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Abstract

North India is a densely populated subtropical region with heavy aerosol loading (mean Aerosol

Optical Depth or AOD ~ 0.7), frequent heatwaves and strong atmosphere-biosphere coupling,
making it ideal for studying the impacts of aerosols and temperature variation on latent heat flux
(LH) and evaporative fraction (EF). Here, using in situ observations during the onset of the
summer monsoon over a semi-natural grassland site in this region, we confirm that strong co-
variability exists among aerosols, LH, air temperature (Tair) and vapor pressure deficit (VPD).
Since the surface evapotranspiration is strongly controlled by both physical (available energy and
moisture demand) and physiological (canopy and aerodynamic resistance) factors, we separately
analyze our data for different combinations of aerosols and T.i/VPD changes. We find that

aerosol loading and warmer conditions both reduces SH. Further, we find that an increase in
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atmospheric VPD, tends to decrease the gross primary production (GPP) and thus LH, most

likely as a response to stomatal closure of the dominant grasses at this location. In contrast, under
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heavy aerosol loading, LH is enhanced partly due to the physiological control exerted by the

diffuse radiation fertilization effect (thus increasing EF). Moreover, LH and EF jncreases with

(Deleted: are positively associated

aerosol loading even under heatwave conditions, indicating a decoupling of plant’s response to

VPD enhancement (stomatal closure) in presence of high aerosol conditions. Our results

encourage detailed in situ experiments and mechanistic modelling of AOD-VPD-EF coupling for

Deleted: With heat-stress, VPD and aerosols expected to increase
in future India,
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better understanding of Indian monsoon dynamics and crop vulnerability in a heat stressed and

heavily polluted future India,

) CDeIeted: warrant

(Deleted: in-depth analysis of aerosol

Highlights:

1. A rigorous analysis of Aerosol-EF-VPD coupling using collocated direct observations is
presented

2. Increased aerosol loading enhances Evaporative Fraction by decreasing sensible heat and
increasing latent heat.

3. Aerosols modulate the response of vegetation to changes in VPD under heatwave conditions

Keywords: Grassland, Aerosol loading, eddy covariance, evaporative fraction, physiological
response, diffuse radiation, Indo Gangetic Plains, heatwave, sensible heat, latent heat, Bowen

ratio,
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Introduction:

The surface energy balance represents the balance between the net radiation (NR) flux at

CDeIeted: incoming shortwave and longwave

the Earth’s surface and the partitioning of NR into latent heat (LH), sensible heat (SH) and
ground heat (GH) fluxes [Wang and Dickinson, 2012]. While the dominant partitioning of

CFieId Code Changed

energy as SH enhances the near-surface air temperature, the LH flux cools the surface and
increases the moisture content of the boundary layer. Thus, perturbations to the partitioning of
the outgoing turbulent energy fluxes from the land surface modify the near surface
micrometeorology. One way of representing this partitioning is the evaporative fraction
(EF=LH/(SH+LH)), or the proportion of the total available energy (NR-GH) available at the

surface released via vegetation evapotranspiration and soil evaporation. Earlier studies have

established that the EF can be modulated by a range of factors, including vapor pressure deficit
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implicates the susceptibility of the vegetation present in a measured

Deleted: Thus, enhancement in EF in a warmer environment also
canopy/land cover to drought conditions.
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78  (VPD), soil moisture, canopy structure, atmospheric composition, solar radiation and stomatal

79  behaviour [Baldocchi, 1997; Wilson et al., 2002].

80 The variability in VPD, which describes the near surface moisture deficit for a given - ( Formatted: Line spacing: 1.5 lines

81  temperature (difference between the saturated and ambient vapor pressure for atmospheric water)
82  is arguably the dominant nonlinear forcing on EF variability [Gu et al., 2006]. On one hand, an

83  increase in VPD leads to the partitioning of more of the available energy into LH to meet the

84  atmospheric moisture demand, part of the physical control on evapotranspiration [Penman, 1948; (Deleted: ET;

85  Monteith et al., 1965]. On the other hand, high VPD also triggers partial closure of leaf stomata
86  in response to increased atmospheric dryness [Jones and Sutherland, 1991; Damour et al., 2010;
87  Medlyn et al., 2011]. This is part of the physiological control on ET, causing an increase in VPD
88  to actually decrease ET (and thus EF) [Rigden & Salvucci, 2017]. Moreover, the sign of VPD-
89  EF association could also change due to variations in confounding factors like ambient soil

90  moisture and diffuse/direct radiation [Gu et al., 2006]. More diffused radiation enhances plant
91  productivity [Mercado et al., 2009; Rap et al., 2018] and plant growth [Wang et al., 2018];

92 which, in turn, can increase LH and EF [Chakraborty et al., 2021:Davin et al., 2012; Wang et al.,

93 2008]. However, this association is also reported to have an optimum point beyond which plant

94 productivity declines with increasing diffused fraction of radiation [Knohl et al., 2008].

95 Small particles suspended in the atmosphere, i.e. atmospheric aerosols, can alter the

96  amount of shortwave and longwave radiation reaching the surface, through scattering and

97  absorption, thereby altering NR [Schwartz, 1996; Trenberth et al., 2009; Chakraborty and Lee, CFormatted: Font colour: Text 1
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98  2019]. This is commonly known as the aerosol direct radiative effect (ADRE) and is dependent ]
(Field Code Changed

99  on aerosol size, composition and vertical distribution in the atmosphere [Forster et al., 2007, (Fiem Code Changed
100  Sarangi et al., 2016]. Global and regional scale modelling studies have reported that the ADRE (Formatted: Font colour: Text 1
101  can greatly alter the surface fluxes and microclimate over land [Liu et al., 2014; Mallet et al., (Field Code Changed
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102  2009; Shen et al., 2020; Myhre et al., 2018]. Generally, the ADRE reduces NR, which results in
(Formatted: Font colour: Text 1

103 the reduction in the magnitude of SH and LH. But, loading of scattering aerosols from fossil fuel

) (Formatted: Font colour: Text 1

104  combustion can also increases the diffuse fraction of solar radiation at the surface, which affects
P (Formatted: Font colour: Text 1

105  the photosynthesis and LH or EF [Chameides et al., 1999; Matsui et al., 2008:Niyogi et al., 2004; CFormaued: Font colour: Text 1

106  Wang et al., 2008; O’Sullivan et al., 2016; Wang et al., 2020]. This mechanism is generally (Formatted: Font colour: Text 1
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107  referred to as the diffuse radiation induced aerosol fertilization effect (ADFE). But, depending on
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the ecosystem, the positive association of ADFE on EF also gets saturated as ADRE becomes
larger than a threshold [Yue et al., 2017]. Further, Steiner et al., [2013] reported that warmer air

temperature are consistent with high aerosol optical depth (AOD) scenario over various in-situ

CDeIeted: AOD

micrometeorological sites in USA, which can result in no clear association between AOD and
LH. Thus, how aerosol loading modulates the already complex VPD-EF association can depend
on the interplay between radiation, ADFE, aerosol amount and properties, background climate

and ecosystem phenology [Steiner et al., 2011].
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Northern India is a global hot spot for atmospheric aerosols with AOD varying between 0.5 and

(Deleted: aerosol optical depth (AOD)

1.5, and high aerosol radiative efficiency values ( ~100 W/m?/AOD) during pre-monsoon period
[Dey et al., 2011; Kumar et al., 2015; Dimitris et al., 2012; Sarangi et al., 2016; Srivastava et al.,
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2011]. In addition, the region also experiences frequent high temperature days and heatwave
conditions, generally extending for 2-6 days during this period [Ratnam et al., 2016; Rohini et
al., 2016]. During heatwave conditions, the regional atmosphere is largely stagnant [Ratnam et
al., 2016], which can lead to greater air temperature by 5-10 K and magnifies the water vapour
demand by 2-3 times at weekly time scale. In addition to high air temperatures (Tair), high
aerosol loading during heatwaves have also been reported over Northern India [Dave et al., 2020;
Mondal et al., 2020] at this time of year. Moreover, the value of EF is typically greater than 0.5
over the Northern India during pre-monsoon period, indicating a potentially larger control of
VPD-LH linkages on surface energy partitioning [Bhat et al., 2019]. Steep variability in ambient
values of VPD (also AOD in some events) during heatwaves over Northern India provides us
with ideal conditions for investigating the associations between aerosol loading and VPD-EF

coupling.

Previous studies have suggested that aerosol loading can modulate the partitioning of surface

fluxes over Northern India [Urankar et al., 2012; Murthy et al., 2014; Latha et al., 2019; Gupta et

(Field Code Changed
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al., 2020]. However, these studies have been based on reanalysis products [Urankar et al 2012],
very limited measurements of SH only [Murthy et al., 2014] or estimated derived from remotely
sensed data [Latha et al., 2019] and therefore lack the fidelity that can be obtained from direct
observations of key processes. Better understanding of the aerosol-VPD-EF associations using

direct collocated observations is essential to understand present day conditions and potential
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feedbacks that can modify future climate over this region of great hydro-climatic significance. In
this study, we have used co-located observations of surface energy balance, near-surface
micrometeorological variables and soil characteristics, together with aerosol properties (both
surface and columnar) at a sub-tropical site in northern India during the pre-monsoon season.
Analysis of case studies with AOD varying in phase or remaining constant with high VPD
(under heatwave conditions) are done to understand the underlying processes. Here, we will
present compelling evidence that changes in EF is directly (indirectly) proportional to aerosol
loading (VPD). More interestingly, we found that aerosol loading can decouple the observed
strong VPD-LH relationship under heatwave scenario which can have serious implications on
climate resilience of crops and vegetation. Below, the sections are organized to discuss the data

used, case studies selected and methodology, results, discussions and summary of this study.

2. Observation site and data:

Observations of SH, LH and net ecosystem CO» exchange (NEE) were obtained over a
semi-natural grassland site (Figure 1A) within the campus of the Indian Institute of Technology,
Kanpur (IITK; 26.5N, 80.3E, elevation 132 m above mean sea level) during the pre-monsoon
months (April-June) of 2016-2017. Energy flux data were collected by an eddy covariance

system installed at 5.28 m above the soil surface. This flux measurement site is part of an eddy

(Deleted: (EC)

covariance hetwork set up in India as part of the INCOMPASS project of the Indo-UK Monsoon (Deleted: EC
Programme [Chakraborty et al., 2019; Turner et al. 2019; Bhat et al., 2019]. The eddy covariance
system consists of a Windmaster sonic anemometer-thermometer (Gill Instruments Ltd. (Deleted: EC

Lymington, UK) and a LI7500 infrared gas analyzer (LI-COR Biosciences, Logan, Utah, USA).

The fetch around the tower is a mixture of different C4 grasses, i.e. variants of Napier grass

(Formatted: Font: Not Italic

(~60-70%) and some common reed (Scientific family: Pennisetum purpureum and Phragmites-

CFormatted: Font: Not Italic

Saccharum-Imperata). Napier grasses are invasive and a perennial species and representative of

grasslands in the region (Chakraborty et al., 2019; Holm et al., 1979). The vegetation cover is

more than 90% of the fetch of the flux tower (Figure 1B) and the canopy height varied within 1-
1.5 m during our study periods. The soil is typical of the Gangetic Plains with silt, clay and sand

fractions of 80%, 15% and 5%, respectively (unpublished data). The site experiences a humid

Deleted: The fetch around the tower is a mixture of different C4
grasses that is representative of grasslands in the region.
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subtropical climate. The range in daily AOD and Tair was 0.4-1.4 and 32-45 °C, respectively,
during the study period (Figure 1C).,
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The net radiation (NR; W m2) and its incoming and outgoing short- and longwave
components were measured using an NRO1 net radiometer (Hukesflux, Delft, The Netherlands)
installed at 5 m above the surface. The surface temperature (Ts) was calculated from the
measured outgoing longwave radiation following the Stefan—Boltzmann law assuming an

emissivity of 0.95 [Trenberth et al., 2009]. Ground heat fluxes (GH; W m?) were monitored at

(Deleted: Soil

0.03 m below the soil surface using two HFP01-SC self-calibrating soil heat flux plates
(Hukesflux, Delft, The Netherlands). Near surface ajr temperature (Tair; °C) and relative humidity

(Deleted: A

(RH; %) were measured at a height of 4.5 m. Wind speed and wind direction were measured at
10 m above the soil surface using a WindSonic anemometer (Gill Instruments Ltd., Lymington,
UK). Volumetric soil water content (VWC; m? of water in m? of soil) and surface temperature
(Tas; °C) were measured using two pairs of digital TDT sensors (Acclima Inc., Meridian, Idaho,
USA) installed at 0.05 and 0.15 m below the soil surface. Standard data processing and quality
control routines were used to calculate surface fluxes as described in Morrison et al. 2019. Data

gap-filling and the partitioning of net ecosystem exchange into Gross Primary Production (GPP)
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and total ecosystem respiration was performed using the R EddyProc package [Reichstein et al.,

2016; Reichstein et al., 2005]. Negative net ecosystem exchange during the daytime period
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indicates that photosynthesis at our site dominates over soil and plant respiration (not shown).
Since water and carbon cycles in the plants are closely coupled [Collatz et al., 1991]; variations
in GPP are used as a proxy for plant transpiration in this study. More details on the flux, weather
and radiation tower measurements at [IT Kanpur can be found in Table S1 and Chakraborty et
al., 2019.

Version 2 instantaneous cloud screened (Level 1.5) half-hourly averages of Acrosol

Optical Depth (AOD) at 550 nm,and Single Scattering Albedo (SSA), the ratio of scattering

(Deleted: (

efficiency to total extinction efficiency, at 440 nm obtained from the AErosol RObotic NETwork
(AERONET) station deployed in the IITK campus (Figure 1A) were used to quantify the aerosol

optical properties during our study period. Low and high SSA values indicate dominance of
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absorbing and scattering aerosols in the column, respectively. Clear-sky short wave (0.25-4um)
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radiative transfer calculations, using the Santa Barbara discrete ordinates radiative transfer
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Atmospheric Radiative Transfer Model (SBDART) [Ricchiazzi et al., 1998], are used to estimate
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the midday aerosol direct radiative forcing (ADRF) at surface and diffuse radiation reaching the
surface (diffusefac). Midday mean AOD and SSA for each day are prescribed to the model.
More details on radiative flux calculations using SBDART are mentioned in Supplementary
Information file. Finally, micro-pulse lidar backscatter images (Level 1.5) measured at the

collocated Micro-Pulse Lidar Network site [Campbell et al., 2002; Welton and Campbell, 2002]

(Deleted: (MPLNET)

are also used in this study, mainly to identify cloudy days. A day is termed as a cloudy day if

cloud patches are observed in Lidar profiles for more than 3 hours. More details on the aerosol

measurements can be found in supplementary information file.

3. Case studies and methodology:

Jn order to examine the impact of aerosols or VPD on EF, we need to carefully identify <.

periods where the variability of other confounding factors is negligible. As such, we identified
three weeks (marked in Figure 1C) for analysis, where daily variations in all these factors except
Tair /VPD and AOD is negligible. Figure 1C illustrates the occurrences of cloudy days, rainfall
and wildfire-affected periods during pre-monsoon months of 2016 and 2017. We have avoided
periods of cloud and rainfall occurrences since that would affect the surface and energy budget
much more than the ADFE. The daily mean VWC values are also shown for the period in Figure
1C. However, as shown in Figure 1C, it is rare to have a considerable time interval with only

variation in AOD values (and negligible variation in T.i/VPD). Eventually, three one-week
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periods are carefully selected with different combinations of dominant weekly gradients in Tair

/VPD and AOD and analyzed to gain insights into ambient AOD-VPD-EF association. The first
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week selected for analysis is between 2"4-9" June, 2016, which had high weekly gradient in

AOD but was accompanied by low variation in Tqi/VPD (hereafter referred as High AOD-Low

Tair (HALT) case). The second week is during 10%-15™ April, 2017, which witnessed large daily

increase in aerosol loading as well as Ti; in phase throughout the week (hereafter referred to as

the High AOD-High T, (HAHT) case). We also selected a third week during 10™-15% May

2017, when high gradient in T,ir was observed across the week. but negligible weekly gradient in
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AOD was present i.e the AOD values had large day to day variability through the week

(hereafter referred to as the Low AOD- High Tair (LAHT) case). Interestingly, heatwave

conditions were prevalent over North India during the HAHT and LAHT weeks, therefore, a

wide range of VPD-AOD-EF variation can be sampled. Moreover, since there were no rainfall

events during these three weeks, the variation in VWC was minor compared to large daily

variations in T,ir and AOD during our study periods. Further, the variations in the vegetation

phenology., wind and boundary layer height are found to be negligible within each of these three

(Formatted: Font: (Default) Times New Roman, Not Italic

)

weeks. Note that no week with low AOD and low VPD variations was observed during our study

period.

The simultaneous midday (1000-1500 LT) variability in AOD, VPD, EF and the other

components of the surface radiative balance is analyzed across the HALT and LAHT weeks to

understand the impact of strong weekly gradients of AOD and VPD, respectively. Further, we

analyse the weekly gradients in the observations during HAHT, and compare and contrast the

same with the HALT and LAHT cases to understand the combined effects of AOD and VPD.

Moreover, to examine the impact of aerosol loading on VPD-EF associations under enhanced

<

heat stress, we also calculated the daily midday bulk canopy resistances for both HAHT and

LAHT cases by inverting the Penmann-Monteith equation as described below. We used observed

values of available energy, VPD, T derived from observed L W,ui, psychrometric constant and

slope of vapor pressure curve derived from observed surface pressure and Tair respectively, and

aerodynamic resistance derived from the observed SH and near-surface temperature gradient.

The aerodynamic resistance to heat transfer (r,) is calculated from the near-surface temperature

gradient and the measured distance between the two (H), given by:

| Deleted: Hence, three different combinations of T /VPD and

AOD is selected for analysis. The first week selected for analysis is
between 2"-9t June, 2016, which had large variation in AOD values
is accompanied with insignificant daily variation in Tai/VPD
(hereafter referred as High AOD-Low Tair (HALT) case). The second
week is during 10%-15% April, 2017, which witnessed significant daily
increase in aerosol loading as well as Tair (hereafter referred to as
the High AOD-High Tair (HAHT) case). We also selected a third week
during 10"-15" May, 2017, when daily variation of AOD is relatively
low but the variation in Tai is high (hereafter referred to as the Low
AOD- High Tair (LAHT) case). Interestingly, heatwave conditions were
prevalent over North India during the HAHT and LAHT weeks,
therefore, a wide range of VPD-AOD-EF variation can be sampled. It
was also ensured that no rainfall happened during these three
weeks so that the variation in VWC is minor compared to significant
daily variations in Tair and AOD during our study periods. Further, the
variations in the vegetation phenology, winds and boundary layer

:| height are found to be minor within each of these three weeks. ¢
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i( between HAHT and LAHT weeks is also calculated

4 [Deleted: the differences in canopy resistance and VPD association
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where Ty is the surface temperature, calculated by inverting the Stefan-Boltzmann law assumin;

a unit surface emissivity (reasonable for vegetated surfaces), p,is the air density, and C, is the
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Then, the canopy resistance (rs) is calculated by inverting the Penman-Monteith approximation.
Thus:

A(Rn-G) + 7"C$VPD
LE )-A
Is = Ta
s v-1 L

where A is the slope of the water vapor saturation curve given by:

17.27Ta N
Ta+ 237.3

E— (T, + 237.3)2 N

4098[0.6108exp(

and vy is the psychrometric constant, calculated as:

CpP
eAa

where P is atmospheric pressure in kPa, A is the latent heat of vaporization (2.45 MJ kg'!), and g,
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is the ratio of the molecular weight of water vapour to dry air (0.622).

4. Results:
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During the HALT period, midday AOD values decreased monotonically across the week from
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Deleted: We calculated the daily midday bulk canopy resistances
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from observed LWou, psychrometric constant and slope of vapor
pressure curve derived from observed surface pressure and Tair
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~1.1 on 2" June, 2016 to ~ 0.6 on 9" June,2 016 (Figure 2A). The gcorresponding trend in SSA (Deleted: daily )
values was negligible, but SSA values are ~0.92 indicating a predominance of scattering aerosols

(Figure 2A). Corresponding values of NR at surface increased monotonically by ~50 W/m? ( Formatted: Superscript )
during the same week (Figure 2D). The enhancement in midday NR with decreasing AOD is (Deleted: period )
strongly driven by the corresponding jncrease in midday incoming shortwave radiation (ISWR) (Deleted: reduction )

by ~100 W/m? (Figure 2D). In agreement, ADRF values at surface decreased by ~80 W/m? and

diffuse fraction, of incoming radiation increased by ~0.10 with decrease in scattering aerosols
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from 2" June to 9" June, 2016 (Figures S1A and S1D). The daily trend in modelled ADRF (and
diffused fraction) values are consistent with the daily reduction trend of ISWR during HALT,
reinforcing the expectation that negative daily trend in ISWR and NR during HALT was

primarily by aerosol-induced radiative changes.
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During HAHT, the midday AOD values increased monotonically across the week from (Deleted: . )
~0.3 on 10%-11™ April to ~ 0.8 on 14™-15™ April (Figure 2B). Corresponding values of NR and
ISWR at surface decreased monotonically by ~100 W/m? and ~200 W/m?, respectively, during
the same period (Figure 2E). Similar to HALT, no daily trend was present in SSA values during
HAHT and SSA values are ~ 0.9 indicating presence of scattering aerosols (Figure 2B). In (Deleted: similarly )

agreement, ADRF values at surface decreased across the week (Figure S1B) with highest values

—/

CDeleted: were also

on high AOD days (14™-15™ April; ~150 W/m?) compared to those on low AOD (10™-11™ April;
~50 W/m?). At the same time, the diffuse fraction of incoming radiation at the surface (Figures
S1E) increased substantially from ~ 0.5 (on 10™ April) to ~0.7 on (15 April) during HAHT

(Deleted: Diffusefrac

CDeleted: linearly

indicating strong impact of aerosol loading.
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In contrast, during LAHT week. the gradient of AOD values from 10" and 15" May, 2017 was

CDeleted: increase in diffuse solar radiation
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relatively minor (Figure 2C). As the increase in AOD through the week was smaller compared to

other two cases, corresponding decrease of NR and ISWR values at surface was also smaller in

magnitude (~30 W/m?) during this period (Figure 2F). Correspondingly, negligible trend in
ADREF (Figures S1C) at the surface is observed indicating low variation in aerosol radiative

effect change during the LAHT week. Moreover, the midday SSA values during LAHT are
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lower (~0.8) compared to HALT and HAHT cases indicating presence of highly absorbing

aerosols in the column (Figure 2C). Accordingly, the ADRF values at surface during LAHT
(Figure S1C) were very high, more than double of the same during HALT and HAHT (i.e. ~350
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relatively dominant during LAHT compared to the other 2 cases. Moreover, dominance of

absorbing aerosols also lead to minor variation in diffused radiation during the week (Figure

S1F). To sum up, the impact of aerosol variability (i.e. the gradient in direct radiative effect and

diffused fraction modulation) is minor during the week compared to HAHT and HALT weeks. ,
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values of gross primary production (GPP) flux (Figures 3G-F) also illustrate gradients similar in

sign to corresponding latent heat fluxes indicating that the daily variation in LH flux in both the
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cases is mainly due to associated variation in evapotranspiration. Keeping in mind that the

magnitude of AOD variation in both the above cases are similar, the differences in slopes of L H-

AOD regression (lower value during HAHT) could be attributed to the simultaneous suppression

of gvapotranspiration by VPD rise during HAHT week. ,

VPD-associated decline in GPP and thus LH fluxes is even more clearly observed during «

LAHT week. A strong negative trend in midday values of Jatent heat and GPP is observed as the
week progressed from low to high VPD during LAHT (Figure 3F and 3I). Quantitatively, the

slope of regression of (midday mean) Jatent heat against Tair is +4.1 W/m?*/°C and -6.6 W/m?% °C

for HAHT and LAHT cases, respectively. Note that the magnitude of VPD variation in both the

cases is similar, so the differences in slope of Jatent heat and Tair regression can be attributed to
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HAHT weeks to various physical and physiological factors that control evapotranspiration

namely moisture demand, available energy, air temperature and the aerodynamic resistance. As
expected, the canopy resistance is significantly (p<0.05) correlated with VPD although clear

differences in the slope is present for the two cases. Specifically, the canopy resistance increases

steeply from 400 to 1400 s m™! with increase in VPD from 40 to 70 hPa during LAHT case

(Figure 4a). However, the canopy resistance only increases from 400 to 500 with an increase in

VPD from 45 to 65 hPa during HAHT case (Figure 4a). Similarly, air temperature during these

periods also shows a statistically significant positive relationship with canopy resistance (Figure

4d). However, during both periods, canopy resistance was found to be independent of available

energy (Figure 4¢) and the aerodynamic resistance (Figure 4d), indicating that the sensitivity of

canopy resistance to changes in VPD (or Ty ) is significantly greater than that for the other

variables.

The LAHT case illustrates the frequently reported behaviour of reduction of canopy

conductance under increasing VPD due to partial stomata closure as a physiological stress
response (Grossiord et al., 2020). Similar responses are also reported in Napier grasses, the

native vegetation over our site (Mwendia et al. 2016). Napier grasses can be anisohydric, i.e.

water spending under ample water availability (Cardoso et al., 2015). But their behaviour

becomes isohydric under high temperature and high water stress (Liang et al., 2017; Mwendia et

al. 2014; Purbajanti et al., 2012). During both HAHT and LAHT weeks, soil moisture is very

low, hence, the Napier grasses behaves isohydrically under high VPD. The comparison of LAHT

and HAHT scatter illustrates that canopy conductance is not strongly affected even under severe

VPD rise when aerosol loading also increases in phase. Specifically, the strong gradient of

increase in canopy resistance with VPD/ air temperature gets moderated under the high aerosol

scenario. Thus, under the presence of high aerosol loading, the isohydric response of Napier

grass to temperature rise or the physiological stress under high VPD is decoupled. This can

partially explain the aerosol-induced increase in EF (as well as LH and GPP) even under high

VPD rise during HAHT.

Further, meteorological co-variability or any significant differences in weekly pattern of < ( Formatted: Normal (Web), Line spacing: 1.5 lines

other micro-meteorological variables between HAHT and LAHT cases can also contribute to the

corresponding differences in AOD-VPD-EF association. A closer look illustrates that minor
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gradients are present in the meteorological variables (Figure S2), which can have secondary

effects on the VPD-EF associations. Nonetheless, the individual or relative contribution of these

meteorological variability and aerosols on the observed coupling remains unknown and deserves

further attention in future studies with in depth mechanistic modelling

5. Discussion: <N

The increase in scattering aerosols increased diffused radiation during HALT; thereby <1

facilitating relatively more photosynthesis and thus more GPP and Jatent heat release with

increase in AOD. At the same time, increase in AOD also decreased the temperature difference

between surface and air and constrained sensible heat release, eventually leading to aerosol-

Jmediated increase in EF during HALT. However, previous studies investigating the role of
aerosols on surface energy fluxes over India have largely reported that aerosol loading is

inversely related to Jatent heat [Murthy et al., 2014; Latha et al., 2019; Gupta et al., 2020].
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rise when aerosol loading also increases in phase. This may indicate
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from the physiological stress of VPD increase. This can partially
explain the aerosol-induced increase in EF (as well as LH and GPP)
even under high VPD rise during HAHT. ¢
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Possible explanations for this apparent contradiction are as follows. First, these studies did not

explicitly account for the effect of daily meteorology/ VPD/ temperature variability in their

analysis which can have confounding effects (as shown here and discussed in Steiner et al.,
2013). Second, these studies were not focused on grassland. Murthy et al., 2014 used
micrometeorological site data with a forested footprint in Ranchi. At the same time, Latha et al.,
2019 performs analysis at 100 km spatial resolution from reanalysis product/Model, which is
representative of a composite land use (including cities, forest, cropland and grassland) and thus
a mixture of evapotranspiration and ground evaporation. Gupta et al., 2020 used
micrometeorological observations within a typical university canopy (buildings, roads and trees)

in Mumbai. Note that total LH can decrease due to aerosols and EF can still increase if SH is
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(as seen in HAHT), but correlations or composite analysis at daily or monthly time scale may

involve feedbacks which can result in positive associations (as also seen in Mondal et al., 2020).,

In addition, our results clearly underline the complexity and non-linearity between -
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aerosol, VPD and EF, and provides observational evidence to the discussions reported in Steiner
et al., 2011; 2013. Keeping all other factors relatively constant, increase in scattering aerosols
causes a positive AOD-EF association (as seen in HALT). In case of HAHT, as both AOD and

VPD increased in phase over the week, VPD-induced reduction in gvapotranspiration
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reduction the near surface temperature gradient and sensible heat during LAHT. Thus, both
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a wax layer on the leaf surface can also contribute to such an effect [Burkhardt., 2010; Burkhardt v

and Grantz., 2017]. Recently, Grantz et al. 2018 used direct observations in glasshouses to

illustrate decoupling of stomata conductance (flux-based) from its porosity (higher VPD induces

Along with aerosol fertilization effect, the direct deposition of aerosols as ["e'e‘e‘" e increase in midday ground heat flux during heatwave

‘[Deleted: Moreover, the increase in ground heat flux results in an
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increase in Tar (as seen in HAHT and LAHT cases) thereby feeding
the reduction in AT and SHF in the first place.

reduction in pore size) under more aerosol scenario. India’s mean temperature is constantly

rising [Krishnan et al., 2020]. At the same time, the global mean VPD is increasing with global

warming [Yuan et al., 2019] and heatwaves will be more frequent in future India [Mukherjee et

al., 2018]. Moreover, anthropogenic emissions over Indian Subcontinent will ensure high AOD

values in near future [Kumar et al 2018], thus manifesting a HAHT-like scenario at longer time

scales over India. Although, the response of plants and crops to enhancement in VPD in warmer

future is uncertain, but aerosol-induced weakening of VPD-EF associations can contribute

towards tendency of crops and vegetations becoming less drought/heat-resilient in future.

AN A A AN AN AL WAL UAAAAL

C" leted: increases

(Deleted: 9 )

16



883
84
85

886

|887

888

889

890

891
92
93

894

895
96
97

898

|899

900

bo1

002

003

004

005

006

v

6. Summary,

In summary, simultaneous observations from AERONET and an eddy covariance flux tower

equipped with micrometeorological and soil physics sensors were employed to yeport possible

influence of aerosol loading on VPD-Evaporative Eraction associations over a natural C4

grassland site under clear sky conditions in the central Gangetic Plains. The main findings from

this study are:

1.

2.

3.

Increase in aerosol loading reduces the incoming solar radiation at surface and reduces
the gradient between surface temperature and near-surface air temperature. This is

associated with the decrease in energy dissipation from surface via sensible heat. At the

same time, increase in aerosol loading increases the evapotranspiration efficiency of
ecosystem by increasing diffuse radiation. Thus, high aerosol loading favors dissipation
of available surface energy via Latent heat flux and therefore increases Evaporative
fraction.

Increase in surface temperature and VPD during heatwave conditions induce larger
canopy resistance and stomata closure, thereby reducing the LH fluxes and EF. Native
Plants tend to store more water by transpiring less in high temperature conditions; so GPP
(and thus LH) reduces under high temperatures. At the same time, higher air temperature,

also reduces the sensible heat partitioning via yeduction in near surface temperature
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India’s mean temperature has already increased by ~ 0.7 degree
Celsius since 1900 and is projected to rise by ~4.5 degree Celsius by
the end of 2100 relative to present day scenario [Krishnan et al.,
2020]. At the same time, the global mean VPD is increasing with
global warming [Yuan et al., 2019] and heatwaves will be more
frequent in future India [Mukherjee et al., 2018]. Moreover,
anthropogenic emissions over Indian Subcontinent will ensure high
AOD values in near future [Kumar et al 2018], thus manifesting a
HAHT scenario in future India. In this context, our finding that
aerosols can reduce the VPD-induced physiological stress on
vegetation can have substantial implications. Although, the exact
pathway is still not clear, the phenomena of aerosol-induced
weakening of the physiological-response by vegetation can make
plants and trees less heat-resilient in future. While ADFE can be a
potential pathway of acrosol-induced VPD-EF decoupling, possible
physiological changes in stomata aperture due to direct deposition of
aerosols as a wax layer can also contribute [Burkhardt., 2010;
Burkhardt and Grantz., 2017]. Recently, Grantz et al. 2018 used
direct observations in glasshouses to illustrate similar uncoupling of
stomata conductance (flux-based) from its porosity (higher VPD
induces reduction in pore size) under more aerosol scenario.
Nonetheless, the sensitivity and sign of the AOD-VPD-EF
associations depends on the region-specific physiological feedback of
vegetation, ambient aerosol optical properties, vegetation structure
and VWC. Therefore, land process models should be well-
constrained with better quantification of aerosol-Tai- VPD-EF
continuum for accurately projecting future regional climate, crop
yield and adaptation strategies.
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EF association under varying VPD/surface temperature. When the changes in VPD and
scattering aerosols are in phase, like in case of stagnant heat wave conditions over North

India, the VPD-induced reduction in gvapotranspiration may be completely compensated.
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Nonetheless, a few caveats of this study need to be kept in mind. Our analysis, although driven

by fundamental theory of land-atmosphere interactions, is statistical in nature with a relatively

small sample size. The cases we analyse here and carefully selected to represent the distinct

scenarios as far as realistically possible in this region. Thus, minor influences of meteorological

co-variability cannot be totally avoided. As such, the quantitative estimation of various

associations may have inherent uncertainties and care should be taken before generalizing.

Moreover, as literature on plant physiological responses specific to grass variants found in the

Indo-Gangetic Basin region are scare, this study warrants more species-level studies are

necessary to isolate the physiological and environmental responses on EF. Nevertheless, the

possible AOD-VPD-EF associations discussed here can have substantial implications on future

climate of this and similar subtropical regions. Thus, the observational associations provided in
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Figure 1: A) Map showing the locations of AERONET and the EC flux tower site within the - i
campus of the Indian Institute of Technology Kanpur (IITK). Inset map shows the location of Yo d b

IITK (black dot) in the central Gangetic Plains. The maps are created by © Google Maps 2017.
B) Camera image of land cover of the flux tower site during May 12th, 2017. C) Daily variation
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in soil moisture (VWC, volumetric water content) during our study period is shown in black line  Deleted

in upper box of the figure. The occurrences of cloudy days, rainy days and wildfire affected AN (Formatted: Line spacing: 1.5 lines )
period during April through June of 2016 and 2017 is shown by magenta, blue and pink colour '(Formatted: Normal, Indent: Left: 0 cm )
patches in the upper box. A cloudy day is inferred from MPLNET images and AERONET '»(Formatted: Font colour: Text 1 )
observations (as defined in Section 2 of main text). The days bounded by straight lines depict the T — - —

, 3 N L. . . / Daily variation in VWC during our study period is shown
weekly episodes HALT, HAHT and LAHT, respectively. Daily variation in T, and daily | in black line in upper box of the figure. The occurrences of cloudy
variation in AOD during our study period is shown as black and red lines in lower box of the ¢ | days, rainy days and wildfire affected period during April through

/ June of 2016 and 2017 is shown by magenta, blue and pick colr
panel. patches in the upper box. A cloudy day is inferred from MPLNET

images and AERONET observations (as defined in Section 2 of main
text). The days bounded by straight lines depict the study episodes
HALT, HAHT and LAHT, respectively. Daily variation in Tur and
daily variation in AOD during our study period is shown as black
and red lines in lower box of the panel).q
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R57  Figure 2: Distribution plots showing the variations in aerosol and radiation during the cases. Deleted
P58  Row [ illustrates Time series of midday (1100-1400 LT) variation in AOD and SSA values :(Formatted: Line spacing: 1.5 lines )
P59  during HALT, HAHT and LAHT, respectively.. The horizontal line within box represents median \ (.- leted: ¢ )
R60  of the distribution. The bottom and top edge of the boxes represent 25th and 75th percentile,
P61 respectively, of the distribution. The short dash at top and bottom extent of the boxes represent
P62  5Sth and 95th percentile, respectively. Row 2 is same as Row 1 but show measurements of
R63  incoming short wave radiation and net radiation at surface. Note that June, 16 means June of
P64 2016 and so on.
265 .| Deleted: Figure 2: Box plots showing the variations in aerosol and

v

radiation during the cases. Row 1 illustrates Time series of midday
(1100-1400 LT) variation in AOD and SSA values during HALT,
HAHT and LAHT, respectively.. The horizontal line within box
represents median of the distribution. The bottom and top edge of the
boxes represent 25th and 75th percentile, respectively, of the
distribution. The short dash at top and bottom extent of the boxes
represent 5th and 95th percentile, respectively. Row 2 is same as
Row 1 but show measurements of incoming short wave radiation and
net radiation at surface. Note that June,16 means June of 2016 and
50 on.
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P84  SHF.
P85 ‘| Deleted: Figure 3: Box plots showing the variations in near

surface meteorology and surface fluxes during the cases. Row 1
illustrates Time series of midday (1100-1400 LT) variation in Ty, Tair
and (-)AT values during HALT, HAHT and LAHT, respectively. Row
2 is same as Row 1 but for SH and LH. Row 3 is same but for VPD
and GPP ; Row 4 is same but for EF, LHF (red) and SHF. *
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Appendix A: Table of Abbreviations

R 'CFormatted: Font: Bold, Underline, Font colour: Text 1

NN

Name Abrv. useakFormatted: Centred
Latent heat flux LH

Sensible heat flux SH

Ground heat flux GH

Evaporative Fraction EF

2 m air temperature Tair : (Formatted: Subscript
vapor pressure deficit VPD

gross primary production GPP

net radiation NR

aerosol direct radiative effect ADRE

aerosol diffuse radiation fertilization effect ADFE

diffuse radiation diffusefac

Santa Barbara discrete ordinates radiative transfer Atmospheric Radiative Transfer

Model SBDART

AErosol RObotic NETwork AERONET

Volumetric soil water content VWC

surface temperature Tort -(Formatted: Subscript
relative humidity RH

Acrosol Optical Depth AOD

Single Scattering Albedo SSA

High AOD-Low Tair HALT

High AOD-High Tair HAHT

Low AOD- High Tair LAHT

Outgoing long wave radiation at surface LWout

canopy resistance rs : (Formatted: Subscript
aerodynamic resistance to heat transfer I ( Formatted: Font colour: Text 1
Sensible heat fraction SHF | Formatted: Subscript
Latent heat fraction LHF krormatted: Font colour: Text 1
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