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Abstract. Geostationary satellite measurements of aerosol optical depth (AOD) over East Asia from the GOCI and 34 
AHI instruments can augment surface monitoring of fine particulate matter (PM2.5) air quality, but this requires 35 
better understanding of the AOD-PM2.5 relationship. Here we use the GEOS-Chem chemical transport model to 36 
analyze the critical variables determining the AOD-PM2.5 relationship over East Asia by simulation of observations 37 
from satellite, aircraft, and ground-based datasets. This includes the detailed vertical aerosol profiling over South 38 
Korea from the KORUS-AQ aircraft campaign (May-June 2016) with concurrent ground-based PM2.5 composition, 39 
PM10, and AERONET AOD measurements. The KORUS-AQ data show that 550 nm AOD is mainly contributed by 40 
sulfate-nitrate-ammonium (SNA) and organic aerosols in the planetary boundary layer (PBL), despite large dust 41 
concentrations in the free troposphere, reflecting the optically effective size and high hygroscopicity of the PBL 42 
aerosols. We updated SNA and organic aerosol size distributions in GEOS-Chem to represent aerosol optical 43 
properties over East Asia by using in-situ measurements of particle size distributions from KORUS-AQ. We find 44 
that SNA and organic aerosols over East Asia have larger size (number median radius of 0.11 µm with geometric 45 
standard deviation of 1.4) and 20% larger mass extinction efficiency as compared to aerosols over North America 46 
(default setting in GEOS-Chem). Although GEOS-Chem is successful in reproducing the KORUS-AQ vertical 47 
profiles of aerosol mass, its ability to link AOD to PM2.5 is limited by under-accounting of coarse PM and by a large 48 
overestimate of nighttime PM2.5 nitrate. The GOCI/AHI AOD data over East Asia in different seasons show 49 
agreement with AERONET AODs and a spatial distribution consistent with surface PM2.5 network data. The AOD 50 
observations over North China show a summer maximum and winter minimum, opposite in phase to surface PM2.5. 51 
This is due to low PBL depths compounded by high residential coal emissions in winter, and high relative humidity 52 
(RH) in summer. Seasonality of AOD and PM2.5 over South Korea is much weaker, reflecting weaker variation of 53 
PBL depth and lack of residential coal emissions.  54 

1 Introduction 55 

PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) in surface air is a severe public health 56 
concern in East Asia, but surface monitoring networks are too sparse to thoroughly assess population exposure. 57 
Satellite observations of aerosol optical depth (AOD) can provide a valuable complement (Van Donkelaar et al., 58 
2015). Geostationary satellite sensors, including the Geostationary Ocean Color Imager (GOCI) launched by the 59 
Korea Aerospace Research Institute (KARI) in 2011 (Choi et al., 2016, 2018, 2019) and the Advanced Himawari 60 
Imager (AHI) launched by the Japanese Meteorological Agency (JMA) in 2014 (Lim et al., 2018, 2021), offer the 61 
potential for high-density mapping of PM2.5 over East Asia (Chen et al., 2019; Wei et al., 2021a). However, more 62 
confidence is needed in relating AOD to PM2.5. Here we evaluate the capability of the GEOS-Chem chemical 63 
transport model (CTM) to simulate AOD-PM2.5 relationships over East Asia, exploiting in-situ aircraft 64 
measurements of vertical aerosol profiles and optical properties from the joint NASA-NIER Korea - United States 65 
Air Quality (KORUS-AQ) field study in May-June 2016 (Crawford et al., 2021; Peterson et al., 2019; Jordan et al., 66 
2020) together with GOCI/AHI geostationary satellite data and surface measurement networks. This enables us to 67 
identify critical variables and uncertainties for inferring PM2.5 from satellite AOD data. 68 
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A number of past studies have used satellite AOD data to infer surface PM2.5 using physical and statistical models. 69 
The standard geophysical approach has been to use a CTM, such as GEOS-Chem, to compute the PM2.5/AOD ratio 70 
(Liu et al., 2004; van Donkelaar et al., 2006; van Donkelaar et al., 2015; Xu et al., 2015; Geng et al., 2017), with 71 
recent applications correcting for CTM biases using available PM2.5 surface network data (Brauer et al., 2016; Van 72 
Donkelaar et al., 2016; van Donkelaar et al., 2019; Hammer et al., 2020). An alternative approach is to use artificial 73 
intelligence algorithms to relate satellite AOD to PM2.5 by training on the surface network data (Hu et al., 2017; 74 
Chen et al., 2018; Xiao et al., 2018; Wei et al., 2021a; Wei et al., 2021b; Pendergrass et al., 2021), and sometimes 75 
including CTM values as predictors (Di et al., 2019; Xue et al., 2019). Yet another approach is to assimilate the 76 
satellite-measured AODs in a CTM and correct in this manner the PM2.5 simulation, although this requires 77 
attribution of model AOD errors to specific model parameters (Kumar et al., 2019; Saide et al., 2014; Sekiyama et 78 
al., 2010; Cheng et al., 2019). In all of these approaches, a better physical understanding of the AOD-PM2.5 79 
relationship as simulated by CTMs can greatly enhance the capability to infer PM2.5 from AOD data.   80 

AOD measures aerosol extinction (scattering and absorption) integrated over the atmospheric column, so that its 81 
relationship to 24-hr average surface PM2.5 (the standard air quality metric) depends on the aerosol vertical 82 
distribution and optical properties, ambient relative humidity (RH), diurnal variation of PM2.5, and contribution from 83 
coarse particulate matter to AOD. Airborne measurements of aerosol vertical profiles (without species information) 84 
in East Asia are limited (Zhang et al., 2006; Liu et al., 2009; Zhang et al., 2009; Sun et al., 2013; Li et al., 2017), and 85 
speciated vertical profiles are rarer. AOD is highly sensitive to RH (Brock et al., 2016; Latimer and Martin et al., 86 
2019; Saide et al., 2020), but the impact from RH uncertainty on AOD simulation lacks evaluation. In addition, 87 
because the AOD is a daytime measurement that needs to be related to 24-h average PM2.5, the diurnal variation of 88 
PM2.5 needs to be understood (Guo et al., 2017; Lennartson et al., 2018). Finally, although there are studies on the 89 
optical depth of coarse mode desert dust (Eck et al., 2010; Ridley et al., 2016), there has been to our knowledge no 90 
study of how coarse anthropogenic PM may contribute to the AOD measurements. Coarse anthropogenic PM 91 
(distinct from desert dust) is known to be high over East Asia (Chen et al., 2015; Dai et al., 2018).  92 

2 Data and methods 93 

2.1 Observations 94 

We use observations over China and South Korea from multiple platforms including surface sites, aircraft, and 95 
satellites (Table 1 and 2). Surface data (Table 1) include PM2.5 from national observation networks in China (Zhai et 96 
al., 2019) and South Korea (Jordan et al., 2020), speciated PM2.5 at 7 supersites in South Korea during KORUS-AQ 97 
(Choi et al., 2019), and ground-based AODs from the AERONET network at 5 sites in East China and 10 sites in 98 
South Korea (21 sites during KORUS-AQ). We use total and fine-mode AODs at 500 nm wavelength from the 99 
AERONET Version 3; Spectral Deconvolution Algorithm (SDA) Version 4.1 Retrieval Level 2.0 database (Giles et 100 
al., 2019; O’Neill et al., 2003). The AERONET AODs at 500 nm are converted to 550 nm using total and fine mode 101 
Ångström Exponents at 500 nm for consistency with the satellite AOD data.  102 
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Table 1. Surface site observations used in this work (2016) 103 
Variable Number of sites 

PM2.5 in East China a  598  

PM2.5 in South Korea b 130  

PM2.5 composition in South Korea (May-June 2016) c  7  

AERONET total and fine mode AOD in East China d 

AERONET total and fine mode AOD in South Korea d 

5 

10-21 e 

a Hourly PM2.5 from the China National Environmental Monitoring Centre (CNEMC; quotsoft.net/air/) in East 104 
China, including only sites with more than 90% data coverage in each month of 2016. Quality control of the 105 
CNEMC dataset is described in our previous study (Zhai et al., 2019). The PM2.5 measurements are made at 106 
reference RH ≤ 35%. 107 
b Hourly PM2.5 from the AirKorea network (airkorea.or.kr), with the same data selection criteria as for East China. 108 
The PM2.5 measurements are made at reference RH ≤ 35%. 109 
c Major PM2.5 components including sulfate, nitrate, ammonium, organic carbon, and black carbon at 7 supersites in 110 
South Korea during KORUS-AQ (May-June 2016; Choi et al., 2019). The mass concentration of organic carbon is 111 
converted to that of organic aerosol with a multiplicative factor of 1.8 based on KORUS-AQ observations (Kim et 112 
al., 2018). 113 
d AODs are from the AERONET Version 3 Level 2.0 all-points database (aeronet.gsfc.nasa.gov), except that AODs 114 
at the XuZhou site in East China are from the Version 3 Level 1.5 database. AOD at 500 nm (AOD500nm) is 115 
converted to 550 nm (AOD550nm) using Ångström Exponent at 500 nm (AE500nm) following:	AOD!!"#$ =116 
AOD!""#$(

!!"
!""
)%&'!""#$.                                          117 

e AERONET AODs in South Korea are from 10 sites for the full year of 2016 and 21 sites during KORUS-AQ. 118 

The KORUS-AQ campaign (Table 2) includes 20 flights over the Korean peninsula and the surrounding ocean from 119 
May 2 to June 10, 2016, with vertical profiling up to 8 km altitude. We use the aircraft observations of remote and in 120 
situ aerosol extinction (scattering + absorption) coefficients, dry aerosol number size distributions, sub-micron non-121 
refractory aerosol composition, bulk aerosol ionic composition, black carbon (BC), and relative humidity (RH).  122 

Geostationary satellite AOD at 550 nm are retrieved by the Yonsei Aerosol Retrieval (YAER) algorithm for the 123 
GOCI (Choi et al., 2016, 2018) and AHI (Lim et al. 2018) instruments, with GOCI covering East China and South 124 
Korea and AHI covering the broad East Asia region. AOD from GOCI and AHI have a 6 km × 6 km spatial 125 
resolution and 2.5-minute (AHI) to 1-hour (GOCI) temporal resolution for 8 hours per day (09:30 to 16:30 local 126 
time). We use the fused AOD product generated from the Yonsei GOCI and AHI AOD retrievals, each using two 127 
different surface reflectance methods (Lim et al., 2021). Fusion of this four-member ensemble is done by the 128 
maximum likelihood estimate (MLE) method, with weighting and averaging based on errors determined by 129 
comparison to AERONET AOD. The fused satellite AOD product is shown by Lim et al. (2021) to have higher 130 
accuracy than its member products in comparison with AERONET data during the KORUS-AQ campaign. We will 131 
refer to it as the ‘GEO satellite AOD’ product in what follows. 132 
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Table 2. KORUS-AQ aircraft observations used in this work (May-June 2016).  133 

Variable Instrument 

Aerosol extinction profile at 532 nm HSRL a 

Aerosol scattering coefficient at 550 nm TSI nephelometers b 

Aerosol absorption coefficient at 532 nm PSAPs c 

Aerosol dry size distribution  TSI LAS d 

Bulk aerosol ionic composition SAGA e 

Sub-micron non-refractory aerosol composition HR-ToF-AMS f 

Black carbon concentration HDSP2 g 

Relative humidity DLH h 

a NASA Langley airborne High Spectral Resolution Lidar (HSRL) (Hair et al., 2008; Scarino et al., 2014). 134 
b NASA Langley TSI-3563 nephelometers (Ziemba et al., 2013).  135 
c Radiance Research 3-wavelength particle soot absorption photometers (PSAPs; Ziemba et al., 2013). 136 
d In-situ particle size distributions over the 0.1-5.0 µm diameter range from the TSI Laser Aerosol Spectrometer 137 
(LAS) Model 3340.  138 
e University of New Hampshire (UNH) Soluble Acidic Gases and Aerosol (SAGA) instrument (Dibb et al., 2003). 139 
The cutoff aerodynamic diameter of the inlet is around 4 µm, corresponding to a geometric particle diameter of 2.5 140 
µm (McNaughton et al., 2007; McNaughton et al., 2009).  141 
f University of Colorado Boulder High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS; 142 
DeCarlo et al., 2006; Nault et al., 2018; Guo et al., 2020). 143 
g NOAA Humidified-Dual-Single-Particle Soot Photometer (HDSP2; Lamb et al., 2018). 144 
h NASA Diode Laser Hygrometer (DLH; Podolske et al., 2003). 145 

2.2 GEOS-Chem simulation 146 

We use GEOS-Chem version 12.7.1 (DOI: 10.5281/zenodo.3676008) in a nested-grid simulation at a horizontal 147 
resolution of 0.5° ´ 0.625° over East Asia (100-145 °E, 20-50 °N). GEOS-Chem simulates detailed tropospheric 148 
oxidant-aerosol chemistry and is driven here by GEOS-FP assimilated meteorological data from the NASA Global 149 
Modeling and Assimilation Office (GMAO). Boundary layer mixing uses the non-local scheme implemented by Lin 150 
and McElroy (2010). Dry deposition of gases and particles follows a standard resistance-in-series scheme (Zhang et 151 
al., 2001; Fairlie et al., 2007; Fisher et al., 2011; Jaeglé et al., 2018). Wet deposition of gases and particles includes 152 
contributions from rainout, washout, and scavenging in convective updrafts (Liu et al., 2001; Amos et al., 2012; Q. 153 
Wang et al., 2011; Q. Wang et al., 2014) with recent updates by Luo et al. (2019, 2020). We use pre-archived initial 154 
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conditions from Zhai et al. (2021) and run the model from December 1, 2015 to December 31, 2016. The first month 155 
is used for spin-up and the year 2016 is used for analysis. 156 

GEOS-Chem has been used extensively to simulate PM2.5 and its composition in East Asia (Geng et al., 2017; Li et 157 
al., 2016; Choi et al., 2019; Jeong et al., 2008; Park et al., 2021; Zhai et al., 2021). Here we use the bulk 158 
representation of aerosols including sulfate (Park et al., 2004; Alexander et al., 2009), nitrate (Jaeglé et al., 2018), 159 
primary and secondary organics (Pai et al., 2020), BC (Q. Wang et al., 2014), natural dust in four advected size 160 
ranges (Fairlie et al., 2007), anthropogenic fine dust (Philip et al., 2017), and sea salt in two size ranges (Jaeglé et 161 
al., 2011). Heterogeneous sulfate formation on aqueous aerosols is represented by a simplified parameterization 162 
scheme (Y. Wang et al., 2014), where the SO2 uptake coefficient (γ) linearly increases from 1 × 10-5 at RH ≤ 50% to 163 
2 × 10-5 at RH = 100%. The thermodynamic equilibrium of sulfate-nitrate-ammonium (SNA) aerosols with the gas 164 
phase is computed with ISORROPIA II (Fountoukis and Nenes, 2007; Pye et al., 2009) assuming an aqueous 165 
aerosol. We include reactive uptake on dust of acid gases (HNO3, SO2, and H2SO4), limited by consumption of dust 166 
alkalinity (Fairlie et al., 2010). The alkalinity of emitted dust is estimated by assuming 7.1% Ca2+ and 1.1% Mg2+ as 167 
alkaline cations by dust mass (Shah et al., 2020).   168 

Monthly anthropogenic emissions are from the Multi-resolution Emission Inventory in 2016 for China (MEIC; 169 
Zheng et al., 2018; http://meicmodel.org) and from the KORUSv5 emission inventory at base year 2015 (Woo et al., 170 
2020; http://aisl.konkuk.ac.kr/#/emission_data/korus-aq_emissions) for other Asian countries and shipping 171 
emissions. MEIC over China applies weekly and diurnal scaling factors for all anthropogenic emissions (Zheng et 172 
al., 2018). The KORUSv5 agricultural NH3 emissions apply the diurnal scaling factors from MEIC. Natural 173 
emissions include NOx from lightning (Murray et al., 2012) and soil (Hudman et al., 2012), MEGANv2 biogenic 174 
volatile organic compounds (VOCs) (Guenther et al., 2012), dust (Meng et al., 2020), and sea salt (Jaeglé et al., 175 
2011). Open fire emissions are from the Global Fire Emissions Database version 4 (GFED4; van der Werf et al., 176 
2017). 177 

2.3 AOD simulation 178 

AOD in GEOS-Chem is diagnosed by integrating vertically the aerosol scattering and absorption coefficients 179 
obtained with a standard Mie calculation applied to assumed size distributions, hygroscopicity, refractive indices, 180 
and densities for individual aerosol components, and summing over all components (Martin et al., 2003). Optical 181 
properties are listed in Table 3. Sulfate, nitrate, and ammonium share the same optical properties and are lumped as 182 
an SNA aerosol component for the purpose of optical calculations. All aerosol components except dust are assumed 183 
to follow log-normal size distributions. Dust includes 7 size bins (centered at radii of 0.15, 0.25, 0.4, 0.8, 1.5, 2.5, 184 
and 4.0 µm) for optical calculations, with the smallest four bins partitioned by mass from the first advected dust bin 185 
(< 2.5 µm in geometric diameter) following L. Zhang et al. (2013). Dust particles follow a gamma size distribution 186 
within their optical size bins (Curci, 2012). The BC absorption enhancement from coating is as given by X. Wang et 187 
al. (2014). 188 



 7 

Our initial simulations indicated that aerosol extinction coefficients from the standard GEOS-Chem version 12.7.1 189 
underestimated in situ measured extinction coefficients during KORUS-AQ by 20% on average (Figure S1). We 190 
traced this problem to bias in the assumed size distributions for SNA and organic aerosol, as shown in Section 3. 191 
Therefore, we re-computed the diagnostic AOD using updated log-normal size distributions for SNA and organic 192 
aerosol with number median radius RN,med = 0.11 μm and geometric standard deviation σ = 1.4 based on KORUS-193 
AQ observations, instead of RN,med = 0.058 µm and  𝜎 = 1.6 in the standard model version 12.7.1, which is derived 194 
from IMPROVE network measurements of aerosol mass scattering efficiency over North America (Latimer and 195 
Martin, 2019). 196 

Table 3. Aerosol optical properties a. 197 
Aerosol component RN,med, µm 𝜎 Hygroscopicity b Refractive index 𝜌, g cm-3 

SNA c 0.11 1.4 𝜅 = 0.61 1.53 – 6.0 ´ 10-3i 1.7 

Organic c 0.11 1.4 𝜅 = 0.1 1.53 – 6.0 ´ 10-3i 1.3 

BC 0.020 1.6 GADS 1.75 – 4.4 ´ 10-3i 1.8 

Sea salt (fine) 0.085 1.5 GADS 1.5 – 1.0 ´ 10-3i 2.2 

Sea salt (coarse) 0.40 1.8 GADS 1.5 – 1.0 ´ 10-3i 2.2 

Dust  7 size bins NA 𝜅 = 0 d  1.558 – 1.4 ´ 10-3i 2.5-2.65 e 

a Aerosol optical properties used in this work for computing aerosol scattering and absorption coefficients. Values 198 
are from the standard GEOS-Chem model version 12.7.1, except for the size distributions of SNA and organic 199 
aerosol which are based on KORUS-AQ observations (see text). All aerosol components except dust have log-200 
normal dry size distributions where RN,med is the number median radius and 𝜎 is the geometric standard deviation. 201 
Refractive indices are for 550 nm wavelength. 𝜌 is the dry aerosol mass density.  202 
b Hygroscopic growth for SNA and organic aerosol as a function of relative humidity (RH, %) is computed from 𝜅-203 
Kohler theory as a diameter growth factor GF = (1 + κ * RH/(100-RH))1/3 (Latimer and Martin, 2019). Hygroscopic 204 
growth factors for other aerosol components are from the Global Aerosol Data Set (GADS) as tabulated in Chin et 205 
al. (2002) and Martin et al. (2003). 206 
c RN,med and σ are fit to KORUS-AQ observations as described in the text. Standard GEOS-Chem v12.7.1 assumes 207 
RN,med = 0.058 µm, 𝜎 = 1.6 (Latimer and Martin, 2019). 208 
d Hygroscopic growth of dust particles is assumed negligible. 209 
e Sub-micron dust particles have a density of 2.5 g cm-3 while coarse mode dust particles have a density of 2.65 g 210 
cm-3. Dust size distribution is described in the text. 211 

3 Aerosol concentrations and optical properties during KORUS-AQ 212 

Here we use the KORUS-AQ aircraft observations and their simulation with GEOS-Chem to better understand the 213 
vertical distributions of different aerosol components contributing to AOD over South Korea. We begin with the 214 
mean vertical profile of aerosol mass and go on to examine the aerosol optical properties. This provides the basis for 215 
analyzing the observed vertical profile of aerosol extinction, its simulation by GEOS-Chem, and the consistency 216 
with GEO satellite and AERONET AOD measurements over South Korea during the KORUS-AQ period.   217 
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3.1 Vertical profile of aerosol mass  218 

Figure 1 shows the mean aircraft vertical profiles of aerosol mass observed during KORUS-AQ and their simulation 219 
by GEOS-Chem. The KORUS-AQ aircraft sampled during the daytime, mainly between 9 am and 3 pm local time. 220 
Here and elsewhere, the model is sampled along the flight tracks and at the flight times. The observed vertical 221 
distribution of aerosol mass concentrations (Figure 1a) shows that 58% of column aerosol mass is below 2 km 222 
altitude, which we define as the average planetary boundary layer (PBL) during KORUS-AQ, and 34% is at 2-5 km 223 
altitude, which we define as the lower free troposphere (FT). The model has a similar vertical distribution (Figure 224 
1b), with 57% of aerosol mass in the PBL and 36% in the lower FT. SNA, organic, and dust each contribute about a 225 
third of aerosol mass in the PBL while dust dominates in the lower FT both in the observations and in the model. 226 
The enhanced dust in the lower FT is driven by a few dust events, which the model reproduces (Figure S2). Black 227 
carbon and sea salt (not shown) make only minor contributions to aerosol mass. The model underestimates sulfate 228 
by 28% in the PBL, which leads to a 20% overestimate of nitrate, with canceling effect on the SNA mass simulation.  229 

The GEOS-Chem simulation of organic aerosol in this work uses the simple scheme of Pai et al. (2020) and 230 
underestimates aircraft observations by 16% in the PBL. Over 90% of GEOS-Chem organic aerosol is secondary, 231 
consistent with observations (Figure S4; Nault et al., 2018; Pai et al., 2020). GEOS-Chem simulation of the 232 
KORUS-AQ aerosol component profiles for different meteorological regimes is presented in Park et al. (2021). 233 

 234 

Figure 1. Vertical profiles of aerosol mass during KORUS-AQ. Panel (a) shows the mean vertical distributions of 235 
observed mass concentrations of major aerosol components at ambient temperature and pressure. Panel (b) is the same as 236 
(a) but from the GEOS-Chem model sampled along the flight tracks (inset). We derive dust concentration from SAGA 237 
Ca2+ and Na+ following Shah et al. (2020) by assuming that non-sea salt Ca2+ accounts for 7.1% of dust mass: [dust] = 238 
([Ca2+] – 0.0439 [Na+]/2) / 0.071 where the brackets denote mass concentration. Modeled dust is shown for particles with 239 
geometric diameter < 2.5 µm, to be consistent with SAGA measurements (Table 2 footnote e). Measured sulfate, nitrate, 240 
ammonium, and organic aerosol concentrations are from the AMS instrument (values from the SAGA instrument are 241 
shown in Figure S4). All data are averaged over 500-m vertical bins. Here and elsewhere, we excluded pollution plumes 242 
diagnosed by either NO2 or SO2 > 10 ppbv (3.4% of all the data). 243 

(a) (b)

Flight tracks
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3.2 Aerosol size distributions 244 

Figure 2a shows the normalized dry aerosol number size distributions on each of the 20 flights and in 3 altitude 245 
bands: < 1.5 km, 3-5 km, and 6-7 km (60 lines). The spread in the size distributions above 1 µm in diameter reflects 246 
dust influence. We select measurements below 1.5 km altitude when SNA + organic aerosol mass concentrations are 247 
more than 4 times that of dust as defining the SNA + organic aerosol size distributions (green lines in Figure 2a). 248 
Conditions dominated by SNA + organic aerosols define the lower envelopes of the ensemble of size distributions at 249 
diameter > 1 µm. SNA and organics were observed to have similar size distributions during KORUS-AQ (Kim et 250 
al., 2018).  251 

Figure 2b converts the SNA + organic dominated number size distributions to volume size distributions. The 252 
observed SNA + organic dominated aerosol size distribution is shifted toward larger sizes relative to the standard 253 
GEOS-Chem. The secondary maximum in the coarse mode could be due to dust. We fitted the observed SNA + 254 
organic aerosol size distributions to a lognormal distribution with volume median radius RV,med = 0.15 µm and 255 
geometric standard deviation s = 1.4. The number median radius is derived from the volume median radius 256 
following Seinfeld and Pandis (2016): 257 

ln 𝑅(,*+, = ln𝑅-,*+, − 3ln.𝜎                                                                 (1) 258 

which yields RN,med = 0.11 µm. In comparison, the standard GEOS-Chem size distribution from Latimer and Martin 259 
(2019) has RN,med = 0.058 µm and s = 1.6. We adopt the observed log-normal size distribution parameters in what 260 
follows (Table 3).  261 
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 262 
Figure 2. Aerosol dry size distributions measured in the KORUS-AQ aircraft campaign. Panel (a) shows mean 263 
normalized number size distributions measured on each of the 20 flights and for 3 altitude bins: < 1.5 km, 3-5 km, and 6-7 264 
km (60 lines total). The SNA + organic dominated size distribution profiles are highlighted in color. Panel (b) shows 265 
normalized volume size distributions for conditions dominated by SNA + organic aerosols (green lines), along with a least-266 
square fit to a lognormal distribution (black line), and the standard GEOS-Chem v12.7.1 size distribution from Latimer 267 
and Martin (2019) (blue dashed line). Normalization imposes an arbitrary value of unit area below each line. Lognormal 268 
distribution parameters are inset in panel (b) including volume median radius (RV,med), number median radius (RN, med), 269 
and geometric standard deviation (s). 270 

3.3 Aerosol extinction and relation to AOD 271 

Figure 3 shows the vertical profiles of ambient aerosol extinction coefficients and RH during KORUS-AQ. Vertical 272 
profiles of aerosol extinction were measured on the aircraft both remotely with the HSRL instrument (above and 273 
below the aircraft) and in situ with TSI-3563 nephelometers (for scattering) and PSAPs (for absorption). The two 274 
agree well, as shown in Figure 3a. They indicate that 76-90% of column aerosol extinction is in the PBL at 0-2 km 275 
altitude and 9-19% is in the lower FT at 2-5 km. Both measurements show that aerosol extinction is much more 276 
strongly weighted to the PBL than aerosol mass (Figure 1).  277 

Also shown in Figure 3a are the contributions of individual aerosol components to the extinction profile, as 278 
computed from the GEOS-Chem optical properties (Table 3) applied to the observed mass concentrations. The sum 279 
shows a good match to the measured extinction coefficient profiles. The much larger contribution of the PBL to 280 
column aerosol extinction than to column mass is because aerosol mass in the lower FT is mainly composed of dust, 281 
whose mass extinction efficiency is much smaller than SNA and organics due to its coarse size and lack of 282 
hygroscopic growth (Figure S5). The mean AOD inferred from the aircraft data is 0.36 and is contributed 59% by 283 
SNA, 27% by organic aerosol, 12% by dust, and 2% by BC. It is consistent with the mean AODs measured at 284 
AERONET stations in South Korea during KORUS-AQ (Figure S6). 285 

Figure 3b shows the GEOS-Chem simulation of aerosol extinction profiles for comparison to the observations in 286 
Figure 3a. The model underestimates extinction coefficients by 20% below 1 km altitude, leading to a 10% 287 
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underestimate of aircraft inferred AOD, although there is no such underestimate in aerosol mass. This is caused by a 288 
negative RH bias in the GEOS-FP meteorological data used to drive GEOS-Chem, particularly at high RH 289 
conditions (Figure 3c) and is corrected if we apply the observed RH rather than the GEOS-FP RH to the GEOS-290 
Chem aerosol mass concentrations (Figure 3d).  291 

 292 
Figure 3. Vertical profiles of aerosol extinction coefficients and relative humidity (RH) during KORUS-AQ. Panel (a) 293 
shows the mean observed vertical distributions of 550 nm extinction coefficients measured in situ (nephelometer + PSAPs; 294 
at ambient RH) and remotely (HSRL), along with an independent calculation (colored horizontal bars) from the 295 
measured mass concentrations of major aerosol components, measured RH, and GEOS-Chem optical properties as given 296 
in Table 3. Panel (b) shows the mean aerosol extinction profile in GEOS-Chem and the contributions from the different 297 
model components. Panel (c) is the median vertical profile of RH (horizontal bars are 25-75th percentiles) from aircraft 298 
measurements and the GEOS-FP assimilated meteorological data used to drive GEOS-Chem. Panel (d) is the same as (b) 299 
but calculated using measured RH.  300 

(a) (b)
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4 AOD and surface particulate matter over South Korea during KORUS-AQ 301 

Our analysis of Section 3 used the KORUS-AQ aircraft data together with GEOS-Chem to attribute AOD over 302 
South Korea to individual aerosol components and altitudes. We now take the next step of evaluating the capability 303 
of GEOS-Chem to independently simulate observed AODs and surface particulate matter concentrations. 304 

Figure 4a shows the spatial distribution of the fused geostationary satellite (GOCI/AHI) AOD (GEO satellite AOD) 305 
during the KORUS-AQ period with AERONET total AOD added as circles. The GEO satellite AOD shows high 306 
values (0.5-0.6) along the west coast of South Korea, significantly correlated with AERONET total AOD with a 307 
spatial correlation coefficient (R) of 0.7. GEO satellite AOD is biased low at sites in the Seoul Metropolitan Area 308 
(SMA) and is biased high on the Yellow Sea islands, resulting in an overall -10% bias. The low biases in the SMA 309 
could be due to high-concentration aerosol pixels mis-identified as clouds and/or possible issues with the aerosol 310 
type assumption in the aerosol retrieval, while the high biases on the Yellow Sea islands could result from 311 
uncertainties in the assumption of ocean surface reflectance, as has been discussed by Choi et al. (2016, 2018) and 312 
Lim et al. (2018, 2021). Sampling the AODs at or near the seven PM2.5 supersites operating during KORUS-AQ 313 
shows no significant bias (inset values in Figure 4a).   314 

Figure 4b-e shows the spatial distributions of GEOS-Chem AOD, surface PM10 (particulate matter with aerodynamic 315 
diameter less than 10 µm), surface PM2.5, and surface coarse PM (PM10 minus PM2.5; particulate matter with 316 
aerodynamic diameter less than 10 µm and larger than 2.5 µm), with surface observations shown as circles and 317 
median values at the measurement sites inset. GEOS-Chem reproduces the satellite AOD enhancements along the 318 
west coast of South Korea but the values are lower than observed, which we attribute to unaccounted coarse PM and 319 
negative RH bias as discussed below. Comparison of AERONET total and fine mode AOD shows a 13% 320 
contribution of coarse particles to total AOD. Comparison of GEOS-Chem to the fine-mode AERONET AOD, as 321 
shown in Figure 4b, finds a 15% underestimate that could be attributed to the low-RH bias (Figure 3c). Concurrent 322 
measurements of PM10 and PM2.5 at AirKorea sites show that coarse PM (median 21 µg m-3) accounts for 41% of 323 
total PM10 (50 µg m-3), while coarse PM in GEOS-Chem is much lower (3.5 µg m-3; Figure 4e). Therefore, about 324 
half of the GEOS-Chem underestimate of total AOD can be attributed to missing coarse PM, with the other half 325 
comes from negative RH bias. Coarse PM has a concentration larger than 10 µg m-3 across South Korea, with higher 326 
concentration in the SMA (~ 30 µg m-3) than in rural areas (~ 15 µg m-3), implying an origin from both 327 
anthropogenic and natural sources (Figure 4e).  328 

GEOS-Chem overestimates surface PM2.5 by 43% over South Korea (Figure 4d), in contrast to the simulation of 329 
AERONET fine mode AOD (Figure 4b). Figure 4f-j shows the spatial distributions of major PM2.5 components in 330 
GEOS-Chem (background) and measurements (filled circles). GEOS-Chem is not significantly biased relative to the 331 
observations for organic aerosol and BC, and underestimates sulfate by 22%. We find that the model bias for PM2.5 332 
is largely driven by nitrate, which is overestimated by a factor of 3 and leads to a 56% overestimate of ammonium. 333 
By contrast, comparison to the KORUS-AQ data below 1-km altitude showed only a 20% overestimate of nitrate 334 
(Figure 1). This is because the model bias is mainly driven by nighttime conditions (Figure 5), while aircraft 335 
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samples in the daytime during KORUS-AQ. The cause of this large model bias is analyzed by K. R. Travis et al. 336 
(manuscript in preparation) and is attributed to nighttime nitrate chemistry and deposition in the stratified boundary 337 
layer.  338 

 339 
Figure 4. Spatial distributions of AOD and surface PM10, PM2.5, coarse PM (PM10 minus PM2.5), and major PM2.5 340 
components over South Korea averaged during KORUS-AQ (May 9 - June 10, 2016). Panel (a) shows the fused 341 
geostationary (GEO) 550 nm AOD from the GOCI and AHI satellites (background) and AERONET 550 nm total AOD 342 
(filled circles). Panel (b) shows GEOS-Chem 550 nm AOD sampled at hourly GEO satellite AOD (GEOS-Chem clear-sky 343 
AOD; background) and AERONET 550 nm fine mode AOD (filled circles). Panel (c) shows surface PM10 modelled by 344 
GEOS-Chem (background) and measured at ground sites (filled circles). Panels (d-j) are the same as panel (c) but 345 
respectively for PM2.5, coarse PM (PM10 minus PM2.5), and sulfate, nitrate, ammonium, organic, and BC PM2.5 346 
components. Values inset are median values from ground-based measurements (black) and sampled from GEO satellite 347 
(magenta) and GEOS-Chem (blue). Measured PM10, PM2.5, and coarse PM in panels (c-e) are shown for a random 348 
selection of 50% of AirKorea sites to visualize spatial distribution, and inset values are for the seven supersites where 349 
PM2.5 composition was measured. Median AOD values inset are sampled at or near the seven supersites to avoid biasing 350 
by the large number of sites in the Seoul Metropolitan Area. Modelled total PM2.5 concentrations are calculated at 35% 351 
RH (Table 3). Modelled PM10 is the sum of PM2.5, coarse dust, and coarse sea salt.  352 
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 353 
Figure 5. Median diurnal variations of PM2.5 nitrate concentrations at the seven supersites (top left panel) operated in 354 
South Korea during KORUS-AQ (May 9 - June 10, 2016). Values are medians binned by hour. GEOS-Chem model 355 
values are sampled to coincide with the measurements. 356 

5 AOD and its relationship to PM2.5 over East Asia 357 

We build on our analysis of the KORUS-AQ period for a broader interpretation of the distribution of AOD over 358 
Korea and China and its relationship to surface PM2.5, acknowledging that the conditions sampled in KORUS-AQ 359 
may not be representative of other seasons or of China. Figure 6 shows the spatial distributions of 2016 annual and 360 
seasonal mean geostationary (GEO) satellite AODs, the corresponding GEOS-Chem clear-sky AODs, and GEOS-361 
Chem surface PM2.5. The Figure gives normalized mean biases (NMBs) relative to ground-based measurements from 362 
AERONET and from the PM2.5 surface networks (shown as circles) over the North China region (115.5-122° E, 363 
34.5-40.5° N) and South Korea. The North China region is defined to overlap with the domain of the geostationary 364 
satellite AOD, and to ensure consistent seasonal variations within its narrow latitude. 365 

On an annual mean basis, AOD over North China (~ 0.5-0.6) is about 50% larger than over South Korea (~ 0.3-0.4). 366 
AOD over South Korea shows higher values (> 0.4) in the Seoul Metropolitan Area, consistent with that during the 367 
KORUS-AQ period (Figure 4a). Transport from the Asian continent is strongest in spring when the frequency of 368 
cold front passages is highest (Liu et al., 2003). AERONET total AOD in spring (0.4-0.6) is twice as large as fine-369 
mode AOD (0.2-0.3), reflecting a large contribution of dust. In seasons other than spring, 80-90% of AERONET 370 
total AOD is contributed by the fine mode. There is large seasonality in AODs over North China, and weaker 371 
seasonality over South Korea, which will be discussed below.  372 

The GEOS-Chem clear-sky AODs show the same spatial and seasonal patterns as GEO satellite AODs but tend to 373 
be low in spring and summer. Comparison of the model to AERONET AODs confirms this bias and shows better 374 
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agreement with fine-mode AOD in spring (NMB of -1%), implying an underestimate of coarse dust that is consistent 375 
with our comparisons to the AirKorea network data (Figure 4e). Comparison of clear-sky and all-sky AODs in 376 
GEOS-Chem shows no significant difference on an annual and seasonal mean basis, except for winter (Figure S7). 377 
Winter has larger all-sky AOD than clear-sky AOD and the lowest rate of successful satellite retrievals (Figure S7), 378 
which may be due in part to misclassification of heavy wintertime PM2.5 pollution as clouds (Zhang et al., 2020).  379 

The spatial distributions of PM2.5 in GEOS-Chem in different seasons match closely the observations (Figure 6, 380 
bottom row). We see also a close coincidence between the spatial distributions of PM2.5 and AODs, both in the 381 
observations and the model. On an annual mean basis, GEOS-Chem overestimates PM2.5 by 16% in North China 382 
and by 14% in South Korea, even though it underestimates AERONET fine mode AODs by 15%. The overestimate 383 
of PM2.5 in South Korea is worst in spring (27%), consistent with KORUS-AQ results which we previously 384 
attributed to excessive nighttime nitrate build-up in the model. Over North China, the overestimate of PM2.5 is worst 385 
in summer (33%), consistent with the nitrate overestimate in summer shown in our previous study (Zhai et al., 386 
2021), which could also be due to model overestimate of nighttime nitrate (Miao et al., 2020).   387 
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 388 
Figure 6. Spatial distributions of 2016 annual and seasonal mean AOD (550 nm) and surface PM2.5. The top row shows 389 
the observed GOCI/AHI geostationary satellite AOD (GEO satellite AOD) on the GEOS-Chem 0.5o × 0.625o grid with 390 
superimposed 925 hPa GEOS-FP wind fields and AERONET total AODs (circles). The middle row shows clear-sky 391 
GEOS-Chem AOD, with AERONET fine mode AOD added as circles. The bottom row shows GEOS-Chem surface PM2.5 392 
(background) with surface network measurements (circles). AERONET AODs are shown only when more than 10 393 
months of data are available for the annual mean and all 3 months data are available for each season. The PM2.5 394 
observations shown are for a random selection of 7% of network sites for visual clarity. GEOS-Chem PM2.5 is calculated 395 
at 35% RH (Table 3). Normalized mean biases (NMBs) inset are for the comparisons of GEO satellite and GEOS-Chem 396 
values to the corresponding ground measurements.  397 

 398 

Figure 7 shows daily correlations of the regional average series between AERONET total AOD and GEO satellite 399 
AOD, between AERONET fine mode AOD and GEOS-Chem AOD, as well as between measured PM2.5 and GEOS-400 
Chem PM2.5. Correlations in Figure 7 are all statistically significant with correlation coefficients (R) ranging from 401 
around 0.7 to more than 0.9 and normalized mean biases (NMB) within ± 30%. The correlations of these three pairs 402 
are similar over South Korea and North China, except that GEOS-Chem overestimates springtime PM2.5 in South 403 
Korea but not over North China, possibly due to a model overestimate of the long-range transport of PM2.5 from 404 
China to South Korea in spring. 405 
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 406 
Figure 7. Scatter plots of regional mean daily (a and d) GEO satellite AOD vs. AERONET total AOD, (b and e) GEOS-407 
Chem AOD vs. AERONET fine-model AOD, and (c and f) GEOS-Chem PM2.5 vs. measured PM2.5 over South Korea (a-c) 408 
and North China (d-f). Different colors represent different seasons. Values inset are correlation coefficients (R) and 409 
normalized mean biases (NMB) between surface measurements and GEO satellite or GEOS-Chem values. 410 

 411 

Figure 8 compares the seasonalities of AOD and PM2.5 over the North China and South Korea regions. The GEO 412 
satellite AOD over North China peaks in July and is minimum in winter. Most of AOD is attributed by GEOS-Chem 413 
to SNA aerosol, same as in South Korea. AOD over South Korea also has a summer maximum and winter minimum 414 
but with weaker amplitude than over North China. The GEOS-Chem AOD is ~ 20% biased low in summer and this 415 
is largely due to a low RH bias (Figure S8), as seen previously in the KORUS-AQ comparisons but amplified by the 416 
high RH in summer that drives hygroscopic growth (Latimer and Martin, 2019).  417 

Surface PM2.5 in the observations over North China and South Korea shows opposite seasonality to AOD, with 418 
minimum values in summer and maximum values in winter-spring. GEOS-Chem reproduces the strong seasonality 419 
of PM2.5 in North China and the much weaker seasonality in South Korea. The high PM2.5 values over North China 420 
in winter in the model are mostly driven by organic aerosol, reflecting the large residential coal burning source 421 
(Figure S9; Zheng et al., 2018). In South Korea, by contrast, household energy is mainly from natural gas and 422 
electricity (Lee et al., 2020; Woo et al., 2020). GEOS-FP daytime PBL height also shows a stronger seasonality over 423 
North China than over South Korea (Figure S8), generally consistent with the CALIPSO daytime PBL height (Su et 424 
al., 2018). Previous studies have shown opposite seasonality between MODIS AOD and surface PM2.5 over North 425 
China and attributed this to the seasonality in PBL height and RH (Qu et al., 2016; Xu et al., 2019). The mean 426 
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PM2.5/AOD ratio over North China in winter (236 µg m-3) is 8 times that in summer (29 µg m-3), with autumn (94 µg 427 
m-3) and spring (89 µg m-3) in between, while over South Korea, the PM2.5/AOD ratio in winter (62 µg m-3) is only 428 
70% larger than in summer (36 µg m-3). 429 

 430 
Figure 8. Seasonality of AOD and PM2.5 over North China and South Korea, and contributions from individual aerosol 431 
components. Lines show regional medians (error bars: 25th and 75th percentiles) for the ensemble of monthly averaged 432 
observations in the regions (Figure 6) in 2016. GEOS-Chem values are shown as stacked contours for individual 433 
components and are sampled in the same way as the observations.  434 

6 Conclusions  435 

Geostationary satellite observations of aerosol optical depth (AOD) over East Asia may usefully complement PM2.5 436 
air quality networks if the local relationship between AOD and PM2.5 can be inferred from a physical and/or 437 
statistical model. Here we analyzed the ability of the GEOS-Chem chemical transport model to provide this 438 
relationship by using a new fused GOCI/AHI geostationary satellite product together with AERONET ground-based 439 
AOD measurements, aerosol vertical profiles over South Korea from the KORUS-AQ aircraft campaign (May-June 440 
2016), and surface network observations. This allowed us to identify the critical features and limitations of the 441 
model for successful representing the AOD-PM2.5 relationship. 442 

The KORUS-AQ observations show that total aerosol extinction (550 nm) in the vertical column is dominated by 443 
sulfate-nitrate-ammonium (SNA) and organic aerosol in the planetary boundary layer (PBL), despite large 444 
concentrations of dust in the free troposphere. This reflects the optically effective size and high hygroscopicity of 445 
the PBL aerosols. We find that GEOS-Chem aerosol optical properties based on measurements over the North 446 
America (default model setting) underestimate KORUS-AQ aerosol mass extinction efficiency by around 20%. In 447 
addition, a low bias in GEOS-FP RH below 1 km leads to a 10% underestimate of AOD inferred from the aircraft 448 
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profile. Adjustments of GEOS-Chem aerosol optical properties and RH enable a successful simulation of the aerosol 449 
extinction profile. SNA aerosol contributes 59% of column aerosol extinction in the KORUS-AQ data, while 450 
organic aerosol contributes 27% and dust contributes 12%.  451 

Comparison of GOCI/AHI geostationary (GEO) satellite AOD to AERONET AODs over South Korea shows good 452 
agreement, with high values along the west coast. GEOS-Chem is more consistent with the fine-mode AERONET 453 
AOD because of its insufficient accounting of coarse particles, which account for 13% of AERONET AOD. The 454 
remaining 15% underestimate of AERONET fine-mode AOD by GEOS-Chem can be attributed to the RH low bias. 455 
GEOS-Chem overestimates 24-h surface PM2.5 over South Korea by 43% during the KORUS-AQ period, despite its 456 
successful simulation of the aircraft data and fine-mode AERONET AOD, and we find that this is due to a large 457 
overestimate of nighttime nitrate.  458 

Broader examination of the GOCI/AHI AOD satellite data over East Asia shows spatial distributions and 459 
magnitudes consistent with AERONET and featuring in particular strong Asian outflow in spring that includes a 460 
large dust component. We find that AODs and PM2.5 have similar large-scale spatial distributions but opposite 461 
seasonality. PM2.5 in North China has a strong winter maximum and summer minimum, while AOD shows the 462 
opposite. GEOS-Chem simulates successfully the seasonality of measured PM2.5 but is ~ 20% biased low in summer 463 
for AOD, due again to RH low bias like that during KORUS-AQ, amplified by the high RH in summer that drives 464 
hygroscopic growth (Latimer and Martin, 2019). We find that the opposite AOD and PM2.5 seasonality is mainly 465 
driven by residential coal heating sources and low PBL depths in winter, and high RH in summer. Observations of 466 
PM2.5 and AOD in South Korea show the same seasonal phases as in North China but with much weaker amplitude, 467 
reflecting the lack of residential coal burning in winter and a weaker seasonal amplitude of PBL depth.  468 

In summary, we find that the geostationary GOCI/AHI satellite AOD data provide high-quality information for 469 
monitoring of PM2.5 over East Asia but that physical interpretation requires accurate information on aerosol size 470 
distributions, PBL depths, RH, the role of coarse particles, and diurnal variation of PM2.5, all of which are subject to 471 
large uncertainties in chemical transport models. Addressing these uncertainties should be a target of future work. 472 
We have used results from our study in a recent machine-learning reconstruction of daily 2011-present PM2.5 over 473 
East Asia from GOCI AOD data by identifying critical variables for the machine-learning algorithm and providing 474 
blended gap-filling data for cloudy scenes (Pendergrass et al., 2021). Besides the factors discussed in this study, 475 
topography might be another important factor influencing surface PM2.5 and its vertical mixing (Su et al., 2018), and 476 
this also requires future investigation. 477 

 478 

Data availability. Aircraft data during KORUS-AQ are available at: www-air.larc.nasa.gov/cgi-479 
bin/ArcView/korusaq. PM2.5 data over China are from: quotsoft.net/air/. PM2.5 data over South Korea are from: 480 
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