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Supplementary Materials 
This document contains a description of how results of the seasonal dust emission, loading, and DAOD 
per source region were obtained from AeroCom Phase I simulations. This document also contains a 
number of Supplementary Figures, which are summarized below: 

• Figures S1-S4. Fractional contribution of each source region to the global dust cycle in 
respectively boreal Winter (DJF), Spring (MAM), Summer (JJA), and Fall (SON). 

• Figure S5. Annual size-resolved lifetime of dust emitted from each of the nine source regions, as 
simulated by the six models in the model ensemble. 

• Figures S6-S9. Size-resolved lifetime of dust emitted from each of the nine source regions in 
respectively Winter, Spring, Summer, and Fall. 

• Figure S10. The column-integrated bulk mass extinction efficiency (m2/g) due to dust from all 
source regions. 

• Figure S11. Attribution of the annually averaged PM20 dust loading to the world’s main source 
regions. 

• Figures S12-S15. Attribution of the 2D dust aerosol optical depth in respectively boreal Winter 
(DJF), Spring (MAM), Summer (JJA), and Fall (SON) to the world’s main source regions. 

• Figures S16-S19. Attribution of the 2D dust column loading in respectively boreal Winter (DJF), 
Spring (MAM), Summer (JJA), and Fall (SON) to the world’s main source regions. 

• Figures S20-S23. Attribution of the zonally averaged dust concentration to the world’s main 
source regions in respectively boreal Winter (DJF), Spring (MAM), Summer (JJA), and Fall 
(SON). 

• Figure S24. Map of regions to which deposition fluxes are quantified in the main text. 
• Figure S25-28. Attribution to the world’s main source regions of the seasonally-averaged PM20 

dust deposition flux in respectively boreal Winter (DJF) , Spring (MAM), Summer (JJA), and 
Fall (SON).  

 
Analysis of seasonal dust cycle in AeroCom simulations 
We obtain estimates of the seasonally-averaged dust loading (𝐿𝐿�𝑟𝑟,𝑠𝑠

Aer) and DAOD (𝜏̃𝜏𝑟𝑟,𝑠𝑠
Aer) for each of the 

models in the AeroCom Phase I ensemble by following the procedure in Section 2.2 of the main text. 
That is,  

𝐿𝐿�𝑟𝑟,𝑠𝑠
Aer = 𝐹𝐹�𝑟𝑟,𝑠𝑠
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, and 
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𝐴𝐴Earth 
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𝜖𝜖ğlob
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where 𝑻𝑻�𝒓𝒓,𝒔𝒔 and 𝝐𝝐�𝒓𝒓,𝒔𝒔 are respectively the bulk lifetime for source region r and season s, obtained from our 
analysis.  
  



Supplementary Figures 
 

Figure S1. Fractional contribution of each source region to the global dust cycle in boreal Winter (DJF). Shown are 
the fractional contributions to the global dust emission (and deposition) flux (a), the global dust loading (b), and the 
global dust aerosol optical depth (c). Box boundaries approximately denote the one standard error range (i.e., 
contains 9 out of 13 AeroCom simulations, 4 out of 6 model ensemble members, and 68% probability range for the 
inverse model’s results), gray circles denote the individual simulation results outside of this range, whiskers denote 
the 95% confidence interval for the inverse model’s results, horizontal solid lines denote the median result, and 
stars denote the mean result. 



 

Figure S2. As in Figure S1, but for the fractional contribution of each source region to the global dust cycle in 
boreal Spring (DJF). 

 



 

Figure S3. As in Figure S1, but for the fractional contribution of each source region to the global dust cycle in 
boreal Summer (JJA). 



 

 

Figure S4. As in Figure S1, but for the fractional contribution of each source region to the global dust cycle in 
boreal Fall (SON). 



   

Figure S5. Annual size-resolved lifetime of dust emitted from each of the nine source regions, as simulated by the 
six models in the model ensemble (CESM = blue squares; IMPACT = green circles; GISS = red triangles; GOCART 
= purple crosses; MONARCH = cyan hexagons; INCA = yellow diamonds). Also shown are the Maximum 
Likelihood Estimates (MLE) of the best fit for each region (black lines), which uses data from all the models and 
were obtained as described in the Supplement to Kok et al. (2017). To facilitate comparisons between source 
regions, panel (j) shows the MLEs of the size-resolved lifetime for the nine regions. 

 

Figure S6. Size-resolved lifetime of dust emitted from each of the nine source regions in Winter (December – 
February for Northern Hemisphere sources; June – August for Southern Hemisphere sources), as simulated by the 
six models in the model ensemble (CESM = blue squares; IMPACT = green circles; GISS = red triangles; GOCART 



= purple crosses; MONARCH = cyan hexagons; INCA = yellow diamonds). Also shown are the Maximum 
Likelihood Estimates (MLE) of the best fit for each region (black lines), which uses data from all the models and 
were obtained as described in the Supplement to Kok et al. (2017). To facilitate comparisons between source 
regions, panel (j) shows the MLEs of the size-resolved lifetime for the nine regions. 

  

Figure S7. As in Figure S6, but for the size-resolved dust lifetime in Spring (March – May for Northern Hemisphere 
sources; September – November for Southern Hemisphere sources). 

  

Figure S8. As in Figure S6, but for the size-resolved dust lifetime in Spring (March – May for Northern Hemisphere 
sources; September – November for Southern Hemisphere sources). 



 

Figure S9. As in Figure S6, but for the size-resolved dust lifetime in Spring (March – May for Northern Hemisphere 
sources; September – November for Southern Hemisphere sources).  

 

 

Figure S10. The column-integrated bulk mass extinction efficiency (m2/g) due to dust from all source regions. 



 

Figure S11. Attribution of the annually averaged PM20 dust loading to the world’s main source regions. Panel 
ordering is identical to Figure 5 and the seasonally resolved attribution of dust loading is shown in Figures S15-S18. 
 

 

Figure S12. Attribution of the 2D dust aerosol optical depth in boreal winter (DJF) to the world’s main source 
regions. Shown first is the seasonally-averaged DAOD produced from all source regions combined (a), followed by 



the fraction of DAOD that is due to Northern Hemisphere (b) and North African (c) sources. The fraction of DAOD 
due to each of the three North African source regions are shown in panels (d)-(f), and the fraction of DAOD due to 
the other three Northern Hemisphere source regions of Middle East & Central Asia, East Asia, and North America 
are showns in panels (g)-(i). Finally, the fraction of 2D DAOD due to the three Southern Hemisphere source regions 
of Australia, South America, and South Africa are shown in panels (j)-(l).  

 

 

Figure S13. As in Figure S12, but for the attribution of the 2D dust aerosol optical depth in boreal Spring (MAM).  

 



 

Figure S14. As in Figure S12, but for the attribution of the 2D dust aerosol optical depth in boreal Summer (JJA).  

 

 

Figure S15. As in Figure S12, but for the attribution of the 2D dust aerosol optical depth in boreal Fall (SON).  



 

 

Figure S16. Attribution of the seasonally-averaged PM20 dust loading to the world’s main source regions in boreal 
Winter (DJF). Panel ordering is identical to Figures S12-S15. 

 

 



Figure S17. As in Figure S16, but for the attribution of the PM20 dust loading in boreal Spring (MAM).  

 

 

Figure S18. As in Figure S16, but for the attribution of the PM20 dust loading in boreal Summer (JJA).  

 



 

Figure S19. As in Figure S16, but for the attribution of the PM20 dust loading in boreal Fall (SON).  

 

 

Figure S20. Attribution of the zonally averaged PM20 dust concentration to the world’s main source regions in 
boreal Winter (DJF). Panel (a) shows the dust mixing ratio (dust concentration normalized by air density) as a 



function of latitude (horizontal axis) and pressure in hPa (vertical axis). Panels (b)-(l) show the partition of the dust 
concentration per source region, with panel ordering identical to Figures S12-S19. 

 

Figure S21. As in Figure S20, but for the attribution of the zonally-averaged PM20 concentration in boreal Spring 
(MAM). 

Figure S22. As in Figure S20, but for the attribution of the zonally-averaged PM20 concentration in boreal Summer 
(JJA). 



 

Figure S23. As in Figure S20, but for the attribution of the zonally-averaged PM20 concentration in boreal Fall 
(SON). 

 

 

Figure S24. Map of regions to which deposition fluxes are quantified in the main text (Tables 2 and 3), which 
include the world’s ocean basins, as well as terrestrial regions for which dust deposition is particularly important, 
namely the Amazon rainforest, Greenland, Antarctica, and the Tibetan Plateau. The median estimate of the annual 
deposition flux to each region is also noted. 



 

 

Figure S25. Attribution to the world’s main source regions of the seasonally-averaged PM20 dust deposition flux in 
boreal Winter (DJF). Panel ordering is identical to Figures S12-S23. 

 

 



Figure S26. As in Figure S25, but for the attribution of the PM20 dust deposition flux in boreal Spring (MAM).  

 

 

Figure S27. As in Figure S25, but for the attribution of the PM20 dust deposition flux in boreal Summer (JJA).  

 

 



Figure S28. As in Figure S25, but for the attribution of the PM20 dust deposition flux in boreal Fall (SON).  
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