Relating geostationary satellite measurements of aerosol optical 1

depth (AOD) over East Asia to fine particulate matter (PM_{2.5}): 2

insights from the KORUS-AQ aircraft campaign and GEOS-3

Chem model simulations 4

- Shixian Zhai¹, Daniel J. Jacob¹, Jared F. Brewer¹, Ke Li¹, Jonathan M. Moch¹, Jhoon Kim^{2, 3}, 5
- 6 Seoyoung Lee², Hyunkwang Lim², Hyun Chul Lee³, Su Keun Kuk³, Rokjin J. Park⁴, Jaein I.
- Jeong⁴, Xuan Wang⁵, Pengfei Liu⁶, Gan Luo⁷, Fangqun Yu⁷, Jun Meng^{8, a}, Randall V. Martin⁸, 7
- Katherine R. Travis⁹, Johnathan W. Hair⁹, Bruce E. Anderson⁹, Jack E. Dibb¹⁰, Jose L. 8
- 9 Jimenez¹¹, Pedro Campuzano-Jost¹¹, Benjamin A. Nault^{11, b}, Jung-Hun Woo¹², Younha Kim¹³,
- Qiang Zhang¹⁴, Hong Liao¹⁵ 10
- 11 ¹Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- 12 ²Department of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea
- 13 ³Samsung Particulate Matter Research Institute, Samsung Advanced Institute of Technology, 130 Samsung-ro,
- 14 Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
- 15 ⁴School of Earth and Environmental Sciences, Seoul National University, Seoul, Republic of Korea
- 16 ⁵School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
- 17 ⁶School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- 18 ⁷Atmospheric Sciences Research Center, University at Albany, Albany, New York, USA
- 19 ⁸Department of Energy, Environmental & Chemical Engineering, Washington University in St Louis, MO, USA
- 20 ⁹NASA Langley Research Center, Hampton, VA, USA
- 21 ¹⁰Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
- 22 ¹¹Department of Chemistry, and Cooperative Institute for Research in Environmental Sciences, University of
- 23 Colorado, Boulder, CO, USA
- 24 ¹²Department of Civil and Environmental Engineering, Konkuk University, Seoul, Republic of Korea
- 25 ¹³International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria
- 26 ¹⁴Department of Earth System Science, Tsinghua University, Beijing, China.
- 27 ¹⁵Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation
- 28 29 Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and
- Engineering, Nanjing University of Information Science and Technology, Nanjing, China.
- 30 ^a Now at Department of Atmospheric & Oceanic Sciences, University of California, Los Angeles, California, USA
- 31 ^b Now at Center for Aerosol and Cloud Chemistry, Aerodyne Research, Inc., Billerica, MA, USA
- 32 Correspondence: Shixian Zhai (zhaisx@g.harvard.edu)
- 33

34 Abstract. Geostationary satellite measurements of aerosol optical depth (AOD) over East Asia from the GOCI and 35 AHI instruments can augment surface monitoring of fine particulate matter (PM2.5) air quality, but this requires 36 better understanding of the AOD-PM2.5 relationship. Here we use the GEOS-Chem chemical transport model to 37 analyze the critical variables determining the AOD-PM_{2.5} relationship over East Asia by simulation of observations 38 from satellite, aircraft, and ground-based datasets. This includes the detailed vertical aerosol profiling over South 39 Korea from the KORUS-AQ aircraft campaign (May-June 2016) with concurrent ground-based PM_{2.5} composition, 40 PM₁₀, and AERONET AOD measurements. The KORUS-AQ data show that 550 nm AOD is mainly contributed by 41 sulfate-nitrate-ammonium (SNA) and organic aerosols in the planetary boundary layer (PBL), despite large dust 42 concentrations in the free troposphere, reflecting the optically effective size and high hygroscopicity of the PBL 43 aerosols. We updated SNA and organic aerosol size distributions in GEOS-Chem to represent aerosol optical 44 properties over East Asia by using in-situ measurements of particle size distributions from KORUS-AO. We find 45 that SNA and organic aerosols over East Asia have larger size (number median radius of 0.11 µm with geometric 46 standard deviation of 1.4) and 20% larger mass extinction efficiency as compared to aerosols over North America 47 (default setting in GEOS-Chem). Although GEOS-Chem is successful in reproducing the KORUS-AQ vertical 48 profiles of aerosol mass, its ability to link AOD to PM_{2.5} is limited by under-accounting of coarse PM and by a large 49 overestimate of nighttime PM2.5 nitrate. The GOCI/AHI AOD data over East Asia in different seasons show 50 agreement with AERONET AODs and a spatial distribution consistent with surface PM2.5 network data. The AOD 51 observations over North China show a summer maximum and winter minimum, opposite in phase to surface PM_{2.5}. 52 This is due to low PBL depths compounded by high residential coal emissions in winter, and high relative humidity 53 (RH) in summer. Seasonality of AOD and PM2.5 over South Korea is much weaker, reflecting weaker variation of

54 PBL depth and lack of residential coal emissions.

55 1 Introduction

- 56 PM_{2.5} (particulate matter with aerodynamic diameter less than 2.5 µm) in surface air is a severe public health
- 57 concern in East Asia, but surface monitoring networks are too sparse to thoroughly assess population exposure.
- 58 Satellite observations of aerosol optical depth (AOD) can provide a valuable complement (Van Donkelaar et al.,
- 59 2015). Geostationary satellite sensors, including the Geostationary Ocean Color Imager (GOCI) launched by the
- 60 Korea Aerospace Research Institute (KARI) in 2011 (Choi et al., 2016, 2018, 2019) and the Advanced Himawari
- 61 Imager (AHI) launched by the Japanese Meteorological Agency (JMA) in 2014 (Lim et al., 2018, 2021), offer the
- 62 potential for high-density mapping of PM_{2.5} over East Asia. However, more confidence is needed in relating AOD to
- 63 PM_{2.5}. Here we evaluate the capability of the GEOS-Chem chemical transport model (CTM) to simulate AOD-PM_{2.5}
- 64 relationships over East Asia, exploiting in-situ aircraft measurements of vertical aerosol profiles and optical
- 65 properties from the joint NASA-NIER Korea United States Air Quality (KORUS-AQ) field study in May-June
- 66 2016 (Crawford et al., 2021; Peterson et al., 2019; Jordan et al., 2020) together with GOCI/AHI geostationary
- 67 satellite data and surface measurement networks. This enables us to identify critical variables and uncertainties for
- 68 inferring PM_{2.5} from satellite AOD data.

- 69 A number of past studies have used satellite AOD data to infer surface PM_{2.5} using physical and statistical models.
- 70 The standard geophysical approach has been to use a CTM, such as GEOS-Chem, to compute the PM_{2.5}/AOD ratio
- 71 (Liu et al., 2004; van Donkelaar et al., 2006; van Donkelaar et al., 2015; Xu et al., 2015; Geng et al., 2017), with
- 72 recent applications correcting for CTM biases using available PM_{2.5} surface network data (Brauer et al., 2016; Van
- 73 Donkelaar et al., 2016; van Donkelaar et al., 2019; Hammer et al., 2020). An alternative approach is to use machine-
- ⁷⁴ learning algorithms to relate satellite AOD to PM_{2.5} by training on the surface network data (Hu et al., 2017; Chen et
- al., 2018; Xiao et al., 2018; Wei et al., 2021; Pendergrass et al., 2021), and sometimes including CTM values as
- 76 predictors (Di et al., 2019; Xue et al., 2019). Yet another approach is to assimilate the satellite-measured AODs in a
- 77 CTM and correct in this manner the PM_{2.5} simulation, although this requires attribution of model AOD errors to
- 78 specific model parameters (Kumar et al., 2019; Saide et al., 2014; Sekiyama et al., 2010; Cheng et al., 2019). In all
- 79 of these approaches, a better physical understanding of the AOD-PM_{2.5} relationship as simulated by CTMs can
- 80 greatly enhance the capability to infer PM_{2.5} from AOD data.

81 AOD measures aerosol extinction (scattering and absorption) integrated over the atmospheric column, so that its

- 82 relationship to 24-hr average surface PM_{2.5} (the standard air quality metric) depends on the aerosol vertical
- 83 distribution and optical properties, ambient relative humidity (RH), diurnal variation of PM_{2.5}, and contribution from
- 84 coarse particulate matter to AOD. Little study of these factors has been conducted for East Asia. Airborne
- 85 measurements of aerosol vertical profiles in East Asia are very limited (Liu et al., 2009; Sun et al., 2013). AOD is
- 86 highly sensitive to RH (Brock et al., 2016; Latimer and Martin et al., 2019; Saide et al., 2020), but the impact from
- 87 RH uncertainty on AOD simulation lacks evaluation. In addition, because the AOD is a daytime measurement that
- 88 needs to be related to 24-h average PM_{2.5}, the diurnal variation of PM_{2.5} needs to be understood (Guo et al., 2017;
- 89 Lennartson et al., 2018). Finally, there has been to our knowledge no study of how coarse anthropogenic PM may
- 90 contribute to the AOD measurements. Coarse anthropogenic PM (distinct from desert dust) is known to be high over
- 91 East Asia (Chen et al., 2015; Dai et al., 2018).

92 2 Data and methods

93 2.1 Observations

94 We use observations over China and South Korea from multiple platforms including surface sites, aircraft, and 95 satellites (Table 1 and 2). Surface data (Table 1) include PM2.5 from national observation networks in China (Zhai et 96 al., 2019) and South Korea (Jordan et al., 2020), speciated PM2.5 at 7 supersites in South Korea during KORUS-AQ 97 (Choi et al., 2019), and ground-based AODs from the AERONET network at 5 sites in North China and 10 sites in 98 South Korea (21 sites during KORUS-AQ). We use total and fine-mode AODs at 500 nm wavelength from the 99 AERONET Version 3; Spectral Deconvolution Algorithm (SDA) Version 4.1 Retrieval Level 2.0 database (Giles et 100 al., 2019; O'Neill et al., 2003). The AERONET AODs at 500 nm are converted to 550 nm using total and fine mode 101 Ångström Exponents at 500 nm for consistency with the satellite AOD data.

102 Table 1. Surface site observations used in this work (2016)

	Variable	Number of sites				
	PM _{2.5} in North China ^a	117				
	PM _{2.5} in South Korea ^b	130				
	PM _{2.5} composition in South Korea (May-June 2016) °	7				
	AERONET total and fine mode AOD in North China ^d	5				
	AERONET total and fine mode AOD in South Korea ^d	10-21 °				
103 104 105 106	^a Hourly PM _{2.5} from the China National Environmental Monitoring Centre (CNEMC; quotsoft.net/air/) in North China (115.5-122° E, 34.5-40.5° N), including only sites with more than 90% data coverage in each month of 2016. Quality control of the CNEMC dataset is described in our previous study (Zhai et al., 2019). The PM _{2.5} measurements are made at reference RH \leq 35%.					
107 108	^b Hourly PM _{2.5} from the AirKorea network (airkorea.or.kr), with the sat The PM _{2.5} measurements are made at reference RH \leq 35%.	me data selection criteria as for North China.				
109 110 111 112	^c Major PM _{2.5} components including sulfate, nitrate, ammonium, organic carbon, and black carbon at 7 supersites in South Korea during KORUS-AQ (May-June 2016; Choi et al., 2019). The mass concentration of organic carbon is converted to that of organic aerosol with a multiplicative factor of 1.8 based on KORUS-AQ observations (Kim et al., 2018).					
113 114 115 116	^d AODs are from the AERONET Version 3 Level 2.0 all-points database (aeronet.gsfc.nasa.gov), except that AODs at the XuZhou site in North China are from the Version 3 Level 1.5 database. AOD at 500 nm (AOD _{500nm}) is converted to 550 nm (AOD _{550nm}) using Ångström Exponent at 500 nm (AE _{500nm}) following: $AOD_{550nm} = AOD_{500nm} (\frac{550}{500})^{-AE_{500nm}}$.					
117	^e AERONET AODs in South Korea are from 10 sites for the full year of 2016 and 21 sites during KORUS-AQ.					
118	The KORUS-AQ campaign (Table 2) includes 20 flights over the Korean peninsula and the surrounding ocean from					
119	May 2 to June 10, 2016, with vertical profiling up to 8 km altitude. We use the aircraft observations of remote and in					
120	situ aerosol extinction (scattering + absorption) coefficients, dry aerosol number size distributions, sub-micron non-					
121	refractory aerosol composition, bulk aerosol ionic composition, black carbon (BC), and relative humidity (RH).					
122	Geostationary satellite AOD at 550 nm are retrieved by the Yonsei Aer	osol Retrieval (YAER) algorithm for the				
123	GOCI (Choi et al., 2016, 2018) and AHI (Lim et al. 2018) instruments, with GOCI covering East China and South					
124	Korea and AHI covering the broad East Asia region. AOD from GOCI and AHI have a 6 km \times 6 km spatial					
125	resolution and 1-hour (GOCI) to 2.5-minute (AHI) temporal resolution for 8 hours per day (09:30 to 16:30 local					
126	time). We use the fused AOD product generated from the Yonsei GOCI and AHI AOD retrievals, each using two					
127	different surface reflectance methods (Lim et al., 2021). Fusion of this four-member ensemble is done by the					
128	maximum likelihood estimate (MLE) method, with weighting and averaging based on errors determined by					
129	comparison to AERONET AOD. The fused satellite AOD product is shown by Lim et al. (2021) to have higher					
130	accuracy than its member products in comparison with AERONET data during the KORUS-AQ campaign. We will					
131	refer to it as the 'GEO satellite AOD' product in what follows.					

2 Table 2. KORUS-AQ aircraft observations used in this work (May-June 2016).

Variable	Instrument
Aerosol extinction profile at 532 nm	HSRL ^a
Aerosol scattering coefficient at 550 nm	TSI nephelometers ^b
Aerosol absorption coefficient at 532 nm	PSAPs °
Aerosol dry size distribution	TSI LAS ^d
Bulk aerosol ionic composition	SAGA °
Sub-micron non-refractory aerosol composition	HR-ToF-AMS ^f
Black carbon concentration	HDSP2 ^g
Relative humidity	DLH ^h

^a NASA Langley airborne High Spectral Resolution Lidar (HSRL) (Hair et al., 2008; Scarino et al., 2014).

^b NASA Langley TSI-3563 nephelometers (Ziemba et al., 2013).

^c Radiance Research 3-wavelength particle soot absorption photometers (PSAPs; Ziemba et al., 2013).

^d In-situ particle size distributions over the 0.1-5.0 μm diameter range from the TSI Laser Aerosol Spectrometer
 (LAS) Model 3340.

^e University of New Hampshire (UNH) Soluble Acidic Gases and Aerosol (SAGA) instrument (Dibb et al., 2003).

The cutoff aerodynamic diameter of the inlet is around 4 μm, corresponding to a geometric particle diameter of 2.5
 μm (McNaughton et al., 2007; McNaughton et al., 2009).

¹41 ^f University of Colorado Boulder High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS;

142 DeCarlo et al., 2006; Nault et al., 2018; Guo et al., 2020).

^g NOAA Humidified-Dual-Single-Particle Soot Photometer (HDSP2; Lamb et al., 2018).

^h NASA Diode Laser Hygrometer (DLH; Podolske et al., 2003).

145 2.2 GEOS-Chem simulation

146 We use GEOS-Chem version 12.7.1 (DOI: 10.5281/zenodo.3676008) in a nested-grid simulation at a horizontal

147 resolution of $0.5^{\circ} \times 0.625^{\circ}$ over East Asia (100-145 °E, 20-50 °N). GEOS-Chem simulates detailed tropospheric

148 oxidant-aerosol chemistry and is driven here by GEOS-FP assimilated meteorological data from the NASA Global

149 Modeling and Assimilation Office (GMAO). Boundary layer mixing uses the non-local scheme implemented by Lin

- 150 and McElroy (2010). Dry deposition of gases and particles follows a standard resistance-in-series scheme (Zhang et
- al., 2001; Fairlie et al., 2007; Fisher et al., 2011; Jaeglé et al., 2018). Wet deposition of gases and particles includes
- 152 contributions from rainout, washout, and scavenging in convective updrafts (Liu et al., 2001; Amos et al., 2012; Q.
- 153 Wang et al., 2011; Q. Wang et al., 2014) with recent updates by Luo et al. (2019, 2020). We use pre-archived initial

- conditions from Zhai et al. (2021) and run the model from December 1, 2015 to December 31, 2016. The first monthis used for spin-up and the year 2016 is used for analysis.
- 156 GEOS-Chem has been used extensively to simulate PM_{2.5} and its composition in East Asia (Geng et al., 2017; Li et
- 157 al., 2016; Choi et al., 2019; Jeong et al., 2008; Park et al., 2021; Zhai et al., 2021). Here we use the bulk
- representation of aerosols including sulfate (Park et al., 2004; Alexander et al., 2009), nitrate (Jaeglé et al., 2018),
- primary and secondary organics (Pai et al., 2020), BC (Q. Wang et al., 2014), natural dust in four advected size
- 160 ranges (Fairlie et al., 2007), anthropogenic fine dust (Philip et al., 2017), and sea salt in two size ranges (Jaeglé et
- 161 al., 2011). Heterogeneous sulfate formation on aqueous aerosols is represented by a simplified parameterization
- 162 scheme (Y. Wang et al., 2014), where the SO₂ uptake coefficient (γ) linearly increases from 1 × 10⁻⁵ at RH \leq 50% to
- 163 2×10^{-5} at RH = 100%. The thermodynamic equilibrium of sulfate-nitrate-ammonium (SNA) aerosols with the gas
- 164 phase is computed with ISORROPIA II (Fountoukis and Nenes, 2007; Pye et al., 2009) assuming an aqueous
- aerosol. We include reactive uptake on dust of acid gases (HNO₃, SO₂, and H₂SO₄), limited by consumption of dust
- alkalinity (Fairlie et al., 2010). The alkalinity of emitted dust is estimated by assuming 7.1% Ca²⁺ and 1.1% Mg²⁺ as
- alkaline cations by dust mass (Shah et al., 2020).
- 168 Monthly anthropogenic emissions are from the Multi-resolution Emission Inventory in 2016 for China (MEIC;
- 169 Zheng et al., 2018; http://meicmodel.org) and from the KORUSv5 emission inventory at base year 2015 (Woo et al.,
- 170 2020; http://aisl.konkuk.ac.kr/#/emission_data/korus-aq_emissions) for other Asian countries and shipping
- 171 emissions. MEIC over China applies weekly and diurnal scaling factors for all anthropogenic emissions (Zheng et
- 172 al., 2018). The KORUSv5 agricultural NH₃ emissions apply the diurnal scaling factors from MEIC. Natural
- 173 emissions include NO_x from lightning (Murray et al., 2012) and soil (Hudman et al., 2012), MEGANv2 biogenic
- 174 volatile organic compounds (VOCs) (Guenther et al., 2012), dust (Meng et al., 2020), and sea salt (Jaeglé et al.,
- 175 2011). Open fire emissions are from the Global Fire Emissions Database version 4 (GFED4; van der Werf et al.,
- 176 2017).

177 **2.3 AOD** simulation

178 AOD in GEOS-Chem is diagnosed by integrating vertically the aerosol scattering and absorption coefficients 179 obtained with a standard Mie calculation applied to assumed size distributions, hygroscopicity, refractive indices, 180 and densities for individual aerosol components, and summing over all components (Martin et al., 2003). Optical 181 properties are listed in Table 3. Sulfate, nitrate, and ammonium share the same optical properties and are lumped as 182 an SNA aerosol component for the purpose of optical calculations. All aerosol components except dust are assumed 183 to follow log-normal size distributions. Dust includes 7 size bins (centered at radii of 0.15, 0.25, 0.4, 0.8, 1.5, 2.5, 184 and 4.0 µm) for optical calculations, with the smallest four bins partitioned by mass from the first advected dust bin 185 (< 2.5 µm in geometric diameter) following L. Zhang et al. (2013). Dust particles follow a gamma size distribution 186 within their optical size bins (Curci, 2012). The BC absorption enhancement from coating is as given by X. Wang et 187 al. (2014).

- 188 Our initial simulations indicated that aerosol extinction coefficients from the standard GEOS-Chem version 12.7.1
- 189 underestimated in situ measured extinction coefficients during KORUS-AQ by 20% on average (Figure S1). We
- 190 traced this problem to bias in the assumed size distributions for SNA and organic aerosol, as shown in Section 3.
- 191 Therefore, we re-computed the diagnostic AOD using updated log-normal size distributions for SNA and organic
- 192 aerosol with number median radius $R_{N,med} = 0.11 \,\mu\text{m}$ and geometric standard deviation $\sigma = 1.4$ based on KORUS-
- 193 AQ observations, instead of $R_{N,med} = 0.058 \,\mu\text{m}$ and $\sigma = 1.6$ in the standard model version 12.7.1, which is derived
- 194 from IMPROVE network measurements of aerosol mass scattering efficiency over North America (Latimer and
- 195 Martin, 2019).

Aerosol component	R _{N,med} , µm	σ	Hygroscopicity ^b	Refractive index	ρ , g cm ⁻³
SNA °	0.11	1.4	$\kappa = 0.61$	$1.53 - 6.0 \times 10^{-3}i$	1.7
Organic ^c	0.11	1.4	$\kappa = 0.1$	$1.53 - 6.0 \times 10^{-3}i$	1.3
BC	0.020	1.6	GADS	$1.75 - 4.4 \times 10^{-3}i$	1.8
Sea salt (fine)	0.085	1.5	GADS	$1.5 - 1.0 \times 10^{-3}i$	2.2
Sea salt (coarse)	0.40	1.8	GADS	$1.5 - 1.0 \times 10^{-3}i$	2.2
Dust	7 size bins	NA	$\kappa = 0^{\mathrm{d}}$	$1.558 - 1.4 \times 10^{-3}i$	2.5-2.65 °

196 Table 3. Aerosol optical properties ^a.

^a Aerosol optical properties used in this work for computing aerosol scattering and absorption coefficients. Values

are from the standard GEOS-Chem model version 12.7.1, except for the size distributions of SNA and organic

aerosol which are based on KORUS-AQ observations (see text). All aerosol components except dust have log-

200 normal dry size distributions where $R_{N,med}$ is the number median radius and σ is the geometric standard deviation.

201 Refractive indices are for 550 nm wavelength. ρ is the dry aerosol mass density.

^b Hygroscopic growth for SNA and organic aerosol as a function of relative humidity (RH, %) is computed from κ -Kohler theory as a diameter growth factor GF = $(1 + \kappa * \text{RH}/(100\text{-RH}))^{1/3}$ (Latimer and Martin, 2019). Hygroscopic growth factors for other aerosol components are from the Global Aerosol Data Set (GADS) as tabulated in Chin et al. (2002) and Martin et al. (2003).

- 206 ° $R_{N,med}$ and σ are fit to KORUS-AQ observations as described in the text. Standard GEOS-Chem v12.7.1 assumes 207 $R_{N,med} = 0.058$ μm, $\sigma = 1.6$ (Latimer and Martin, 2019).
- ^d Hygroscopic growth of dust particles is assumed negligible.
- ^c Sub-micron dust particles have a density of 2.5 g cm⁻³ while coarse mode dust particles have a density of 2.65 g
- 210 cm⁻³. Dust size distribution is described in the text.

211 3 Aerosol concentrations and optical properties during KORUS-AQ

- 212 Here we use the KORUS-AQ aircraft observations and their simulation with GEOS-Chem to better understand the
- 213 vertical distributions of different aerosol components contributing to AOD over South Korea. We begin with the
- 214 mean vertical profile of aerosol mass and go on to examine the aerosol optical properties. This provides the basis for
- analyzing the observed vertical profile of aerosol extinction, its simulation by GEOS-Chem, and the consistency
- 216 with GEO satellite and AERONET AOD measurements over South Korea during the KORUS-AQ period.

217 **3.1** Vertical profile of aerosol mass

218 Figure 1 shows the mean vertical profiles of aerosol mass observed during KORUS-AQ and their simulation by

- 219 GEOS-Chem. Here and elsewhere, the model is sampled along the flight tracks and at the flight times. The observed
- 220 vertical distribution of aerosol mass concentrations (Figure 1a) shows that 58% of column aerosol mass is below 2
- km altitude, which we define as the average planetary boundary layer (PBL) during KORUS-AQ, and 34% is at 2-5
- 222 km altitude, which we define as the lower free troposphere (FT). The model has a similar vertical distribution
- 223 (Figure 1b), with 57% of aerosol mass in the PBL and 36% in the lower FT. SNA, organic, and dust each contribute
- about a third of aerosol mass in the PBL while dust dominates in the lower FT both in the observations and in the
- model. The enhanced dust in the lower FT is driven by a few dust events, which the model reproduces (Figure S2).
- 226 Black carbon and sea salt (not shown) make only minor contributions to aerosol mass. The model underestimates
- sulfate by 28% in the PBL, which leads to a 20% overestimate of nitrate, with canceling effect on the SNA mass
- simulation.
- 229 The GEOS-Chem simulation of organic aerosol in this work uses the simple scheme of Pai et al. (2020) and
- underestimates aircraft observations by 16% in the PBL. Over 90% of GEOS-Chem organic aerosol is secondary,
- consistent with observations (Figure S4; Nault et al., 2018; Pai et al., 2020). GEOS-Chem simulation of the
- 232 KORUS-AQ aerosol component profiles for different meteorological regimes is presented in Park et al. (2021).

233

- Figure 1. Vertical profiles of aerosol mass during KORUS-AQ. Panel (a) shows the mean vertical distributions of
- observed mass concentrations of major aerosol components at ambient temperature and pressure. Panel (b) is the same as
- 236 (a) but from the GEOS-Chem model sampled along the flight tracks (inset). We derive dust concentration from SAGA
- 237 Ca²⁺ and Na⁺ following Shah et al. (2020) by assuming that non-sea salt Ca²⁺ accounts for 7.1% of dust mass: [dust] =
- 238 ([Ca²⁺] 0.0439 [Na⁺]/2) / 0.071 where the brackets denote mass concentration. Modeled dust is shown for particles with
- 239 geometric diameter < 2.5 μm, to be consistent with SAGA measurements (Table 2 footnote e). Measured sulfate, nitrate,
- ammonium, and organic aerosol concentrations are from the AMS instrument (values from the SAGA instrument are
- shown in Figure S4). All data are averaged over 500-m vertical bins. Here and elsewhere, we excluded pollution plumes
- 242 diagnosed by either NO₂ or SO₂ > 10 ppbv (3.4% of all the data).

243 3.2 Aerosol size distributions

Figure 2a shows the normalized dry aerosol number size distributions on each of the 20 flights and in 3 altitude

bands: < 1.5 km, 3.5 km, and 6.7 km (60 lines). The spread in the size distributions above 1 μ m in diameter reflects

dust influence. We select measurements below 1.5 km altitude when SNA + organic aerosol mass concentrations are

- 247 more than 4 times that of dust as defining the SNA + organic aerosol size distributions (green lines in Figure 2a).
- 248 Conditions dominated by SNA + organic aerosols define the lower envelopes of the ensemble of size distributions at
- $249 \qquad \text{diameter} > 1 \ \mu\text{m}. \ \text{SNA and organics were observed to have similar size distributions during KORUS-AQ} \ (\text{Kim et} \ \text{SNA and organics were observed to have similar size distributions during KORUS-AQ} \ (\text{Kim et} \ \text{SNA and organics were observed to have similar size distributions during KORUS-AQ} \ (\text{Kim et} \ \text{SNA and organics were observed to have similar size distributions during KORUS-AQ} \ (\text{Kim et} \ \text{SNA and organics were observed to have similar size distributions during KORUS-AQ} \ (\text{Kim et} \ \text{SNA and organics were observed to have similar size distributions during KORUS-AQ} \ (\text{Kim et} \ \text{SNA and organics were observed to have similar size distributions during KORUS-AQ} \ (\text{Kim et} \ \text{SNA and organics were observed to have similar size distributions during KORUS-AQ} \ (\text{Kim et} \ \text{SNA and organics were observed to have similar size distributions during KORUS-AQ} \ (\text{Kim et} \ \text{SNA and organics were observed to have similar size distributions during KORUS-AQ} \ (\text{Kim et} \ \text{SNA and organics were observed to have similar size distributions during KORUS-AQ} \ (\text{Kim et} \ \text{SNA and organics were observed to have similar size distributions during KORUS-AQ} \ (\text{Kim et} \ \text{SNA and organics were observed to have similar size} \ \text{SNA and organics were observed to have similar size} \ \text{SNA and organics were observed to have similar size} \ \text{SNA and organics were observed to have similar size} \ \text{SNA and organics were observed to have similar size} \ \text{SNA and organics were observed to have similar size} \ \text{SNA and organics were observed to have similar size} \ \text{SNA and organics were observed to have similar size} \ \text{SNA and organics were observed to have size} \ \text{SNA and organics} \ \text{SNA and organics}$
- 250 al., 2018).
- Figure 2b converts the SNA + organic dominated number size distributions to volume size distributions. The
- observed SNA + organic dominated aerosol size distribution is shifted toward larger sizes relative to the standard

253 GEOS-Chem. The secondary maximum in the coarse mode could be due to dust. We fitted the observed SNA +

organic aerosol size distributions to a lognormal distribution with volume median radius $R_{V,med} = 0.15 \,\mu\text{m}$ and

255 geometric standard deviation σ = 1.4. The number median radius is derived from the volume median radius

256 following Seinfeld and Pandis (2016):

$$\ln R_{N,med} = \ln R_{V,med} - 3\ln^2 \sigma \tag{1}$$

258 which yields $R_{N,med} = 0.11 \,\mu\text{m}$. In comparison, the standard GEOS-Chem size distribution from Latimer and Martin

259 (2019) has $R_{N,med} = 0.058 \ \mu\text{m}$ and $\sigma = 1.6$. We adopt the observed log-normal size distribution parameters in what

Figure 2. Aerosol dry size distributions measured in the KORUS-AQ aircraft campaign. Panel (a) shows mean
 normalized number size distributions measured on each of the 20 flights and for 3 altitude bins: < 1.5 km, 3-5 km, and 6-7
 km (60 lines total). The SNA + organic dominated size distribution profiles are highlighted in color. Panel (b) shows
 normalized volume size distributions for conditions dominated by SNA + organic aerosols (green lines), along with a least square fit to a lognormal distribution (black line), and the standard GEOS-Chem v12.7.1 size distribution from Latimer

and Martin (2019) (blue dashed line). Normalization imposes an arbitrary value of unit area below each line. Lognormal

268 distribution parameters are inset in panel (b) including volume median radius ($R_{V,med}$), number median radius ($R_{N,med}$), 269 and geometric standard deviation (σ).

270 3.3 Aerosol extinction and relation to AOD

Figure 3 shows the vertical profiles of ambient aerosol extinction coefficients and RH during KORUS-AQ. Vertical profiles of aerosol extinction were measured on the aircraft both remotely with the HSRL instrument (above and below the aircraft) and in situ with TSI-3563 nephelometers (for scattering) and PSAPs (for absorption). The two agree well, as shown in Figure 3a. They indicate that 76-90% of column aerosol extinction is in the PBL at 0-2 km altitude and 9-19% is in the lower FT at 2-5 km. Both measurements show that aerosol extinction is much more strongly weighted to the PBL than aerosol mass (Figure 1).

- Also shown in Figure 3a are the contributions of individual aerosol components to the extinction profile, as
- 278 computed from the GEOS-Chem optical properties (Table 3) applied to the observed mass concentrations. The sum

shows a good match to the measured extinction coefficient profiles. The much larger contribution of the PBL to

280 column aerosol extinction than to column mass is because aerosol mass in the lower FT is mainly composed of dust,

281 whose mass extinction efficiency is much smaller than SNA and organics due to its coarse size and lack of

hygroscopic growth (Figure S5). The mean AOD inferred from the aircraft data is 0.36 and is contributed 59% by

283 SNA, 27% by organic aerosol, 12% by dust, and 2% by BC. It is consistent with the mean AODs measured at

AERONET stations in South Korea during KORUS-AQ (Figure S6).

Figure 3b shows the GEOS-Chem simulation of aerosol extinction profiles for comparison to the observations in

Figure 3a. The model underestimates extinction coefficients by 20% below 1 km altitude, leading to a 10%

287 underestimate of aircraft inferred AOD, although there is no such underestimate in aerosol mass. This is caused by a

288 negative RH bias in the GEOS-FP meteorological data used to drive GEOS-Chem, particularly at high RH

289 conditions (Figure 3c) and is corrected if we apply the observed RH rather than the GEOS-FP RH to the GEOS-

290 Chem aerosol mass concentrations (Figure 3d).

291

300 4 AOD and surface particulate matter over South Korea during KORUS-AQ

301 Our analysis of Section 3 used the KORUS-AQ aircraft data together with GEOS-Chem to attribute AOD over

302 South Korea to individual aerosol components and altitudes. We now take the next step of evaluating the capability

303 of GEOS-Chem to independently simulate observed AODs and surface particulate matter concentrations.

- 304 Figure 4a shows the spatial distribution of the fused geostationary satellite (GOCI/AHI) AOD (GEO satellite AOD)
- 305 during the KORUS-AQ period with AERONET total AOD added as circles. The GEO satellite AOD shows high
- 306 values (0.5-0.6) along the west coast of South Korea, significantly correlated with AERONET total AOD with a
- 307 spatial correlation coefficient (*R*) of 0.7. GEO satellite AOD is biased low at sites in the Seoul Metropolitan Area
- 308 (SMA) and is biased high on the Yellow Sea islands, resulting in an overall -10% bias. The low biases in the SMA
- 309 could be due to high-concentration aerosol pixels mis-identified as clouds and/or possible issues with the aerosol
- 310 type assumption in the aerosol retrieval, while the high biases on the Yellow Sea islands could result from
- 311 uncertainties in the assumption of ocean surface reflectance, as has been discussed by Choi et al. (2016, 2018) and
- Lim et al. (2018, 2021). Sampling the AODs at or near the seven PM_{2.5} supersites operating during KORUS-AQ
- 313 shows no significant bias (inset values in Figure 4a).
- Figure 4b-e shows the spatial distributions of GEOS-Chem AOD, surface PM₁₀ (particulate matter with aerodynamic
- diameter less than 10 µm), surface PM_{2.5}, and surface coarse PM (PM₁₀ minus PM_{2.5}; particulate matter with
- aerodynamic diameter less than 10 μm and larger than 2.5 μm), with surface observations shown as circles and
- 317 median values at the measurement sites inset. GEOS-Chem reproduces the satellite AOD enhancements along the
- 318 west coast of South Korea but the values are lower than observed, which we attribute to unaccounted coarse PM and
- 319 negative RH bias as discussed below. Comparison of AERONET total and fine mode AOD shows a 13%
- 320 contribution of coarse particles to total AOD. Comparison of GEOS-Chem to the fine-mode AERONET AOD, as
- 321 shown in Figure 4b, finds a 15% underestimate that could be attributed to the low-RH bias (Figure 3c). Concurrent
- 322 measurements of PM₁₀ and PM_{2.5} at AirKorea sites show that coarse PM (median 21 μ g m⁻³) accounts for 41% of
- total PM₁₀ (50 μg m⁻³), while coarse PM in GEOS-Chem is much lower (1.4 μg m⁻³; Figure 4e). Therefore, about
- half of the GEOS-Chem underestimate of total AOD can be attributed to missing coarse PM, with the other half
- 325 comes from negative RH bias. Coarse PM has a concentration larger than 10 µg m⁻³ across South Korea, with higher
- 326 concentration in the SMA ($\sim 30 \ \mu g \ m^{-3}$) than in rural areas ($\sim 15 \ \mu g \ m^{-3}$), implying an origin from both
- 327 anthropogenic and natural sources (Figure 4e).
- 328 GEOS-Chem overestimates surface PM_{2.5} by 43% over South Korea (Figure 4d), in contrast to the simulation of
- 329 AERONET fine mode AOD (Figure 4b). Figure 4f-j shows the spatial distributions of major PM_{2.5} components in
- 330 GEOS-Chem (background) and measurements (filled circles). GEOS-Chem is not significantly biased relative to the
- 331 observations for organic aerosol and BC, and underestimates sulfate by 22%. We find that the model bias for PM_{2.5}
- is largely driven by nitrate, which is overestimated by a factor of 3 and leads to a 56% overestimate of ammonium.
- By contrast, comparison to the KORUS-AQ data below 1-km altitude showed only a 20% overestimate of nitrate
- 334 (Figure 1). This is because the model bias is mainly driven by nighttime conditions, as shown in Figure 5. The cause
- of this large model bias is analyzed by K. R. Travis et al. (manuscript in preparation) and is attributed to nighttime
- 336 nitrate chemistry and deposition in the stratified boundary layer.

Ground measurements (filled circles) Geostationary satellite (background in panel a) GEOS-Chem (background in panels b-j)

Figure 5. Median diurnal variations of PM_{2.5} nitrate concentrations at the seven supersites (top left panel) operated in

353 South Korea during KORUS-AQ (May 9 - June 10, 2016). Values are medians binned by hour. GEOS-Chem model

354 values are sampled to coincide with the measurements.

355 5 AOD and its relationship to PM_{2.5} over East Asia

We build on our analysis of the KORUS-AQ period for a broader interpretation of the distribution of AOD over Korea and China and its relationship to surface PM_{2.5}, acknowledging that the conditions sampled in KORUS-AQ may not be representative of other seasons or of China. Figure 6 shows the spatial distributions of 2016 annual and seasonal mean geostationary (GEO) satellite AODs, the corresponding GEOS-Chem clear-sky AODs, and GEOS-Chem surface PM_{2.5}. The Figure gives normalized mean biases (*NMBs*) relative to ground-based measurements from AERONET and from the PM_{2.5} surface networks (shown as circles).

362 On an annual mean basis, AOD over North China ($\sim 0.5-0.6$) is about 50% larger than over South Korea ($\sim 0.3-0.4$).

AOD over South Korea shows higher values (> 0.4) in the Seoul Metropolitan Area, consistent with that during the

364 KORUS-AQ period (Figure 4a). Transport from the Asian continent is strongest in spring when the frequency of

365 cold front passages is highest (Liu et al., 2003). AERONET total AOD in spring (0.4-0.6) is twice as large as fine-

366 mode AOD (0.2-0.3), reflecting a large contribution of dust. In seasons other than spring, 80-90% of AERONET

- 367 total AOD is contributed by the fine mode. There is large seasonality in AODs over North China, and weaker
- 368 seasonality over South Korea, which will be discussed below.
- The GEOS-Chem clear-sky AODs show the same spatial and seasonal patterns as GEO satellite AODs but tend to
- 370 be low in spring and summer. Comparison of the model to AERONET AODs confirms this bias and shows better
- 371 agreement with fine-mode AOD in spring (*NMB* of -1%), implying an underestimate of coarse dust that is consistent
- 372 with our comparisons to the AirKorea PM₁₀ network data (Figure 4e). Comparison of clear-sky and all-sky AODs in

- 373 GEOS-Chem shows no significant difference on an annual and seasonal mean basis, except for winter (Figure S7).
- Winter has larger all-sky AOD than clear-sky AOD and the lowest rate of successful satellite retrievals (Figure S7),
- 375 which may be due in part to misclassification of heavy wintertime PM_{2.5} pollution as clouds (Zhang et al., 2020).
- 376 The spatial distributions of PM_{2.5} in GEOS-Chem in different seasons match closely the observations (Figure 6,
- bottom row). We see also a close coincidence between the spatial distributions of PM_{2.5} and AODs, both in the
- 378 observations and the model. On an annual mean basis, GEOS-Chem overestimates PM_{2.5} by 16% in North China
- and by 14% in South Korea, even though it underestimates AERONET fine mode AODs by 15%. The overestimate
- 380 of PM_{2.5} in South Korea is worst in spring (27%), consistent with KORUS-AQ results which we previously
- 381 attributed to excessive nighttime nitrate build-up in the model. Over North China, the overestimate of PM_{2.5} is worst
- in summer (33%), consistent with the nitrate overestimate in summer shown in our previous study (Zhai et al.,
- 383 2021), which could also be due to model overestimate of nighttime nitrate (Miao et al., 2020).

Sec. 386 Figure 6. Spatial distributions of 2016 annual and seasonal mean AOD (550 nm) and surface PM_{2.5}. The top row shows

- 387 the observed GOCI/AHI geostationary satellite AOD (GEO satellite AOD) on the GEOS-Chem 0.5° × 0.625° grid with
- 388 superimposed 925 hPa GEOS-FP wind fields and AERONET total AODs (circles). The middle row shows clear-sky
- 389 GEOS-Chem AOD, with AERONET fine mode AOD added as circles. The bottom row shows GEOS-Chem surface PM_{2.5}
- 390 (background) with surface network measurements (circles). AERONET AODs are shown only when more than 10
- 391 months of data are available for the annual mean and all 3 months data are available for each season. The PM_{2.5}
- 392 observations shown are for a random selection of 7% of network sites for visual clarity. GEOS-Chem PM_{2.5} is calculated

at 35% RH (Table 3). Normalized mean biases (*NMB*s) inset are for the comparisons of GEO satellite and GEOS-Chem
 values to the corresponding ground measurements.

395

396Figure 7 shows daily correlations of the regional average series between AERONET total AOD and GEO satellite397AOD, between AERONET fine mode AOD and GEOS-Chem AOD, as well as between measured PM_{2.5} and GEOS-398Chem PM_{2.5}. Correlations in Figure 7 are all statistically significant with correlation coefficients (R) ranging from399around 0.7 to more than 0.9 and normalized mean biases (NMB) within ± 30%. The correlations of these three pairs400are similar over South Korea and North China, except that GEOS-Chem overestimates springtime PM_{2.5} in South401Korea but not over North China, possibly due to a model overestimate of the long-range transport of PM_{2.5} from402China to South Korea in spring.

Figure 7. Scatter plots of regional mean daily (a and d) GEO satellite AOD vs. AERONET total AOD, (b and e) GEOSChem AOD vs. AERONET fine-model AOD, and (c and f) GEOS-Chem PM_{2.5} vs. measured PM_{2.5} over South Korea (a-c)
and North China (d-f). Different colors represent different seasons. Values inset are correlation coefficients (*R*) and

407 normalized mean biases (*NMB*) between surface measurements and GEO satellite or GEOS-Chem values.

408

403

- 409 Figure 8 compares the seasonalities of AOD and PM_{2.5} over the North China and South Korea regions. The GEO
- 410 satellite AOD over North China peaks in July and is minimum in winter. Most of AOD is attributed by GEOS-Chem
- 411 to SNA aerosol, same as in South Korea. AOD over South Korea also has a summer maximum and winter minimum
- 412 but with weaker amplitude than over North China. The GEOS-Chem AOD is $\sim 20\%$ biased low in summer and this

- 413 is largely due to a low RH bias (Figure S8), as seen previously in the KORUS-AQ comparisons but amplified by the
- 414 high RH in summer that drives hygroscopic growth (Latimer and Martin, 2019).
- 415 Surface PM_{2.5} in the observations over North China and South Korea shows opposite seasonality to AOD, with
- 416 minimum values in summer and maximum values in winter-spring. GEOS-Chem reproduces the strong seasonality
- 417 of PM_{2.5} in North China and the much weaker seasonality in South Korea. The high PM_{2.5} values over North China
- 418 in winter in the model are mostly driven by organic aerosol, reflecting the large residential coal burning source
- 419 (Figure S9; Zheng et al., 2018). In South Korea, by contrast, household energy is mainly from natural gas and
- 420 electricity (Lee et al., 2020; Woo et al., 2020). GEOS-FP daytime PBL height also shows a stronger seasonality over
- 421 North China than over South Korea (Figure S8), generally consistent with the CALIPSO daytime PBL height (Su et
- 422 al., 2018). Previous studies have shown opposite seasonality between MODIS AOD and surface PM_{2.5} over North
- 423 China and attributed this to the seasonality in PBL height and RH (Qu et al., 2016; Xu et al., 2019). The mean
- 424 PM_{2.5}/AOD ratio over North China in winter (236 μ g m⁻³) is 8 times that in summer (29 μ g m⁻³), with autumn (94 μ g
- 425 m^{-3}) and spring (89 µg m^{-3}) in between, while over South Korea, the PM_{2.5}/AOD ratio in winter (62 µg m^{-3}) is only
- 426 70% larger than in summer $(36 \ \mu g \ m^{-3})$.

Figure 8. Seasonality of AOD and PM_{2.5} over North China and South Korea, and contributions from individual aerosol components. Lines show regional medians (error bars: 25th and 75th percentiles) for the ensemble of monthly averaged observations in the regions (Figure 6) in 2016. GEOS-Chem values are shown as stacked contours for individual components and are sampled in the same way as the observations.

432 6 Conclusions

- 433 Geostationary satellite observations of aerosol optical depth (AOD) over East Asia may usefully complement PM_{2.5}
- 434 air quality networks if the local relationship between AOD and PM_{2.5} can be inferred from a physical and/or

- 435 statistical model. Here we analyzed the ability of the GEOS-Chem chemical transport model to provide this
- 436 relationship by using a new fused GOCI/AHI geostationary satellite product together with AERONET ground-based
- 437 AOD measurements, aerosol vertical profiles over South Korea from the KORUS-AQ aircraft campaign (May-June
- 438 2016), and surface network observations. This allowed us to identify the critical features and limitations of the
- 439 model for successful representing the AOD-PM_{2.5} relationship.

440 The KORUS-AQ observations show that total aerosol extinction (550 nm) in the vertical column is dominated by

- 441 sulfate-nitrate-ammonium (SNA) and organic aerosol in the planetary boundary layer (PBL), despite large
- 442 concentrations of dust in the free troposphere. This reflects the optically effective size and high hygroscopicity of
- the PBL aerosols. We find that GEOS-Chem aerosol optical properties based on measurements over the North
- 444 America (default model setting) underestimate KORUS-AQ aerosol mass extinction efficiency by around 20%. In
- addition, a low bias in GEOS-FP RH below 1 km leads to a 10% underestimate of AOD inferred from the aircraft
- 446 profile. Adjustments of GEOS-Chem aerosol optical properties and RH enable a successful simulation of the aerosol
- 447 extinction profile. SNA aerosol contributes 59% of column aerosol extinction in the KORUS-AQ data, while
- 448 organic aerosol contributes 27% and dust contributes 12%.
- 449 Comparison of GOCI/AHI geostationary (GEO) satellite AOD to AERONET AODs over South Korea shows good
- 450 agreement, with high values along the west coast. GEOS-Chem is more consistent with the fine-mode AERONET
- 451 AOD because of its insufficient accounting of coarse particles, which account for 13% of AERONET AOD. The
- 452 remaining 15% underestimate of AERONET fine-mode AOD by GEOS-Chem can be attributed to the RH low bias.
- 453 GEOS-Chem overestimates 24-h surface PM_{2.5} over South Korea by 43% during the KORUS-AQ period, despite its
- 454 successful simulation of the aircraft data and fine-mode AERONET AOD, and we find that this is due to a large
- 455 overestimate of nighttime nitrate.
- 456 Broader examination of the GOCI/AHI AOD satellite data over East Asia shows spatial distributions and
- 457 magnitudes consistent with AERONET and featuring in particular strong Asian outflow in spring that includes a
- 458 large dust component. We find that AODs and PM_{2.5} have similar large-scale spatial distributions but opposite
- 459 seasonality. PM_{2.5} in North China has a strong winter maximum and summer minimum, while AOD shows the
- 460 opposite. GEOS-Chem simulates successfully the seasonality of measured $PM_{2.5}$ but is ~ 20% biased low in summer
- for AOD, due again to RH low bias like that during KORUS-AQ, amplified by the high RH in summer that drives
- 462 hygroscopic growth (Latimer and Martin, 2019). We find that the opposite AOD and PM_{2.5} seasonality is mainly
- 463 driven by residential coal heating sources and low PBL depths in winter, and high RH in summer. Observations of
- 464 PM_{2.5} and AOD in South Korea show the same seasonal phases as in North China but with much weaker amplitude,
- 465 reflecting the lack of residential coal burning in winter and a weaker seasonal amplitude of PBL depth.
- 466 In summary, we find that the geostationary GOCI/AHI satellite AOD data provide high-quality information for
- 467 monitoring of PM_{2.5} over East Asia but that physical interpretation requires accurate information on aerosol size
- distributions, PBL depths, RH, the role of coarse particles, and diurnal variation of PM_{2.5}, all of which are subject to
- 469 large uncertainties in chemical transport models. Addressing these uncertainties should be a target of future work.

- 470 We have used results from our study in a recent machine-learning reconstruction of daily 2011-present PM_{2.5} over
- 471 East Asia from GOCI AOD data by identifying critical variables for the machine-learning algorithm and providing
- 472 blended gap-filling data for cloudy scenes (Pendergrass et al., 2021). Besides the factors discussed in this study,
- 473 topography might be another important factor influencing surface PM_{2.5} and its vertical mixing (Su et al., 2018), and
- 474 this also requires future investigation.

- 476 Data availability. Aircraft data during KORUS-AQ are available at: www-air.larc.nasa.gov/cgi-
- 477 bin/ArcView/korusaq. PM_{2.5} data over China are from: quotsoft.net/air/. PM_{2.5} data over South Korea are from:
- 478 www.airkorea.or.kr/web. AERONET data can be found at: aeronet.gsfc.nasa.gov. The MEIC emission inventory are
- 479 at: www.meicmodel.org/. The KORUSv5 emission inventory is developed by Konkuk University, available at:
- 480 http://aisl.konkuk.ac.kr/#/emission_data/korus-aq_emissions.

481

- 482 *Author contributions*. SZ and DJJ designed the study. SZ performed the data analysis and model simulations with
- 483 contributions from JFB, KL, HCL, SKK, XW, PL, KRT, and Hong Liao. JK, SL, and Hyunkwang Lim provided
- 484 satellite AOD data. RJP and JIJ contributed to AirKorea data processing. JM and RM provided the dust emission
- 485 inventory. GL, FY, and JMM updated wet deposition simulation. JWH, BEA, JED, JLJ, PCJ, and BAN contributed
- to KORUS-AQ campaign measurements. JHW and YK provided the KORUSv5 emission inventory. QZ provided
- 487 the MEIC emission inventory. SZ and DJJ wrote the paper with input from all authors.
- 488
- 489 Acknowledgement. This work was funded by the Samsung Advanced Institute of Technology and the Harvard-
- 490 NUIST Joint Laboratory for Air Quality and Climate (JLAQC). JLJ, PCJ, and BAN acknowledge NASA grant
- 491 NNX15AT96G and 80NSSC19K0124 for support.

492

- 493 *Competing interests.* The authors declare that they have no conflict of interest.
- 494

495 References

- 496 Alexander, B., Park Rokjin, J., Jacob Daniel, J., and Gong, S.: Transition metal-catalyzed oxidation of atmospheric
- 497 sulfur: Global implications for the sulfur budget, J. Geophys. Res. Atmos., 114, D02309,
- 498 https://doi.org/10.1029/2008JD010486, 2009.
- 499 Amos, H. M., Jacob, D. J., Holmes, C. D., Fisher, J. A., Wang, Q., Yantosca, R. M., Corbitt, E. S., Galarneau, E.,
- 500 Rutter, A. P., Gustin, M. S., Steffen, A., Schauer, J. J., Graydon, J. A., Louis, V. L. S., Talbot, R. W., Edgerton, E.
- 501 S., Zhang, Y., and Sunderland, E. M.: Gas-particle partitioning of atmospheric Hg(II) and its effect on global
- 502 mercury deposition, Atmos. Chem. Phys., 12, 591-603, https://doi.org/10.5194/acp-12-591-2012, 2012.

- 503 Brauer, M., Freedman, G., Frostad, J., van Donkelaar, A., Martin, R. V., Dentener, F., Dingenen, R. v., Estep, K.,
- Amini, H., Apte, J. S., Balakrishnan, K., Barregard, L., Broday, D., Feigin, V., Ghosh, S., Hopke, P. K., Knibbs, L.
- 505 D., Kokubo, Y., Liu, Y., Ma, S., Morawska, L., Sangrador, J. L. T., Shaddick, G., Anderson, H. R., Vos, T.,
- 506 Forouzanfar, M. H., Burnett, R. T., and Cohen, A.: Ambient Air Pollution Exposure Estimation for the Global
- 507 Burden of Disease 2013, Environ. Sci. Technol., 50, 79-88, 10.1021/acs.est.5b03709, 2016.
- 508 Brock, C. A., Wagner, N. L., Anderson, B. E., Beyersdorf, A., Campuzano-Jost, P., Day, D. A., Diskin, G. S.,
- 509 Gordon, T. D., Jimenez, J. L., Lack, D. A., Liao, J., Markovic, M. Z., Middlebrook, A. M., Perring, A. E.,
- 510 Richardson, M. S., Schwarz, J. P., Welti, A., Ziemba, L. D., and Murphy, D. M.: Aerosol optical properties in the
- 511 southeastern United States in summer Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol
- 512 parameters, Atmos. Chem. Phys., 16, 5009-5019, 10.5194/acp-16-5009-2016, 2016.
- 513 Chen, G., Li, S., Knibbs, L. D., Hamm, N. A. S., Cao, W., Li, T., Guo, J., Ren, H., Abramson, M. J., and Guo, Y.: A
- 514 machine learning method to estimate PM_{2.5} concentrations across China with remote sensing, meteorological and
- 515 land use information, Sci. Total Environ., 636, 52-60, https://doi.org/10.1016/j.scitotenv.2018.04.251, 2018.
- 516 Chen, W., Tang, H., and Zhao, H.: Diurnal, weekly and monthly spatial variations of air pollutants and air quality of 517 Beijing, Atmos. Environ., 119, 21-34, https://doi.org/10.1016/j.atmosenv.2015.08.040, 2015.
- 518 Cheng, Y., Dai, T., Goto, D., Schutgens, N. A. J., Shi, G., and Nakajima, T.: Investigating the assimilation of
- 519 CALIPSO global aerosol vertical observations using a four-dimensional ensemble Kalman filter, Atmos. Chem.
- 520 Phys., 19, 13445-13467, https://doi.org/10.5194/acp-19-13445-2019, 2019.
- 521 Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., Higurashi,
- 522 A., and Nakajima, T.: Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with
- 523 Satellite and Sun Photometer Measurements, J. Atmos. Sci., 59, 461-483, https://doi.org/10.1175/1520-
- 524 0469(2002)059<0461:TAOTFT>2.0.CO;2, 2002.
- 525 Choi, M., Kim, J., Lee, J., Kim, M., Park, Y. J., Holben, B., Eck, T. F., Li, Z., and Song, C. H.: GOCI Yonsei
 526 aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5527 year validation over East Asia, Atmos. Meas. Tech., 11, 385-408, 10.5194/amt-11-385-2018, 2018.
- *527* year valuation over East Asia, Aunos. Meas. Tech., 11, 363-406, 10.5194/anti-11-565-2016, 2016.
- 528 Choi, J., Park, R. J., Lee, H.-M., Lee, S., Jo, D. S., Jeong, J. I., Henze, D. K., Woo, J.-H., Ban, S.-J., Lee, M.-D.,
- 529 Lim, C.-S., Park, M.-K., Shin, H. J., Cho, S., Peterson, D., and Song, C.-K.: Impacts of local vs. trans-boundary
- 530 emissions from different sectors on PM_{2.5} exposure in South Korea during the KORUS-AQ campaign, Atmos. 521 Exposure 202, 106, 205, 144, 1016 is the sector 2010, 02, 008, 2010
- 531 Environ., 203, 196-205, https://doi.org/10.1016/j.atmosenv.2019.02.008, 2019.
- 532 Choi, M., Kim, J., Lee, J., Kim, M., Park, Y. J., Jeong, U., Kim, W., Hong, H., Holben, B., Eck, T. F., Song, C. H.,
- 533 Lim, J. H., and Song, C. K.: GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the
- 534 DRAGON-NE Asia 2012 campaign, Atmos. Meas. Tech., 9, 1377-1398, https://doi.org/10.5194/amt-9-1377-2016, 2016.
- 536 Crawford, J. H., Ahn, J. Y., Al-Saadi, J., Chang, L., Emmons, L., Kim, J., Lee, G., Park, J. H., Park, R., Woo, J. H.,
- 537 Song, C. K., Hong, J.-H., Hong, Y.-D., Lefer, B. L., Lee, M., Lee, T., Kim, S., Min, K.-E., Yum, S. S., Shin, H. J.,
- 538 Kim, Y.-W., Choi, J.-S., Park, J.-S., Szykman, J. J., Long, R. W., Jordan, C. E., Simpson, I. J., Fried, A., Dibb, J. E.,
- Cho, S. Y., and Kim, Y. P.: The Korea-United States air quality (KORUS-AQ) field study, Elementa-Sci. Anthrop.,
 in press, 2021.
- 541 Curci, G.: FlexAOD: a chemistry-transport model post-processing tool for a flexible calculation of aerosol optical 542 properties, 1-4, http://pumpkin.aquila.infn.it/gabri/downld/curci_istp2012.pdf, 2012.
- 543 Dai, Q., Bi, X., Liu, B., Li, L., Ding, J., Song, W., Bi, S., Schulze, B. C., Song, C., Wu, J., Zhang, Y., Feng, Y., and
- 544 Hopke, P. K.: Chemical nature of PM_{2.5} and PM₁₀ in Xi'an, China: Insights into primary emissions and secondary 545 particle formation, Environmental Pollution, 240, 155-166, https://doi.org/10.1016/j.envpol.2018.04.111, 2018.
- 546 Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., Sabath, M. B., Choirat, C., Koutrakis, P., Lyapustin, A.,
- 547 Wang, Y., Mickley, L. J., and Schwartz, J.: An ensemble-based model of PM_{2.5} concentration across the contiguous
- 548 United States with high spatiotemporal resolution, Environ. Int., 130, 104909,
- 549 https://doi.org/10.1016/j.envint.2019.104909, 2019.

- 550 Dibb, J. E., Talbot, R. W., Scheuer, E. M., Seid, G., Avery, M. A., and Singh, H. B.: Aerosol chemical composition
- 551 in Asian continental outflow during the TRACE-P campaign: Comparison with PEM-West B, J. Geophys. Res.
- 552 Atmos., 108, 8815, https://doi.org/10.1029/2002JD003111, 2003.
- 553 Fairlie, T. D., Jacob, D. J., and Park, R. J.: The impact of transpacific transport of mineral dust in the United States, 554 Atmos. Environ., 41, 1251-1266, https://doi.org/10.1016/j.atmosenv.2006.09.048, 2007.
- 555 Fairlie, T. D., Jacob, D. J., Dibb, J. E., Alexander, B., Avery, M. A., van Donkelaar, A., and Zhang, L.: Impact of
- 556 mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes, Atmos. Chem. Phys., 10, 3999-557 4012, https://doi.org/10.5194/acp-10-3999-2010, 2010.
- 558 Fisher, J. A., Jacob, D. J., Wang, Q., Bahreini, R., Carouge, C. C., Cubison, M. J., Dibb, J. E., Diehl, T., Jimenez, J.
- 559 L., Leibensperger, E. M., Lu, Z., Meinders, M. B. J., Pye, H. O. T., Quinn, P. K., Sharma, S., Streets, D. G., van
- 560 Donkelaar, A., and Yantosca, R. M.: Sources, distribution, and acidity of sulfate-ammonium aerosol in the Arctic in
- 561 winter-spring, Atmos. Environ., 45, 7301-7318, https://doi.org/10.1016/j.atmosenv.2011.08.030, 2011.
- 562 Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for 563 K⁺-Ca²⁺-Mg²⁺-NH₄⁺-Na⁺-SO₄²⁻-NO₃⁻-Cl⁻-H₂O aerosols, Atmos. Chem. Phys., 7, 4639-4659, 564 https://doi.org/10.5194/acp-7-4639-2007, 2007.
- 565 Geng, G., Zhang, Q., Tong, D., Li, M., Zheng, Y., Wang, S., and He, K.: Chemical composition of ambient PM2.5
- 566 over China and relationship to precursor emissions during 2005-2012, Atmos. Chem. Phys., 17, 9187–9203, 567 https://doi.org/10.5194/acp-17-9187-2017, 2017.
- 568 Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis,
- 569 J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic
- 570 Network (AERONET) Version 3 database - automated near-real-time quality control algorithm with improved cloud
- 571 screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169-209,
- 572 https://doi.org/10.5194/amt-12-169-2019, 2019.
- 573 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The
- 574 Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2. 1): an extended and updated
- 575 framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471-1492, https://doi.org/10.5194/gmd-5-576 1471-2012, 2012.
- 577 Guo, J., Xia, F., Zhang, Y., Liu, H., Li, J., Lou, M., He, J., Yan, Y., Wang, F., Min, M., and Zhai, P.: Impact of 578 diurnal variability and meteorological factors on the PM2.5 - AOD relationship: Implications for PM2.5 remote 579 sensing, Environ. Pollut., 221, 94-104, https://doi.org/10.1016/j.envpol.2016.11.043, 2017.
- 580
- Guo, H., Campuzano-Jost, P., Nault, B. A., Day, D. A., Schroder, J. C., Dibb, J. E., Dollner, M., Weinzierl, B., and
- 581 Jimenez, J. L.: The Importance of Size Ranges in Aerosol Instrument Intercomparisons: A Case Study for the ATom 582 Mission, Atmos. Meas. Tech. Discuss., 2020, 1-49, https://doi.org/10.5194/amt-2020-224, 2020.
- 583 Hair, J. W., Hostetler, C. A., Cook, A. L., Harper, D. B., Ferrare, R. A., Mack, T. L., Welch, W., Izquierdo, L. R.,
- 584 and Hovis, F. E.: Airborne High Spectral Resolution Lidar for profiling aerosol optical properties, Appl. Opt., 47, 585 6734-6752, https://doi.org/10.1364/AO.47.006734, 2008.
- 586 Hammer, M. S., van Donkelaar, A., Li, C., Lyapustin, A., Sayer, A. M., Hsu, N. C., Levy, R. C., Garay, M.,
- 587 Kalashnikova, O., Kahn, R. A., Brauer, M., Apte, J. S., Henze, D. K., Zhang, L., Zhang, Q., Ford, B., Pierce, J. R., 588 and Martin, R. V.: Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998-2018), 589 Environ. Sci. Technol., 54, 7879-7890, https://dx.doi.org/10.1021/acs.est.0c01764, 2020.
- 590 Hu, X., Belle, J. H., Meng, X., Wildani, A., Waller, L. A., Strickland, M. J., and Liu, Y.: Estimating PM2.5
- 591 Concentrations in the Conterminous United States Using the Random Forest Approach, Environ. Sci. Technol., 51, 592 6936-6944, 10.1021/acs.est.7b01210, 2017.
- 593 Hudman, R. C., Moore, N. E., Mebust, A. K., Martin, R. V., Russell, A. R., Valin, L. C., and Cohen, R. C.: Steps
- 594 towards a mechanistic model of global soil nitric oxide emissions; implementation and space based-constraints.
- 595 Atmos. Chem. Phys., 12, 7779-7795, https://doi.org/10.5194/acp-12-7779-2012, 2012.
- 596 Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J. T.: Global distribution of sea salt aerosols: new
- 597 constraints from in situ and remote sensing observations, Atmos. Chem. Phys., 11, 3137-3157,
- 598 https://doi.org/10.5194/acp-11-3137-2011, 2011.

- Jaeglé, L., Shah, V., Thornton, J. A., Lopez-Hilfiker, F. D., Lee, B. H., McDuffie, E. E., Fibiger, D., Brown, S. S.,
- Veres, P., Sparks, T. L., Ebben, C. J., Wooldridge, P. J., Kenagy, H. S., Cohen, R. C., Weinheimer, A. J., Campos,
- T. L., Montzka, D. D., Digangi, J. P., Wolfe, G. M., Hanisco, T., Schroder, J. C., Campuzano-Jost, P., Day, D. A.,
 Jimenez, J. L., Sullivan, A. P., Guo, H., and Weber, R. J.: Nitrogen Oxides Emissions, Chemistry, Deposition, and
- Jimenez, J. L., Sullivan, A. P., Guo, H., and Weber, R. J.: Nitrogen Oxides Emissions, Chemistry, Deposition, and
 Export Over the Northeast United States During the WINTER Aircraft Campaign, J. Geophys. Res. Atmos., 123,
- 604 12,368-312,393, https://doi.org/10.1029/2018JD029133, 2018.
- Jeong, J. I., Park, R. J., and Youn, D.: Effects of Siberian forest fires on air quality in East Asia during May 2003
 and its climate implication, Atmos. Environ., 42, 8910-8922, https://doi.org/10.1016/j.atmosenv.2008.08.037, 2008.
- Jordan, C. E., Crawford, J. H., Beyersdorf, A. J., Eck, T. F., Halliday, H. S., Nault, B. A., Chang, L.-S., Park, J.,
- 608 Park, R., and Lee, G.: Investigation of factors controlling PM_{2.5} variability across the South Korean Peninsula during 609 KORUS-AQ, Elementa-Sci. Anthrop., 8, 28, https://doi.org/10.1525/elementa.424, 2020.
- 610 Kim, H., Zhang, Q., and Heo, J.: Influence of intense secondary aerosol formation and long-range transport on
- 611 aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: results from KORUS-AQ,
- 612 Atmos. Chem. Phys., 18, 7149-7168, https://doi.org/10.5194/acp-18-7149-2018, 2018.
- 613 Kumar, R., Delle Monache, L., Bresch, J., Saide, P. E., Tang, Y., Liu, Z., da Silva, A. M., Alessandrini, S., Pfister,
- 614 G., Edwards, D., Lee, P., and Djalalova, I.: Toward Improving Short-Term Predictions of Fine Particulate Matter
- 615 Over the United States Via Assimilation of Satellite Aerosol Optical Depth Retrievals, J. Geophys. Res. Atmos.,
- 616 124, 2753-2773, https://doi.org/10.1029/2018JD029009, 2019.
- Lamb, K. D., Perring, A. E., Samset, B., Peterson, D., Davis, S., Anderson, B. E., Beyersdorf, A., Blake, D. R.,
- 618 Campuzano-Jost, P., Corr, C. A., Diskin, G. S., Kondo, Y., Moteki, N., Nault, B. A., Oh, J., Park, M., Pusede, S. E.,
- 619 Simpson, I. J., Thornhill, K. L., Wisthaler, A., and Schwarz, J. P.: Estimating Source Region Influences on Black
- 620 Carbon Abundance, Microphysics, and Radiative Effect Observed Over South Korea, J. Geophys. Res. Atmos., 123,
 621 13,527-513,548, https://doi.org/10.1029/2018JD029257, 2018.
- 021 15,527-515,546, https://doi.org/10.1029/2016JD029257, 2016.
- 622 Latimer, R. N. C. and Martin, R. V.: Interpretation of measured aerosol mass scattering efficiency over North
- 623 America using a chemical transport model, Atmos. Chem. Phys., 19, 2635-2653, https://doi.org/10.5194/acp-19-624 2635-2019, 2019.
- Lee, W., Lim, T., and Kim, D. D.: Thermal and Energy Performance Assessment of the Prefab Electric Ondol
 System for Floor Heating in a Residential Building, Energies, 13, 5723, https://doi.org/10.3390/en13215723, 2020.
- 627 Lennartson, E. M., Wang, J., Gu, J., Castro Garcia, L., Ge, C., Gao, M., Choi, M., Saide, P. E., Carmichael, G. R.,
- 628 Kim, J., and Janz, S. J.: Diurnal variation of aerosol optical depth and PM_{2.5} in South Korea: a synthesis from
- AERONET, satellite (GOCI), KORUS-AQ observation, and the WRF-Chem model, Atmos. Chem. Phys., 18, 15125-15144, 10.5194/acp-18-15125-2018, 2018.
- Li, K., Liao, H., Zhu, J., and Moch Jonathan, M.: Implications of RCP emissions on future PM_{2.5} air quality and
- 632 direct radiative forcing over China, J. Geophys. Res. Atmos., 121, 12,985-913,008,
- 633 https://doi.org/10.1002/2016JD025623, 2016.
- Lim, H., Choi, M., Kim, J., Kasai, Y., and Chan, P.: AHI/Himawari-8 Yonsei Aerosol Retrieval (YAER):
 Algorithm, Validation and Merged Products, Remote Sens., 10, 699, https://doi.org/10.3390/rs10050699, 2018.
- Lim, H., Go, S., Kim, J., Choi, M., Lee, S., Song, C. K., and Kasai, Y.: Integration of GOCI and AHI Yonsei aerosol
 optical depth products during the 2016 KORUS-AQ and 2018 EMeRGe campaigns, Atmos. Meas. Tech., 14, 45754592, 10.5194/amt-14-4575-2021, 2021.
- 639 Lin, J. and McElroy, M. B.: Impacts of boundary layer mixing on pollutant vertical profiles in the lower
- troposphere: Implications to satellite remote sensing, Atmos. Environ., 44, 1726-1739,
- 641 https://doi.org/10.1016/j.atmosenv.2010.02.009, 2010.
- Liu, H., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from ²¹⁰Pb and ⁷Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields, J. Geophys. Res.
- 644 Atmos., 106, 12109-12128, https://doi.org/10.1029/2000JD900839, 2001.
- Liu, H., Jacob Daniel, J., Bey, I., Yantosca Robert, M., Duncan Bryan, N., and Sachse Glen, W.: Transport pathways
- 646 for Asian pollution outflow over the Pacific: Interannual and seasonal variations, J. Geophys. Res. Atmos., 108,
- 647 8786, https://doi.org/10.1029/2002JD003102, 2003.

- Liu, P., Zhao, C., Liu, P., Deng, Z., Huang, M., Ma, X., and Tie, X.: Aircraft study of aerosol vertical distributions
- over Beijing and their optical properties, Tellus B Chem. Phys. Meteorol., 61, 756-767, 10.1111/j.16000889.2009.00440.x, 2009.
- Liu, Y., Park, R. J., Jacob, D. J., Li, Q., Kilaru, V., and Sarnat, J. A.: Mapping annual mean ground-level PM_{2.5}
- concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United
 States, J. Geophys. Res. Atmos., 109, D22206, https://doi.org/10.1029/2004JD005025, 2004.
- 555 Suites, J. Geophys. Res. 14065, 107, D22200, https://doi.org/10.102/20040000025, 2004.
- Luo, G., Yu, F., and Moch, J. M.: Further improvement of wet process treatments in GEOS-Chem v12.6.0: impact
- on global distributions of aerosols and aerosol precursors, Geosci. Model Dev., 13, 2879-2903,
- 656 https://doi.org/10.5194/gmd-13-2879-2020, 2020.
- Luo, G., Yu, F., and Schwab, J.: Revised treatment of wet scavenging processes dramatically improves GEOS-Chem
 12.0.0 simulations of nitric acid, nitrate, and ammonium over the United States, Geosci. Model Dev., 12, 3439-3447
 https://doi.org/10.5194/gmd-12-3439-2019, 2019.
- Martin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M., and Ginoux, P.: Global and regional decreases in
 tropospheric oxidants from photochemical effects of aerosols, J. Geophys. Res. Atmos., 108, 4097,
 https://doi.org/10.1029/2002JD002622, 2003.
- 663 McNaughton, C. S., Clarke, A. D., Howell, S. G., Pinkerton, M., Anderson, B., Thornhill, L., Hudgins, C.,
- Winstead, E., Dibb, J. E., Scheuer, E., and Maring, H.: Results from the DC-8 Inlet Characterization Experiment
- 665 (DICE): Airborne Versus Surface Sampling of Mineral Dust and Sea Salt Aerosols, Aerosol Sci. Tech., 41, 136-159, 666 https://doi.org/10.1080/02786820601118406, 2007.
- 667 McNaughton, C. S., Clarke, A. D., Kapustin, V., Shinozuka, Y., Howell, S. G., Anderson, B. E., Winstead, E., Dibb,
- 568 J., Scheuer, E., Cohen, R. C., Wooldridge, P., Perring, A., Huey, L. G., Kim, S., Jimenez, J. L., Dunlea, E. J.,
- 669 DeCarlo, P. F., Wennberg, P. O., Crounse, J. D., Weinheimer, A. J., and Flocke, F.: Observations of heterogeneous
- 670 reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B, Atmos. Chem.
- 671 Phys., 9, 8283-8308, https://doi.org/10.5194/acp-9-8283-2009, 2009.
- Meng, J., Martin, R. V., Ginoux, P., Hammer, M., Sulprizio, M. P., Ridley, D. A., and van Donkelaar, A.: Gridindependent High Resolution Dust Emissions (v1.0) for Chemical Transport Models: Application to GEOS-Chem
 (version 12.5.0), Geosci. Model Dev. Discuss., 1-23. https://doi.org/10.5194/gmd-2020-380, 2020.
- Miao, R., Chen, Q., Zheng, Y., Cheng, X., Sun, Y., Palmer, P. I., Shrivastava, M., Guo, J., Zhang, Q., Liu, Y., Tan,
 Z., Ma, X., Chen, S., Zeng, L., Lu, K., and Zhang, Y.: Model bias in simulating major chemical components of
- 677 PM_{2.5} in China, Atmos. Chem. Phys., 20, 12265-12284, https://doi.org/10.5194/acp-20-12265-2020, 2020.
- Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C., and Koshak, W. J.: Optimized regional and interannual
- variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data, J. Geophys. Res.
 Atmos., 117, D20307, https://doi.org/10.1029/2012JD017934, 2012.
- 681 Nault, B. A., Campuzano-Jost, P., Day, D. A., Schroder, J. C., Anderson, B., Beyersdorf, A. J., Blake, D. R., Brune,
- W. H., Choi, Y., Corr, C. A., de Gouw, J. A., Dibb, J., DiGangi, J. P., Diskin, G. S., Fried, A., Huey, L. G., Kim, M.
- J., Knote, C. J., Lamb, K. D., Lee, T., Park, T., Pusede, S. E., Scheuer, E., Thornhill, K. L., Woo, J. H., and Jimenez,
- 584 J. L.: Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ, Atmos. Chem. Phys., 18, 17769-17800, https://doi.org/10.5194/acp-18-17769-
- South Korea, during KORUS-AQ, Atmos. Chem. Phys., 18, 17769-17800, https://doi.org/10.5194/acp-18-17769 2018, 2018.
- 687 O'Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N., and Thulasiraman, S.: Spectral discrimination of coarse and 688 fine mode optical depth, J. Geophys. Res. Atmos., 108, https://doi.org/10.1029/2002JD002975, 2003.
- Pai, S. J., Heald, C. L., Pierce, J. R., Farina, S. C., Marais, E. A., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A.,
- 690 Middlebrook, A. M., Coe, H., Shilling, J. E., Bahreini, R., Dingle, J. H., and Vu, K.: An evaluation of global organic
- aerosol schemes using airborne observations, Atmos. Chem. Phys., 20, 2637-2665, https://doi.org/10.5194/acp-20 2637-2020, 2020.
- Park, R. J., Oak, Y. J., Emmons, L. K., Kim, C.-H., Pfister, G. G., Carmichael, G. R., Saide, P. E., Cho, S.-Y., Kim,
- 694 S., Woo, J.-H., Crawford, J. H., Gaubert, B., Lee, H.-J., Park, S.-Y., Jo, Y.-J., Gao, M., Tang, B., Stanier, C. O.,
- 695 Shin, S. S., Park, H. Y., Bae, C., and Kim, E.: Multi-model intercomparisons of air quality simulations for the
- 696 KORUS-AQ campaign, Elementa-Sci. Anthrop., 9, 00139, https://doi.org/10.1525/elementa.2021.00139, 2021.

- 697 Park Rokjin, J., Jacob Daniel, J., Field Brendan, D., Yantosca Robert, M., and Chin, M.: Natural and transboundary
- 698 pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy, J. Geophys.
- 699 Res. Atmos., 109, D15204, https://doi.org/10.1029/2003JD004473, 2004.
- Pendergrass, D. C., Jacob, D. J., Zhai, S., Kim, J., Koo, J. H., Lee, S., Bae, M., Kim, S.: Continuous mapping of fine
- particulate matter (PM_{2.5}) air quality in East Asia at daily 6x6 km² resolution by application of a random forest
- algorithm to 2011-2019 GOCI geostationary satellite data, submitted, 2021.
- Peterson, D. A., Hyer, E. J., Han, S.-O., Crawford, J. H., Park, R. J., Holz, R., Kuehn, R. E., Eloranta, E., Knote, C.,
- Jordan, C. E., and Lefer, B. L.: Meteorology influencing springtime air quality, pollution transport, and visibility in
- Korea, Elementa-Sci. Anthrop., 7, 57, https://doi.org/10.1525/elementa.395, 2019.
- 706 Philip, S., Martin, R. V., Snider, G., Weagle, C. L., van Donkelaar, A., Brauer, M., Henze, D. K., Klimont, Z.,
- 707 Venkataraman, C., and Guttikunda, S. K.: Anthropogenic fugitive, combustion and industrial dust is a significant,
- underrepresented fine particulate matter source in global atmospheric models, Environ. Res. Lett., 12, 044018,
- 709 https://doi.org/10.1088/1748-9326/aa65a4, 2017.
- 710 Podolske, J. R., Sachse, G. W., and Diskin, G. S.: Calibration and data retrieval algorithms for the NASA
- 711 Langley/Ames Diode Laser Hygrometer for the NASA Transport and Chemical Evolution Over the Pacific
- 712 (TRACE-P) mission, J. Geophys. Res. Atmos., 108, 8792, https://doi.org/10.1029/2002JD003156, 2003.
- 713 Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K., and Seinfeld, J. H.: Effect of changes in
- climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States, J. Geophys. Res.
- 715 Atmos., 114, D01205, https://doi.org/10.1029/2008JD010701, 2009.
- 716 Qu, W., Wang, J., Zhang, X., Sheng, L., and Wang, W.: Opposite seasonality of the aerosol optical depth and the 717 surface particulate matter concentration over the north China Plain, Atmos. Environ., 127, 90-99,
- 718 https://doi.org/10.1016/j.atmosenv.2015.11.061, 2016.
- Saide, P. E., Kim, J., Song, C. H., Choi, M., Cheng, Y., and Carmichael, G. R.: Assimilation of next generation
 geostationary aerosol optical depth retrievals to improve air quality simulations, Geophys. Res. Lett., 41, 9188-9196,
 https://doi.org/10.1002/2014GL062089, 2014.
- Saide, P. E., Gao, M., Lu, Z., Goldberg, D. L., Streets, D. G., Woo, J. H., Beyersdorf, A., Corr, C. A., Thornhill, K.
- L., Anderson, B., Hair, J. W., Nehrir, A. R., Diskin, G. S., Jimenez, J. L., Nault, B. A., Campuzano-Jost, P., Dibb, J.,
- Heim, E., Lamb, K. D., Schwarz, J. P., Perring, A. E., Kim, J., Choi, M., Holben, B., Pfister, G., Hodzic, A.,
- Carmichael, G. R., Emmons, L., and Crawford, J. H.: Understanding and improving model representation of aerosol
- optical properties for a Chinese haze event measured during KORUS-AQ, Atmos. Chem. Phys., 20, 6455-6478,
 https://doi.org/10.5194/acp-20-6455-2020, 2020.
- 728 Scarino, A. J., Obland, M. D., Fast, J. D., Burton, S. P., Ferrare, R. A., Hostetler, C. A., Berg, L. K., Lefer, B.,
- Haman, C., Hair, J. W., Rogers, R. R., Butler, C., Cook, A. L., and Harper, D. B.: Comparison of mixed layer
- heights from airborne high spectral resolution lidar, ground-based measurements, and the WRF-Chem model during
- 731 CalNex and CARES, Atmos. Chem. Phys., 14, 5547-5560, https://doi.org/10.5194/acp-14-5547-2014, 2014.
- Sekiyama, T. T., Tanaka, T. Y., Shimizu, A., and Miyoshi, T.: Data assimilation of CALIPSO aerosol observations,
 Atmos. Chem. Phys., 10, 39-49, https://doi.org/10.5194/acp-10-39-2010, 2010.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Third
 Edition, Ch. 8, John Wiley & Sons, New Jersey, 2016.
- Shah, V., Jacob, D. J., Moch, J. M., Wang, X., and Zhai, S.: Global modeling of cloud water acidity, precipitation
 acidity, and acid inputs to ecosystems, Atmos. Chem. Phys., 20, 12223-12245, https://doi.org/10.5194/acp-2012223-2020, 2020.
- 739 Su, T., Li, Z., and Kahn, R.: Relationships between the planetary boundary layer height and surface pollutants
- derived from lidar observations over China: regional pattern and influencing factors, Atmos. Chem. Phys., 18,
 15921-15935, 10.5194/acp-18-15921-2018, 2018.
- Sun, X., Yin, Y., Sun, Y., Sun, Y., Liu, W., and Han, Y.: Seasonal and vertical variations in aerosol distribution over
 Shijiazhuang, China, Atmos. Environ., 81, 245-252, https://doi.org/10.1016/j.atmosenv.2013.08.009, 2013.

- 744 Travis, K. R., Crawford, J. H., Nault, B. A., Kim, H., Jordan, C. E., Chen, G., Zhai, S., Wang, X., Jimenez, J. L.,
- 745 Dibb, J. E., Brune, W. H., Weinheimer, A., Wennberg, P., Long, R., Szykman, J. J., Woo, J. H., Kim, Y., Li, K.,
- McDuffie, E., Luo, G., Zhang, Q., Kim, S.: Why do models have difficulty simulating ammonium nitrate and nitric acid in East Asia?, manuscript in preparation.
- acid in East Asia?, manuscript in preparation.
- van Donkelaar, A., Martin Randall, V., Brauer, M., and Boys Brian, L.: Use of Satellite Observations for Long-
- Term Exposure Assessment of Global Concentrations of Fine Particulate Matter, Environ. Health Perspect., 123, 135-143, https://doi.org/10.1289/ehp.1408646, 2015.
- van Donkelaar, A., Martin, R. V., Brauer, M., Hsu, N. C., Kahn, R. A., Levy, R. C., Lyapustin, A., Sayer, A. M., and
 Winker, D. M.: Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with
- 753 Information from Satellites, Models, and Monitors, Environ. Sci. Technol., 50, 3762-3772,
- 754 https://doi.org/10.1021/acs.est.5b05833, 2016.
- van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle,
 M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during
- 757 1997–2016, Earth Syst. Sci. Data, 9, 697-720, https://doi.org/10.5194/essd-9-697-2017, 2017.
- van Donkelaar, A., Martin, R. V., Li, C., and Burnett, R. T.: Regional Estimates of Chemical Composition of Fine
- 759 Particulate Matter Using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and
- 760 Monitors, Environ. Sci. Technol., 53, 2595-2611, 10.1021/acs.est.8b06392, 2019.
- van Donkelaar, A., Martin, R. V., and Park, R. J.: Estimating ground-level PM2.5 using aerosol optical depth
 determined from satellite remote sensing, J. Geophys. Res. Atmos., 111, 10.1029/2005JD006996, 2006.
- 763 Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., Le Sager, P., Kondo, Y.,
- Jimenez, J. L., Cubison, M. J., and Doherty, S. J.: Sources of carbonaceous aerosols and deposited black carbon in
- the Arctic in winter-spring: implications for radiative forcing, Atmos. Chem. Phys., 11, 12453-12473,
- 766 https://doi.org/10.5194/acp-11-12453-2011, 2011.
- Wang, Q., Jacob, D. J., Spackman, J. R., Perring, A. E., Schwarz, J. P., Moteki, N., Marais, E. A., Ge, C., Wang, J.,
- and Barrett, S. R. H.: Global budget and radiative forcing of black carbon aerosol: Constraints from pole-to-pole
- 769 (HIPPO) observations across the Pacific, J. Geophys. Res. Atmos., 119, 195-206,
- 770 https://doi.org/10.1002/2013JD020824, 2014.
- Wang, X., Heald, C. L., Ridley, D. A., Schwarz, J. P., Spackman, J. R., Perring, A. E., Coe, H., Liu, D., and Clarke,
- A. D.: Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct
- radiative forcing of black carbon and brown carbon, Atmos. Chem. Phys., 14, 10989-11010,
- 774 https://doi.org/10.5194/acp-14-10989-2014, 2014.
- Wang, Y., Zhang, Q., Jiang, J., Zhou, W., Wang, B., He, K., Duan, F., Zhang, Q., Philip, S., and Xie, Y.: Enhanced
 sulfate formation during China's severe winter haze episode in January 2013 missing from current models, J.
 Geophys. Res. Atmos., 119, 10,425-410,440, https://doi.org/10.1002/2013JD021426, 2014.
- Wei, J., Li, Z., Lyapustin, A., Sun, L., Peng, Y., Xue, W., Su, T., and Cribb, M.: Reconstructing 1-km-resolution
- high-quality PM_{2.5} data records from 2000 to 2018 in China: spatiotemporal variations and policy implications,
- 780 Remote Sens. Environ., 252, 112136, https://doi.org/10.1016/j.rse.2020.112136, 2021.
- 781 Woo, J.-H., Kim, Y., Kim, H.-K., Choi, K.-C., Eum, J.-H., Lee, J.-B., Lim, J.-H., Kim, J., and Seong, M.:
- Development of the CREATE Inventory in Support of Integrated Climate and Air Quality Modeling for Asia,
 Sustainability, 12, 7930, https://doi.org/10.3390/su12197930, 2020.
- Xiao, Q., Chang, H. H., Geng, G., and Liu, Y.: An Ensemble Machine-Learning Model To Predict Historical PM_{2.5}
 Concentrations in China from Satellite Data, Environ. Sci. Technol., 52, 13260-13269, 10.1021/acs.est.8b02917, 2018.
- 787 Xu, J., Han, F., Li, M., Zhang, Z., Xiaohui, D., and Wei, P.: On the opposite seasonality of MODIS AOD and
- surface PM_{2.5} over the Northern China plain, Atmos. Environ., 215, 116909,
- 789 https://doi.org/10.1016/j.atmosenv.2019.116909, 2019.
- Xu, J. W., Martin, R. V., van Donkelaar, A., Kim, J., Choi, M., Zhang, Q., Geng, G., Liu, Y., Ma, Z., Huang, L.,
 Wang, Y., Chen, H., Che, H., Lin, P., and Lin, N.: Estimating ground-level PM2.5 in eastern China using aerosol

- optical depth determined from the GOCI satellite instrument, Atmos. Chem. Phys., 15, 13133-13144, 10.5194/acp15-13133-2015, 2015.
- Xue, T., Zheng, Y., Tong, D., Zheng, B., Li, X., Zhu, T., and Zhang, Q.: Spatiotemporal continuous estimates of
- 795 PM2.5 concentrations in China, 2000–2016: A machine learning method with inputs from satellites, chemical
- transport model, and ground observations, Environ. Int., 123, 345-357, https://doi.org/10.1016/j.envint.2018.11.075,
 2019.
- Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and Liao, H.: Fine particulate matter
- 799 (PM_{2.5}) trends in China, 2013-2018: separating contributions from anthropogenic emissions and meteorology,
- 800 Atmos. Chem. Phys., 19, 11031-11041 https://doi.org/10.5194/acp-19-11031-2019, 2019.
- 801 Zhai, S., Jacob, D. J., Wang, X., Liu, Z., Wen, T., Shah, V., Li, K., Moch, J. M., Bates, K. H., Song, S., Shen, L.,
- Zhang, Y., Luo, G., Yu, F., Sun, Y., Wang, L., Qi, M., Tao, J., Gui, K., Xu, H., Zhang, Q., Zhao, T., Wang, Y., Lee,
 H. C., Choi, H., and Liao, H.: Control of particulate nitrate air pollution in China, Nat. Geosci.,
- 804 https://doi.org/10.1038/s41561-021-00726-z, 2021.
- Zhang, L., Kok, J. F., Henze, D. K., Li, Q., and Zhao, C.: Improving simulations of fine dust surface concentrations
 over the western United States by optimizing the particle size distribution, Geophys. Res. Lett., 40, 3270-3275,
 https://doi.org/10.1002/grl.50591, 2013.
- Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle dry deposition scheme for an atmospheric
 aerosol module, Atmos. Environ., 35, 549-560, https://doi.org/10.1016/S1352-2310(00)00326-5, 2001.
- 810 Zhang, X., Wang, H., Che, H.-Z., Tan, S.-C., Shi, G.-Y., and Yao, X.-P.: The impact of aerosol on MODIS cloud
- 811 detection and property retrieval in seriously polluted East China, Sci. Total Environ., 711, 134634,
- 812 https://doi.org/10.1016/j.scitotenv.2019.134634, 2020.
- 813 Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao,
- 814 H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of
- 815 clean air actions, Atmos. Chem. Phys., 18, 14095-14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
- 816 Ziemba, L. D., Lee Thornhill, K., Ferrare, R., Barrick, J., Beyersdorf, A. J., Chen, G., Crumeyrolle, S. N., Hair, J.,
- 817 Hostetler, C., Hudgins, C., Obland, M., Rogers, R., Scarino, A. J., Winstead, E. L., and Anderson, B. E.: Airborne
- 818 observations of aerosol extinction by in situ and remote-sensing techniques: Evaluation of particle hygroscopicity,
- 819 Geophys. Res. Lett., 40, 417-422, https://doi.org/10.1029/2012GL054428, 2013.
- 820