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We acknowledge the referees for their insightful comments. We have made efforts to improve the 

manuscript accordingly. Please find our responses to referees’ comments in blue. Newly added 

references are listed at the end of this document. 

 

RC1 by Referee #3 

This paper attempts to understand the relationship between AOD and PM2.5. However, after reading 

through, I feel that the paper is more of a GEOS-Chem validation and uncertainty analysis work, 

rather than offering physical explanation of the AOD-PM2.5 relationship.  

The title has been revised to: “Relating geostationary satellite measurements of aerosol optical depth 

(AOD) over East Asia to fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft 

campaign and GEOS-Chem model simulations”. 

We have rephrased lines 34-38 in the abstract: “Geostationary satellite measurements of aerosol 

optical depth (AOD) over East Asia from the GOCI and AHI instruments can augment surface 

monitoring of fine particulate matter (PM2.5) air quality, but this requires better understanding of the 

AOD-PM2.5 relationship. Here we use the GEOS-Chem chemical transport model to analyze the 

critical variables determining the AOD-PM2.5 relationship over East Asia by simulation of observations 

from satellite, aircraft, and ground-based datasets.” 

We added lines 67-68: “This enables us to identify critical variables and uncertainties for inferring 

PM2.5 from satellite AOD data.” 

We rephrased lines 433-439 in the conclusions section: “Geostationary satellite observations of 

aerosol optical depth (AOD) over East Asia may usefully complement PM2.5 air quality networks if the 

local relationship between AOD and PM2.5 can be inferred from a physical and/or statistical model. 

Here we analyzed the ability of the GEOS-Chem chemical transport model to provide this relationship 

by using a new fused GOCI/AHI geostationary satellite product together with AERONET ground-

based AOD measurements, aerosol vertical profiles over South Korea from the KORUS-AQ aircraft 

campaign (May-June 2016), and surface network observations. This allowed us to identify the critical 

features and limitations of the model for successful representing the AOD-PM2.5 relationship.” 
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Specifically, could the authors clarify, perhaps with additional analysis, how different factors, such as 

PBL height, RH, organic matter fraction, etc, contribute to the uncertainty in AOD-PM2.5 relationship? 

How does the role of each factor vary with region (e.g., Korea vs. China)? The only clear conclusion 

is that AOD and PM2.5 have reversed seasonality because of seasonally varying PBL height, but this 

is already well known. 

We quantified in the abstract (lines 43-47): “We updated SNA and organic aerosol size distributions in 

GEOS-Chem to represent aerosol optical properties over East Asia by using in-situ measurements of 

particle size distributions from KORUS-AQ. We find that SNA and organic aerosols over East Asia 

have larger size (number median radius of 0.11 µm with geometric standard deviation of 1.4) and 

20% larger mass extinction efficiency as compared to aerosols over North America (default setting in 

GEOS-Chem).”  

We quantified in lines 286-287: “The model underestimates extinction coefficients by 20% below 1 km 

altitude, leading to a 10% underestimate of aircraft inferred AOD, although there is no such 

underestimate in aerosol mass.” 

We quantified in lines 323-324 to: “Therefore, about half of the GEOS-Chem underestimate of total 

AOD can be attributed to missing coarse PM, with the other half comes from negative RH bias.” 

We added a Figure 7 and lines 399-402: “The correlations of these three pairs are similar over South 

Korea and North China, except that GEOS-Chem overestimates springtime PM2.5 in South Korea but 

not over North China, possibly due to a model overestimate of the long-range transport of PM2.5 from 

China to South Korea in spring.” 
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Figure 7. Scatter plots of regional mean daily (a and d) GEO satellite AOD vs. AERONET total AOD, (b and e) 
GEOS-Chem AOD vs. AERONET fine-model AOD, and (c and f) GEOS-Chem PM2.5 vs. measured PM2.5 over 
South Korea (a-c) and North China (d-f). Different colors represent different seasons. Values inset are correlation 
coefficients (R) and normalized mean biases (NMB) between surface measurements and GEO satellite or GEOS-
Chem values. 

We quantified in lines 412-414: “The GEOS-Chem AOD is ~ 20% biased low in summer and this is 

largely due to a low RH bias (Figure S8), as seen previously in the KORUS-AQ comparisons but 

amplified by the high RH in summer that drives hygroscopic growth (Latimer and Martin, 2019).” 

We added analysis in lines 420-423: “GEOS-FP daytime PBL height also shows a stronger 

seasonality over North China than over South Korea (Figure S8), generally consistent with the 

CALIPSO daytime PBL height (Su et al., 2018). Previous studies have shown opposite seasonality 

between MODIS AOD and surface PM2.5 over North China and attributed this to the seasonality in 

PBL height and RH (Qu et al., 2016; Xu et al., 2019).” 

We quantified in lines 443-446 in the conclusion section: “We find that GEOS-Chem aerosol optical 

properties based on measurements over the North America (default model setting) underestimate 

KORUS-AQ aerosol mass extinction efficiency by around 20%. In addition, a low bias in GEOS-FP 

RH below 1 km leads to a 10% underestimate of AOD inferred from the aircraft profile.” 

We added lines 451-452 in the conclusions section: “The remaining 15% underestimate of AERONET 

fine-mode AOD by GEOS-Chem can be attributed to the RH low bias.” 

We quantified in lines 460-462 in the conclusions section: “GEOS-Chem simulates successfully the 

seasonality of measured PM2.5 but is ~ 20% biased low in summer for AOD, due again to RH low bias 

like that during KORUS-AQ, amplified by the high RH in summer that drives hygroscopic growth 

(Latimer and Martin, 2019).” 

 

RC2 by Referee #2 

The manuscript investigated the physical relationships between AOD and PM2.5 over East Asia by 

using the model simulation and comprehensive observation. The results indicate that the aerosols 

over this region are largely contributed by the sulfate-nitrate-ammonium and organic aerosols within 

the PBL. Meanwhile, the dust in the free troposphere also has an important contribution to column 

AOD. The seasonality of AOD and PM2.5 has been specifically discussed. In general, this paper is 

well-written with a good logical connection. Thus, I recommend the manuscript for publication in 

Atmospheric Chemistry and Physics, after addressing the following comments. 



 4 

Specific Comments: 

1. The current introduction section may be insufficient to demonstrate the significance of this 

paper. The authors need to clearly explain the limitation of previous studies and the advantage of this 

study. 

We revised the whole introduction: 

“PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) in surface air is a severe 

public health concern in East Asia, but surface monitoring networks are too sparse to thoroughly 

assess population exposure. Satellite observations of aerosol optical depth (AOD) can provide a 

valuable complement (Van Donkelaar et al., 2015). Geostationary satellite sensors, including the 

Geostationary Ocean Color Imager (GOCI) launched by the Korea Aerospace Research Institute 

(KARI) in 2011 (Choi et al., 2016, 2018, 2019) and the Advanced Himawari Imager (AHI) launched by 

the Japanese Meteorological Agency (JMA) in 2014 (Lim et al., 2018, 2021), offer the potential for 

high-density mapping of PM2.5 over East Asia. However, more confidence is needed in relating AOD 

to PM2.5. Here we evaluate the capability of the GEOS-Chem chemical transport model (CTM) to 

simulate AOD-PM2.5 relationships over East Asia, exploiting in-situ aircraft measurements of vertical 

aerosol profiles and optical properties from the joint NASA-NIER Korea - United States Air Quality 

(KORUS-AQ) field study in May-June 2016 (Crawford et al., 2021; Peterson et al., 2019; Jordan et 

al., 2020) together with GOCI/AHI geostationary satellite data and surface measurement networks. 

This enables us to identify critical variables and uncertainties for inferring PM2.5 from satellite AOD 

data. 

A number of past studies have used satellite AOD data to infer surface PM2.5 using physical and 

statistical models. The standard geophysical approach has been to use a CTM, such as GEOS-

Chem, to compute the PM2.5/AOD ratio (Liu et al., 2004; van Donkelaar et al., 2006; van Donkelaar et 

al., 2015; Xu et al., 2015; Geng et al., 2017), with recent applications correcting for CTM biases using 

available PM2.5 surface network data (Brauer et al., 2016; Van Donkelaar et al., 2016; van Donkelaar 

et al., 2019; Hammer et al., 2020). An alternative approach is to use machine-learning algorithms to 

relate satellite AOD to PM2.5 by training on the surface network data (Hu et al., 2017; Chen et al., 

2018; Xiao et al., 2018; Wei et al., 2021; Pendergrass et al., 2021), and sometimes including CTM 

values as predictors (Di et al., 2019; Xue et al., 2019). Yet another approach is to assimilate the 

satellite-measured AODs in a CTM and correct in this manner the PM2.5 simulation, although this 

requires attribution of model AOD errors to specific model parameters (Kumar et al., 2019; Saide et 

al., 2014; Sekiyama et al., 2010; Cheng et al., 2019). In all of these approaches, a better physical 
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understanding of the AOD-PM2.5 relationship as simulated by CTMs can greatly enhance the 

capability to infer PM¬2.5 from AOD data. 

AOD measures aerosol extinction (scattering and absorption) integrated over the atmospheric 

column, so that its relationship to 24-hr average surface PM2.5 (the standard air quality metric) 

depends on the aerosol vertical distribution and optical properties, ambient relative humidity (RH), 

diurnal variation of PM2.5, and contribution from coarse particulate matter to AOD. Little study of these 

factors has been conducted for East Asia. Airborne measurements of aerosol vertical profiles in East 

Asia are very limited (Liu et al., 2009; Sun et al., 2013). AOD is highly sensitive to RH (Brock et al., 

2016; Latimer and Martin et al., 2019; Saide et al., 2020), but the impact from RH uncertainty on AOD 

simulation lacks evaluation. In addition, because the AOD is a daytime measurement that needs to be 

related to 24-h average PM2.5, the diurnal variation of PM2.5 needs to be understood (Guo et al., 2017; 

Lennartson et al., 2018). Finally, there has been to our knowledge no study of how coarse 

anthropogenic PM may contribute to the AOD measurements. Coarse anthropogenic PM (distinct 

from desert dust) is known to be high over East Asia (Chen et al., 2015; Dai et al., 2018).” 

We revised lines 191-195: “Therefore, we re-computed the diagnostic AOD using updated log-normal 

size distributions for SNA and organic aerosol with number median radius RN,med = 0.11 μm and 

geometric standard deviation σ = 1.4 based on KORUS-AQ observations, instead as compared tof 

RN,med = 0.058 µm and σ = 1.6 in the standard model version 12.7.1, which is derived from IMPROVE 

network measurements of aerosol mass scattering efficiency over North America (Latimer and Martin, 

2019).” 

 

2. The analyses of this study are closely associated with the model simulation of GEOS-Chem, 

while the title only mentioned the observations. There are some disconnections between the title and 

the main text. 

The title has been revised to: “Relating geostationary satellite measurements of aerosol optical depth 

(AOD) over East Asia to fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft 

campaign and GEOS-Chem model simulations”. 

 

3. Line 203, Page 8. The PBL varies significantly during the different periods. It is risky to define 

the 0-2 km as the PBL. The authors should give more justifications for this definition. 

We rewrote line 221 to: “…, which we define as the average planetary boundary layer (PBL) during 

KORUS-AQ, …” 
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We have line 232: “KORUS-AQ aerosol component profiles for different meteorological regimes is 

presented in Park et al. (2021).” 

 

 

4. The seasonality of AOD and PM2.5 and its association with PBLH have been discussed 

previously (e.g., Guo et al., 2017; Su et al., 2018). I suggest the authors acknowledge these works. 

References: 

Su, T., Li, Z. and Kahn, R., 2018. Relationships between the planetary boundary layer height and 

surface pollutants derived from lidar observations over China: regional pattern and influencing factors. 

Atmospheric Chemistry and Physics, 18(21), pp.15921-15935. 

Guo, J., Xia, F., Zhang, Y., Liu, H., Li, J., Lou, M., He, J., Yan, Y., Wang, F., Min, M. and Zhai, P., 

2017. Impact of diurnal variability and meteorological factors on the PM2.5-AOD relationship: 

Implications for PM2.5 remote sensing. Environmental Pollution, 221, pp.94-104. 

Reply: We cited Su et al. (2018) in two places: 

Lines 420-422: “GEOS-FP daytime PBL height also shows a stronger seasonality over North China 

than over South Korea (Figure S8), generally consistent with the CALIPSO daytime PBL height (Su et 

al., 2018).” 

Lines 472-474: “Besides the factors discussed in this study, topography might be another important 

factor influencing surface PM2.5 and its vertical mixing (Su et al., 2018), and this also requires future 

investigation.” 

We cited Guo et al. (2017) at lines 87-89: “In addition, because the AOD is a daytime measurement 

that needs to be related to 24-h average PM2.5, the diurnal variation of PM2.5 needs to be understood 

(Guo et al., 2017; Lennartson et al., 2018).” 

 

RC3 by Referee #1 

The relationships between AOD and PM in East Asia are discussed by using ground-based and 

aircraft observations, but the whole study focus on direct validation and comparison, lacking in-depth 

analysis and literature support. In addition, there may be some problems in the use of satellite data. I 

suggest that the authors add more analysis to enrich the study. 
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Thank you for the insightful comments. In addition to the added analysis illustrated in the responses 

below, a bunch of references (listed at the end of this document) have been added in the introduction 

section.  

 

Abstract: Line 35: Himawari-8/AHI provides AOD products at 500 nm, not 550 nm. 

Reply: We have deleted ‘at 500 nm’ in line 35 in the abstract.  

Meanwhile, we detailed in lines 122-126: “Geostationary satellite AOD at 550 nm are retrieved by the 

Yonsei Aerosol Retrieval (YAER) algorithm for the GOCI (Choi et al., 2016, 2018) and AHI (Lim et al. 

2018) instruments, with GOCI covering East China and South Korea and AHI covering the broad East 

Asia region. AOD from GOCI and AHI have a 6 km × 6 km spatial resolution and 1-hour (GOCI) to 

2.5-minute (AHI) temporal resolution for 8 hours per day (09:30 to 16:30 local time).”  

 

Introduction 

It is too short and the authors are suggested to summarize previous studies on investigating the 

relationships between PM2.5 and AOD, especially those focusing on Asia.  

In addition, studies on PM estimation from satellite AOD products need to be summarized, especially 

those using geostationary satellites. 

Finally, the author should highlight the innovation and difference between the current study and 

previous related studies, and discuss the importance of understanding the relationships between PM 

and AOD in these studies. 

The revised introduction is pasted as below: 

“PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) in surface air is a severe 

public health concern in East Asia, but surface monitoring networks are too sparse to thoroughly 

assess population exposure. Satellite observations of aerosol optical depth (AOD) can provide a 

valuable complement (Van Donkelaar et al., 2015). Geostationary satellite sensors, including the 

Geostationary Ocean Color Imager (GOCI) launched by the Korea Aerospace Research Institute 

(KARI) in 2011 (Choi et al., 2016, 2018, 2019) and the Advanced Himawari Imager (AHI) launched by 

the Japanese Meteorological Agency (JMA) in 2014 (Lim et al., 2018, 2021), offer the potential for 

high-density mapping of PM2.5 over East Asia. However, more confidence is needed in relating AOD 

to PM2.5. Here we evaluate the capability of the GEOS-Chem chemical transport model (CTM) to 

simulate AOD-PM2.5 relationships over East Asia, exploiting in-situ aircraft measurements of vertical 



 8 

aerosol profiles and optical properties from the joint NASA-NIER Korea - United States Air Quality 

(KORUS-AQ) field study in May-June 2016 (Crawford et al., 2021; Peterson et al., 2019; Jordan et 

al., 2020) together with GOCI/AHI geostationary satellite data and surface measurement networks. 

This enables us to identify critical variables and uncertainties for inferring PM2.5 from satellite AOD 

data. 

A number of past studies have used satellite AOD data to infer surface PM2.5 using physical and 

statistical models. The standard geophysical approach has been to use a CTM, such as GEOS-

Chem, to compute the PM2.5/AOD ratio (Liu et al., 2004; van Donkelaar et al., 2006; van Donkelaar et 

al., 2015; Xu et al., 2015; Geng et al., 2017), with recent applications correcting for CTM biases using 

available PM2.5 surface network data (Brauer et al., 2016; Van Donkelaar et al., 2016; van Donkelaar 

et al., 2019; Hammer et al., 2020). An alternative approach is to use machine-learning algorithms to 

relate satellite AOD to PM2.5 by training on the surface network data (Hu et al., 2017; Chen et al., 

2018; Xiao et al., 2018; Wei et al., 2021; Pendergrass et al., 2021), and sometimes including CTM 

values as predictors (Di et al., 2019; Xue et al., 2019). Yet another approach is to assimilate the 

satellite-measured AODs in a CTM and correct in this manner the PM2.5 simulation, although this 

requires attribution of model AOD errors to specific model parameters (Kumar et al., 2019; Saide et 

al., 2014; Sekiyama et al., 2010; Cheng et al., 2019). In all of these approaches, a better physical 

understanding of the AOD-PM2.5 relationship as simulated by CTMs can greatly enhance the 

capability to infer PM¬2.5 from AOD data. 

AOD measures aerosol extinction (scattering and absorption) integrated over the atmospheric 

column, so that its relationship to 24-hr average surface PM2.5 (the standard air quality metric) 

depends on the aerosol vertical distribution and optical properties, ambient relative humidity (RH), 

diurnal variation of PM2.5, and contribution from coarse particulate matter to AOD. Little study of these 

factors has been conducted for East Asia. Airborne measurements of aerosol vertical profiles in East 

Asia are very limited (Liu et al., 2009; Sun et al., 2013). AOD is highly sensitive to RH (Brock et al., 

2016; Latimer and Martin et al., 2019; Saide et al., 2020), but the impact from RH uncertainty on AOD 

simulation lacks evaluation. In addition, because the AOD is a daytime measurement that needs to be 

related to 24-h average PM2.5, the diurnal variation of PM2.5 needs to be understood (Guo et al., 2017; 

Lennartson et al., 2018). Finally, there has been to our knowledge no study of how coarse 

anthropogenic PM may contribute to the AOD measurements. Coarse anthropogenic PM (distinct 

from desert dust) is known to be high over East Asia (Chen et al., 2015; Dai et al., 2018).” 

We revised lines 191-195: “Therefore, we re-computed the diagnostic AOD using updated log-normal 

size distributions for SNA and organic aerosol with number median radius RN,med = 0.11 μm and 
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geometric standard deviation σ = 1.4 based on KORUS-AQ observations, instead as compared tof 

RN,med = 0.058 µm and σ = 1.6 in the standard model version 12.7.1, which is derived from IMPROVE 

network measurements of aerosol mass scattering efficiency over North America (Latimer and Martin, 

2019).” 

 

Lines 85-86: Ångström Exponents at 500 nm? AE refers to a wavelength range. Reference is needed 

here. 

We detailed in lines 98-101: “We use total and fine-mode AODs at 500 nm wavelength from the 

AERONET Version 3; Spectral Deconvolution Algorithm (SDA) Version 4.1 Retrieval Level 2.0 

database (Giles et al., 2019; O’Neill et al., 2003). The AERONET AODs at 500 nm are converted to 

550 nm using total and fine mode Ångström Exponents at 500 nm for consistency with the satellite 

AOD data.” 

 

Lines 107-110: Himawari-8/AHI: Which version do you use? Reference is needed. Again, Himawari-

8/AHI provides AOD products at 500 nm. I am not sure about GOCI (should be 550 nm). Are they the 

same? If not, does the wavelength difference be taken into account in the data fusion? 

We detailed in lines 122-126: “Geostationary satellite AOD at 550 nm are retrieved by the Yonsei 

Aerosol Retrieval (YAER) algorithm for the GOCI (Choi et al., 2016, 2018) and AHI (Lim et al. 2018) 

instruments, with GOCI covering East China and South Korea and AHI covering the broad East Asia 

region. AOD from GOCI and AHI have a 6 km × 6 km spatial resolution and 1-hour (GOCI) to 2.5-

minute (AHI) temporal resolution for 8 hours per day (09:30 to 16:30 local time).” 

 

Lines 288-290: What are the potential reasons? Is it the aerosol algorithm or the difference caused by 

sample matching at different wavelengths? 

We explained in lines 308-312: “The low biases in the SMA could be due to high-concentration 

aerosol pixels mis-identified as clouds and/or possible issues with the aerosol type assumption in the 

aerosol retrieval, while the high biases on the Yellow Sea islands could result from uncertainties in 

the assumption of ocean surface reflectance, as has been discussed by Choi et al. (2016, 2018) and 

Lim et al. (2018, 2021).” 

 

Lines 295-296: What are the potential reasons? 
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We rephrased lines 317-319: “GEOS-Chem reproduces the satellite AOD enhancements along the 

west coast of South Korea but the values are lower than observed, which we attribute to unaccounted 

coarse PM and negative RH bias as discussed below.” 

We quantified in lines 323-325: “Therefore, about half of the GEOS-Chem underestimate of total AOD 

can be attributed to missing coarse PM, with the other half comes from negative RH bias.” 

 

Lines 297-312: Is there any relevant published literature to support the author's explanations of 

reasons for these differences between GEOS-Chem and satellites observations? 

We added in lines 85-91 in the introduction: “AOD is highly sensitive to RH (Brock et al., 2016; 

Latimer and Martin et al., 2019; Saide et al., 2020), but the impact from RH uncertainty on AOD 

simulation lacks evaluation. In addition, because the AOD is a daytime measurement that needs to be 

related to 24-h average PM2.5, the diurnal variation of PM2.5 needs to be understood (Guo et al., 2017; 

Lennartson et al., 2018). Finally, there has been to our knowledge no study of how coarse 

anthropogenic PM may contribute to the AOD measurements. Coarse anthropogenic PM (distinct 

from desert dust) is known to be high over East Asia (Chen et al., 2015; Dai et al., 2018).” 

 

I also suggest adding some scatter plots to validate and compare the satellite-based and modeled 

AODs, PM2.5, and other parameters if possible, so that readers can see their differences more clearly. 

Lines 396-402: “Figure 7 shows daily correlations of the regional average series between AERONET 

total AOD and GEO satellite AOD, between AERONET fine mode AOD and GEOS-Chem AOD, as 

well as between measured PM2.5 and GEOS-Chem PM2.5. Correlations in Figure 7 are all statistically 

significant with correlation coefficients (R) ranging from around 0.7 to more than 0.9 and normalized 

mean biases (NMB) within ± 30%. The correlations of these three pairs are similar over South Korea 

and North China, except that GEOS-Chem overestimates springtime PM2.5 in South Korea but not 

over North China, possibly due to a model overestimate of the long-range transport of PM2.5 from 

China to South Korea in spring.” 
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Figure 7. Scatter plots of regional mean daily (a and d) GEO satellite AOD vs. AERONET total AOD, (b and e) 
GEOS-Chem AOD vs. AERONET fine-model AOD, and (c and f) GEOS-Chem PM2.5 vs. measured PM2.5 over South 
Korea (a-c) and North China (d-f). Different colors represent different seasons. Values inset are correlation 
coefficients (R) and normalized mean biases (NMB) between surface measurements and GEO satellite or GEOS-
Chem values. 

Figure 6: I suggest adding some satellite PM2.5 estimated results to see the difference with model 

simulations since there are many available PM products, especially in China. 

We added lines 470-472 in the conclusion section: “We have used results from our study in a recent 

machine-learning reconstruction of daily 2011-present PM2.5 over East Asia from GOCI AOD data by 

identifying critical variables for the machine-learning algorithm and providing blended gap-filling data 

for cloudy scenes (Pendergrass et al., 2021).” 

 

Last, the authors should consider the impact of other factors, especially BLH, meteorological 

conditions, and topography, on surface PM, and to see how much impact can they have on the 

differences between satellite and model results. 

We added in the abstract (lines 43-47): “We updated SNA and organic aerosol size distributions in 

GEOS-Chem to represent aerosol optical properties over East Asia by using in-situ measurements of 

particle size distributions from KORUS-AQ. We find that SNA and organic aerosols over East Asia 

have larger size (number median radius of 0.11 µm with geometric standard deviation of 1.4) and 

(a) (b) (c)

(d) (e) (f)

1:1 lineSouth
Korea

North
China
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20% larger mass extinction efficiency as compared to aerosols over North America (default setting in 

GEOS-Chem).”  

We quantified in lines 286-287: “The model underestimates extinction coefficients by 20% below 1 km 

altitude, leading to a 10% underestimate of aircraft inferred AOD, although there is no such 

underestimate in aerosol mass.” 

We quantified in lines 323-324 to: “Therefore, about half of the GEOS-Chem underestimate of total 

AOD can be attributed to missing coarse PM, with the other half comes from negative RH bias.” 

We quantified in lines 412-414: “The GEOS-Chem AOD is ~ 20% biased low in summer and this is 

largely due to a low RH bias (Figure S8), as seen previously in the KORUS-AQ comparisons but 

amplified by the high RH in summer that drives hygroscopic growth (Latimer and Martin, 2019).” 

We added analysis in lines 420-423: “GEOS-FP daytime PBL height also shows a stronger 

seasonality over North China than over South Korea (Figure S8), generally consistent with the 

CALIPSO daytime PBL height (Su et al., 2018). Previous studies have shown opposite seasonality 

between MODIS AOD and surface PM2.5 over North China and attributed this to the seasonality in 

PBL height and RH (Qu et al., 2016; Xu et al., 2019).” 

We quantified in lines 443-446 in the conclusion section: “We find that GEOS-Chem aerosol optical 

properties based on measurements over the North America (default model setting) underestimate 

KORUS-AQ aerosol mass extinction efficiency by around 20%. In addition, a low bias in GEOS-FP 

RH below 1 km leads to a 10% underestimate of AOD inferred from the aircraft profile.” 

We added lines 451-452 in the conclusions section: “The remaining 15% underestimate of AERONET 

fine-mode AOD by GEOS-Chem can be attributed to the RH low bias.” 

We quantified in lines 460-462 in the conclusions section: “GEOS-Chem simulates successfully the 

seasonality of measured PM2.5 but is ~ 20% biased low in summer for AOD, due again to RH low bias 

like that during KORUS-AQ, amplified by the high RH in summer that drives hygroscopic growth 

(Latimer and Martin, 2019).” 

We added lines 472-474 in the conclusion section: “Besides the factors discussed in this study, 

topography might be another important factor influencing surface PM2.5 and its vertical mixing (Su et 

al., 2018), and this also requires future investigation.” 

 

 

References (newly added): 



 13 
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