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Supplementary Materials

This document contains a description of how results of the seasonal dust emission, loading, and DAOD
per source region were obtained from AeroCom Phase I simulations. This document also contains a
number of Supplementary Figures, which are summarized below:

e Figures S1-S4. Fractional contribution of each source region to the global dust cycle in
respectively boreal Winter (DJF), Spring (MAM), Summer (JJA), and Fall (SON).

e Figure S5. Annual size-resolved lifetime of dust emitted from each of the nine source regions, as
simulated by the six models in the model ensemble.

e Figures S6-S9. Size-resolved lifetime of dust emitted from each of the nine source regions in
respectively Winter, Spring, Summer, and Fall.

e Figure S10. The column-integrated bulk mass extinction efficiency (m?%/g) due to dust from all
source regions.

e Figure S11. Attribution of the annually averaged PM20 dust loading to the world’s main source
regions.

e Figures S12-S15. Attribution of the 2D dust aerosol optical depth in respectively boreal Winter
(DJF), Spring (MAM), Summer (JJA), and Fall (SON) to the world’s main source regions.

o Figures S16-S19. Attribution of the 2D dust column loading in respectively boreal Winter (DJF),
Spring (MAM), Summer (JJA), and Fall (SON) to the world’s main source regions.

e Figures S20-S23. Attribution of the zonally averaged dust concentration to the world’s main
source regions in respectively boreal Winter (DJF), Spring (MAM), Summer (JJA), and Fall
(SON).

e Figure S24. Map of regions to which deposition fluxes are quantified in the main text.

e Figure S25-28. Attribution to the world’s main source regions of the seasonally-averaged PM20
dust deposition flux in respectively boreal Winter (DJF) , Spring (MAM), Summer (JJA), and
Fall (SON).

Analysis of seasonal dust cycle in AeroCom simulations

We obtain estimates of the seasonally-averaged dust loading (L2¢") and DAOD (£2¢") for each of the
models in the AeroCom Phase I ensemble by following the procedure in Section 2.2 of the main text.
That is,

TAer _ fAerqAer 7Vwr,s
Ly = F5 Tglob ml and

TAer &
~Aer _ __TS  ~Aer _T.S

Trs = lob ~
f glo
AEarth eglob

1

where T, ; and €, ¢ are respectively the bulk lifetime for source region  and season s, obtained from our
analysis.
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Figure S1. Fractional contribution of each source region to the global dust cycle in boreal Winter (DJF). Shown are
the fractional contributions to the global dust emission (and deposition) flux (a), the global dust loading (b), and the
global dust aerosol optical depth (¢). Box boundaries approximately denote the one standard error range (i.e.,
contains 9 out of 13 AeroCom simulations, 4 out of 6 model ensemble members, and 68% probability range for the
inverse model’s results), gray circles denote the individual simulation results outside of this range, whiskers denote
the 95% confidence interval for the inverse model’s results, horizontal solid lines denote the median result, and
stars denote the mean result.
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Figure S2. As in Figure S1, but for the fractional contribution of each source region to the global dust cycle in

boreal Spring (DJF).
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Figure S3. As in Figure S1, but for the fractional contribution of each source region to the global dust cycle in

boreal Summer (JJA).
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Figure S4. As in Figure S1, but for the fractional contribution of each source region to the global dust cycle in

boreal Fall (SON).
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Figure S5. Annual size-resolved lifetime of dust emitted from each of the nine source regions, as simulated by the
six models in the model ensemble (CESM = blue squares; IMPACT = green circles; GISS = red triangles; GOCART
= purple crosses; MONARCH = cyan hexagons; INCA = yellow diamonds). Also shown are the Maximum
Likelihood Estimates (MLE) of the best fit for each region (black lines), which uses data from all the models and
were obtained as described in the Supplement to Kok et al. (2017). To facilitate comparisons between source
regions, panel (j) shows the MLEs of the size-resolved lifetime for the nine regions.
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Figure S6. Size-resolved lifetime of dust emitted from each of the nine source regions in Winter (December —
February for Northern Hemisphere sources; June — August for Southern Hemisphere sources), as simulated by the
six models in the model ensemble (CESM = blue squares; IMPACT = green circles; GISS =red triangles; GOCART



= purple crosses; MONARCH = cyan hexagons; INCA = yellow diamonds). Also shown are the Maximum
Likelihood Estimates (MLE) of the best fit for each region (black lines), which uses data from all the models and
were obtained as described in the Supplement to Kok et al. (2017). To facilitate comparisons between source
regions, panel (j) shows the MLEs of the size-resolved lifetime for the nine regions.
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Figure S7. As in Figure S6, but for the size-resolved dust lifetime in Spring (March — May for Northern Hemisphere
sources; September — November for Southern Hemisphere sources).
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Figure S8. As in Figure S6, but for the size-resolved dust lifetime in Spring (March — May for Northern Hemisphere
sources; September — November for Southern Hemisphere sources).
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Figure S9. As in Figure S6, but for the size-resolved dust lifetime in Spring (March — May for Northern Hemisphere
sources; September — November for Southern Hemisphere sources).
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Figure S10. The column-integrated bulk mass extinction efficiency (m?/g) due to dust from all source regions.
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Figure S11. Attribution of the annually averaged PM» dust loading to the world’s main source regions. Panel
ordering is identical to Figure 5 and the seasonally resolved attribution of dust loading is shown in Figures S15-S18.
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Figure S12. Attribution of the 2D dust aerosol optical depth in boreal winter (DJF) to the world’s main source
regions. Shown first is the seasonally-averaged DAOD produced from all source regions combined (a), followed by



the fraction of DAOD that is due to Northern Hemisphere (b) and North African (c) sources. The fraction of DAOD
due to each of the three North African source regions are shown in panels (d)-(f), and the fraction of DAOD due to
the other three Northern Hemisphere source regions of Middle East & Central Asia, East Asia, and North America
are showns in panels (g)-(i). Finally, the fraction of 2D DAOD due to the three Southern Hemisphere source regions
of Australia, South America, and South Africa are shown in panels (j)-(1).
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Figure S13. As in Figure S12, but for the attribution of the 2D dust aerosol optical depth in boreal Spring (MAM).
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Figure S14. As in Figure S12, but for the attribution of the 2D dust aerosol optical depth in boreal Summer (JJA).
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Figure S15. As in Figure S12, but for the attribution of the 2D dust aerosol optical depth in boreal Fall (SON).
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Figure S16. Attribution of the seasonally-averaged PM» dust loading to the world’s main source regions in boreal
Winter (DJF). Panel ordering is identical to Figures S12-S15.
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Figure S17. As in Figure S16, but for the attribution of the PM»o dust loading in boreal Spring (MAM).
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Figure S18. As in Figure S16, but for the attribution of the PM»o dust loading in boreal Summer (JJA).
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Figure S19. As in Figure S16, but for the attribution of the PM»y dust loading in boreal Fall (SON).
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Figure S20. Attribution of the zonally averaged PM»y dust concentration to the world’s main source regions in
boreal Winter (DJF). Panel (a) shows the dust mixing ratio (dust concentration normalized by air density) as a



function of latitude (horizontal axis) and pressure in hPa (vertical axis). Panels (b)-(1) show the partition of the dust
concentration per source region, with panel ordering identical to Figures S12-S19.
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Figure S21. As in Figure S20, but for the attribution of the zonally-averaged PM; concentration in boreal Spring
(MAM).
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Figure S22. As in Figure S20, but for the attribution of the zonally-averaged PM» concentration in boreal Summer
(JJA).
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Figure S23. As in Figure S20, but for the attribution of the zonally-averaged PM, concentration in boreal Fall
(SON).
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Figure S24. Map of regions to which deposition fluxes are quantified in the main text (Tables 2 and 3), which

include the world’s ocean basins, as well as terrestrial regions for which dust deposition is particularly important,
namely the Amazon rainforest, Greenland, Antarctica, and the Tibetan Plateau. The median estimate of the annual

deposition flux to each region is also noted.
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Figure S25. Attribution to the world’s main source regions of the seasonally-averaged PM20 dust deposition flux in
boreal Winter (DJF). Panel ordering is identical to Figures S12-S23.

Seasggally averaged dust dep. flux (glmzlseason) in MA"}ADOU

-90
-180 135 -90 45 0 45 90 135 180
Frachon of dep. flux due to Western North Africa

1
0.75
0.50
0.25
0

180

-90
-180
Frachen of dep flux due to Middle East & Central Asm

-135 -90 45 0 45 90 135

0
-180 -135

Fraction of dep. flux due to Australia

90 45 0 45 90 135

I
80‘ -

31 0.75

0.50

0.25

-90
-180 135 90 45 0 45 90 135 180

Frza%tion of dep. flux due to all North African sources

-90
-180 -135 90 -45 0 45 90 135 180
Frachon of dep. flux due to Eastern North Africa

60
0.75
30
0 0.50
-30
, 0.25
90 ]
-180 -135 -90 -45 0 45 90 135 180
& Fraction of dep. flux due to East Asia i
60
0.75
30
0.50
-30
0.25
-60
-90 0
-180 -135 -90 -45 0 45 90 135 180
” Fraction of dep. flux due to South America i
60
0.75
30
0.50
-30
0.25
-60
-90 0
-180 -135 -90 -45 0 45 90 135 180

% Fraction of dep. flux due to all SH sources

-90
-180 135 90 45 0 45 90 135 180

Fraction of dep. flux due to Sahel

0
-180 -135 90 45 0 45 90 135 180
Fraction of dep. flux due to North America

90

-180 -135 90 -45 0 45 90 135 180
Fraction of dep. flux due to South Africa

90

-90
-180 -135

90 45 0 45 90

(T T [ 2 (T T (e e

0.75

0.50

0.25

0.756

0.50

0.25

0.756

0.50

0.25

0.75

0.50

0.25



Figure S26. As in Figure S25, but for the attribution of the PM»o dust deposition flux in boreal Spring (MAM).
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Figure S27. As in Figure S25, but for the attribution of the PM»o dust deposition flux in boreal Summer (JJA).
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Figure S28. As in Figure S25, but for the attribution of the PMo dust deposition flux in boreal Fall (SON).
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