of which metric is more 226 

representative of the population and how this can affect the results for specific applications (e.g. radiative forcing). When 227 

geometric standard deviation is considered, 65.43% of DOD values range between 0.002 and 0.027 while 81.04% encompassed 228 

within –0.033 and 0.099 for arithmetic mean, indicating an overstating of the variability (Sayer and Knobelspiesse, 2019). The 229 

averages and the standard deviations are calculated using weighted aggregation expressions with the weighting factors in terms 230 

of latitude (see Sect. 2.3). An additional point, revealing that the selection of normal statistics can lead to a misrepresentation 231 

of the population for a positive-definite quantity (i.e. dust optical depth), is that the lower bound (−0.033) is negative, which 232 

has not any physical meaning.  233 
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 234 

Figure 1. Frequency histogram of MIDAS DODs reported at 1° x 1° spatial resolution over the period 2003 – 2017. The computed 235 
geometric mean (green) and arithmetic mean (blue) are given along with ranges corresponding to geometric mean/geometric 236 
standard deviation and geometric mean*geometric standard deviation for the geometric mean and ± standard deviation for the 237 
arithmetic mean. 238 

In agreement with Sayer and Knobelspiesse (2019), the calculated trends for AOD and DOD are consistent in terms of 239 

sign between fine (Fig. 2) and coarse (Fig. 3) spatial resolution data. However, in terms of magnitude this is not the case. 240 

Figure S1, S2 depicts the frequency histograms of the deviations between the arithmetic and geometric trends. When geometric 241 

AOD/DOD averages are considered, the deseasonalized trends are suppressed by up to 91.77% with the respect to the 242 

corresponding levels obtained from the arithmetic means, regardless the underlying surface type. The only exception is found 243 

for AOD at 1° spatial resolution and across oceanic territories (Fig. S2c) where geometric trends overestimate those of 244 

arithmetic by 71.63%. 245 

 246 
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 247 

Figure 2: Global maps of temporal trends (statistically significant at 95% confidence level), at 0.1° x 0.1° spatial resolution, calculated 248 
from the deseasonalized AOD (a and c) and DOD (b and d) monthly values during 2003 – 2017. Upper panel (a, b) shows the 249 
arithmetic-based trends while the bottom panel (c, d) indicates the geometric-based trends. The pixels with: 1) non-significant trends, 250 
2) the temporal criteria are not met and 3) not available data are colored as white (blank) in each map of trend analysis. Neutral 251 
trends, ranging between −0.002 and 0.002 DOD yr−1, are colored with light yellow (or cream) (the central color of the color bar). 252 
Figs S3a, S3b and S4 present the differences between the aforementioned colors at fine, coarse spatial resolution as well as for the 253 
easonal trends, respectively. Based on those Figs, the pixels with not available data are colored with gray color while those of failing  254 
to meet the availability criteria are colored with greenish. 255 

 256 
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Figure 3: Same as Fig. 2 at 1° x 1° spatial resolution. 257 

Across the dust-affected regions of the planet, the calculated AOD and DOD trends have revealed similar pattern. Over 258 

areas where the dust contribution to the total aerosol load is negligible, DOD trends are non-significant or neutral. For instance, 259 

strong positive AOD trends are depicted across India and the Bay of Bengal (Figs. 2a and 2c), whereas the recorded annual 260 

DOD tendencies are negligible (Figs. 2b and 2d). Similar findings are evident along the eastern coasts of US and in the Gulf 261 

of Mexico. In the Mediterranean Basin, engrossing disparities are recorded between AOD and DOD trends. Negative AOD 262 

trends are shown in the entire region with decreasing DOD trends confined in the southern areas near the North Africa coast 263 

(Figs. 2b and 2d). In addition, strong positive trends for AOD and DOD are revealed in Central Sahara (up to 0.026 yr−1), 264 

across Mauritania-Algeria-Mali-Niger areas and the Arabian Peninsula. The highest positive tendencies are shown in 265 

Oman−Saudi Arabia borders (up to 0.031 yr−1). On the contrary, decreasing AOD/DOD tendencies are observed in the Eastern 266 

(down to −0.017 yr−1) and Western (down to −0.019 yr−1) Sahara, in the Bodélé Depression of the Chad Basin (northern of 267 

Lake Chad), in the Gobi Desert (Northern China−Southern Mongolia) as well as in the Thar Desert (northwestern Indian 268 

subcontinent). Among the regions where declining tendencies are evident, the most negative ones are recorded in the Bodélé 269 
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Depression (down to −0.025 yr−1) and in the Thar Desert (down to −0.029 yr−1). A comprehensive regional analysis including 270 

the intercomparison with prior findings and the potential trends justification is discussed in Sect. 3.3. 271 

 272 

3.1.2 Fine vs. coarse spatial resolution 273 

The second sensitivity analysis aims to highlight differences of AOD/DOD trends when fine and coarse spatial resolution 274 

of MIDAS data are contrasted. De Meij et al. 2012 have investigated the differences between the fine daily MODIS AOD (L2; 275 

at 0.1° x 0.1° spatial resolution) and the coarse monthly MODIS AOD (L3; at 1° x 1° spatial resolution) in trend calculations 276 

utilizing the Collection 5 (C005) retrievals. According to their study, a good agreement was found between the L2 and L3 277 

AOD trends over specific areas (i.e. Central Mediterranean, North-East America, and East Asia). At a first glance, the trend 278 

patterns reproduced by the fine (Fig. 2) and coarse (Fig. 3) MIDAS DODs are spatially consistent. Nevertheless, in terms of 279 

magnitude, the absolute values of DODs at coarser spatial resolution are lower in most of areas with evident signal (either 280 

positive or negative), such as the southern parts of the Arabian Peninsula (up to 0.014 yr−1), the Bodélé Depression (down to 281 

−0.015 yr−1) and the Thar Desert (down to −0.024 yr−1). Coarser grid-cells in contrast to the finer spatial resolution meet the 282 

data availability threshold (≥ 60 months) (Fig. S3) defined for the calculation of temporal trends because of their more 283 

extensive spatial coverage. MIDAS meets adequately the temporal criteria (Sect. 2.2) both at fine (Fig. S3a) and coarse (Fig. 284 

S3b) spatial resolutions, providing grid cells of long-term AOD/DOD time series along with significant AOD (Figs. 2a, 2c, 3a 285 

and 3c) and DOD (Figs. 2b, 2d, 3b and 3d) tendencies. Trend analysis for the coarse grids yields a superior number of 286 

significant AOD tendencies globally (Figs. 3a and 3b). For instance, new and significant declining coarser AOD trends are 287 

observed in East Asia, particularly across Southeast Asia, the Yellow Sea, the Sea of Japan, and the North Pacific Ocean. 288 

Similarly, new increasing AOD trends are reported in the Southern Arabian Sea and the North Atlantic Ocean nearby the coast 289 

of Venezuela.  290 

Voss and Evan (2020) generated two global DOD datasets using MODIS retrievals, combined with reanalysis data and 291 

AERONET inversion retrievals. They estimated the decadal DOD trends (see their Figs. 11a and 11b) based on MODIS/Terra 292 

(2001−2018) and MODIS/Aqua (2003−2018) data projected at an equal lat-lon 1° spatial resolution. In order to compare the 293 

findings in this study against Voss and Evan (2000), only arithmetic DOD trends are used at the same grid-cell spatial resolution 294 

(Fig. 3b). In addition, since MIDAS dataset relies on MODIS-Aqua retrievals (Sect. 2.1), only their DOD MODIS/Aqua dataset 295 

is used for comparison. Table 1 displays the ranges of DOD trends between the two datasets over 15 desert and downwind 296 

areas of the globe. The selection of the above regions is accomplished based on the areas in which statistically significant DOD 297 

trends are revealed in Voss and Evan (2020) study. Over the Sahara Desert, Bodélé Depression and Thar desert, identical 298 

significant trends in terms of magnitude and sign are recorded in both studies. Over Arabian Peninsula, the calculated trends 299 

here are common in terms of sign but lower in terms of magnitude. More specifically, the current study reports declining DOD 300 

trends along the Mediterranean Basin, while Voss and Evan (2020) did not find any significant trends. On the other side, they 301 

reported strong positive trends over Tropical Atlantic Ocean, sub-Sahel, Northeast Middle East and Northeast Caspian and 302 
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Aral Sea which is not the case here. Trend inconsistencies are revealed because of a) the derivation algorithm of DOD, b) the 303 

trend detection methodology, c) the different study periods, and d) the temporal filtering criteria. 304 

Table 1: Comparison of the computed DOD trends between the current study and the Voss and Evan (2020) over 15 regions of 305 
interest.  306 

 307 

3.1.3 Evaluation of MIDAS trends vs. AERONET 308 

The validity of the computed MIDAS DOD trends is thoroughly analyzed in this section. For evaluation purposes, the 309 

coarse mode AOD, hereafter referred as cAOD, retrieved through the AERONET SDA algorithm is applied. The two datasets 310 

are collocated by spatially averaging MIDAS DODs included in an area of 3x3 pixels around each AERONET site, and also 311 

temporally combined using solely the same daily values. DOD and cAOD trends are calculated using the methodology 312 

described in Sect. 2.3. Figure 4a illustrates the geographical distribution of the AERONET stations (in total 41) satisfying the 313 

defined temporal criteria (see Sect. 2.3) and finally used in the assessment analysis. According to Fig. 4b, a good linear 314 

Regions Latitude (°) Longitude (°) Current study 

(DOD yr−1) 

Voss and Evan (2020) 

(DOD yr−1) 

Desert areas     

West Sahara 21 – 26 N 12 – 16 W –0.010 - – 0.002 –0.010 - –0.002 

Central Sahara 15 – 30 N 10 W – 15 E 0.002 - 0.010 0.002 - 0.010 

East Sahara 18 – 30 N 15 – 30 E –0.006 - – 0.002 –0.006 - – 0.002 

Bodélé Depression 13 – 16 N 12 – 18 E –0.018 - – 0.002 –0.018 - – 0.002 

Middle East 10 – 35 N 35 – 50 E 0.002 - 0.018 0.002 - 0.021 

Thar Desert 24 – 30 N 68 – 76 E –0.018 - – 0.002 –0.021 - – 0.002 

Gobi Desert 37 – 45 N 90 – 110 E –0.006 - – 0.002 –0.010 - – 0.002 

Downwind areas     

Sub-Sahel 0 – 13 N 60 W – 20 E Non-significant 0.002-0.018 

Mediterranean Basin 30 – 45 N 10 W – 30 E –0.006 - – 0.002 –0.002 - 0.002 

Region surround Caspian Sea 35 – 60 N 45 – 60 E Non-significant 0.002 - 0.021 

Tropical Atlantic Ocean 0 – 15 N 20 – 60 W Non-significant 0.002 - 0.006 

South Atlantic Ocean 30 S – 0 13 W – 13 E Non-significant –0.006 - 0.006 

North Pacific Ocean 40 – 60 N 140 E – 120 W Non-significant –0.010 - – 0.010 

North Pacific and North America 15 – 40 N 140 E – 75 W –0.002 - 0.002 –0.002 - 0.002 

South Pacific Ocean 45 – 15 N 160 E – 80 W –0.002 - 0.002 –0.002 - 0.002 
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correlation (R = 0.86) of the derived trends is observed accompanied with low bias (MBE = −0.04x10−2). In order quantify the 315 

performance of MIDAS in capturing the cAOD trends, the total accuracy (TA) of the correct trends (identical sign) is 316 

calculated. More specifically, TA is defined as the percentage of the stations with correct trends sign (the sum of B1 and A2 317 

quadrants numbers in Fig. 4c divided by the total number of stations). MIDAS trends can capture the correct cAOD trends 318 

signs with a TA of 80.5% (Fig. 4c). In addition, the percentages of each quadrant in Fig. 4c shows the number of the correctly 319 

detected stations per sign. The overwhelming majority of the AERONET stations encompassed negative trends (30 out of 41 320 

stations). MIDAS trends capture the 26 out of those 30 (86.7%) stations denoted with negative cAOD trends. Lastly, there are 321 

only 11 sites with positive cAOD trends, and MIDAS proved able to detect them at 7 out of 11 (63.6%) stations.  322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

Figure 4: (a) Geographical location of the available AERONET stations in which the temporal trends of DOD and cAOD are 346 
calculated. Green and red dots refer the stations with the similar and different trend sign, respectively. (b) Scatter plot between 347 
MIDAS DOD and AERONET cAOD trends. The color bar indicates the total number of months. (c) Confusion matrix of possible 348 
trend signs among the two datasets. 349 
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Table S1 provides the point-to-point trend results for each collocated MIDAS-AERONET sites. It should be mentioned 350 

that among the revealed stations, few indicate dust particles as the predominant aerosol type. Based on Logothetis et al. (2020), 351 

the station of Solar Village, Arabian Peninsula, is primarily a “dusty” site revealing significantly high percentages of coarse 352 

absorbing particles. Across this station, the trends between AERONET cAOD (0.0126 yr−1) and MIDAS DOD (0.0107 yr−1) 353 

are in good agreement in terms of magnitude, but both are non-significant at the 95% confidence level. Similar findings are 354 

also observed in the “dusty” site of Tamanrasset, Algeria, showing increasing cAOD and DOD trends of 0.0062 yr−1 and 355 

0.0044 yr−1, respectively. One of the advantages of MIDAS is that it provides the dust aerosols burden information in 356 

downwind regions of the planet. For instance, most of the stations located in South Europe receive dust particles transported 357 

towards the Mediterranean from Sahara and Middle East deserts, encompassing identical trend signs (Fig. 4a). Moreover, there 358 

are many downwind regions across different regions of the globe with similar trends magnitude such as Ispra, Italy (cAOD= 359 

−0.0013 yr−1, DOD= −0.0015 yr−1), Kanpur, India (cAOD= −0.0027 yr−1, DOD= −0.0029 yr−1), SERC (cAOD= −0.0023 yr−1, 360 

DOD= −0.0020 yr−1) in US, Shirahama, Japan (cAOD= −0.0020 yr−1, DOD= −0.0012 yr−1), and XiangHe, China (cAOD= 361 

−0.0028 yr−1, DOD= −0.0018 yr−1). 362 

 363 

3.1.4 Filtering vs. non-filtering trends 364 

The third sensitivity analysis of this section concerns the calculation of temporal trends using filtered (Fig. 2) and non-365 

filtered (Fig. 5) data at fine spatial resolution. Here, the AOD/DOD trends are calculated by applying two consecutive temporal 366 

filters (Sect. 2.3). More specifically, the two applied temporal filters include the: 1) the calculation of the monthly averages 367 

when at least 6 days are available and 2) the trend calculation only in grid cells with higher than 60 available months (5 years). 368 

The total number of grid points for trend calculation increases when the above two temporal filters are not applied. Overall, 369 

months with more than one daily measurement are retained for trend analysis, increasing the total data availability of the entire 370 

global grid from 36% (filtered) to 83% (non-filtered).  371 
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 372 

Figure 5: Global maps of unfiltered temporal trends (statistically significant at 95% confidence level), at 0.1° x 0.1° spatial resolution, 373 

calculated from the deseasonalized geometric (a) AOD and (b) DOD monthly values during 2003 – 2017. 374 

According to Eq. (3), σω (Fig. S5) and the statistical significance (Fig. S6) of the trend are controlled by σN, φ (Fig. S7) 375 

and n (Fig S3). The differences in data availability between the unfiltered and filtered trend analysis are depicted in Fig. S8. 376 

Across the desert areas, the number of filtered months is adequately high and very close to the non-filtered case (Fig. S8). 377 

Thus, no trend differences in magnitude and sign are recorded. Over maritime and continental dust affected areas, new 378 

statistically significant AOD and DOD trends are represented when the unfiltered data are employed. Firstly, the number of 379 

pixels with statistically significant DOD trends has been significantly increased (Fig. 5b) but the majority of the new trends 380 

are mainly neutral located over oceanic territories (yellow pixels). New positive DOD tendencies are observed over Tropical 381 

Atlantic and India while new negative trends are recorded across Southeast China (Fig. 5b). Secondly, the significant AOD 382 

trends grid points are also strongly increased. New decreasing AOD trends are observed over USA, China and Philippine Sea 383 

(Fig. 5a). Especially across the region of southeastern China, the number of significant AOD trends has been increased 384 

profoundly. In addition, new AOD increasing trends are recorded over Tropical Atlantic, North Pacific (West of Mexico), 385 

Arabian Sea and the oceanic area between 30.0oS and 60.0oS. Despite the increase in monthly data availability, trend analysis 386 

without temporal filtering may lead to erroneous and not representative results either for AOD or DOD. In order to investigate 387 

in detail the last statement, a sensitivity analysis is performed using in total 76 AERONET stations (Fig. S9a). Through the 388 

evaluation analysis of MIDAS DOD trends (Sect. 3.1.3), the AERONET stations have been selected based on their data 389 

availability. More specifically, only the stations with at least 10 years of data have been retained for further analysis. Tahe 390 

total number of sites has been decreased from 76 (here) to 41 due to temporal filtering (see Sect. 3.1.3). Based on Fig. S9b, the 391 

unfiltered temporal trends between MIDAS and AERONET documented a profoundly lower linear correlation (R=0.51) while 392 
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the data points are more sparse. When trends are calculated without any temporal filtering, the total accuracy of the correct 393 

trends has been decreased from 80.5% (Fig. 4c) to 73.7% (Fig. S9c). 394 

In the following sections, and considering all three implemented sensitivity analysis, only the geometric-based DOD and 395 

AOD trends (Sect. 3.1.1) at fine spatial resolution (Sect. 3.1.2) including the temporal filtering (Sect. 3.1.4) are discussed. 396 

 397 

3.2 Seasonal trends 398 

Dust aerosols’ burden is subjected to strong intra-annual and interannual variations with different cycles depending on the 399 

source or downwind region (Gkikas et al., 2021b). Here, the seasonal DOD tendencies at a global scale (Fig. 6) are calculated 400 

based on the methodology proposed by Hsu et al. (2012). The corresponding seasonal AOD trends are depicted in Fig. S10. 401 

 402 

Figure 6: Seasonal geographical distributions of DOD temporal trends at (a) December-January-February (DJF), (b) March-April-403 
May (MAM), (c) June-July-August (JJA) and (d) September-October-November (SON). 404 
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The detection of the statistical significance of the calculated trends based on Weatherhead et al. (1998) cannot be applied 405 

here due to the 9-month gap among the seasons. Therefore, an alternative approach is followed by calculating the seasonal 406 

trends using a simple linear regression model on the DOD anomalies and identifying the statistically significant trends based 407 

on the two-sided Student’s t-test. The null hypothesis of the t-test assumes a non-significant temporal trend under a defined 408 

confidence level (here is 95%). The total number of months for each season is displayed in Fig. S4. Only the grid points with 409 

more than 13 available months (13 from 45 total months) are retained. The performed analysis at global scale and on a seasonal 410 

basis highlights many regions with significant DOD trends (Figs. 2 and 6) which are used to define regional domains (Fig. 7). 411 

 412 

Figure 7: Regions of interest for seasonal and regional analysis: North Arabian Peninsula (NAP), South Arabian Peninsula (SAP), 413 
Central Sahara (CSA), Gobi Desert (GOB), West Sahara (WSA), Mediterranean (MED), East Sahara (ESA), Bodélé Depression 414 
(BOD), Thar Desert (THA), East Tropical Atlantic (ETA), Eastern Middle East (EME) and Taklamakan Desert (TAK). Solid 415 
rectangles indicate the regions which are included in the regional analysis (Sect. 3.3) while solid and dashed rectangles are for the 416 
seasonal analysis. 417 

The Sahara Desert, hosting some of the most active aeolian natural dust sources of the planet, is a region of great interest 418 

for investigating the intra-seasonal DOD variations. In its central sector, increasing trends are recorded throughout the year 419 

(maximum positive value in JJA) (Table 2). On the contrary, negative seasonal DOD trends appear in the majority regions 420 

across North Africa (Fig. 6). The western and eastern parts of the Sahara Desert present strong declining trends maximized 421 

during boreal summer (Table 2). From spring to autumn, in the Bodélé Depression, substantial decreasing trends are recorded 422 

(Table 2). Over the period 2001−2012, dust emissions in the broader area of the Bodélé Depression were decreased in 423 

summertime, which was attributed to the increased rainfall, caused by the positive trends of the Sahara heat lows (SHL), the 424 

warm phase of Atlantic Multi-decadal Oscillation (AMO) and the decreasing trends in terms of occurrence and intensity of 425 
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nocturnal low-level jets’ (NLLJ) (Shi et al., 2021). Surface wind speed also affects dust emissions across North Africa (Evan 426 

et al., 2016). Surface wind speed and NLLJ are the principal drivers for the interannual variation of dust emissions across 427 

Western Sahara, while in summertime dust emissions decreased during 2001−2012 (Shi et al., 2021). The eastern sector of 428 

North Africa (North Libya and Egypt) presents moderate negative trends maximized in winter (down to −0.014 yr−1) and spring 429 

(down to −0.011 yr−1). In the western sector (i.e. north Algeria and Tunisia) strong significant declining trends are observed in 430 

summer (down to −0.035 yr−1) (Fig. 6c). The dust sources residing near the North African coasts are strongly influenced by 431 

the surface wind speed, NLLJ, Harmattan surge and the tracks of the Mediterranean depressions (Shi et al., 2021).  432 

Table 2: Seasonal trends over 12 regions of interest. Each column includes: the range of DOD trend (yr−1) and the median DOD 433 
trend. Non-available values are shown in blank cells. The domains of the regions are depicted in Fig. 7. 434 

 435 

 Numerous studies have notified the Saharan transatlantic transport (Peyridieu et al., 2013; Alizadeh-Choobari et al., 436 

2014c; Prospero et al., 2014; Gläser et al., 2015; Fréville et al., 2020; Gkikas et al., 2021b). Across the Gulf of Guinea and 437 

mid-Atlantic, relatively high DODs are documented in boreal winter, ranging from 0.1 to 0.2 (up to 0.6) (Gkikas et al., 2021b). 438 

According to Fig. 6a, strong positive DOD trends are shown over Gulf of Guinea (up to 0.047 yr−1). In this season, strong 439 

northeasterly winds (Harmattan) transport intense loads of Saharan dust towards Nigeria and the Gulf of Guinea (Washington 440 

et al., 2006). However, the trend magnitude along the Gulf of Guinea as well as in the northern regions (from Ghana to 441 

Cameroon) seems to be unreliable due to the reduced performance of MDF, surface contamination in the received radiances 442 

by MODIS and to the co-existence of aerosols and clouds (Gkikas et al., 2021b). In order to investigate the reliability of 443 

MIDAS DOD in the above region, the seasonal trend analysis is implemented at the AERONET station of llorin, Nigeria. It 444 

worths mentioning that this station has not been included in evaluation analysis of Sect. 3.1.3, due to the low number of months 445 

(N=48<60). However, 32 out of 48 months lie in boreal winter, enabling the application of the methodology during this season. 446 

Both datasets represented increasing and statistically significant cAOD (0.011 yr−1, |ω/σω|=2.43) and DOD trends (0.021 yr−1, 447 

Region Winter (DJF) Spring (MAM) Summer (JJA) Autumn (SON) 

Central Sahara Desert −0.007-0.017,   0.004 −0.025-0.027,   0.007 −0.018-0.031,   0.007 −0.014-0.019,   0.005 

Western Sahara Desert −0.009-0.013,   0.004 −0.021-0.022, −0.006 −0.028-0.017, −0.008 −0.016-0.009, −0.004 

Eastern Sahara Desert −0.011-0.007, −0.003 −0.017-0.013, −0.004 −0.020-0.012, −0.003 −0.014-0.006, −0.003 

Bodélé Depression  −0.038-0.015, −0.014 −0.025-0.014, −0.011 −0.028-0.011, −0.011 

North Arabian Peninsula −0.011-0.005, −0.003 −0.016-0.026, −0.003 −0.019-0.026,   0.005 −0.010-0.016,   0.004 

South Arabian Peninsula −0.013-0.012,   0.002 −0.019-0.026,   0.006 −0.020-0.024,   0.006 −0.016-0.013,   0.003 

East Middle East −0.011-0.007,   0.002, −0.022-0.020,   0.004 −0.032-0.016, −0.005 −0.025-0.013,   0.002 

East Tropical Atlantic −0.010-0.022,   0.003 −0.022-0.022, −0.002 −0.029-0.019,   0.00 −0.012-0.014, −0.002 

Mediterranean −0.014-0.009,  −0.001 −0.032-0.009, −0.002 −0.035-0.011,  −0.002 −0.015-0.004, −0.002 

Thar Desert −0.007-0.002, −0.004 −0.024-0.004, −0.012 −0.047-−0.001, −0.021 −0.013-0.003, −0.005 

Taklamakan Desert −0.005-0.010, −0.003  −0.027-0.019, −0.006  

Gobi Desert −0.010-0.006, −0.002 −0.023-0.014, −0.005 −0.011-0.005, −0.002 −0.005-0.012,   0.001 
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|ω/σω|=3.74). As expected, MIDAS revealed higher in magnitude trends than cAOD (approximately 2 times higher). In the 448 

case of AOD (Fig. S10a), identical positive trends as DOD are shown in winter. Interestingly, substantial negative DOD trends 449 

(down to −0.045 yr−1) are recorded during springtime in an area among Guinea, Sierra Leone and North Atlantic Ocean (Fig. 450 

6b), while positive tendencies are documented over Tropical Atlantic Ocean in DJF (Table 2). Over the region extended from 451 

the North Atlantic Ocean to the Eastern Caribbean Sea (Lat: 10.0 oN−18.0oN; Lon: 70.0 oW−45.0 oW), moderate positive trends 452 

are documented predominantly in MAM (up to 0.010 yr−1) and JJA (up to 0.008 yr−1). Dust transport from North Africa along 453 

the Atlantic Ocean reaches the Caribbean Sea, while summer DODs are intertwined with tropical Atlantic cyclone activity. 454 

More specifically, Caribbean DOD during summer is negatively correlated to Atlantic accumulated cyclone energy and 455 

Atlantic Meridional Mode index (Xian et al., 2020). In addition, dust aerosol burden originated form Sahara Desert is directly 456 

related to tropical cyclones (TCS) over Tropical Atlantic Ocean, but their relationship is not unambiguously clarified (Evan et 457 

al., 2006). Based on model simulations, Pan et al. (2018) investigated the role of dust aerosols for the genesis of TCs over 458 

tropical Atlantic basin, by comparison of dust and non-dust model simulations. They revealed that dust amount is directly 459 

related to TCs, revealing a bimodal pattern. More specifically, favorable conditions for TCs formation are documented by 460 

increasing the midlevel moisture and decreasing the vertical wind shear while unfavorable conditions are encompassed by 461 

decreasing the low-level vorticity and potential intensity. 462 

Increasing tendencies, throughout the year, appear in the Middle East (Table 2), with few exceptions, particularly in the 463 

northern Arabian Peninsula (Fig. 6). More specifically, the southwestern sector of Oman presents the highest increasing trends 464 

for all seasons (up to 0.026 yr−1). Similarly, high positive trends in MAM (up to 0.015 yr−1) and JJA (up to 0.018 yr−1) are 465 

documented over the western part of Saudi Arabia. Negative tendencies are observed for all seasons at the north of the Oroug 466 

Bani M’aradh Wildfire Sanctuary (South Saudi Arabia) including strongly negative DOD trends in summer (down to −0.020 467 

yr−1) and spring (down to −0.019 yr−1). In the northern part of the Arabian Peninsula, positive trends are detected predominantly 468 

in JJA and SON. Dust activity across the Arabian Peninsula is strongly influenced by the intensity of the northwesterly Shamal 469 

winds, favored by the low precipitation amounts during summer (Yu et al., 2015). The temporally extended drought (Notaro 470 

et al., 2015) along with the cooling of the Tropical Indian Ocean and the Mediterranean Sea temperatures (Yu et al., 2015), 471 

leading to an enhancement of the Shamal winds, could regulate the summer DOD trends across Arabian Peninsula. During 472 

springtime, La Niña events constitute the principal drivers for the dust activity by reducing the rainfall amounts over Rub’ al 473 

Khali Desert; one of the most active dust sources across the Arabian Peninsula (Yu et al., 2015). Strong positive trends (up to 474 

0.026 yr−1) are encountered in MAM and JJA over Iraq, while significant increasing trends are recorded for all seasons across 475 

the eastern Iran, with the most evident ones in spring (up to 0.020 yr−1). However, a hotspot of strong declining trends exists 476 

in southeastern area of Iran (34.5°N, 54.5°E) with the most negative values in JJA (down to −0.029 yr−1) and SON (down to 477 

−0.025 yr−1). Moderate negative DOD trends are documented during the summertime (down to −0.01 yr−1) across the Alboran 478 

Sea (western Mediterranean). The dust aerosol burden has also been decreased in the eastern part of Mediterranean Sea during 479 

spring (down to −0.006 yr−1, from Lybia and Egyptian coasts to Aegean Sea) and autumn (down to −0.005 yr−1, across the 480 

Gulf of Sidra). 481 



21 

 

Statistically significant positive DOD trends are detected across the intersection of Kazakhstan, Uzbekistan and 482 

Turkmenistan, in the northeastern Caspian Sea shore. At all seasons, the DOD trends exceed 0.011 yr−1 while the maximum 483 

trends are recorded in summer (up to 0.035 yr−1) and spring (up to 0.019 yr−1). These findings substantiate the positive decadal 484 

DOD trends (~0.18 decade−1) of Voss and Evan (2020) and could be attributed to the amount of drawdown (~−6.72 cm yr−1) 485 

in the Caspian Sea level during 1996−2015 (Chen et al., 2017). Central, South and East Asia constitute another regions of 486 

interest in which robust DOD trends are encountered (Fig. 6). The maximum negative values are depicted over the Thar Desert 487 

in JJA and MAM (Table 2). It must be highlighted that the maximum decreasing trends are detected during the high-dust 488 

season in the Thar Desert (Proestakis et al., 2018). The reduction of dust load during the pre-monsoon (MAM) could be 489 

attributed to the increase of the rainfall and soil moisture levels, acting in favor of wet dust deposition as well as decreasing 490 

the dust erosion (Pandey et al., 2017; Jin and Wang, 2018; Lakshmi et al., 2019). Moreover, reductions in dust emissions are 491 

recorded during summertime, which are strongly linked to soil moisture and wind speed (Shi et al., 2021). In Northwest China 492 

(Central Asia) lies the Taklamakan Desert, where non-significant annual trends are documented (Fig. 2). However, significant 493 

seasonally negative DOD trends are observed (Fig. 6) particularly in summertime (Table 2). Additionally, over the Gobi Desert 494 

and East Asia strongly negative DOD tendencies are documented mainly in spring (Fig. 6b), when the dust activity peaks 495 

(Proestakis et al., 2018). The negative DOD trends across the Gobi Desert could be attributed to reduced dust emissions, caused 496 

by the decrease of surface wind speed which has been recorded between 2010−2016 (Guo et al., 2019).  497 

 498 

3.3 Regional trends 499 

The regional DOD and AOD trends are calculated for 9 specific regions of interest (Table 3 and Fig. 7 solid rectangles) 500 

as well as for the whole globe (GLB) and separately over land (GLB-L) and ocean (GLB-O) (Sect. 3.3.1). The full names of 501 

each region as well as the calculated regional DOD trends and their uncertainties are included in Table 3. The comparisons 502 

among the geometric vs. arithmetic aggregation method and coarse vs. fine spatial resolution are also investigated for the 503 

regional DOD (Fig. 8a) and AOD (Fig. 8b) trends. On a regional basis, the temporal trends between the two spatial resolutions 504 

are in very good agreement, corroborating de Meij et al. (2012). Since the statistical significance of the trends is strongly 505 

influenced by the number of years and the study period, the regional DOD trends are also computed for different time periods 506 

considering the systematic change of time period (number of years) and initial year (Fig. 9). 507 

 508 

 509 

 510 

 511 

 512 

 513 
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Table 3: Global and regional temporal DOD trends based on MIDAS dataset. The trends with the ratio |𝝎/𝝈𝝎| higher than 2.0 are 514 
statistically significance at 95% confidence level. The star symbol corresponds to statistically significant regions under the 95% 515 
confidence level. The domains of the regions are represented in Fig 7. 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

Region Acronym Trend (ω, DOD yr−1) × 10−3 Uncertainty (σω) × 10−3 |𝝎/𝝈𝝎| 

lobal land & ocean GLB 0.022 0.12 0.19 

Global land GLB-L 0.082 0.25 0.33 

Global ocean GLB-O −0.017 0.069 0.24 

North Arabian Peninsula NAP 0.60 1.3 0.45 

South Arabian Peninsula SAP 1.80 1.2 1.5 

Central Sahara CSA 2.1 0.87 2.4* 

Gobi Desert GOB −0.71 0.39 1.8 

West Sahara WSA −0.95 0.85 1.1 

Mediterranean MED −1.1 0.30 3.8* 

East Sahara ESA −1.8 0.61 3.0* 

Bodélé Depression BOD −5.5 2.6 2.1* 

Thar Desert THA −5.3 1.9 2.8* 
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 531 

Figure 8: Bar-plots indicating the (a) DOD and (b) AOD regional temporal trends. The hatched bars represent regions with the 532 
significant trends (|𝝎/𝝈𝝎| > 𝟐. 𝟎). The error bars denote the uncertainty of the trends based on Eq. (3) (Sect. 2.3). 533 

The explanation of the temporal evolution of calculated trends shown in Fig. 9 is presented in the next section for individual 534 

regions. 535 
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 536 

Figure 9: Regional DOD trends at different time intervals, with at least 5-year time series. The acronyms full names are documented 537 
in Table 3. YY’ axis shows the number of trends included in the analysis, while XX’ the starting year. The hatched pixels represent 538 
regions with the significant trends (|𝝎/𝝈𝝎| > 𝟐. 𝟎). 539 

3.3.1 Global land and ocean 540 

Small global DOD trends are recorded during the study period both over land and ocean (Table 3). However, 541 

distinguishable DOD trends are detected at specific regions. Prior studies have focused on satellite-based measurements 542 

detecting statistically significant AOD trends at global scale. Over oceanic areas, AOD trends based on MODIS Collection 6.0 543 

are reported to be equal to 0.0050 decade−1 and 0.0020 decade−1 during 2000−2009 and 2000−2015, respectively (Alfaro-544 

Contreras et al., 2017). SeaWiFS AOD retrievals recorded higher annual positive significant trends over ocean (0.00080 yr−1) 545 

for a 13-year period (1998−2010) (Hsu et al., 2012). Recently, significant positive tendencies are documented for GLB 546 

(0.00066 yr−1) using L3 Collection 6.1 MODIS/Terra measurements spanning from 2001 and 2016 (Che et al., 2019). In this 547 

study, significant AOD trends of 0.00052 yr−1 and 0.00051 yr−1 are revealed over GLB-O and GLB respectively (Fig. 8b), 548 

using geometric means at fine spatial resolution. The differences in trends magnitude among the studies are attributed to the 549 

different datasets, aggregation methods and temporal availability. 550 

3.3.2 North Africa 551 

Across North Africa, four sectors have been defined based on the sign of the DOD trends (see Figure 7) The first one 552 

consists of Central Sahara (CSA) where increasing DOD trends are mainly recorded (up to 0.023 yr−1) (Fig. 10c). Voss and 553 
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Evan (2020) also reported similar DOD trends, in terms of sign and magnitude, based on MODIS/Aqua dataset over the period 554 

2003−2018. At regional scale, positive significant DOD trends of 0.0021 yr−1 determining those of AOD as expected (regional 555 

DOD to AOD trend ratio=0.84) due to the predominance of mineral particles in the area among other aerosol species (Fig. 556 

10d). During different time frames, the sign of DOD trends remains mainly positive (Fig. 9), with intense (from 0.0044 to 557 

0.0095 yr−1) and significant results within the 2011− onward periods. Nevertheless, the time window is very short to infer the 558 

amplitude of the calculated trends.  559 

 560 

Figure 10: (a) geographical boundaries, (b) annual DOD, (c) DOD geometric trends and (d) DOD to AOD trends ratio, for the 561 
Central Sahara. 562 

In the westernmost section of the Sahara Desert (WSA), in the majority of grid-cells (~73%) decreasing DOD tendencies 563 

are recorded (down to −0.015 yr−1) whereas positive trends (up to 0.009 yr−1) are evident at scattered pixels (~27%) within the 564 
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domain (Fig. 11c). Overall, the total load (Fig. 8a) as well as the dust burden (Fig. 8b) have been decreased during the study 565 

period, but the magnitude of this reduction is relatively low and not statistically significant. This behavior is consistent 566 

regardless the spatial resolution or the approach for the calculation of regional values (i.e. arithmetic or geometric mean) (Figs. 567 

8a and 8b). The same DOD trend pattern is also reflected using different time periods (Fig. 9). 568 

 569 

Figure 11: Same as Fig. 10, but for the Western Sahara. 570 

In the eastern sector of the Sahara Desert (ESA), statistically significant negative DOD trends (down to −0.023 yr−1) (Fig. 571 

12c) are revealed as well as both for regional DOD (Fig. 8a) and AOD (Fig. 8b) trend thus indicating the predominant 572 

contribution of mineral particles to the total aerosol load. Reduction of the dust burden has also been recorded from 573 

MODIS/Terra dataset according to Voss and Evan (2020). Dust particles affect potentially total AOD across ESA indicating 574 

a regional DOD to AOD trend ratio of 1.06. Over the dust-affected areas of the planet, the DOD to AOD trends ratio range 575 
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from negative (different trend sign) to higher than unity values. Since the dust burden modulate the total AOD over ‘dusty’ 576 

regions, the ratio between DOD and AOD is expected around unity. Higher ratios than unity are expected as the non-dust AOD 577 

signal decreases or increases and the DOD signal shows a reciprocal pattern. According to Fig. 9, two significant outcomes 578 

can be extracted in ESA. The magnitude, in absolute terms, of the decreasing DOD trends increases (down to −0.0054 yr−1; 579 

2012−2017) and the statistical significance is achieved for shorter time periods for increasing starting years.  580 

 581 

Figure 12: Same as Fig. 10, but for the Eastern Sahara. 582 

Within the study period, the regional dust load decreases (−0.0055 yr−1) in the Bodélé Depression (BOD) consisting the 583 

most active aeolian dust source of the planet (Prospero et al., 2002; Washington et al., 2006; Todd et al., 2007; Gkikas et al., 584 

2021b). DOD trends range from −0.021 yr−1 to −0.003 yr−1 (Fig. 13c), corroborating the findings of the Voss and Evan (2020). 585 

For starting years between 2003−2010 the dust aerosol burden decreases (Fig. 9), with the most negative trend found during 586 
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2007−2014 (−0.015 yr−1). As the starting year increases and the time length decreases, the magnitude of DOD trends become 587 

weaker. More specifically, the sign of DOD trends is shifted using 2011−2013 as starting years, but the results are not 588 

statistically significant. The latter indicates that DOD over the most active dust source of the planet becomes more intense 589 

during the last years. In order to better understand the reasons for the decreasing DOD trends across BOD, we investigated the 590 

correlation between the monthly MIDAS DODs and two meteorological variables, such as the wind speed (WS) at 10 m and 591 

the accumulated precipitation (STP) along with the volumetric soil water (Layer: 0-7 cm) (VSM), retrieved from ERA5 592 

reanalysis products (Hersbach et al., 2018, 2020). Figure S11 displays the trend analysis of the aforementioned parameters 593 

over the area of BOD. The solid black box depicted in Fig. S11a refers to the area that is presented in Fig. 13. Based on Fig. 594 

S11a, except of the small area where strong negative trends are documented, there are also many scattered pixels of negative 595 

trends in the surrounding area (16–19°N - 15–20°E). According to Figs. 11b-d, it is evident that DOD values are related to 596 

temporal variability of applied parameters. Through time, dust amounts are strongly related to meteorology as well as 597 

geophysical factors. For instance, the increase of STP and VSM levels increases the wet dust deposition and decreases the dust 598 

erosion, causing the reduction of dust load. On the other hand, the increase of WS acting in favor of dust erosion thus increasing 599 

the dust amount. Across this region, increasing STP and VSM trends are documented, showing that the reduction of DOD 600 

levels is strongly related to the increase of STP and VSM. It should be mentioned that across this area the levels of WS and 601 

VSM provide a seasonal pattern, recording relatively low levels through the seasons of the year. During summer, the 602 

Intertropical Convergence Zone (ITCZ) location moves to higher latitudes and rapidly affects the amounts of WS and VSM 603 

across BOD. The revealed summertime STP and SVM trends are higher in terms of magnitude. In addition, positive trends 604 

have also been documented for WS. Generally, the increase of WS acting in favor of dust erosion thus increasing the dust 605 

amount. However, the level of increased WS are revealed relatively small and may not lead to changes of dust amount across 606 

BOD. To our knowledge, there is not observed changes of the surface reflectance that could influence the true level of MODIS 607 

AOD and providing suspicious tendencies, like those of Klingmüller et al. (2016) study in the area of Aral Sea, where the 608 

substantial trends in terms of magnitude are revealed and proved to be related to the land cover changes caused by the drying 609 

of the Aral Sea.  610 

The aerosols’ burden over the Sahara Desert is modulated by meteorological parameters affecting the dust emissions such 611 

as precipitation (Pozzer et al., 2015) and wind speed (Che et al., 2019). Based on model simulations, Pozzer et al. (2015) 612 

confirmed that positive AOD trends across Sahara Desert are linked to negative precipitation trends during 2001-2010. 613 

Decreasing precipitation levels reduces dust deposition and favors dust transport, leading to an increase in dust amounts. In 614 

addition, Che et al. (2019) reported that wind speed is the most critical feature for explaining the variance of AOD (by 29.8%). 615 

During the high dust seasons, the interannual variation of dust emissions is affected by wind speed and the NLLJ (in the 616 

southern Sahara dust sources) as well as by the Harmattan surge and Mediterranean depressions (in the northern Sahara dust 617 

sources) (Shi et al., 2021).  618 
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 619 

Figure 13: Same as Fig. 10, but for the Bodélé Depression. 620 

3.3.3 Arabian Peninsula 621 

The DOD tendencies over the Arabian Peninsula are presented separately for the northern (NAP) and the southern (SAP; 622 

including Jordan, Iraq and Syria) sectors. In both regions, positive trends (non-significant, Fig. 8a) are computed which are 623 

stronger in the southern parts of the Arabian Peninsula. 624 
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 625 

Figure 14: Same as Fig. 10, but for the North Arabian Peninsula. 626 

Across Arabian Peninsula, the sign of the trend provides a bimodal pattern, revealing strong positive trends for time frames 627 

up to 2013 and followed by negative trends onwards (Fig. 9). Our findings are consistent with the revealed regime shift 628 

regarding dust activity in the Arabian Peninsula, as discussed in Notaro et al. (2015). The increased dust activity is also 629 

reflected in MIDAS DODs between 2008 and 2012, recording increased and stable annual DOD values (~0.2) compared to 630 

the previous 2003−2007 period DOD values (~0.15). Due to these sudden changes of dust amounts tendencies (from positive 631 

to negative), the regional DOD trends revealed non-significant within the entire study period (Fig. 8a). Klingmüller et al. 632 

(2016) documented increasing AOD trends during 2001−2012 followed by declining tendencies onwards, in agreement with 633 

our findings (Fig. 9). The predominant role of mineral particles on the total aerosol load across the Arabian Peninsula, is also 634 
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reflected by the moderate-to-high DOD/AOD trend ratios (up to 0.65; Figs. 14d and 15d). Both increases in DOD and non-635 

dust AOD explain the moderate in magnitude trend ratios.  636 

 637 

 638 

Figure 15: Same as Fig. 10, but for the South Arabian Peninsula. 639 

In the last few decades, compelling inter-annual dust activity is documented in the Arabian Peninsula (Notaro et al., 2015). 640 

Numerous studies examined the temporal variability of aerosol loads in the Middle East, showing strong ascending tendencies 641 

(de Meij et al., 2012; Hsu et al., 2012; Yoon et al., 2014; Pozzer et al., 2015; Klingmüller et al., 2016; Che et al., 2019; Wei et 642 

al., 2019a). Klingmüller et al. (2016) revealed that the positive AOD trends in Middle East are associated with decreasing 643 

trends of Ångström exponent (AE) and fine mode fraction (FMF) indicating a shift towards a regime with stronger presence 644 

of coarse particles. These findings are in agreement with the increasing DOD trends documented in this study during the same 645 

study period (Fig. 9). Moreover, Klingmüller et al. (2016) implemented a multivariate linear model for annual AOD in order 646 
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to identify the linkage of AOD trends with critical parameters such as the precipitation, the surface soil moisture and the surface 647 

wind speed. Soil moisture is the major controlling parameter in Saudi Arabia and Iraq whereas precipitation dominates in Iran. 648 

For all regions, the addition of surface wind speed as independent parameter upgraded the model performance. Moreover, Che 649 

et al. (2019) also used a multiple linear regression model to investigate the relationship of AOD with specific meteorological 650 

parameters. The most appropriate ones, in terms of statistical significance, are chosen to enhance the model performance. 651 

Across Middle East, the major controlling meteorological parameter for AOD variance is the sea level pressure (60.9% of total 652 

AOD explained variation) and the wind speed, highlighting the large impact of synoptic systems on dust burden over the area. 653 

3.3.4 Mediterranean 654 

The Mediterranean (MED) basin is a region of great concern due to high inter-annual variability of aerosol loadings and 655 

types (Floutsi et al., 2016). In this study, MED presents significant DOD trends ranging from −0.009 yr−1 to 0.006 yr−1 (Fig. 656 

16c). The regional analysis documents strong declining significant DOD (Fig. 8a) and AOD (Fig. 8b) tendencies across the 657 

MED basin. Negative DOD trends are also revealed during different sub-periods (Fig. 9). The DOD to AOD trends ratio shows 658 

a latitudinal reduction moving from northern African coasts to the northern parts of the Mediterranean (Fig. 16d). Higher ratio 659 

values are documented in South Mediterranean-North African coast region (0.3-1.94, median = 0.71) (Lat: 30.0−38.0 oN; Lon: 660 

6.0 oW−30.0 oE) compared to North Mediterranean (0.21-0.91, median = 0.45) (Lat: 38.0−45.0 oN; Lon: 1.0 oW−27.0 oE). Dust 661 

particles originated from North African and Middle East deserts driven by low pressure systems (cyclones) can be transported 662 

towards MED (Gkikas et al., 2015), providing relatively high AOD values at the southern parts. Mineral particles are recorded 663 

mainly in summer, spring and winter in Western, Central and East MED, respectively (Floutsi et al., 2016; Gkikas et al., 2013; 664 

2016; 2021b). Across the north sector of MED, lower AOD values are associated with higher FMF values due to the prevailing 665 

anthropogenic fine aerosols (Floutsi et al., 2016). The latter could also be observed from the negligible DOD trends there (Fig. 666 

16c). 667 
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 668 

Figure 16: Same as Fig. 10, but for the Mediterranean Basin. 669 

Earlier studies investigated the temporal AOD variability in the broader Mediterranean basin, reporting declining 670 

tendencies for the last two decades (Papadimas et al., 2008; de Meij et al., 2012; Hsu et al., 2012; Yoon et al., 2014; Pozzer et 671 

al., 2015; Floutsi et al., 2016; Che et al., 2019). Across this region, Floutsi et al. (2016) reported significant decreasing AOD 672 

trends of −0.0030 yr−1 over the period 2002−2014. Additionally, Nabat et al, 2013, reported decreasing DOD trends (−0.0045 673 

yr−1) across northern Africa. Both studies corroborate with the findings of this study where the overwhelming majority DOD 674 

trends are primarily slightly negative (Fig. 16c). 675 
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3.3.5 Thar and Gobi Deserts 676 

Across the western part of Indo-Gangetic Plain, in the northwest area of the Indian Subcontinent, the Thar Desert (THA) 677 

is situated. THA region depicts significant decreasing DOD trends (down to −0.017 yr−1) (Fig. 17c) modulating the 678 

corresponding declining AOD tendencies as indicated by the relatively high DOD/AOD trends ratio (0.67; Fig. 17d). The 679 

statistical significance of DOD trends, which are always negative regardless the sub-period, is strongly affected by the starting 680 

year as well as the length of the time interval in which the tendencies are computed (Fig. 9). More specifically, negative and 681 

not statistically significant DOD trends are observed for all time periods beginning from 2005. During the last two decades, 682 

strong negative temporal trends are recorded for OMI ultraviolet aerosol index (Hammer et al., 2018) along with AOD (Che 683 

et al., 2019) and DOD (Voss and Evan, 2020) across THA. The reduction of dust abundance over THA is mainly attributed to 684 

the increase of the rainfall and soil moisture enhancing wet dust deposition and reducing dust erosion during pre-monsoon 685 

(Pandey et al., 2017; Jin and Wang, 2018).  686 
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 687 

Figure 17: Same as Fig. 10, but for the Thar Desert. 688 

The Gobi Desert (GOB) resides between the north part of China and the southern sector of Mongolia (East Asia). In this 689 

region, statistically significant DOD trends, ranging from −0.011 yr−1 to 0.004 yr−1, are reported (Fig. 18c), in agreement (both 690 

in sign and magnitude) with those reported by Che et al. (2019) and Voss and Evan (2020) for AOD and DOD, respectively. 691 

At a regional level, slightly negative DOD (−0.00071 yr−1) and AOD (−0.0010 yr−1) trends, and statistically significant at 90% 692 

confidence level (|ω/σω|>1.65), are computed (Fig. 8). Nevertheless, for time periods onwards 2005, the DOD trends are 693 

statistically significant at 95% confidence level (Fig. 9). These temporal DOD trends corroborate with Filonchyk et al. (2019), 694 

who computed AOD trends equal to −0.004 decade−1 and −0.002 decade−1 for MODIS/Terra and MISR measurements, 695 
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respectively, over the period 2000−2017. In addition, GOB AOD trends are strongly influenced by the presence of dust 696 

particles, recording moderate median DOD to AOD trends ratio value of 0.62 (Fig. 18d).  697 

 698 

Figure 18: Same as Fig. 10, but for the Gobi Desert. 699 

An et al. (2018) conducted a comprehensive analysis to investigate the potential factors driving the reduction of sand and 700 

dust storms, taking place mainly in springtime, in East Asia between 2006 and 2017. In the aforementioned study, across GOB, 701 

the mean surface dust concentration was declined by −31.71 μg m−3 yr−1 (−12.24 %). These declining trends are regulated by 702 

changes in the surface conditions (e.g. vegetation coverage) which are strongly linked to precipitation, soil moisture, ambient 703 

temperature and human activities. The increasing trends in vegetation coverage are observed using the Normalized Difference 704 

Vegetation Index (NDVI) (0.0006 yr−1) from MODIS and are linked with the ascending tendencies of the precipitation (0.002 705 

mm day−1 yr−1) and volumetric soil moisture at 0-0.1 m depth (0.316 yr−1). All these factors converge towards the reduction of 706 

emitted amounts of dust aerosols. Over East Asia, the frequency and intensity of dust outbreaks have been decreased during 707 
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the springtime (An et al., 2018). Dust particles are primarily uplifted into the surrounding air across this region due to massive 708 

winds accompanied by cold air from northern latitudes. The decreasing frequency and intensity of dust outbreaks can be 709 

explained by the declining tendencies of the north wind components, documented during 2007−2016. The latter is associated 710 

with the decline of 1) Polar Vortex intensity, 2) north-to-south mean surface level pressure gradient and 3) meridional wind 711 

component magnitude.  712 

4 Summary and conclusions 713 

Airborne dust affects the global and regional climate via the induced perturbation of the solar and terrestrial radiation 714 

fields. Therefore, the investigation of DOD temporal variations is crucial to assess its climatic role as well as the multifarious 715 

impacts within the Earth-Atmosphere system and humans’ health. The present study deals with the investigation of the annual 716 

and seasonal trends of AOD and DOD, both at global and regional scales over the period 2003–2017, relying on the MIDAS 717 

fine resolution dataset. Taking advantage of the MIDAS strong capabilities, the DOD trends have been analyzed: (i) by 718 

considering different aggregation approaches (i.e. arithmetic and geometric means), (ii) at fine and coarse spatial resolutions, 719 

(iii) applying and not applying temporal filters (iv) at annual, seasonal and sub-period time scales (i.e. sliding window) and (v) 720 

their contribution to the corresponding tendencies of the total aerosol optical depth. Based on this holistic approach, it is 721 

provided a complete overview about the temporal variability of dust loads addressing jointly all the factors determining the 722 

sign, the magnitude and the statistical significance of the calculated trends.  723 

The validity of the MIDAS DOD trends has been investigated with respect to AERONET cAOD data. This analysis 724 

encompassed that MIDAS tendencies are capable to follow those of AERONET either for increasing (at 26 out of 30 stations, 725 

86.7%) or decreasing (at 7 out of 11 stations, 63.6%) trends. Point-to-point investigation of the DOD-cAOD trends highlighted 726 

the accurate, in terms of magnitude and statistical significance, MIDAS DOD trends either across “dusty” sites or downwind 727 

areas. 728 

The sensitivity analysis between coarse and fine spatial resolution revealed that the magnitude of AOD and DOD trends 729 

are lower for the coarse spatial resolution data. On a regional basis, the calculated AOD/DOD trends revealed a very good 730 

agreement in terms of trend magnitude for both spatial scales. In general, coarse resolution data provide better spatial coverage, 731 

however, detailed information, in spatial terms, is when fine resolution data are utilized. In addition, the sensitivity analysis 732 

on the different aggregation approaches revealed that the arithmetic-based trends are larger than those of the geometric-based 733 

ones (from 52.87 to 91.77%) all over the globe. The only exception was found only for AOD at coarse spatial resolution. 734 

Lastly, the sensitivity analysis on the temporal filtering in trend calculations indicated new regions (e.g. across oceanic 735 

territories) with unphysical unfiltered AOD trends. In addition, unfiltered trends led to poorer performance of MIDAS DOD 736 

trends against AERONET retrievals.  737 

Based on our analysis, increasing DOD trends are obtained across the Central Sahara and the Arabian Peninsula whereas 738 

opposite tendencies are recorded over the Eastern and Western Sahara, the Thar and Gobi Deserts, in the Bodélé Depression 739 
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and in southern Mediterranean. On the seasonal basis, the maximum positive DOD trends are displayed in the Central Sahara 740 

and Middle East area during summertime. During spring, the strongest reductions of the dust burden have been revealed at the 741 

Bodélé Depression whereas reverse tendencies have been recorded in the Western and Eastern Sahara and in the Thar and 742 

Taklamakan Deserts during summer. Similarly, the most negative trends were observed at spring over the Gobi Desert. Positive 743 

trends across the area extending from North Atlantic Ocean to the eastern Caribbean Sea are observed in spring. 744 

At global scale and separately over continents and oceans, negligible and non-significant DOD trends are found. A similar 745 

analysis for 9 specific regions of the planet has been performed revealing evident trends which are not however all of them 746 

statistically significant. More specifically, strong DOD trends were documented in Central (0.0021 yr−1) and East (−0.0018 747 

yr−1) Sahara, Bodélé Depression (−0.0055 yr−1), Mediterranean (−0.0011 yr−1) and Thar Desert (−0.0053 yr−1). In contrast, 748 

non-significant regional DOD trends were depicted in the Arabian Peninsula and the Gobi Desert. At a regional scale, the 749 

calculated trends vary in terms of sign, magnitude and statistical significance, depending on the sub-period, thus indicating a 750 

strong interannual variation of dust aerosols’ load within the period 2003–2017. In the majority of the regions of interest, 751 

including also downwind areas, the variations of the total aerosol load are driven by those of mineral particles.  752 

The obtained findings from the current study highlight the applicability of the MIDAS dataset for detecting dust temporal 753 

across various spatial scales. The high spatiotemporal resolution of MIDAS provides the opportunity to complement and 754 

further expand the existing knowledge on this critical aspect, yet not well covered in the field of dust research. Likewise, by 755 

comparing AOD and DOD tendencies, it is feasible the assessment of mineral particles’ role on the variations of the total 756 

aerosol load. Our results could be incorporated in chemical models, either for assessing the various impacts of dust and non-757 

dust particles or for evaluating trends based on numerical simulations, and to further improve their calibration and forecast 758 

performance. Moreover, the obtained findings here can be used for the interpretation of the trends of the radiation fluxes at the 759 

surface and at the top of the atmosphere obtained by observations or atmospheric-aerosol models (Chaibou et al., 2020). The 760 

recently published Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) states that the 761 

increase of the global dust load causes a reduction of the effective radiative forcing (ERF) by −0.25 Wm−2 (Andrews et al., 762 

2017; Forster et al., 2021). Therefore, fluctuations of the dust atmospheric load provide a valuable information in order to 763 

understand the associated impacts on past, current and future climate. Finally, the current study focused mainly on the 764 

description of dust optical depth trends providing also a preliminary interpretation of the obtained findings. Nevertheless, an 765 

in-depth analysis (a follow up study) is ongoing by investigating the role of critical meteorological variables (e.g. wind) as 766 

well as of other determinant geophysical factors (e.g. soil moisture, vegetation, land coverage) on the configuration of DOD 767 

trends. 768 

 769 
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from the Bodélé Depression nothern Chad, during BoDEx 2005, J. Geophys. Res. Atmos., 112, 1–12, 1050 

https://doi.org/10.1029/2006JD007170, 2007. 1051 

Torres, O., Bhartia, P. K., Herman, J. R., Sinyuk, A., Ginoux, P., and Holben, B.: A long-term record of aerosol optical depth 1052 

from TOMS observations and comparison to AERONET measurements, J. Atmos. Sci., 59, 398–413, 1053 

https://doi.org/10.1175/1520- 0469(2002)0592.0.CO;2, 2002. 1054 

Tsamalis, C., Chédin, A., Pelon, J., and Capelle, V.: The seasonal vertical distribution of the Saharan Air Layer and its 1055 

modulation by the wind, Atmos. Chem. Phys., 13, 11235–11257, https://doi.org/10.5194/acp-13-11235-2013, 2013. 1056 



50 

 

Voss, K. K., and Evan, A. T.: A new satellite-based global climatology of dust aerosol optical depth, Journal of Applied 1057 

Meteorology and Climatology, https://doi.org/10.1175/JAMC-D-19-0194.1, 2020. 1058 

Washington, R., Todd, M.C., Engelstaedter, S., Mbainayel, S., Mitchell, F.: Dust and the low-level circulation over the Bodélé 1059 
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