Supplementary Material for “Contribution of the world’s main dust source regions to the global cycle of desert dust”

J. F. Kok¹ *, A. A. Adebiyi¹, S. Albani²,³, Y. Balkanski³, R. Checa-Garcia³, M. Chin⁴, P. R. Colarco⁴, D. S. Hamilton⁵, Y. Huang¹, A. Ito⁶, M. Klose⁷, L. Li⁵, N. M. Mahowald⁸, R. L. Miller⁸, V. Obiso⁷,⁸, C. Pérez García-Pando⁷,⁹, A. Rocha-Lima¹⁰,¹¹, and J. S. Wan⁵

¹Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA
²Department of Environmental and Earth Sciences, University of Milano-Bicocca, Milano, Italy
³Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ-UPSaclay, Gif-sur-Yvette, France
⁴Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
⁵Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14850, USA
⁶Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, Kanagawa 236-0001, Japan
⁷Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
⁸NASA Goddard Institute for Space Studies, New York NY10025 USA
⁹ICREA, Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
¹⁰Physics Department, UMBC, Baltimore, Maryland, USA
¹¹Joint Center Joint Center for Earth Systems Technology, UMBC, Baltimore, Maryland, USA

*e-mail: jfkok@ucla.edu
Supplementary Materials

This document contains a description of how results of the seasonal dust emission, loading, and DAOD per source region were obtained from AeroCom Phase I simulations. This document also contains a number of Supplementary Figures, which are summarized below:

- Figures S1-S4. Fractional contribution of each source region to the global dust cycle in respectively boreal Winter (DJF), Spring (MAM), Summer (JJA), and Fall (SON).
- Figure S5. Annual size-resolved lifetime of dust emitted from each of the nine source regions, as simulated by the six models in the model ensemble.
- Figures S6-S9. Size-resolved lifetime of dust emitted from each of the nine source regions in respectively Winter, Spring, Summer, and Fall.
- Figure S10. The column-integrated bulk mass extinction efficiency (m²/g) due to dust from all source regions.
- Figure S11. Attribution of the annually averaged PM20 dust loading to the world’s main source regions.
- Figures S12-S15. Attribution of the 2D dust aerosol optical depth in respectively boreal Winter (DJF), Spring (MAM), Summer (JJA), and Fall (SON) to the world’s main source regions.
- Figures S16-S19. Attribution of the 2D dust column loading in respectively boreal Winter (DJF), Spring (MAM), Summer (JJA), and Fall (SON) to the world’s main source regions.
- Figures S20-S23. Attribution of the zonally averaged dust concentration to the world’s main source regions in respectively boreal Winter (DJF), Spring (MAM), Summer (JJA), and Fall (SON).
- Figure S24. Map of regions to which deposition fluxes are quantified in the main text.
- Figure S25-28. Attribution to the world’s main source regions of the seasonally-averaged PM20 dust deposition flux in respectively boreal Winter (DJF), Spring (MAM), Summer (JJA), and Fall (SON).

Analysis of seasonal dust cycle in AeroCom simulations

We obtain estimates of the seasonally-averaged dust loading ($L_{r,s}^{Aer}$) and DAOD ($\bar{\tau}_{r,s}^{Aer}$) for each of the models in the AeroCom Phase I ensemble by following the procedure in Section 2.2 of the main text. That is,

$$\bar{\tau}_{r,s}^{Aer} = \frac{L_{r,s}^{Aer}}{\rho_{Aer} \bar{\tau}_{r,s}^{Earth}}, \text{ and}$$

$$\tau_{r,s}^{Aer} = \frac{L_{r,s}^{Aer}}{\rho_{Aer} \bar{\tau}_{r,s}^{Earth} \bar{\epsilon}_{r,s}^{Earth}}$$

where $\bar{\tau}_{r,s}$ and $\bar{\epsilon}_{r,s}$ are respectively the bulk lifetime for source region r and season s, obtained from our analysis.
Supplementary Figures

Figure S1. Fractional contribution of each source region to the global dust cycle in boreal Winter (DJF). Shown are the fractional contributions to the global dust emission (and deposition) flux (a), the global dust loading (b), and the global dust aerosol optical depth (c). Box boundaries approximately denote the one standard error range (i.e., contains 9 out of 13 AeroCom simulations, 4 out of 6 model ensemble members, and 68% probability range for the inverse model’s results), gray circles denote the individual simulation results outside of this range, whiskers denote the 95% confidence interval for the inverse model’s results, horizontal solid lines denote the median result, and stars denote the mean result.
Figure S2. As in Figure S1, but for the fractional contribution of each source region to the global dust cycle in boreal Spring (DJF).
Figure S3. As in Figure S1, but for the fractional contribution of each source region to the global dust cycle in boreal Summer (JJA).
Figure S4. As in Figure S1, but for the fractional contribution of each source region to the global dust cycle in boreal Fall (SON).
Figure S5. Annual size-resolved lifetime of dust emitted from each of the nine source regions, as simulated by the six models in the model ensemble (CESM = blue squares; IMPACT = green circles; GISS = red triangles; GOCART = purple crosses; MONARCH = cyan hexagons; INCA = yellow diamonds). Also shown are the Maximum Likelihood Estimates (MLE) of the best fit for each region (black lines), which uses data from all the models and were obtained as described in the Supplement to Kok et al. (2017). To facilitate comparisons between source regions, panel (j) shows the MLEs of the size-resolved lifetime for the nine regions.

Figure S6. Size-resolved lifetime of dust emitted from each of the nine source regions in Winter (December – February for Northern Hemisphere sources; June – August for Southern Hemisphere sources), as simulated by the six models in the model ensemble (CESM = blue squares; IMPACT = green circles; GISS = red triangles; GOCART
= purple crosses; MONARCH = cyan hexagons; INCA = yellow diamonds). Also shown are the Maximum Likelihood Estimates (MLE) of the best fit for each region (black lines), which uses data from all the models and were obtained as described in the Supplement to Kok et al. (2017). To facilitate comparisons between source regions, panel (j) shows the MLEs of the size-resolved lifetime for the nine regions.

Figure S7. As in Figure S6, but for the size-resolved dust lifetime in Spring (March – May for Northern Hemisphere sources; September – November for Southern Hemisphere sources).

Figure S8. As in Figure S6, but for the size-resolved dust lifetime in Spring (March – May for Northern Hemisphere sources; September – November for Southern Hemisphere sources).
Figure S9. As in Figure S6, but for the size-resolved dust lifetime in Spring (March – May for Northern Hemisphere sources; September – November for Southern Hemisphere sources).

Figure S10. The column-integrated bulk mass extinction efficiency (m2/g) due to dust from all source regions.
Figure S11. Attribution of the annually averaged PM$_{2.5}$ dust loading to the world’s main source regions. Panel ordering is identical to Figure 5 and the seasonally resolved attribution of dust loading is shown in Figures S15-S18.

Figure S12. Attribution of the 2D dust aerosol optical depth in boreal winter (DJF) to the world’s main source regions. Shown first is the seasonally-averaged DAOD produced from all source regions combined (a), followed by
the fraction of DAOD that is due to Northern Hemisphere (b) and North African (c) sources. The fraction of DAOD due to each of the three North African source regions are shown in panels (d)-(f), and the fraction of DAOD due to the other three Northern Hemisphere source regions of Middle East & Central Asia, East Asia, and North America are shown in panels (g)-(i). Finally, the fraction of 2D DAOD due to the three Southern Hemisphere source regions of Australia, South America, and South Africa are shown in panels (j)-(l).

Figure S13. As in Figure S12, but for the attribution of the 2D dust aerosol optical depth in boreal Spring (MAM).
Figure S14. As in Figure S12, but for the attribution of the 2D dust aerosol optical depth in boreal Summer (JJA).

Figure S15. As in Figure S12, but for the attribution of the 2D dust aerosol optical depth in boreal Fall (SON).
Figure S16. Attribution of the seasonally-averaged PM$_{2.5}$ dust loading to the world’s main source regions in boreal Winter (DJF). Panel ordering is identical to Figures S12-S15.
Figure S17. As in Figure S16, but for the attribution of the PM$_{2.5}$ dust loading in boreal Spring (MAM).

Figure S18. As in Figure S16, but for the attribution of the PM$_{2.5}$ dust loading in boreal Summer (JJA).
Figure S19. As in Figure S16, but for the attribution of the PM$_{2.5}$ dust loading in boreal Fall (SON).

Figure S20. Attribution of the zonally averaged PM$_{2.5}$ dust concentration to the world’s main source regions in boreal Winter (DJF). Panel (a) shows the dust mixing ratio (dust concentration normalized by air density) as a
Figure S21. As in Figure S20, but for the attribution of the zonally-averaged PM$_{2.5}$ concentration in boreal Spring (MAM).

Figure S22. As in Figure S20, but for the attribution of the zonally-averaged PM$_{2.5}$ concentration in boreal Summer (JJA).
Figure S23. As in Figure S20, but for the attribution of the zonally-averaged PM$_{2.5}$ concentration in boreal Fall (SON).

Figure S24. Map of regions to which deposition fluxes are quantified in the main text (Tables 2 and 3), which include the world’s ocean basins, as well as terrestrial regions for which dust deposition is particularly important, namely the Amazon rainforest, Greenland, Antarctica, and the Tibetan Plateau. The median estimate of the annual deposition flux to each region is also noted.
Figure S25. Attribution to the world’s main source regions of the seasonally-averaged PM20 dust deposition flux in boreal Winter (DJF). Panel ordering is identical to Figures S12-S23.
Figure S26. As in Figure S25, but for the attribution of the PM$_{2.5}$ dust deposition flux in boreal Spring (MAM).

Figure S27. As in Figure S25, but for the attribution of the PM$_{2.5}$ dust deposition flux in boreal Summer (JJA).
Figure S28. As in Figure S25, but for the attribution of the PM$_{2.5}$ dust deposition flux in boreal Fall (SON).

References

Jickells, T., Sarin, M., Bikkina, S., Gao, Y., Shelley, R.U., Buck, C.S., Landing, W.M., Bowie, A.R., Perron,
Pyrogenic iron: The missing link to high iron solubility in aerosols. Science Advances 5.
Janjic, Z., Gall, R., 2012. Scientific documentation of the NCEP Nonhydrostatic Multiscale Model on the B
grid (NMMB). National Center for Atmospheric Research, Camp Springs, MD, USA.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G.,
Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C.,
in aeolian shear stress partitioning models for predicting transport threshold. Journal of Geophysical
Research-Earth Surface 110.
of a parameterization for convective turbulent dust emission and evaluation based on field
Koch, D., Jacob, D., Tegen, I., Rind, D., Chin, M., 1999. Tropospheric sulfur simulation and sulfate direct
radiative forcing in the Goddard Institute for Space Studies general circulation model. Journal of
Geophysical Research-Atmospheres 104, 23799-23822.
Kok, J.F., 2011. A scaling theory for the size distribution of emitted dust aerosols suggests climate
2017. Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nature
Geoscience 10, 274-278.
Krinner, G., Viovy, N., de Noblet-Ducoudre, N., Ogeee, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S.,
Prentice, I.C., 2005. A dynamic global vegetation model for studies of the coupled atmosphere-
Matthes, K., Funke, B., Andersson, M.E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M.A., de Wit,
T.D., Haberreiter, M., Hendry, A., Jackman, C.H., Kretzschmar, M., Kruschke, T., Kunze, M.,
Langematz, U., Marsh, D.R., Maycock, A.C., Misios, S., Rodger, C.J., Scaife, A.A., Seppala, A.,
Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., De Kamp, M.V., Vernoren, P.T., Versick, S.,
Miller, R.L., Cakmur, R.V., Perlwitz, J., Geogdzhayev, I.V., Ginoux, P., Koch, D., Kohfeld, K.E., Prigent, C.,
Space Sciences ModelE atmospheric general circulation model. J. Geophys. Res.-Atmos. 111,
D06208.
Myriokefalitakis, S., Ito, A., Kanakidou, M., Nenes, A., Krol, M.C., Mahowald, N.M., Scanza, R.A.,
the GESAMP atmospheric iron deposition model intercomparison study. Biogeosciences 15, 6659-
6684.

