

1
2 **Supplementary Information for**

3
4 **Heterogeneity and Chemical Reactivity of the Remote Troposphere defined by**
5 **Aircraft Measurements**

6
7 Results from the NASA Atmospheric Tomography mission (ATom)

8
9 Hao Guo¹, Clare M. Flynn², Michael J. Prather¹, Sarah A. Strode³, Stephen D. Steenrod³, Louisa
10 Emmons⁴, Forrest Lacey^{4,5}, Jean-Francois Lamarque⁴, Arlene M. Fiore⁶, Gus Correa⁶, Lee T.
11 Murray⁷, Glenn M. Wolfe^{3,8}, Jason M. St. Clair^{3,8}, Michelle Kim⁹, John Crounse¹⁰, Glenn
12 Diskin¹⁰, Joshua DiGangi¹⁰, Bruce C. Daube^{11,12}, Roisin Commane^{11,12}, Kathryn McKain^{13,14}, Jeff
13 Peischl^{14,15}, Thomas B. Ryerson^{13,15}, Chelsea Thompson¹³, Thomas F. Hanisco³, Donald Blake¹⁶,
14 Nicola J. Blake¹⁶, Eric C. Apel⁴, Rebecca S. Hornbrook⁴, James W. Elkins¹⁴, Eric J. Hintsa^{13,14},
15 Fred L. Moore^{13,14}, Steven Wofsy¹¹

16 ¹ Department of Earth System Science, University of California, Irvine, CA 92697

17 ² Department of Meteorology, Stockholm University, Stockholm SE-106 91, Sweden

18 ³ Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center,
19 Greenbelt, MD 20771

20 ⁴ Atmospheric Chemistry Observations and Modeling Laboratory, National Center for
21 Atmospheric Research, Boulder, CO 80301

22 ⁵ Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309

23 ⁶ Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory,
24 Columbia University, Palisades, NY 10964

25 ⁷ Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY
26 14611

27 ⁸ Joint Center for Earth Systems Technology, University of Maryland, Baltimore County,
28 Baltimore, MD 21228

29 ⁹ Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena,
30 CA 91125

31 ¹⁰ Atmospheric Composition, NASA Langley Research Center, Hampton VA 23666

32 ¹¹ John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge,
33 MA 02138

34 ¹² Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138

35 ¹³ Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder,
36 CO 80309

37 ¹⁴ Global Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305

38 ¹⁵ Chemical Sciences Division, National Oceanic and Atmospheric Administration Earth System
39 Research Laboratory, Boulder, CO 80305

40 ¹⁶ Department of Chemistry, University of California, Irvine, CA 92697

41 *Correspondence to:* Hao Guo (haog2@uci.edu) and Michael J. Prather (mprather@uci.edu).

45 **S.1. The Modeling Data Stream**

46
47 The ATom mission was designed to collect a multi-species, detailed chemical
48 climatology that documents the patterns of physical and chemical heterogeneity
49 throughout the remote troposphere. The work here requires a complete set of key species
50 in each air parcel to initialize global 3D chemistry models to be able to calculate the CH₄
51 and O₃ reactivities over a 24 hour cycle. The ATom Modeling Data Stream (MDS)
52 provides a semi-continuous set of 10 s air parcels with a full set of values for the key
53 chemical reactants and conditions. We choose 10 s averages for our air parcels as a
54 compromise to include most of the instruments, and because the 10 s merged data is a
55 standard product (Wofsy et al., 2018). Some of our core species are measured with gas
56 chromatographs or flask samples with longer integrations times (30-90 sec), but these can
57 be mapped onto the 10 s parcels with loss of the higher frequency variability found in the
58 10 s measurements. The frequent profiling of the DC-8 gives us both vertical and
59 horizontal scales: the vertical extent of a 10 s parcel is 50 - 110 m (55%-95% of all
60 parcels, with <50% having near level flight) and the horizontal extent is typically 1.4 -
61 2.5 km (10%-90% of all parcels).

62
63 ATom completed its four deployments: ATom-1 starting 20160729 (YYYYMMDD),
64 ATom-2 starting 20170126, ATom-3 starting 20170928, and ATom-4 starting 20180424.
65 ATom targets the remote troposphere by sampling over the middle of the Pacific and
66 Atlantic Ocean basins. The DC-8 aircraft performed in situ profiling of the atmosphere
67 from 0.2 km to 12 km along each flight segment as often as possible. Each deployment
68 lasted about 4 weeks and contained 11 to 13 research flights (RF). Figure S1 maps the 48
69 RF, and the Table S1 summarizes each flight in terms of airports, starting date (UT), and
70 number of 10 s parcels. For convenience, we designate the RF across the 4 deployments
71 as ATom flights (AF) 1 through 48. The MDS data reported here consists of 149,133 air
72 parcels over 4 deployments with a total of 48 research flights. AF 46 is a short ferry flight
73 from Kangerlussuaq, Greenland to Bangor, Maine with many instruments turned off and
74 no profiling, thus these 1,106 parcels contain only flight data (MDS variables 1:11) and
75 no chemical data.

76
77 ATom sampling of the troposphere is more uniform than most aircraft missions, but still
78 contains some biases that can be adjusted by weighting each air parcel. Due to the
79 typical profiling sequence (level at cruising altitude for 10 min, descent for 20 min, level
80 flight about 160 m above the sea level for 5 min, and a 20-min climb back to cruising
81 altitude) and to the occasional requirements of weather or air traffic control, the sampling
82 is skewed towards the uppermost troposphere (P < 300 hPa) and, secondly, the marine
83 boundary layer. We designate a weight for each MDS air parcel to achieve a more
84 uniform sampling of the troposphere by mass: data are binned into 100 hPa-wide
85 pressure bins and 10°-wide latitude bins, and each point is assigned a weight equal to the
86 inverse of the number of points in the bin times cosine of the latitude. There are very few
87 measurements for pressures <200 hPa and so these points are included in the uppermost
88 200-300 hPa bin. This ATom-1 analysis has three study domains: Global includes all
89 parcels (32,383) weighted as above; Pacific considers all measurements (11,486) over the
90 Pacific Ocean from 54°S to 60°N (research flights RF 1,3,4,5,6); and the Atlantic,

91 likewise, from 54°S to 60°N (RF 7, 8, 9) over the Atlantic basin (7,501). The ATom-1
92 flight tracks shown in Figure S1 identify the Pacific and Atlantic domains with very thick
93 lines. Also shown are the regional blocks used to calculate the model climatologies for
94 those domains.

95
96 Figure S2a shows the time series of O₃ and H₂O measured during one of the profiles of
97 RF 3. The 1 s data is plotted along with the 10 s averages. Most of the heterogeneity
98 including correlated variability is caught with the 10 s parcels. For RF #3, the root mean
99 square error (RMSE) of the 10 s averages linearly interpolated to 1 sec is 6% for H₂O and
100 3% for O₃. For comparison the short-gap interpolation described below has an RMSE
101 twice as large for these species.

102
103 The problem in developing the MDS from the 10 s merge files is that gaps occur in
104 individual species on a range of times scales due to calibration cycles, sampling rates, and
105 instrument malfunction. For the chemistry modeling of an air parcel, we need complete
106 chemical specification and thus data gaps in individual species must be filled where we
107 have adequate information. Early versions of the ATom-1 MDS were generated and used
108 in modeling studies that are included here, but we found several problems with the
109 approaches used for gap filling and had to entirely redo the method. MDS_R0 adopted
110 early recommendations for use of a photo-stationary steady-state value for NO_x (PSS),
111 which was later rejected by the ATom science team as flawed. MDS_R1 reverted to the
112 observed NO_x values but had problems when using flask sample data with a lower limit
113 of detection. Both of these MDS versions used CO and other species as a proxy for gap
114 filling, but closer examination showed that this method lacks skill.

115
116 The MDS R2 method for gap filling is fully documented in this Supporting Information.
117 MDS_R2 defined the core reactive species (H₂O, O₃, CO, CH₄, NO_x, NO_xPSS, HNO₃,
118 HNO₄, PAN, CH₂O, H₂O₂, CH₃OOH, acetone, acetaldehyde, C₂H₆, C₃H₈, i-C₄H₁₀, n-
119 C₄H₁₀, alkanes, C₂H₄, alkenes, C₂H₂, C₅H₈, benzene, toluene, xylene, CH₃ONO₂,
120 C₂H₅ONO₂, RONO₂, CH₃OH) and corollary species indicative of pollution or processing
121 (HCN, CH₃CN, SF₆, relative humidity, aerosol surface area (4 modes), and cloud
122 indicator), see Table S2. Every species in each air parcel is now flagged so that the
123 instrument is clearly identified (in the case that two instruments measure the same
124 species) and the type of the gap filling (dependent on the length of the gap) is denoted so
125 that the users can develop their own criteria for including, or not including, the gap-filled
126 species. Flags 1 & 2 indicate a reported measurement from a primary (1) or secondary
127 (2) instrument. Flag 3 means short-gap filling. Flags 4 & 6 indicate log-gap filling for
128 tropospheric and stratospheric parcels, respectively. Flag 5 applies to missing flights with
129 no data from that instrument(s), and these were filled by a multiple linear regression from
130 the parallel flights. Flag 0 indicates not a number (NaN), which only occurs for AF 46.

131 132 **S.1.1. Primary ATom data sets**

133
134 This section describes the creation of MDS revision R2; the early-release revisions R0
135 and R1 used a different algorithm and flagging system and should no longer be used.
136 The 'Mor' data sets created by Wofsy et al. (2018) contain merges of the ATom 10 s data

137 (Mor.all), the WAS flask data analyzed post-flight (Mor.WAS.all) and the in-flight
138 TOGA chromatograph-mass spectrometer data (Mor.TOGA.all). These data sets are
139 released in a gzip file with the YYYY-MM-DD of their creation. For this MDS version
140 (2020-05-27), we use the following 3 data sets:

141 'Mor.all.at1234.2020-05-27.tbl' (653,494,900 bytes)
142 'Mor.WAS.all.at1234.2020-05-27.tbl' (49,091,169 bytes)
143 'Mor.TOGA.all.at1234.2020-05-27.tbl' (80,579,206 bytes)

144 The Mor data are ASCII text files with extremely long records and difficult to read,
145 containing a mix of comma-separated floating point, integer and character strings. For
146 Mor.all, the 149133 records contain 675 comma-separated variables (but this can change
147 with different releases). Some of the floating point variables are longer than 20
148 characters due to excess precision in the scientific notation. We pre-process these with a
149 Fortran generic read(5,*) using the comma separation to generate character strings. The
150 code searches the title (first) record of the Mor...tbl to identify the specific columns that
151 we need for MDS (in this case 39 out of 675). The 39 key data from each record are
152 rewritten in formatted form (39a40, because some floating point variables were
153 excessively long and 39a20 was inadequate) with comma separation. All numerical
154 values are copied verbatim, but the text 'NA' is replaced by 'NaN'. This new file can be
155 simply imported into Matlab or more easily read by other software. Further, this
156 approach ensures that the correct quantities are pulled from the Mor...tbl file, even if the
157 column order changes due to addition or removal of data. The WAS and TOGA
158 observations have separate files with the start and end times of the observed air mass,
159 which is greater than the 10s interval in the regular file. Both WAS & TOGA Mor...data
160 sets have a large number of data columns (729 & 727) with fewer records (6,991 &
161 12,168, respectively).

162
163 The 3 Fortran output files are imported into Matlab (using 'Import Data') and then
164 processed as described below. The instructions and Matlab code are included in text files
165 containing Matlab commands: 'Pmat-Mor1.txt', 'Pmat-WAS+TOGA.txt', 'Pmat-
166 MDS0n.txt').

167
168 **S.1.2. Preliminary processing and identifying gaps**
169

170 In terms of critical flight data (time, latitude, longitude, altitude), there are no gaps in the
171 record. UTC_stop has a gap, but this variable is not used in the MDS (10s intervals are
172 assumed).

173
174 The Mor.all.at1234.2020-05-27 data set of 149,133 10s parcels was sorted into
175 deployments and research flights. The beginning and end points of each research flight
176 (RF) along with the deployment and starting date of each flight are given in Table S1.
177 All together there are 48 flights, but AF 46 contains only flight data. All three types of
178 Mor data include some measurements close to the airports, which often have ground-
179 level pollution. We remove these data by including only measurements at altitudes of
180 900 m or more above the takeoff/landing airport. The record collapses to 146,494
181 parcels, also shown in Table S1.

183
184 The list of MDS R2 variables, their MDS identifiers (ending in _M) and the sources in
185 standard ATom nomenclature are given in Table S2. The flag variables (0 to 6) are also
186 explained there. Information about each research flight is summarized in **Table S3abcd**,
187 including the average latitude, longitude and altitude of the 10s parcels (all equally
188 weighted here). The abcd sub-tables correspond to the 4 deployments. For each of the
189 MDS variables 12 to 50, The % of non-NaN values with flags = 1, 2 or 3, is shown (the
190 remaining % has flags = 4, 5 or 6). These data correspond to a primary or secondary
191 direct measurement (1 or 2) or else short-gap interpolation (3, see text below). Missing
192 data for an entire flight (0%) has shaded cells.
193

194 **Mor.all combined species and fixes.** The primary MDS NOx values were created by
195 simply summing NO_CL + NO2_CL before any attempt to deal with the negative values.
196 The number (27071) of NOx NaNs coincides with those of NO2_CL. The alternative
197 photostationary state NOx values (NOxPSS) were calculated from O₃, NO and J-values
198 and was originally proposed as a more accurate value for NOx. Subsequent analysis has
199 shown this approach is biased, and it is included here only for ATom-1 because some
200 early model studies used it in the MDS R0 version. A small number (22) of CH₄_QCLS
201 values have unrealistic abundances <1000 ppb and these are converted to NaNs. The
202 NaNs in these cases were filled using the algorithm below.
203

204 **TOGA and WAS combined species and immediate fixes.** Methyl and ethyl nitrate
205 (WAS only) are kept separately but the 6 higher organo-nitrates are combined into
206 RONO₂; the limited TOGA organo-nitrates are not used. For both WAS and TOGA,
207 toluene and ethylbenzene are combined into toluene, and the two forms of xylene are
208 combined. Both forms of butane are kept, but higher alkanes are combined into 'Alkanes'
209 for both TOGA and WAS. TOGA and WAS use -888 flags for LLOD and these are
210 converted to 0.001 ppt because the LLOD values for these species (e.g., 3 ppt) are much
211 higher than remote background values and setting them to the LLOD level would be
212 misleading. TOGA's toluene has some mistaken values of 888 and 999 instead of -888
213 and -999 and these are corrected. All -999 values, as well as all gaps in either TOGA or
214 WAS measurement intervals are converted to NaNs. The WAS and TOGA data have
215 time stamps (stop minus start) much longer than the 10 sec parcels in the Mor.all data
216 sets, and their values are mapped onto the 164,494 parcels whenever their start or stop
217 time falls within the 10s start-stop range, else they are filled with NaNs. The WAS and
218 TOGA instruments sample air averaged over typically 30 to 90 sec, and then have a gap
219 before the next measurement, varying from 30 to 300 sec. The TOGA length-of-
220 measurement is regular with the 10%-90%ile range being about 35 sec and the same
221 percentile length-of-gaps being about 85 sec. The WAS data comes from flasks filled in
222 flight, and the time to fill a flask depends on the pressure, and the gap depends on the
223 operator decision: the 10%-90%ile length-of-measurement is 32 to 90 sec, and the
224 corresponding gaps are 33 to 285 sec.
225

226 **S.1.3. Interpolation and fill of data gaps**
227

228 The actions here are arbitrary but judicious, and every attempt was made to avoid
229 introducing spurious data. There are a number of negative values for chemical variables
230 that are intrinsically positive definite. Instrument reporting of a negative value is
231 expected when the concentration is near the limit of detection or within the instrumental
232 noise range. The MDS choice is simply to take all such values less than or equal to 0 and
233 convert to 0.001. Since these negative values usually represent a small concentration
234 close to the detection limit, they have little impact on the chemistry calculations using the
235 MDS. If analyzing statistics near this range, the original Mor data sets should be used.
236

237 **Pressure and temperature.** P and T have 5 very small gaps of length ~6 (# of 10s
238 parcels missing) plus a longer gap of length 28. All gaps occurred during smooth descent
239 or ascent and so were filled using linear interpolation. These are denoted by flag_M(:,10)
240 = flag_M(:,11) = 3.
241

242 **H₂O and relative humidity.** There are a number of short gaps in the record of
243 H₂O_DLH and RHw_DLH, and only 2 longer gaps (length = 83 and 87). One of the long
244 gaps occurs during descent as H₂O jumps from 240 to 18,000 ppm. Thus we choose a
245 linear in the log method for all H₂O gaps, while a simply linear method is used to fill
246 RHw gaps. These are denoted by flag_M(:,12) = flag_M(:,13) = 3.
247

248 **CO.** One task is the creation of a continuous CO record since that species has two well
249 calibrated, nearly continuous measurements. CO can be used to check for unusual or
250 polluted air during the gaps in other species. The primary CO data are from QCLS
251 because it has higher precision and the secondary are from NOAA with a more
252 continuous record but greater noise. This processing of the CO data was done with the
253 full 149,133-parcel dataset, and not the airport-collapsed data set. For the MDS airport-
254 truncated data set, the number of NaN points in CO_NOAA is 8463; that in CO_QCLS is
255 30,233.

- 256 1. Modify CO_QCLS: interpolate short gaps in the CO_QCLS record (≤ 10 parcels =
257 100s ~ 1000 m vertically)
- 258 2. Create a continuous CO_N record.
 - 259 a. Start with CO_NOAA and locate all the NaN gaps.
 - 260 b. Fill gaps with modified CO_QCLS where available and locate new NaN gaps.
 - 261 c. Average CO for 5 points on either side of gap, interpolate linearly across the
262 gaps.
- 263 3. Smooth the CO_N record, which is visibly noisy at 10 s with 11-point running
264 average (~ 1000 m in vertical).
- 265 4. Create a continuous CO record.
 - 266 a. Define CO = modified CO_QCLS (step 1).
 - 267 b. Fill the gaps in CO with CO_N (step 3).
 - 268 c. Define CO flags:
 - 269 1 = primary, QCLS (116,261 parcels);
 - 270 2 = secondary, smoothed CO_N (29428);
 - 271 3 = modified, short-interpolated QCLS (80);
 - 272 4 = interpolated CO_N (725).

274 Two samples of this CO interpolation method are shown in Figure S3. The frequency of
275 occurrence of all flags for this new CO_M variable, along with the other MDS chemical
276 variables are given in Table S4.

277

278 **Short-gap simple interpolation for remaining species.** It was decided that the least
279 intrusive method for filling short data gaps was to simply interpolate using only the
280 instrument data. In MDS revisions R0 and R1, CO was used as a proxy to fill these gaps,
281 but later analysis showed little correlation with absolute CO or even the short-term
282 variability in CO. We examined the typical size of gaps and their frequency. For the
283 Mor.all species we selected gaps of ≤ 13 for short-gap interpolation; for WAS the gap
284 frequency peaked about 10 (100 s) and we selected gaps of ≤ 10 ; for TOGA there was a
285 strong peak at gap length of 7-8 (instrument cycle time) and we also selected ≤ 10 as the
286 criterion. These gaps correspond to about 1000 m or less in the vertical during ascent or
287 descent. For most Mor.all variables this adds about 10% (absolute) to the number of non-
288 NaN parcels, but for WAS and TOGA with many smaller gaps it greatly enhances the
289 coverage. WAS coverage goes from 28% to 41%, while TOGA jumps from 31% to 93%
290 because most gaps are 85 sec. For all short-gap interpolation, the parcel data for that
291 species is tagged with flag = 3.

292

293 **Long-gap interpolation for remaining species - Troposphere.** We choose a robust and
294 minimally intrusive method for filling gaps > 10 (100 s) based upon the average
295 tropospheric profile for that flight, using eight 100-hPa-wide bins (< 300 , 300-400, 400-
296 500, 500-600, 600-700, 700-800, 800-900, > 900 hPa). The gap value is replaced by the
297 appropriate bin value. If any bins have no measured values, we use the nearest bin or
298 average of the nearest bins. It is important not to confuse stratospheric and tropospheric
299 air when gap filling. From our analysis, a number of key reactive species (e.g., CH₂O,
300 HOOH, NO_x) show distinctly different patterns as ATom crosses into the stratosphere.

301 **Long-gap interpolation - Stratosphere.** We find the most robust definition of
302 stratospheric-like air to be based primarily on H₂O rather than O₃, because O₃ abundances
303 > 200 ppb are often seen in large, clearly tropospheric air masses with H₂O > 50 ppm.
304 Based on percentiles of O₃ at different values of H₂O (see Figure S4a) we pick < 30 ppm
305 as the criteria for being stratospheric, with the secondary requirements that O₃ > 80 ppb
306 and CO < 120 ppb (see Figure S4b). For the stratospheric air we create mean 'profiles' in
307 terms of 6 O₃ bins (< 200 , 200-300, 300-400, 400-500, 500-700, > 700 ppb) use this as a
308 lookup table for gap filling. There are many fewer stratospheric parcels, and the
309 stratosphere tends to be similar across latitudes, and so we create a single lookup tables
310 from all research flights at all latitudes. In general, these near tropopause air parcels are
311 cold and dry and not highly reactive; however when partitioning the chemistry model
312 calculated reactivities between stratosphere and troposphere, these criteria may need to be
313 re-investigated.

314

315 As a measure of the error in this long-gap interpolation, we randomly select 10% of the
316 air parcels from data stream before calculating the long-gap interpolation, interpolate
317 those 10% points, and calculate the mean bias and root-mean-square error (rmse). This is
318 repeated 10 times and we show the average results in Table S5 below. We find these
319 results acceptable, and better than the multiple linear regressions we tried. There may be

320 a better way to do this in future versions beyond R2, perhaps with a machine-learning
321 approach. Gaps interpolated in this way are given flag = 4 (troposphere tables) and flag =
322 6 (stratosphere tables).

323
324 **Missing data for an entire flight.** For **ATom-1 RF-5**, an instrument failed and we lost
325 all data for H2O2_M, HNO3_M, and HNO4_M. This flight was from American Samoa
326 to Christ Church. We fill these species using a multiple linear regression from the
327 parallel flights ATom-1 RF-4 and ATom-2/3/4 RF-4/5. The independent (explanatory)
328 variables for the multiple linear regression for these missing flights are chosen to be
329 pressure, noontime solar zenith angle and latitude (in that order). For H2O2_M and
330 HNO3_M, we calculate the missing ATom-1 RF-5 data using the full set of parallel
331 flights, but for HNO4_M, we can use only ATom-1/2 flights (see Table S3 & S6).
332 Data filled for missing flights are given flag = 5. For **ATom-2 RF-2**, we also lost all data
333 for H2O2_M, HNO3_M, and HNO4_M. In this case the regression is based on parallel
334 flights ATom-2 RF-3 and ATom-1/3/4 RF-2/3 for H2O2_M and HNO3_M, but only
335 ATom-2 RF-3 and ATom-1 RF-2/3 for HNO4_M. For **ATom-3 RF-1**, we lost all data
336 for NOx_M. A multiple linear regression is based on parallel flights ATom-3 RF-2 and
337 ATom-1/2/4 RF-1/2. For **ATom-3/4 all**, we lost all data for HNO4_M, and the best we
338 can do is base the regression on all HNO4_M measurements (not filled as noted above)
339 from ATom-1/2. This is clearly one of the weakest gap filled here, and users should be
340 careful if key results depend HNO4_M values for ATom-3/4. For **ATom-4 RF-5/6/7/8/9/12/13**, we lost all data for CH3OOH_M. A multiple linear regression approach
341 was based on data from the preceding RF-4 as well as the parallel research flights from
342 the other 3 deployments (i.e., ATom-1/2 RF-5 to 11, ATom-3 RF-5 to 13, ATom-4 RF-
343 4). For **ATom-4 RF-11** (AF 46), all chemical data have flag = 0, value = NaN. A
344 summary of the missing flights and species along with estimated error in our gap filling is
345 given in Table S6.

346
347
348 From the reactivity results for ATom-1 shown in this paper, the lack of ATom-3 NOx
349 observations in the Eastern Pacific (RF 1) mean that the P-O3 statistics there (not
350 calculated in this paper) will not be useful.

351
352 **S.1.4. Species measured by two instruments**
353

354 Several species have redundant measurements and these are identified by the duplicate
355 sources in Table S2. The choice of primary (flag = 1) and secondary (flag = 2) are
356 chosen based on continuity of record or coverage of related species, or our estimate of the
357 higher precision measurement. Primary data sources usually have a better data coverage.

358
359 **CH4:** (1) CH4_NOAA, (2) CH4_QCLS. The primary has more data and does not have
360 spurious anomalies (see previous). There is no evident bias, but some scatter, and so the
361 NaNs in the primary record (which first has had short-gap interpolation as noted above) is
362 simply filled with the secondary record (also with short-gap interpolation).

363
364 **CH2O:** (1) CH2O[ISAF], (2) CH2O_TOGA. Formaldehyde is a key reactive species and
365 TOGA provides a secondary record for the 2nd half of ATom-4 when ISAF failed. The

366 overlapping data with both instruments is plotted in below (Figure S5). The mean
367 difference in overlapping observations is very small (-1 out of a mean of 134 ppt), but the
368 rms is larger (75 ppt). ISAF has a number of values > 1000 ppt, while TOGA has none.
369 A linear fit gives a slope of 0.8 with $R^2 = 0.59$, but a 1:1 slope has only slightly smaller
370 $R^2 = 0.55$. We do not attempt to rescale the TOGA data in this case and just replace any
371 NaNs remaining in the short-gap-interpolated ISAF record (particularly flights 42:48)
372 with TOGA data (also short-gap interpolated).
373

374 **PAN:** (1) PAN_GTCIMS, (2) PAN_PECD*. The GTCIMS joined the mission at
375 ATom-2. The overlap period shows a clear bias between the GTCIMS and PECD
376 observations. A linear fit is clear ($R^2 = 0.84$), and we rescale the secondary PECD* =
377 $(PECD + 0.45)/1.18$.
378

379 **C₃H₈:** (1) Propane_WAS, (2) Propane_TOGA. No obvious bias is found. A linear fit
380 gives an $R^2 = 0.90$, but the 1:1 line has an $R^2 = 0.85$, so we just use the TOGA data
381 directly as the secondary observation.
382

383 **iC₄H₁₀:** (1) iButane_WAS, (2) iButane_TOGA. No obvious bias is found. A linear fit
384 gives an $R^2 = 0.955$, but the 1:1 line has an $R^2 = 0.947$, so we just use the TOGA data
385 directly as the secondary observation.
386

387 **nC₄H₁₀:** (1) nButane_WAS, (2) nButane_TOGA. No obvious bias is found. A linear fit
388 gives an $R^2 = 0.962$, but the 1:1 line has an $R^2 = 0.942$, so we just use the TOGA data
389 directly as the secondary observation.
390

391 **C₅H₈:** (1) Isoprene_TOGA, (2) Isoprene_WAS. No obvious bias is found. A linear fit
392 gives an $R^2 = 0.938$, but the 1:1 line has an $R^2 = 0.904$, so we just use the WAS data
393 directly as the secondary observation.
394

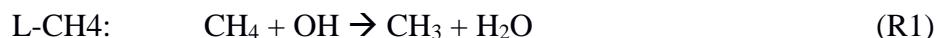
395 **benzene:** (1) Benzene_TOGA, (2) Benzene_WAS. There is some systematic difference
396 between WAS and TOGA (TOGA = $\sim 0.75 \times$ WAS), but the contribution of WAS to the
397 aromatics is small (see flag=2 is <3% in **Table S4**) and so we did not scale WAS.
398

399 **toluene:** (1) Toluene_TOGA + EthBenzene_TOGA, (2) Toluene_WAS +
400 EthBenzene_WAS. No obvious bias is found in spite of the large scatter. A linear fit
401 gives an $R^2 = 0.75$, but the 1:1 line has an $R^2 = 0.74$, so we just use the TOGA data
402 directly as the secondary observation.
403

404 **xylene:** (1) mpXylene_TOGA + oXylene_TOGA, (2) mpXylene_WAS +
405 oXylene_WAS. No obvious bias is found in spite of the very large scatter. A linear fit
406 gives an $R^2 = 0.3$, so we just use the WAS data directly as the secondary observation.
407

408 **HCN:** (1) HCN_CIT, (2) HCN_TOGA. The CIT observation is chosen as primary
409 because of its more continuous, 10s record. In spite of the large scatter, a linear fit with a
410 slope of 0.8 does not greatly reduce the variance ($R^2 = 0.74$ vs 0.65 for 1:1), so we just
411 use the TOGA data directly as the secondary observation.

412
413 **SF6:** (1) SF6_PECD, (2) SF6_UCATS. The scatter seems large, but the relationship is
414 mostly 1:1 with $R^2 = 0.90$. A linear fit gives a slope of 0.99, and so we just use the
415 UCATS data directly as the secondary observation. Both data sets are sparse.


416
417 **S.1.5. Seasonality of ATom 1-4 data**

418 As a quick look at the opportunities provided by the ATom data, we consider two
419 examples. Figure S6 shows that the 4-season transects of ATom (deployments 1, 2, 3 and
420 4) produced remarkably similar patterns of the 2-D PDs for HOOH versus NO_x in Central
421 Pacific, providing a useful benchmark for the modeling community. The ellipse fits show
422 almost identical overlap for ATom 2-3-4 and overlap with ATom-1 except for regions of
423 very low (2-10 ppt) NO_x . The implication is that the chemical patterns of the tropical
424 Central Pacific are represented by a single transect and do not change much seasonally.

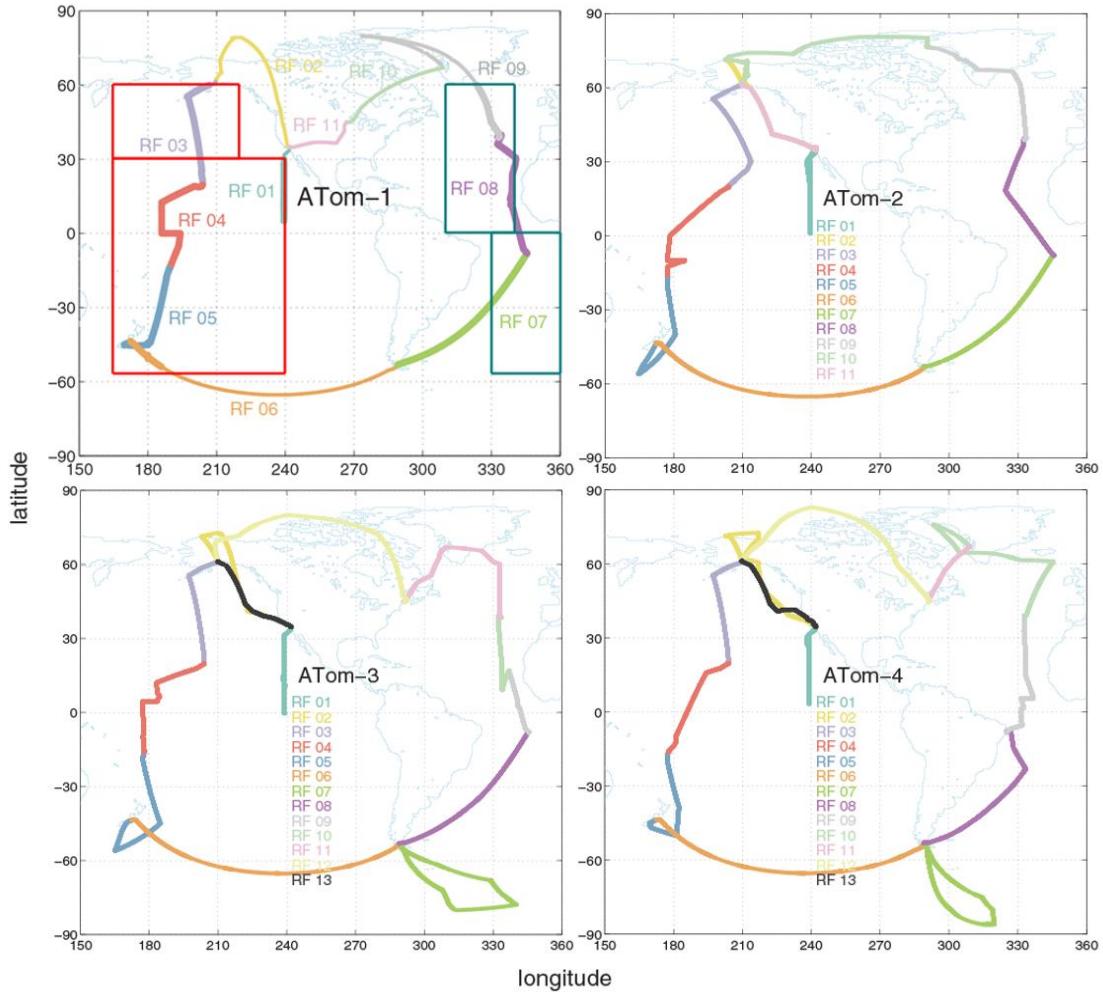
425
426
427 **S.2. The Reactivity Data Stream**

428 In this paper, we use the 6 models for their August chemical statistics, and use 5 of them
429 plus a box model to calculate the reactivities (i.e., chemical tendencies) from the ATom-1
430 MDS, see Table S7.

431 In the models, a grid cell is initialized with all the core reactive species needed for a
432 regular chemistry simulation. The model is then integrated over 24 hours without
433 transport or mixing, without scavenging, and without emissions. Each model uses its own
434 varying cloud fields for the period to calculate photolysis rates; and the reactions rates are
435 integrated. The F0AM box model simply takes the instant J-values as measured on the
436 flight and applies a diurnal scaling. We calculate the three major reactivities (Rs) from
437 the rates.

450 The peroxy radical RO_2 is used to represent all species like CH_3O_2 , $\text{C}_2\text{H}_5\text{O}_2$, and more
451 complex organic species. While the net P-O3 minus L-O3 can involve other reactions,
452 particularly with NO_x and unsaturated organics in polluted environments, Prather et al.
453 (2017) showed that the difference in these two reactivities accurately described the O_3
454 tendencies in most regions, including aged pollution plumes over the ocean basins. Two
455 photolysis rates (J-values) are linked strongly with the reactivities, and their 24-hr
456

457 averages are also included in the model-derived RDS because they provide useful
458 diagnostics:
459

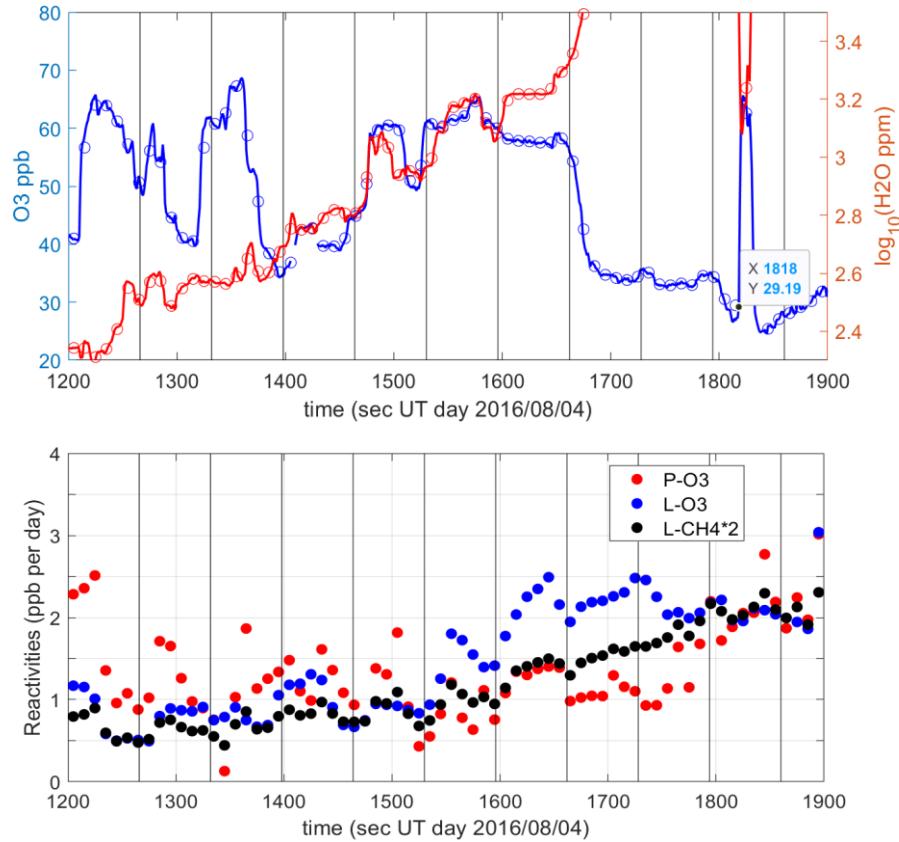

462

463 Prather et al. (2018) showed that we can initialize with the core species and let the
464 radicals (OH, HO₂, RO₂) come into photochemical balance. Prather et al. (2018) also
465 found that the 24-hour integration using the synthetic MDS along the Dateline was not
466 overly sensitive to the initialization time (at most 4% in P-O3, 1% in L-O3 and L-CH4),
467 and thus models do not have to synchronize with the local time of observation (see their
468 Figure S8 and their Table S8). The summary statistics of these reactivities and J-values
469 from the six models using MDS_R0, from 3 different years with the UCI model, from
470 GMI using MDS_R1, and from UCI using MDS_R2 are given in Table S8. The ATom-1
471 data are sorted for the Pacific and Atlantic basins as well as global. We show: means,
472 medians and mean of the top 10% of reactive parcels; percent of total reactivity in the top
473 50%, top 10% and top 3%; and mean J-values.
474

475 Variations in reactivities due to clouds is an irreducible source of uncertainty:
476 predicting the cloud-driven photolysis rates that a shearing air parcel will experience over
477 24 hours is not possible here. The protocol asks models to sample 5 separated days
478 during the deployment month (e.g., August 1, 6, 11, 16, 21 for ATom-1) to average over
479 synoptically varying cloud conditions. The averaged standard deviation (σ) of reactivity
480 over the 5 days is calculated in % of the mean. In Table S9, it is about 10% for the 3
481 similar CTMs (GC, GMI, UCI) but twice as large for the 2 CCMs (GISS, NCAR). For
482 the 3 CTMs, the σ of the J-values is similar (~10%), as expected because variations in the
483 J's via clouds drives the reactivities. Results from the UCI CTM running different years
484 show the same 10% level. For GISS and NCAR, the results are more cryptic: J-value σ
485 are larger (12 – 17%); but the reactivity σ are larger still (14 – 32%). We have not
486 resolved these differences. The FOAM box model does not include clouds directly but
487 calculates its own clear-sky J-values and scales the diurnal cycle to the single observed J-
488 value at the time of measurement, thus maintaining the same proportional cloud effects
489 over all daytime hours.
490

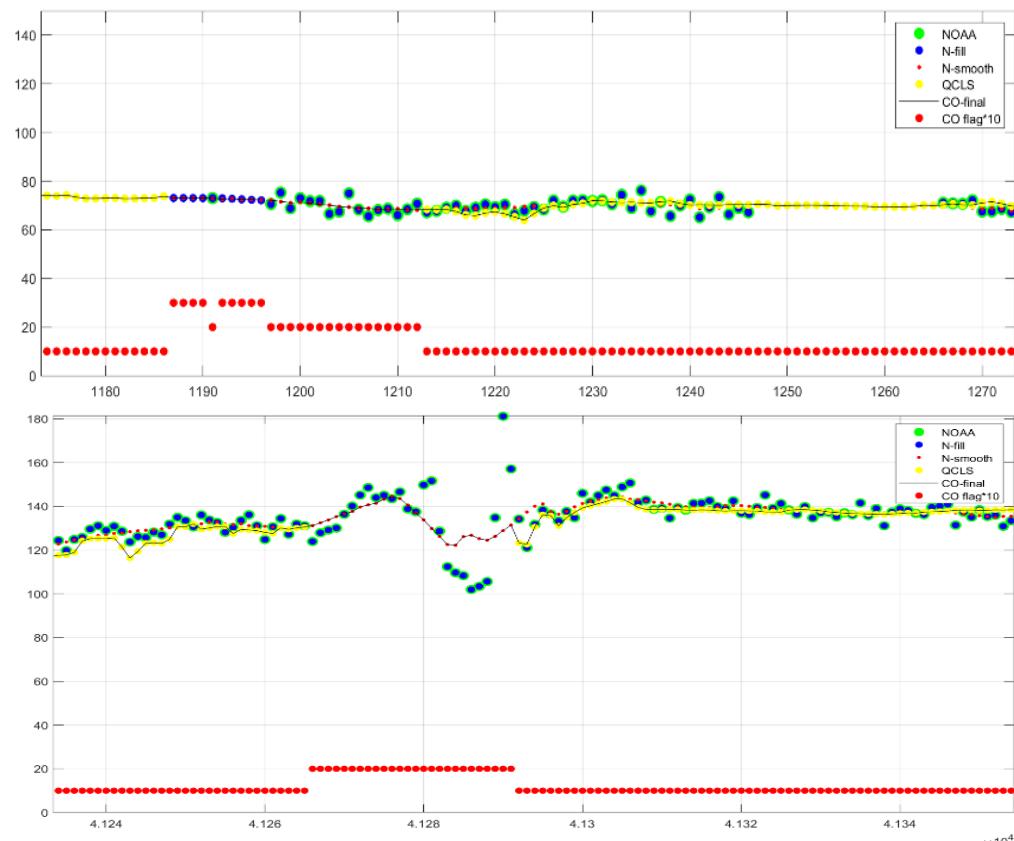
491 One-dimensional probability density functions (PDs) for the 3 Rs along the Pacific and
492 Atlantic transects of ATom-1 are presented in **Figure S7**. These are the 54°S-60°N
493 oceanic measurements. The mean values for the six models (colors, "a day in mid-
494 August" for the blocks shown in **Figure S1**) and the ATom-1 flights (black, UCI model,
495 MDS_R2) are shown in the figure legend. For the Pacific, the high reactivities in the
496 Eastern Pacific (10°N-30°N) do not substantially alter the PD as seen by comparing the
497 whole Pacific (solid black) with just the Central Pacific (dashed gray), but they do shift
498 the mean reactivities upward by 10-20%. Occurrences beyond the uppermost bin shown
499 (6 ppb/d for P-O3, L-O3; 3 ppb/d for L-CH4) are included in that bin and result in an
500 obvious uptick for P-O3 and L-O3. This uptick is not seen for the Central Pacific alone
501 (gray circles), indicating that the extreme reactivities occur in the Eastern Pacific (Figure
502 2 in main text).

503
504 For P-O3, the difference between the five of the six global chemistry models and ATom
505 is distinct in both basins. ATom shows a large occurrence of moderately reactive air with
506 P-O3 > 2 ppb/d in both Pacific (48%) and Atlantic (54%). The models show much less
507 of such air in both Pacific (6-10%) and Atlantic (17-30%). Thus, the ATom chemical
508 mix of reactive species is far more effective in producing O₃ than that in most all
509 CTM/CCMs. This result holds for both Pacific and Atlantic transects and thus is unlikely
510 a result of biased ATom sampling. We conclude that our models have a fundamental
511 flaw in O₃ production over the major ocean basins. For both L-O3 and L-CH4, both
512 ATom and models have similar mean values and their PDs are remarkably similar. For
513 L-CH4, one can see a slight systematic shift between the two, with ATom having lower
514 occurrence in the 0.5-1.5 ppb/d range, but greater in the 1.5-2.5 ppb/d range. Generally,
515 five models (GC, GFDL, GMI, NCAR, UCI) show a similar pattern and mean values for
516 all 3 Rs and both ocean basins, while the sixth model (GISS) is inexplicable as noted
517 before.
518
519 Also, the ability to test the model's reactivity statistics with the ATom 10 s data is not
520 obvious. For example, in Figure S8, we take the Pacific P-O3 frequency (black),
521 generate a random set of points from that distribution, and then start averaging adjacent
522 points in groups (2, 4, 8; denoted as 4 km, 8km, 16 km). The resulting statistics rapidly
523 evolve into a Gaussian-like distribution about the mean value. Thus, the ability to nearly
524 match the ATom-1 statistics with our global chemistry models is significant, and we
525 cannot explain the P-O3 discrepancy as a model-averaging problem.


Figure S1. Flight tracks for the 4 ATom deployments. For ATom-1, the flight segments considered Pacific and Atlantic domains are shown with very thick lines. The corresponding blocks used for model climatologies are outlined with rectangles: Pacific, red; Atlantic, blue-green.

526

527


528

529

Figure S2. Profile during a descent on the Anchorage-Kona flight (ATom-1, RF-3, 31°N). The profile here begins at 7.2 km (1200 s) and ends at 2.1 km (1900 s, H₂O is cut off). (a) Fine structure in O₃ (ppb) and H₂O (log₁₀, ppm) at 1-sec (solid line) and 10 s (open circles) resolution. (b) Reactivities for the 10 s parcels calculated with the UCI CTM. Descent rate averaged 7.5 m/s, and vertical lines indicate 500 m thick layers.

535

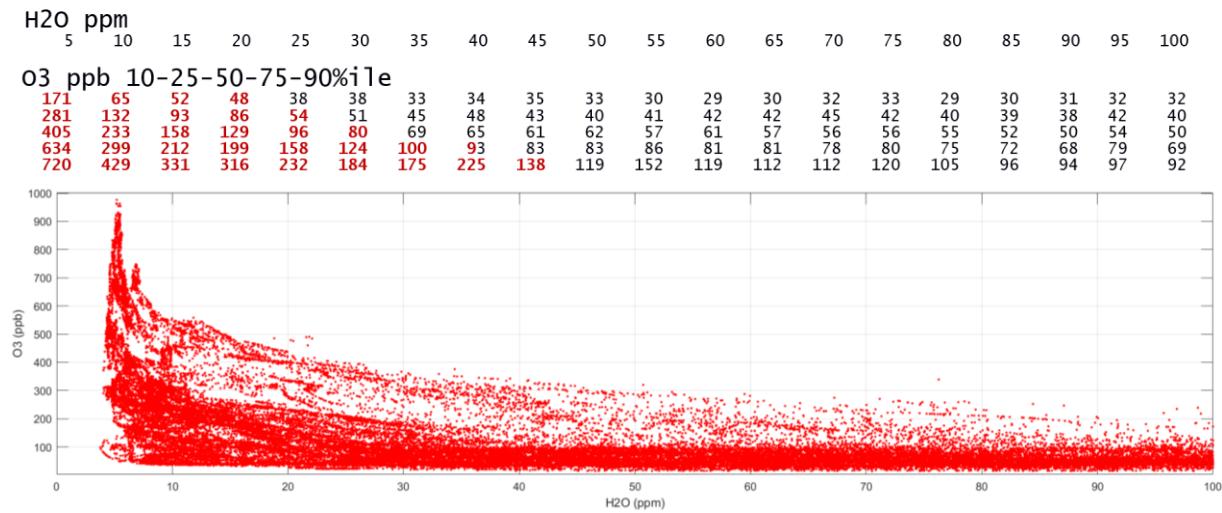
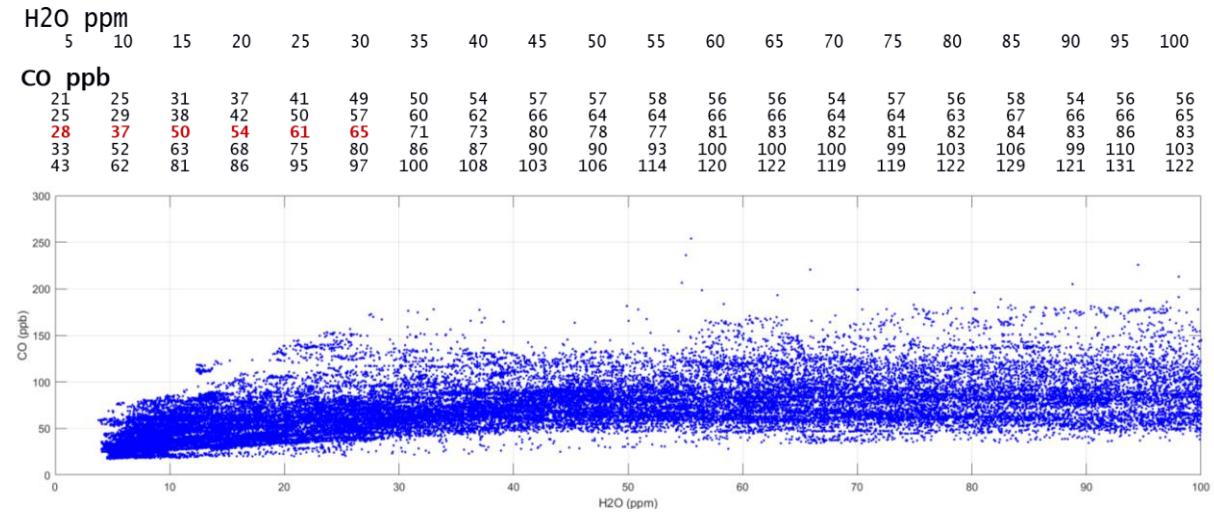


Figure S3. Example of CO time series showing all the intermediate CO products and flags. See legend and text.


536

537

538

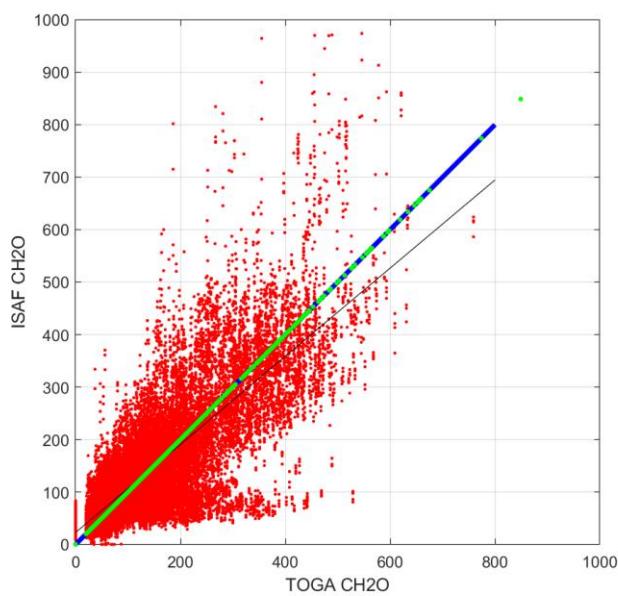
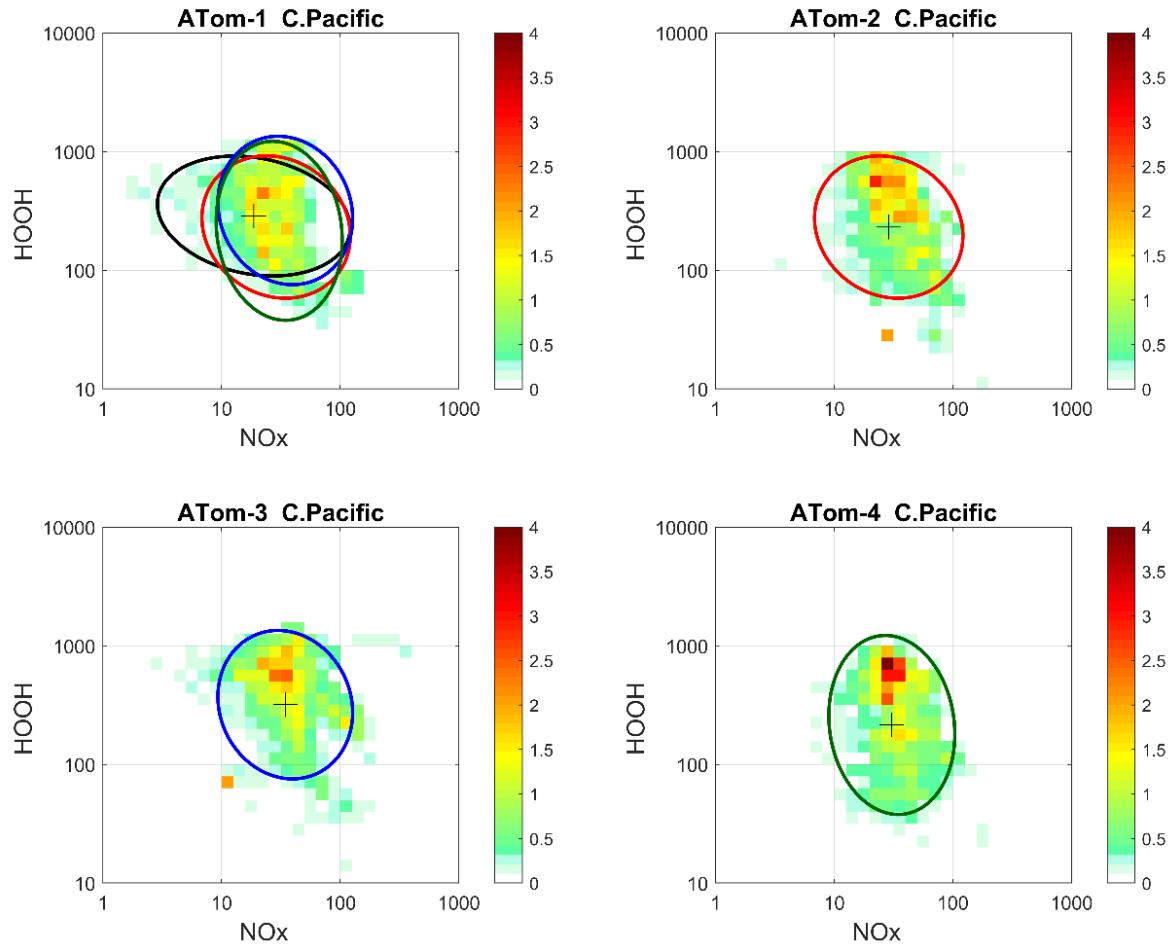


Figure S4a. Scatter plot of O₃ (ppb) and H₂O (ppm) for all ATom deployments, filtered by H₂O < 100 ppm. The percentiles (10-25-50-75-90 %ile) of O₃ in each 5-ppm-wide bin starting at 5 ppm (= 2.5–7.5 ppm) ending at 100 ppm in in the table at the top of this figure. Stratospheric influence (red) is clearly seen in the median for <30 ppm.

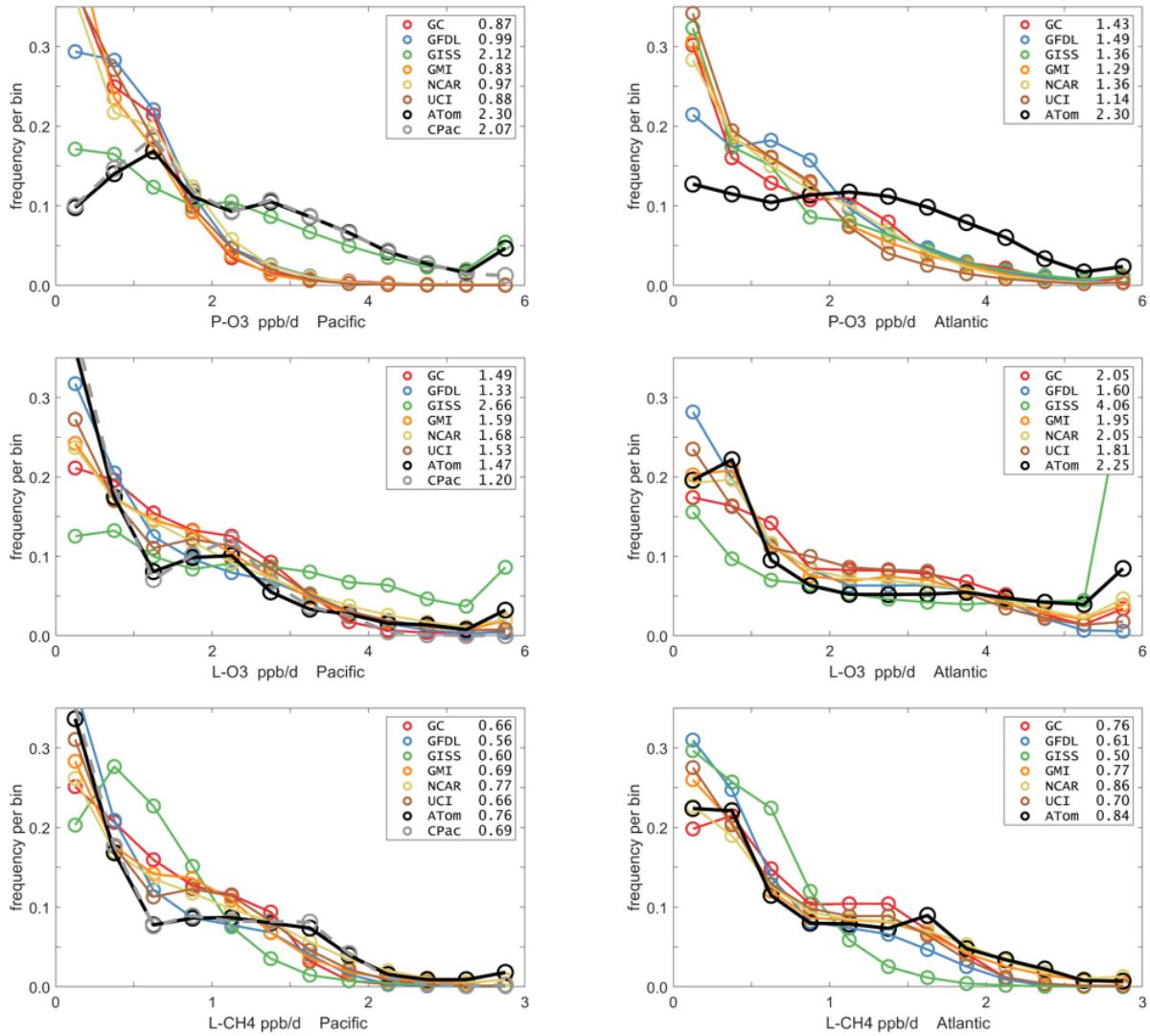
Figure S4b. Scatter plot of CO (ppb) and H₂O (ppm) for all ATom deployments, filtered by H₂O < 100 ppm. See Figure S4a.

546

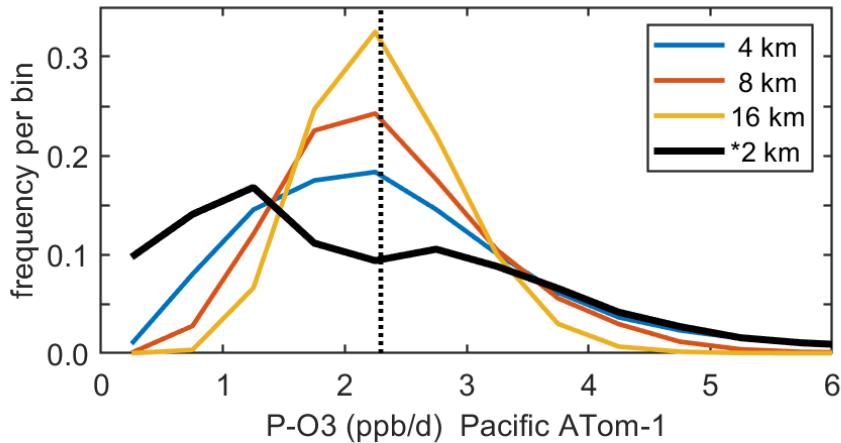

547

548

549


Figure S5. Scatter plot of coincident HCHO measurements (ppb) from ISAF and TOGA for all ATom deployments. The thick blue-green line is the 1:1 relationship and the thin black line shows a linear regression of ISAF vs. TOGA. Notably, ISAF has more frequent high values >600 ppb, with some above 1000 ppb (not shown).

550
551


Figure S6. 2D frequency of occurrence (PDs in log ppt mole fraction) of HOOH vs. NOx for the tropical Central Pacific for all 4 ATom deployments. The cross marks the mean (in log space), and the ellipse is fitted to the rotated PD to have the smallest semi-minor axis. The semi-minor and semi-major axes are 2 standard deviations of PD in that direction. The ellipses from ATom-2 (red), ATom-3 (blue), and ATom-4 (dark green) are also plotted in the ATom-1 quadrant.

552
553

Figure S7. Probability distributions (frequency of occurrence) for the ATom-1 3 reactivities (rows: P-O3, L-O3, L-CH4 in ppb/day) and for the Pacific and Atlantic from 54°S to 60°N (columns left and right). Each air parcel is weighted as described in the text for equal frequency in large latitude-pressure bins, and also by cosine(latitude). The ATom statistics are for UCI model and ATom-1 MDS_R2. The full Pacific results (solid black) also include just the Central Pacific (dashed gray). The 6 models' values for a day in mid-August are averaged over longitude for the domains shown in Figure S1, and then cosine(latitude) weighted. Mean values (ppb/day) are shown in the legend.

558
559

Figure S8. Frequency of occurrence of P-O3 (ppb/d) per 0.5 ppb/d bins. The black curve shows the ATom-1 results for the Pacific Ocean (54°S - 60°N) with each air parcel weighted as described in the text. The 10 s parcels have a resolution of about 2 km horizontally. A large random time series (10^5 parcels) was generated from the ATom frequency curve, and then smoothed over 2, 4, and 8 sequential points. If the successive ATom parcels were randomly distributed, then smoothing over scales of ~ 10 km rapidly changes the frequency into a Gaussian centered on the mean value (vertical dotted line). The heterogeneity scales in P-O3 are clearly much larger than 2 km as seen in **Figure S2**. Further, the ability of models with 100 km scales to reproduce the frequency of occurrence seen in the ATom parcels indicates that the heterogeneity is large scale and being resolved by the models, not average over.

560
561

Table S1. ATom flight data

ATom research flights in the Mor.2020-05-27...tbl (149,133 parcels)							Airport removed (146,494 parcels)	
ATom deployment	Research Flight no.	ATom flight	Airports	parcel begin	parcel end	YYYYMMDD	parcel begin	parcel end
1	1	1	PMD PMD*	1	3380	20160729	1	3333
1	2	2	PMD ANC	3381	7038	20160801	3334	6939
1	3	3	ANC KOA	7039	9658	20160803	6940	9526
1	4	4	KOA PPG	9659	12760	20160806	9527	12583
1	5	5	PPG CHC	12761	15141	20160808	12584	14917
1	6	6	CHC PUQ	15142	18976	20160812	14918	18692
1	7	7	PUQ ASI	18977	22355	20160815	18693	21998
1	8	8	ASI TER	22356	25431	20160817	21999	25040
1	9	9	TER SFJ	25432	28976	20160820	25041	28544
1	10	10	SFJ MSP	28977	31127	20160822	28545	30663
1	11	11	MSP PMD	31128	32899	20160823	30664	32383
2	1	12	PMD PMD*	32900	36621	20170126	32384	36061
2	2	13	PMD ANC	36622	40115	20170129	36062	39480
2	3	14	ANC KOA	40116	43062	20170201	39481	42360
2	4	15	KOA NAN	43063	46470	20170203	42361	45717
2	5	16	NAN CHC	46471	49562	20170205	45718	48774
2	6	17	CHC PUQ	49563	53116	20170210	48775	52267
2	7	18	PUQ ASI	53117	56358	20170213	52268	55390
2	8	19	ASI TER	56359	59468	20170215	55391	58446
2	9	20	TER THU	59469	62151	20170218	58447	61088
2	10	21	THU ANC	62152	64893	20170219	61089	63762
2	11	22	ANC PMD	64894	66978	20170221	63763	65807
3	1	23	PMD PMD*	66979	70683	20170928	65808	69465
3	2	24	PMD ANC	70684	74281	20171001	69466	73001
3	3	25	ANC KOA	74282	76949	20171004	73002	75608
3	4	26	KOA NAN	76950	80163	20171006	75609	78754
3	5	27	NAN CHC	80164	83472	20171008	78755	82000
3	6	28	CHC PUQ	83473	87028	20171011	82001	85462
3	7	29	PUQ PUQ^	87029	90872	20171014	85463	89225
3	8	30	PUQ ASI	90873	94279	20171017	89226	92576
3	9	31	ASI SID	94280	95928	20171019	92577	94191
3	10	32	SID TER	95929	98695	20171020	94192	96916
3	11	33	TER BGR	98696	102094	20171023	96917	100272
3	12	34	BGR ANC	102095	105540	20171025	100273	103677
3	13	35	ANC PMD	105541	107873	20171027	103678	105983
4	1	36	PMD PMD*	107874	111294	20180424	105984	109357
4	2	37	PMD ANC	111295	115012	20180427	109358	113028
4	3	38	ANC KOA	115013	117934	20180429	113029	115847
4	4	39	KOA NAN	117935	120880	20180501	115848	118741
4	5	40	NAN CHC	120881	123717	20180503	118742	121542
4	6	41	CHC PUQ	123718	127370	20180506	121543	125122
4	7	42	PUQ PUQ^	127371	131238	20180509	125123	128934
4	8	43	PUQ REC	131239	134829	20180512	128935	132463
4	9	44	REC TER	134830	138214	20180514	132464	135770
4	10	45	TER SFJ	138215	141697	20180517	135771	139210
4	11	46	SFJ BGR	141698	142846	20180518	139211	140316
4	12	47	BGR ANC	142847	146670	20180519	140317	144095
4	13	48	ANC PMD	146671	149133	20180521	144096	146494

* 4 flights to equator following 120W. ^ 2 flights to 80S and 86S over Antarctica.

Table S2. MDS data and source

id#	MDS data designation	Description	ATom source name
1	parcel_M	Unique sequential parcel number for all MDS 10s data, beginning 1,000,001	
2	ATno	ATom deployment number (1:4)	A.no
3	RFno	Research Flight number (1:11, 1:11, 1:13, 1:13)	RF
4	RRno	RF number across all of ATom (1:48)	
5	YYMMDD	Date (UT) of the start of each RF	YYMMDD
6	UTC_M	Start time in sec relative to Date for each 10s parcel	UTC_Start
7	Lat_M	Latitude (-90:+90)	G_LAT
8	Lng_M	Longitude (-180:+180)	G_LONG
9	Alt_M	Altitude (m above mean sea level)	G_ALT
10	P_M	Pressure (hPa)	P
11	T_M	Temperture (K)	T
12	H2O_M	water, ppm (all dry air mole fraction)	H2O_DLH
13	RHw_M	relative humidity over liquid water (%)	RHw_DLH
14	O3_M	ozone, ppb	O3_CL
15	CO_M	carbon monoxide, ppb	(1) CO_QCLS, (2) CO_NOAA
16	CH4_M	methane, ppb	(1) CH4_NOAA, (2) CH4_QCLS
17	NOx_M	odd-nitrogen, NO+NO2, ppt	NO_CL + NO2_CL
18	NOxPSS_M	odd-nitrogen, with photo-stationary state NO2, ppt	NOx_PSS
19	HNO3_M	nitric acid, HONO2, ppt	HNO3_CIT
20	HNO4_M	pernitric acid, HO2NO2, ppt	PNA_CIT
21	PAN_M	peroxyacetyl nitrate, C2H3NO5 - CH3C(O)OONO2, ppt	(1) PAN_GTCIMS, (2) PAN_PEC*
22	CH2O_M	formaldehyde, HCHO, ppt	(1) CH2O_ISAF, (2) CH2O_TOGA
23	H2O2_M	hydrogen peroxide, HOOH, ppt	H2O2_CIT
24	CH3OOH_M	methyl hydrogen peroxide, ppt	MHP_CIT
25	Acetone_M	acetone, CH3C(O)CH3, ppt	Acetone_TOGA
26	Acetald_M	acetaldehyde, CH3C(O)H, ppt	CH3CHO_TOGA
27	C2H6_M	ethane, C2H6, ppt	Ethane_WAS
28	C3H8_M	propane, C3H8, ppt	(1) Propane_WAS, (2) Propane_TOGA
29	iC4H10_M	iso-butane, iC4H10, ppt	(1) iButane_WAS, (2) iButane_TOGA
30	nC4H10_M	n-butane, nC4H10, ppt	(1) nButane_WAS, (2) nButane_TOGA
31	Alkanes_M	pentane (C5H12) and higher, ppt	iPentane_WAS + nPentane_WAS + nHexane_WAS + nHeptane_WAS + x2MePentane_WAS + x3MePentane_WAS
32	C2H4_M	ethene, C2H4, ppt	Ethene_WAS
33	Alkenes_M	propene (C3H6) and higher, ppt	Propene_WAS
34	C2H2_M	acetylene (ethyne), C2H2, ppt	Ethyne_WAS
35	C5H8_M	isoprene, C5H8, ppt	(1) Isoprene_TOGA, (2) Isoprene_WAS

36	Benzene_M	benzene, C6H6, ppt	(1) Benzene_TOGA, (2) Benzene_WAS*
37	Toluene_M	methylbenzene, C7H8, ppt	(1) Toluene_TOGA+EthBenzene_TOGA, (2) Toluene_WAS + EthBenzene_WAS
38	Xylene_M	dimethylbenzene, C8H10, ppt	(1) mpXylene_TOGA+oXylene_TOGA, (2) mpXylene_WAS+oXylene_WAS
39	MeONO2_M	methyl nitrate, CH3ONO2, ppt	MeONO2_WAS
40	EtONO2_M	ethyl nitrate, CH3ONO2, ppt	EthONO2_WAS
41	RONO2_M	higher organo nitrates, R=C3+, ppt	iPropONO2_WAS + nPropONO2_WAS + x2ButONO2_WAS + x3PentONO2_WAS + x2PentONO2_WAS + x3Me2ButONO2_WAS
42	MeOH_M	methanol, CH3OH, ppt	CH3OH_TOGA
43	HCN_M	hydrogen cyanide, ppt	(1) HCN_CIT, (2) HCN_TOGA
44	CH3CN_M	acetonitrile (methyl cyanide), CH3CN, ppt	CH3CN_TOGA
45	SF6_M	sulfure hexafluoride, ppt	(1) SF6_PECD, (2) SF6_UCATS
46	S_nuc_M	particle surface area (um^2/cm^3), nucleation: $0.0027 < Dp \leq 0.012 \text{ um}$	S_nucl_AMP
47	S_atk_M	particle surface area (um^2/cm^3), Aitken: $0.012 < Dp \leq 0.06 \text{ um}$	S_aitken_AMP
48	S_acc_M	particle surface area (um^2/cm^3), accumulation: $0.06 < Dp \leq 0.50 \text{ um}$	S_accum_AMP
49	S_crs_M	particle surface area (um^2/cm^3), coarse: $0.50 < Dp \leq 4.8 \text{ um}$	S_coarse_AMP
50	CloudInd_M	cloud indicator (0:4), dimensionless	cloudindicator_CAPS

Note: The flag value, flag_M(:,1:50) is indexed to the 50 variables above. Only flag_M(:,10:50) have meaningful values. The flag values are: 0 (NaNs, only in research flight 46), 1 (primary data), 2 (secondary data), 3 (short-gap interpolation), 4 (long-gap interpolation for troposphere), 5 (missing flight filled) and 6 (long-gap interpolation for stratosphere) are described in text.

567
568
569

Table S3a. ATom-1, % of non-NaNs after short-gap interpolation

RRno	1	2	3	4	5	6	7	8	9	10	11
<Lat> (deg)	20	62	42	4	-34	-58	-32	18	65	55	38
<Lng> (deg)	-120	-133	-158	-169	-83	-87	-37	-21	-49	-78	-104
<Alt> (m)	7055	8092	7118	6143	6634	7034	6761	6494	6930	6090	7736
# parcels	3333	3606	2587	3057	2334	3775	3306	3042	3504	2119	1720
H2O_M	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
RHw_M	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
O3_M	99%	99%	100%	99%	100%	100%	99%	100%	100%	100%	100%
CO_M	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
CH4_M	54%	95%	95%	94%	86%	93%	94%	92%	95%	95%	93%
NOx_M	90%	94%	91%	84%	91%	85%	96%	98%	89%	95%	94%
NOxPSS_M	94%	91%	91%	86%	88%	28%	67%	95%	88%	95%	92%
HNO3_M	92%	96%	97%	92%	0%	95%	95%	97%	96%	97%	97%
HNO4_M	59%	87%	74%	67%	0%	90%	85%	67%	88%	73%	66%
PAN_M	78%	67%	48%	90%	40%	87%	97%	93%	98%	92%	95%
CH2O_M	99%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
H2O2_M	92%	96%	97%	92%	0%	95%	95%	97%	96%	97%	97%
CH3OOH_M	56%	69%	81%	83%	84%	79%	81%	82%	82%	79%	79%
Acetone_M	89%	92%	88%	98%	92%	90%	93%	94%	94%	94%	94%
Acetald_M	89%	92%	88%	98%	90%	90%	90%	94%	93%	94%	94%
C2H6_M	50%	32%	43%	44%	62%	37%	39%	43%	40%	46%	45%
C3H8_M	90%	95%	92%	97%	97%	95%	96%	97%	96%	98%	95%
iC4H10_M	95%	95%	92%	98%	97%	95%	96%	97%	98%	98%	96%
nC4H10_M	95%	95%	92%	98%	97%	95%	96%	97%	98%	98%	96%
Alkanes_M	50%	32%	43%	44%	62%	37%	39%	43%	40%	46%	45%
C2H4_M	50%	32%	43%	44%	62%	37%	39%	43%	40%	46%	45%
Alkenes_M	50%	32%	43%	44%	62%	37%	39%	43%	40%	46%	45%
C2H2_M	50%	32%	43%	44%	62%	37%	39%	43%	40%	46%	45%
C5H8_M	95%	95%	92%	98%	97%	95%	96%	97%	98%	98%	96%
Benzene_M	95%	95%	92%	98%	97%	95%	96%	97%	98%	98%	96%
Toluene_M	100%	99%	94%	98%	98%	99%	100%	99%	100%	100%	99%
Xylene_M	100%	99%	94%	98%	98%	99%	100%	99%	100%	100%	99%
MeONO2_M	50%	32%	43%	44%	55%	37%	39%	43%	33%	43%	43%
EtONO2_M	50%	31%	40%	43%	47%	28%	34%	42%	31%	39%	39%
RONO2_M	50%	32%	43%	44%	62%	37%	39%	43%	40%	46%	45%
MeOH_M	89%	92%	88%	98%	92%	90%	92%	92%	92%	94%	94%
HCN_M	98%	100%	100%	100%	92%	100%	100%	100%	100%	100%	100%
CH3CN_M	89%	92%	88%	98%	92%	90%	93%	94%	94%	94%	91%
SF6_M	90%	88%	98%	92%	91%	80%	96%	79%	99%	90%	84%
S_nuc_M	95%	92%	93%	99%	92%	87%	91%	94%	91%	88%	93%
S_atk_M	95%	92%	93%	99%	92%	87%	91%	94%	91%	88%	93%
S_acc_M	95%	92%	93%	99%	92%	87%	91%	93%	91%	88%	93%
S_crs_M	95%	92%	93%	99%	92%	87%	91%	93%	91%	88%	93%
CloudInd_M	100%	100%	100%	100%	99%	100%	100%	100%	100%	100%	100%

Table S3b. ATom-2, % of non-NaNs after short-gap interpolation

RRno	12	13	14	15	16	17	18	19	20	21	22
<Lat> (deg)	18	55	40	0	-41	-58	-32	15	60	73	45
<Lng> (deg)	-120	-142	-154	-46	138	-89	-37	-28	-38	-129	-135
<Alt> (m)	8477	6915	5726	7514	7233	7629	8835	6832	5869	5553	6969
# parcels	3678	3419	2880	3357	3057	3493	3123	3056	2642	2674	2045
H2O_M	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
RHw_M	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
O3_M	99%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
CO_M	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
CH4_M	100%	100%	100%	99%	98%	99%	100%	100%	100%	99%	100%
NOx_M	85%	89%	100%	95%	82%	82%	87%	80%	82%	100%	96%
NOxPSS_M											
HNO3_M	90%	0%	91%	95%	96%	92%	97%	97%	97%	93%	98%
HNO4_M	82%	0%	77%	70%	77%	81%	87%	77%	87%	93%	94%
PAN_M	84%	100%	100%	95%	100%	100%	99%	97%	94%	100%	94%
CH2O_M	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
H2O2_M	90%	0%	91%	95%	96%	92%	97%	97%	97%	93%	98%
CH3OOH_M	67%	62%	71%	67%	65%	58%	58%	59%	58%	60%	56%
Acetone_M	91%	92%	85%	97%	96%	93%	95%	96%	89%	91%	94%
Acetald_M	91%	92%	85%	97%	96%	93%	95%	97%	89%	91%	94%
C2H6_M	38%	28%	45%	36%	42%	43%	40%	47%	56%	58%	61%
C3H8_M	95%	88%	81%	94%	94%	93%	87%	87%	87%	58%	88%
iC4H10_M	97%	94%	91%	97%	97%	95%	95%	97%	94%	95%	97%
nC4H10_M	97%	94%	91%	97%	97%	95%	95%	97%	94%	95%	97%
Alkanes_M	38%	28%	45%	36%	42%	43%	40%	47%	56%	58%	61%
C2H4_M	38%	28%	45%	36%	42%	43%	40%	47%	56%	58%	61%
Alkenes_M	38%	28%	45%	36%	42%	43%	40%	47%	56%	58%	61%
C2H2_M	38%	28%	45%	36%	42%	43%	40%	47%	56%	58%	61%
C5H8_M	97%	94%	93%	97%	97%	95%	96%	98%	94%	96%	97%
Benzene_M	97%	94%	93%	97%	97%	95%	96%	98%	94%	96%	97%
Toluene_M	100%	96%	96%	100%	100%	100%	100%	100%	98%	100%	100%
Xylene_M	100%	96%	96%	100%	100%	100%	100%	100%	98%	100%	100%
MeONO2_M	37%	26%	45%	36%	38%	35%	40%	47%	53%	54%	51%
EtONO2_M	37%	26%	45%	36%	38%	35%	40%	47%	52%	54%	50%
RONO2_M	38%	28%	45%	36%	42%	43%	40%	47%	56%	58%	61%
MeOH_M	90%	92%	83%	97%	92%	93%	95%	97%	89%	91%	94%
HCN_M	99%	89%	100%	100%	100%	98%	100%	100%	100%	93%	100%
CH3CN_M	91%	92%	85%	97%	96%	93%	95%	97%	89%	87%	94%
SF6_M	87%	97%	96%	88%	98%	99%	98%	99%	99%	99%	69%
S_nuc_M	86%	81%	98%	95%	85%	95%	85%	98%	75%	89%	91%
S_atk_M	86%	81%	98%	95%	85%	95%	85%	98%	75%	89%	91%
S_acc_M	86%	81%	97%	95%	84%	95%	85%	98%	75%	88%	91%
S_crs_M	86%	81%	97%	95%	84%	95%	85%	98%	75%	88%	91%
CloudInd_M	100%	100%	100%	97%	100%	100%	100%	100%	100%	100%	100%

Table S3c. ATom-3, % of non-NaNs after short-gap interpolation

RRno	23	24	25	26	27	28	29	30	31	32	33	34	35
<Lat> (deg)	18	55	42	4	-41	-58	-67	-32	4	22	55	67	46
<Lng> (deg)	-121	-141	-158	-14	63	-91	-50	-36	-19	-26	-43	-105	-136
<Alt> (m)	8988	7623	6720	6781	6844	6836	7263	8169	6678	6329	5522	6231	6033
# parcels	3658	3536	2607	3146	3246	3462	3763	3351	1615	2725	3356	3405	2306
H2O_M	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
RHw_M	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
O3_M	99%	100%	100%	100%	100%	100%	100%	100%	89%	99%	100%	100%	100%
CO_M	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
CH4_M	100%	98%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
NOx_M	0%	98%	100%	100%	97%	100%	87%	94%	89%	94%	99%	100%	100%
NOxPSS_M													
HNO3_M	96%	96%	96%	95%	97%	91%	94%	96%	91%	85%	97%	90%	66%
HNO4_M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
PAN_M	100%	100%	100%	98%	100%	100%	99%	99%	100%	98%	100%	98%	100%
CH2O_M	100%	100%	100%	100%	100%	100%	98%	100%	100%	100%	100%	100%	100%
H2O2_M	96%	96%	96%	95%	97%	91%	94%	96%	91%	85%	97%	90%	95%
CH3OOH_M	61%	59%	59%	60%	58%	58%	59%	61%	58%	53%	67%	60%	64%
Acetone_M	94%	95%	87%	95%	96%	97%	92%	96%	86%	93%	94%	98%	98%
Acetald_M	94%	95%	87%	97%	97%	97%	92%	96%	86%	96%	94%	98%	98%
C2H6_M	46%	47%	61%	57%	52%	48%	33%	33%	36%	33%	40%	39%	50%
C3H8_M	95%	97%	94%	98%	98%	98%	95%	97%	92%	96%	94%	98%	98%
iC4H10_M	95%	97%	94%	99%	98%	98%	95%	97%	91%	96%	94%	98%	98%
nC4H10_M	95%	97%	94%	99%	98%	98%	95%	97%	91%	96%	94%	98%	98%
Alkanes_M	46%	47%	61%	57%	52%	48%	34%	34%	39%	33%	40%	39%	50%
C2H4_M	46%	47%	61%	57%	52%	48%	34%	34%	39%	33%	40%	39%	50%
Alkenes_M	46%	47%	61%	57%	52%	48%	34%	34%	39%	33%	40%	39%	50%
C2H2_M	46%	47%	61%	57%	46%	46%	34%	33%	39%	33%	40%	39%	50%
C5H8_M	95%	97%	94%	99%	98%	98%	95%	97%	92%	96%	94%	98%	98%
Benzene_M	95%	97%	94%	99%	98%	98%	95%	97%	92%	96%	94%	98%	98%
Toluene_M	100%	100%	95%	100%	100%	100%	99%	100%	95%	100%	100%	100%	100%
Xylene_M	100%	100%	95%	100%	100%	100%	99%	100%	95%	100%	100%	100%	100%
MeONO2_M	46%	47%	61%	57%	52%	48%	34%	34%	39%	33%	40%	39%	50%
EtONO2_M	46%	47%	61%	57%	52%	48%	34%	34%	39%	33%	40%	39%	50%
RONO2_M	46%	47%	61%	57%	52%	48%	34%	34%	39%	33%	40%	39%	50%
MeOH_M	94%	95%	87%	97%	97%	97%	92%	96%	86%	96%	94%	98%	98%
HCN_M	100%	99%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
CH3CN_M	94%	95%	87%	96%	95%	97%	92%	96%	86%	95%	94%	98%	98%
SF6_M	77%	100%	76%	84%	60%	96%	95%	83%	91%	99%	97%	82%	92%
S_nuc_M	92%	77%	74%	94%	91%	86%	92%	91%	99%	88%	91%	81%	92%
S_atk_M	92%	77%	74%	94%	91%	86%	92%	91%	99%	88%	91%	81%	92%
S_acc_M	92%	77%	67%	94%	91%	86%	91%	91%	99%	88%	91%	81%	91%
S_crs_M	92%	77%	67%	94%	91%	86%	91%	91%	99%	88%	91%	81%	91%
CloudInd_M	98%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	99%	100%

Table S3d. ATom-4, % of non-NaNs after short-gap interpolation

RRno	36	37	38	39	40	41	42	43	44	45	46	47	48
<Lat> (deg)	19	56	42	3	-38	-59	-70	-32	13	60	56	67	46
<Lng> (deg)	-121	-141	-158	-132	10	-93	-59	-41	-27	-37	-62	-105	-135
<Alt> (m)	8278	6678	6123	6419	5922	6843	7197	6672	6729	7019	9678	6759	5935
# parcels	3374	3671	2819	2894	2801	3580	3812	3529	3307	3440	1106	3779	2399
H2O_M	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
RHw_M	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
O3_M	100%	100%	100%	100%	100%	100%	99%	100%	100%	100%	0%	100%	100%
CO_M	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
CH4_M	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
NOx_M	62%	77%	93%	84%	99%	100%	89%	100%	100%	99%	100%	100%	100%
NOxPSS_M													
HNO3_M	93%	94%	98%	75%	95%	96%	96%	96%	96%	97%	96%	96%	98%
HNO4_M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
PAN_M	99%	92%	100%	100%	99%	100%	100%	100%	100%	100%	83%	100%	100%
CH2O_M	100%	82%	100%	100%	98%	100%	98%	98%	98%	96%	0%	95%	93%
H2O2_M	94%	94%	98%	75%	95%	96%	96%	96%	96%	97%	96%	96%	98%
CH3OOH_M	43%	59%	59%	59%	0%	0%	0%	0%	0%	69%	67%	0%	0%
Acetone_M	96%	98%	98%	88%	98%	96%	98%	98%	98%	97%	0%	95%	93%
Acetald_M	96%	87%	97%	88%	92%	91%	94%	97%	93%	89%	0%	95%	92%
C2H6_M	26%	35%	40%	40%	46%	34%	31%	28%	31%	29%	0%	27%	31%
C3H8_M	96%	99%	99%	94%	100%	97%	98%	98%	98%	97%	0%	96%	95%
iC4H10_M	96%	99%	99%	94%	100%	97%	98%	98%	98%	97%	0%	96%	95%
nC4H10_M	96%	99%	99%	94%	100%	97%	98%	98%	98%	97%	0%	96%	95%
Alkanes_M	26%	35%	42%	43%	46%	34%	33%	28%	31%	29%	0%	27%	31%
C2H4_M	26%	35%	42%	43%	46%	34%	33%	28%	31%	29%	0%	27%	31%
Alkenes_M	26%	35%	42%	43%	46%	34%	33%	28%	31%	29%	0%	27%	31%
C2H2_M	26%	35%	42%	43%	46%	34%	33%	28%	31%	29%	0%	27%	31%
C5H8_M	96%	99%	99%	94%	100%	97%	98%	98%	98%	97%	0%	96%	95%
Benzene_M	96%	99%	99%	94%	100%	97%	98%	98%	98%	97%	0%	96%	95%
Toluene_M	100%	100%	99%	95%	100%	100%	100%	100%	100%	100%	0%	100%	100%
Xylene_M	100%	100%	99%	95%	100%	100%	100%	100%	100%	100%	0%	100%	100%
MeONO2_M	26%	35%	42%	43%	46%	34%	33%	28%	31%	29%	0%	27%	31%
EtONO2_M	26%	35%	42%	43%	46%	34%	33%	28%	31%	29%	0%	27%	31%
RONO2_M	26%	35%	42%	43%	46%	34%	33%	28%	31%	29%	0%	27%	31%
MeOH_M	96%	98%	98%	88%	98%	96%	98%	98%	98%	97%	0%	95%	93%
HCN_M	99%	100%	100%	95%	99%	100%	100%	99%	99%	100%	96%	100%	100%
CH3CN_M	96%	98%	98%	88%	98%	96%	98%	98%	98%	97%	0%	95%	93%
SF6_M	76%	92%	97%	95%	97%	85%	90%	98%	88%	85%	94%	97%	94%
S_nuc_M	94%	99%	89%	94%	96%	82%	81%	96%	98%	65%	85%	93%	94%
S_atk_M	94%	99%	89%	94%	96%	82%	81%	96%	98%	65%	85%	93%	94%
S_acc_M	94%	99%	88%	94%	96%	82%	81%	95%	98%	65%	85%	92%	94%
S_crs_M	94%	99%	88%	94%	96%	82%	81%	95%	98%	65%	85%	92%	94%
CloudInd_M	100%	100%	100%	100%	100%	100%	99%	94%	100%	100%	100%	100%	99%

Table S4. ATom, % of records by flag

Flags	0*	1	2	3	4	5	6
H2O_M	0.8%	99.0%	0.0%	0.3%	0.0%	0.0%	0.0%
RHw_M	0.8%	99.0%	0.0%	0.3%	0.0%	0.0%	0.0%
O3_M	0.8%	98.6%	0.0%	0.3%	0.3%	0.0%	0.0%
CO_M	0.8%	79.4%	19.4%	0.1%	0.5%	0.0%	0.0%
CH4_M	0.8%	93.5%	1.3%	1.9%	2.5%	0.0%	0.0%
NOx_M	0.8%	80.8%	0.0%	8.3%	7.6%	2.5%	0.0%
NOxPSS_M	0.8%	82.4%	0.0%	11.8%	5.1%	0.0%	0.0%
HNO3_M	0.8%	78.0%	0.0%	11.6%	5.7%	3.9%	0.0%
HNO4_M	0.8%	28.5%	0.0%	4.0%	8.5%	58.3%	0.0%
PAN_M	0.8%	58.0%	28.4%	7.5%	5.4%	0.0%	0.0%
CH2O_M	0.8%	82.9%	14.9%	0.3%	1.1%	0.0%	0.0%
H2O2_M	0.8%	78.5%	0.0%	11.6%	5.3%	3.9%	0.0%
CH3OOH_M	0.8%	42.0%	0.0%	12.0%	29.4%	15.8%	0.0%
Acetone_M	0.8%	31.7%	0.0%	61.6%	6.0%	0.0%	0.0%
Acetald_M	0.8%	31.4%	0.0%	60.9%	6.9%	0.0%	0.0%
C2H6_M	0.8%	28.0%	0.0%	12.4%	56.3%	0.0%	2.5%
C3H8_M	0.8%	28.0%	53.1%	12.5%	5.1%	0.0%	0.7%
iC4H10_M	0.8%	28.1%	54.9%	12.5%	3.2%	0.0%	0.5%
nC4H10_M	0.8%	28.1%	54.9%	12.5%	3.2%	0.0%	0.5%
Alkanes_M	0.8%	28.1%	0.0%	12.5%	56.0%	0.0%	2.6%
C2H4_M	0.8%	28.1%	0.0%	12.5%	56.0%	0.0%	2.6%
Alkenes_M	0.8%	28.1%	0.0%	12.5%	56.0%	0.0%	2.6%
C2H2_M	0.8%	28.0%	0.0%	12.5%	56.2%	0.0%	2.6%
C5H8_M	0.8%	31.8%	2.3%	61.7%	3.1%	0.0%	0.5%
Benzene_M	0.8%	31.8%	2.3%	61.7%	3.1%	0.0%	0.5%
Toluene_M	0.8%	33.0%	0.6%	64.8%	0.6%	0.0%	0.2%
Xylene_M	0.8%	33.0%	0.6%	64.8%	0.6%	0.0%	0.2%
MeONO2_M	0.8%	27.4%	0.0%	12.3%	57.0%	0.0%	2.6%
EtONO2_M	0.8%	26.8%	0.0%	12.1%	57.8%	0.0%	2.6%
RONO2_M	0.8%	28.1%	0.0%	12.5%	56.0%	0.0%	2.6%
MeOH_M	0.8%	31.7%	0.0%	61.5%	6.0%	0.0%	0.0%
HCN_M	0.8%	78.5%	8.3%	11.6%	0.8%	0.0%	0.0%
CH3CN_M	0.8%	31.7%	0.0%	61.5%	6.0%	0.0%	0.0%
SF6_M	0.8%	10.4%	5.8%	79.2%	3.8%	0.0%	0.0%
S_nuc_M	0.8%	84.6%	0.0%	4.4%	10.3%	0.0%	0.0%
S_atk_M	0.8%	84.6%	0.0%	4.4%	10.3%	0.0%	0.0%
S_acc_M	0.8%	84.1%	0.0%	4.6%	10.6%	0.0%	0.0%
S_crs_M	0.8%	84.1%	0.0%	4.6%	10.6%	0.0%	0.0%
CloudInd_M	0.8%	98.7%	0.0%	0.2%	0.3%	0.0%	0.0%

* The 0.8% flag=0 corresponds to the short flight RF #46, for which we NaN'd all chemical data.

Species (ppt unless noted)	All parcels mean	Long-gap interpolated parcels bias (% of mean)	RMSE (% of mean)	Short-gap fill RMSE (% of mean)
H2O_M (ppm)	336			16%
RHw_M (%)	40			12%
O3_M (ppb)	80	3%	12%	6%
CO_M (ppb)	80	1%	8%	3%
CH4_M (ppb)	1850	<1%	<1%	<1%
NOx_M	64	-8%	44%	22%
NOxPSS_M	46	-17%	70%	25%
HNO3_M	162	-6%	22%	12%
HNO4_M	26	-7%	54%	28%
PAN_M	87	6%	25%	14%
CH2O_M	140	6%	22%	11%
H2O2_M	250	9%	30%	16%
CH3OOH_M	381	12%	45%	21%
Acetone_M	351	3%	18%	
Acetald_M	56	3%	19%	
C2H6_M	644	2%	16%	
C3H8_M	109	3%	16%	
iC4H10_M	11	6%	29%	
nC4H10_M	21	5%	29%	
Alkanes_M	16	3%	33%	
C2H4_M	6	28%	94%	
Alkenes_M	0.2	17%	78%	
C2H2_M	97	10%	42%	
C5H8_M	0.5	16%	70%	
Benzene_M	15	-12%	33%	
Toluene_M	1	4%	28%	
Xylene_M	0.1	33%	97%	
MeONO2_M	9	-11%	29%	
EtONO2_M	2	-11%	33%	
RONO2_M	5	-5%	37%	
MeOH_M	590	3%	38%	
HCN_M	185	5%	31%	10%
CH3CN_M	114	11%	44%	
SF6_M	9	<1%	1%	<1%

585
586

Table S6. Test of missing flight data

Missing data (ppt unless noted)	All parcels Mean (ppt)	Interpolated RMSE (% of mean)	Flights used
ATom-1 RF-5			
H2O2_M	392	24%	AT-1 RF4, AT-2/3/4 RF-4/5
HNO3_M	139	58%	AT-1 RF4, AT-2/3/4 RF-4/5
HNO4_M	30.2	66%	AT-1 RF4, AT-2 RF-4/5
ATom-2 RF-2			
H2O2_M	125	23%	AT-2 RF-3, AT-1/3/4 RF-2/3
HNO3_M	30.9	52%	AT-2 RF-3, AT-1/3/4 RF-2/3
HNO4_M	14.3	63%	AT-2 RF-3, AT-1 RF-2/3
ATom-3 RF-1			
NOx_M	80.9	55%	AT-3 RF-2, AT-1/2/4 RF-1/2
ATom-3/4 all			
HNO4_M	26.1	105%	AT-1/2 all
ATom-4 RF-5/6/7/8/9/12/13			
CH3OOH_M	336	72%	AT-1/2 RF-5:11, AT-3 RF-5:13, AT-4 RF-4

Notes: Missing flight data are filled using a multiple linear regression from other flights based on the explanatory variables: pressure, noontime solar zenith angle, and latitude (in that order). RMSE is calculated from the residuals of this fit for the flights used in the regression.

587
588

Table S7. Chemistry models							
Used in	ID	Model name	Type	Meteorology	Model Grid	References	Point of Contact
clim, R0	GFDL	GFDL-AM3	CCM	NCEP (nudged)	C180 x L48	Horowitz et al., 2003; Li et al. 2017	amfiore @ldeo.columbia.edu
clim, R0	GISS	GISS-E2.1	CCM	Daily SSTs, nudged to MERRA	2° x 2.5° x 40L	Rienecker et al.,	lee.murray @rochester.edu
clim, R0, R1	GMI	GMI-CTM	CTM	MERRA	1° x 1.25° x 72L	Strahan et al., 2013; Duncan et al., 2007	Sarah.A.Strode @nasa.gov
clim, R0	GC	GEOS-Chem	CTM	MERRA-2	2° x 2.5° x 72L	Gelaro et al., 2017	lee.murray @rochester.edu
clim, R0	NCAR	CAM4-Chem	CCM	MERRA	0.47° x 0.625° x 52L	Tilmes et al., 2016	emmons @ucar.edu
clim, R0, R1, R2	UCI	UCI-CTM	CTM	ECMWF IFS Cy38r1	T159N80 x L60	Holmes et al., 2017; Prather 2015	mprather @uci.edu
R0	F0AM	F0AM	box	MDS+scaled ATom Js	N/A	Wolfe et al., 2016	glenn.m.wolfe @nasa.gov

Table S8. Reactivity statistics and mean J-values for the 3 large domains (Global, Pacific, Atlantic).

Table S7a. Average Reactivity: mean, median, mean of top 10%

Value	Region	Models with R0							Models w/ R1/R2		
		F0AM	GC	GISS	GMI	NCAR	UCI	U15	U97	GMI1	UCI2
P-O3, mean, ppb/d	Global	1.83	1.58	1.98	1.53	1.64	1.75	1.75	1.75	1.75	1.83
	Pacific	1.96	1.97	2.00	1.92	1.99	2.13	2.09	2.10	2.19	2.35
	Atlantic	2.11	2.29	3.73	2.38	2.57	2.61	2.60	2.61	2.74	2.63
P-O3, median, ppb/d	Global	1.15	0.95	1.23	0.85	0.95	0.96	0.96	0.97	1.05	1.13
	Pacific	1.31	1.64	1.62	1.48	1.63	1.68	1.66	1.67	1.76	1.97
	Atlantic	2.00	2.26	3.66	2.31	2.48	2.45	2.45	2.46	2.64	2.59
P-O3, mean of top 10%, ppb/d	Global	7.04	6.06	7.05	5.84	6.02	7.07	7.07	7.02	6.64	6.84
	Pacific	6.80	5.48	5.44	5.60	5.64	6.33	6.12	6.17	6.11	6.13
	Atlantic	4.53	4.92	7.50	5.10	5.36	5.92	5.82	5.85	5.74	5.46
L-O3, mean, ppb/d	Global	1.55	1.17	1.39	1.22	1.24	1.27	1.27	1.27	1.23	1.29
	Pacific	1.62	1.46	1.69	1.49	1.52	1.53	1.49	1.51	1.48	1.53
	Atlantic	2.32	2.17	2.57	2.36	2.43	2.48	2.47	2.49	2.39	2.51
L-O3, median, ppb/d	Global	0.67	0.43	0.55	0.43	0.49	0.47	0.47	0.47	0.43	0.48
	Pacific	0.93	0.88	1.10	0.88	0.99	0.94	0.94	0.94	0.85	0.94
	Atlantic	1.98	1.76	2.28	2.01	1.98	2.04	2.05	2.04	2.05	2.14
L-O3, mean of top 10%, ppb/d	Global	5.99	5.10	5.75	5.32	5.37	5.64	5.64	5.66	5.53	5.67
	Pacific	5.88	5.00	5.41	5.17	5.04	5.24	5.09	5.18	5.26	5.12
	Atlantic	5.90	5.42	6.35	5.93	6.74	6.35	6.32	6.37	5.98	6.35
L-CH4, mean, ppb/d	Global	0.68	0.53	0.32	0.52	0.51	0.55	0.55	0.55	0.55	0.56
	Pacific	0.81	0.76	0.39	0.74	0.75	0.77	0.75	0.76	0.77	0.78
	Atlantic	0.90	0.88	0.57	0.92	0.90	0.95	0.95	0.95	0.96	0.97
L-CH4, median, ppb/d	Global	0.30	0.19	0.20	0.17	0.21	0.19	0.19	0.19	0.20	0.22
	Pacific	0.44	0.49	0.33	0.45	0.49	0.48	0.48	0.48	0.50	0.53
	Atlantic	0.80	0.81	0.58	0.80	0.79	0.81	0.81	0.82	0.84	0.88
L-CH4, mean of top 10%, ppb/d	Global	2.52	2.10	1.04	2.11	1.99	2.28	2.27	2.28	2.25	2.21
	Pacific	2.79	2.31	1.01	2.35	2.27	2.41	2.33	2.37	2.42	2.24
	Atlantic	2.21	1.96	1.10	2.14	2.17	2.30	2.25	2.30	2.26	2.33
Table S7b. Percent of total Reactivity in the top 50%, top 10%, top 3% of parcels											
P-O3, % of total R in top 50%	F0AM	87%	92%	88%	92%	91%	92%	92%	92%	91%	90%
	Global	84%	79%	77%	81%	80%	80%	80%	80%	78%	78%
	Pacific	71%	72%	69%	71%	70%	72%	72%	72%	71%	72%
	Atlantic										
P-O3, % of total R in top 10%	Global	38%	38%	36%	38%	37%	40%	40%	40%	38%	37%
	Pacific	35%	28%	27%	29%	28%	30%	29%	29%	28%	26%
	Atlantic	22%	22%	20%	22%	21%	23%	23%	23%	21%	21%

P-O3, % of total R in top 3%											
	Global	19%	18%	17%	17%	17%	19%	19%	19%	18%	17%
	Pacific	16%	12%	12%	12%	12%	13%	13%	13%	11%	11%
	Atlantic	9%	9%	8%	9%	8%	10%	9%	9%	8%	8%
L-O3, % of total R in top 50%											
	Global	92%	94%	93%	94%	93%	94%	94%	94%	94%	94%
	Pacific	89%	87%	86%	88%	86%	87%	87%	87%	87%	87%
	Atlantic	83%	83%	82%	84%	82%	83%	83%	84%	84%	83%
L-O3, % of total R in top 10%											
	Global	39%	44%	41%	44%	43%	45%	45%	45%	45%	44%
	Pacific	36%	34%	32%	35%	33%	34%	34%	34%	36%	34%
	Atlantic	26%	25%	25%	25%	28%	26%	26%	26%	25%	26%
L-O3, % of total R in top 3%											
	Global	15%	17%	17%	17%	19%	18%	18%	18%	18%	18%
	Pacific	15%	14%	13%	15%	14%	14%	14%	15%	15%	14%
	Atlantic	9%	9%	9%	9%	13%	10%	10%	9%	9%	9%
L-CH4, % of total R in top 50%											
	Global	92%	94%	93%	94%	93%	94%	94%	94%	94%	94%
	Pacific	89%	87%	86%	88%	86%	87%	87%	87%	87%	87%
	Atlantic	83%	83%	82%	84%	82%	83%	83%	84%	84%	83%
L-CH4, % of total R in top 10%											
	Global	37%	39%	33%	40%	39%	41%	41%	41%	41%	39%
	Pacific	35%	30%	26%	32%	30%	31%	31%	31%	31%	29%
	Atlantic	25%	23%	19%	23%	24%	24%	24%	24%	24%	24%
L-CH4, % of total R in top 3%											
	Global	15%	15%	14%	15%	15%	16%	16%	16%	16%	16%
	Pacific	15%	11%	10%	12%	11%	13%	12%	13%	12%	11%
	Atlantic	9%	8%	7%	8%	9%	9%	8%	8%	8%	8%
Table S7c. Mean J-values											
J-O1D, mean, e-5 /s	F0AM	GC	GISS	GMI	NCAR	UCI	U15	U97			
	Global	1.18	0.87	1.29	0.93	1.00	0.91	0.91	0.91		
	Pacific	1.48	1.34	1.95	1.42	1.47	1.40	1.39	1.40		
	Atlantic	1.44	1.33	1.76	1.42	1.56	1.42	1.42	1.43		
J-NO2, mean, e-3 /s											
	Global	4.32	3.60	4.69	3.62	3.81	3.97	3.99	3.97		
	Pacific	4.84	4.67	5.75	4.62	4.86	5.13	5.09	5.11		
	Atlantic	4.89	4.84	5.66	4.82	5.00	5.40	5.40	5.42		
Global includes all ATom-1 parcels (32,383), Pacific considers all measurements (11,486) over the Pacific Ocean from 54°S to 60°N, and Atlantic uses parcels from 54°S to 60°N over the Atlantic basin (7,501). All parcels are weighted at described in the text, including a cosine(latitude) factor.											

592

593

Table S9. Standard deviation across 5 separated days in August
(% of mean reactivity or J-value) using MDS_R0.

	P-O3	L-O3	L-CH4	J-O1D	J-NO2
GC	11%	9%	10%	9%	9%
GISS	22%	14%	17%	14%	12%
GMI	10%	9%	10%	10%	10%
NCAR	23%	32%	28%	17%	16%
UCI	10%	10%	11%	10%	11%

594

595

596 **SI References**

597

598 Duncan, B.N., Logan, J.A., Bey, I., Megretskiaia, I.A., Yantosca, R.M., Novelli, P.C.,
599 Jones, N.B. and Rinsland, C.P., 2007. Global budget of CO, 1988–1997: Source
600 estimates and validation with a global model. *Journal of Geophysical Research: Atmospheres*, 112(D22).

602

603 Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles,
604 C.A., Darmenov, A., Bosilovich, M.G., Reichle, R. and Wargan, K., 2017. The modern-
605 era retrospective analysis for research and applications, version 2 (MERRA-2). *Journal of*
606 *climate*, 30(14), pp.5419-5454.

607

608 Holmes, C.D. and Prather, M.J., 2017. An atmospheric definition of the equator and its
609 implications for atmospheric chemistry and climate. *Nature Geoscience*.

610

611 Horowitz, L.W., Walters, S., Mauzerall, D.L., Emmons, L.K., Rasch, P.J., Granier, C.,
612 Tie, X., Lamarque, J.F., Schultz, M.G., Tyndall, G.S. and Orlando, J.J., 2003. A global
613 simulation of tropospheric ozone and related tracers: Description and evaluation of
614 MOZART, version 2. *Journal of geophysical research: Atmospheres*, 108(D24).

615

616 Li, D., Zhang, R. and Knutson, T.R., 2017. On the discrepancy between observed and
617 CMIP5 multi-model simulated Barents Sea winter sea ice decline. *Nature*
618 *Communications*, 8(1), pp.1-7.

619

620 Prather, M.J., Zhu, X., Flynn, C.M., Strode, S.A., Rodriguez, J.M., Steenrod, S.D., Liu,
621 J., Lamarque, J.F., Fiore, A.M., Horowitz, L.W. and Mao, J., 2017. Global atmospheric
622 chemistry—which air matters. *Atmospheric Chemistry and Physics*, 17(14), pp.9081-9102.

623

624 Prather, M.J., Flynn, C.M., Zhu, X., Steenrod, S.D., Strode, S.A., Fiore, A.M., Correa,
625 G., Murray, L.T. and Lamarque, J.F., 2018. How well can global chemistry models
626 calculate the reactivity of short-lived greenhouse gases in the remote troposphere,
627 knowing the chemical composition. *Atmospheric Measurement Techniques*, 11(5),
628 pp.2653-2668.

629

630 Riener, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E.,
631 Bosilovich, M.G., Schubert, S.D., Takacs, L., Kim, G.K. and Bloom, S., 2011. MERRA:
632 NASA's modern-era retrospective analysis for research and applications. *Journal of*
633 *climate*, 24(14), pp.3624-3648.

634

635 Strahan, S.E., Douglass, A.R. and Steenrod, S.D., 2016. Chemical and dynamical impacts
636 of stratospheric sudden warmings on Arctic ozone variability. *Journal of Geophysical*
637 *Research: Atmospheres*, 121(19), pp.11-836.

638

639 Tilmes, S., Sanderson, B.M. and O'Neill, B.C., 2016. Climate impacts of geoengineering
640 in a delayed mitigation scenario. *Geophysical Research Letters*, 43(15), pp.8222-8229.

641

642 Wofsy, S.C., Afshar, S., Allen, H.M., Apel, E.C., Asher, E.C., Barletta, B., Bent, J., Bian,
643 H., Biggs, B.C., Blake, D.R. and Blake, N., 2018. ATom: Merged atmospheric chemistry,
644 trace gases, and aerosols. ORNL DAAC Oak Ridge, Tennessee, USA.

645

646 Wolfe, G.M., Marvin, M.R., Roberts, S.J., Travis, K.R. and Liao, J., 2016. The
647 framework for 0-D atmospheric modeling (F0AM) v3. 1. Geoscientific Model
648 Development, 9(9), pp.3309-3319.