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Abstract. Vanillin (VL), a phenolic aromatic carbonyl abundant in biomass burning emissions, forms triplet excited states 11 

(3VL*) under simulated sunlight leading to aqueous secondary organic aerosol (aqSOA) formation. This direct 12 

photosensitized oxidation of VL was compared with nitrate-mediated VL photo-oxidation under atmospherically relevant 13 

cloud and fog conditions, through examining the VL decay kinetics, product compositions, and light absorbance changes. 14 

The majority of the most abundant products from both VL photo-oxidation pathways were potential Brown carbon (BrC) 15 

chromophores. In addition, both pathways generated oligomers, functionalized monomers, and oxygenated ring-opening 16 

products, but nitrate promoted functionalization and nitration, which can be ascribed to its photolysis products ( •OH, •NO2, 17 

and N(III), NO2
- or HONO). Moreover, a potential imidazole derivative observed from nitrate-mediated VL photo-oxidation 18 

suggested that ammonium may be involved in the reactions. The effects of secondary oxidants from 3VL*, pH, the presence 19 

of volatile organic compounds (VOCs) and inorganic anions, and reactants concentration and molar ratios on VL photo-20 

oxidation were also explored. Our findings show that the secondary oxidants (1O2, O2
•-/•HO2, •OH) from the reactions of 21 

3VL* and O2 play an essential role in VL photo-oxidation. Enhanced oligomer formation was noted at pH <4 and in the 22 

presence of VOCs and inorganic anions, probably due to additional generation of radicals (•HO2 and CO3
•-). Also, 23 

functionalization was dominant at low VL concentration, whereas oligomerization was favored at high VL concentration. 24 

Furthermore, guaiacol oxidation by photosensitized reactions of VL was observed to be more efficient relative to nitrate-25 

mediated photo-oxidation. Lastly, potential VL photo-oxidation pathways under different reaction conditions were proposed. 26 

This study indicates that the direct photosensitized oxidation of VL, which nitrate photolysis products can further enhance, 27 

may be an important aqSOA source in areas influenced by biomass burning emissions. 28 
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1 Introduction 29 

Aqueous reactions can be an important source of secondary organic aerosols (SOA) (Blando and Turpin, 2000; Volkamer et 30 

al., 2009; Lim et al., 2010; Ervens et al., 2011; Huang et al., 2011; Lee et al., 2011; Smith et al., 2014) such as highly-31 

oxygenated and low-volatility organics (Hoffmann et al., 2018; Liu et al., 2019) which may affect aerosol optical properties 32 

due to contributions to Brown Carbon (BrC) (Gilardoni et al., 2016). BrC refers to organic aerosols that absorb radiation 33 

efficiently in the near-ultraviolet (UV) and visible regions (Laskin et al., 2015). The formation of aqueous SOA (aqSOA) via 34 

photochemical reactions involves oxidation, with hydroxyl radical (•OH) usually considered as the primary oxidant 35 

(Herrmann et al., 2010; Smith et al., 2014). The significance of photosensitized chemistry in atmospheric aerosols has 36 

recently been reviewed (George et al., 2015). For instance, triplet excited states of organic compounds (3C*) from the 37 

irradiation of light-absorbing organics such as non-phenolic aromatic carbonyls (Canonica et al., 1995; Anastasio et al., 38 

1996; Vione et al., 2006; Smith et al., 2014) have been reported to oxidize phenols at faster rates and with higher aqSOA 39 

yields compared to •OH (Sun et al., 2010; Smith et al., 2014; Yu et al., 2014; Smith et al., 2016). Aside from being an 40 

oxidant, 3C* can also be a precursor of singlet oxygen (1O2), superoxide (O2
•-) or hydroperoxyl (•HO2) radical, and •OH (via 41 

HO2
•/O2

•- formation) upon reactions with O2 and substrates (e.g., phenols), respectively (Tinel et al., 2018). The 3C* 42 

concentration in typical fog water has been estimated to be >25 times than that of •OH, making 3C* the primary photo-43 

oxidant for biomass burning phenolic compounds (Kaur and Anastasio, 2018; Kaur et al., 2019). Recent works on triplet-44 

driven oxidation of phenols have mainly focused on changes of physicochemical properties (e.g., light absorption) and 45 

aqSOA yield (e.g., Smith et al., 2014, 2015, 2016), with few reports on reaction mechanisms and characterization of reaction 46 

products (e.g., Yu et al., 2014; Chen et al., 2020; Jiang et al., 2021). 47 

Inorganic nitrate is a major component of aerosols and cloud/fog water. In cloud and fog water, the concentrations 48 

of inorganic nitrate can vary from 50 μM to >1000 μM, with higher levels typically noted under polluted conditions (Munger 49 

et al., 1983; Collett et al., 1998; Zhang and Anastasio, 2003; Li et al., 2011; Giulianelli et al., 2014; Bianco et al., 2020). 50 

Upon photolysis (Vione et al., 2006; Herrmann, 2007; Scharko et al., 2014), inorganic nitrate in cloud and fog water can 51 

contribute to BrC (Minero et al., 2007) and aqSOA formation (Huang et al., 2018; Klodt et al., 2019; Zhang et al., 2021) by 52 

generating •OH and nitrating agents (e.g., •NO2). For example, the aqSOA yields from the photo-oxidation of phenolic 53 

carbonyls in nitrate are twice as high as that in sulfate solution (Huang et al., 2018). Nitration is a significant process in the 54 

formation of light-absorbing organics or BrC in the atmosphere (Jacobson, 1999; Kahnt et al., 2013; Mohr et al., 2013; 55 

Laskin et al., 2015; Teich et al., 2017; Li et al., 2020). Furthermore, nitrate photolysis has been proposed to be a potentially 56 

important process for SO2 oxidation via the generation of •OH, •NO2, and N(III) within particles (Gen et al., 2019a, 2019b), 57 

and it can also potentially change the morphology of atmospheric viscous particles (Liang et al., 2021). Accordingly, both 58 

3C* and inorganic nitrate can contribute to aqSOA and BrC formation. 59 

 Biomass burning (BB) is a significant atmospheric source of both phenolic and non-phenolic aromatic carbonyls 60 

(Rogge et al., 1998; Nolte et al., 2001; Schauer et al., 2001; Bond et al., 2004).  An example is vanillin (VL) (Henry’s law 61 
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constant of 4.56 × 105 M atm-1; Yaws, 1994), a model compound for methoxyphenols which are abundant in BB emissions 62 

(Pang et al., 2019a), which has been shown to yield low-volatility products (Li et al., 2014) via aqueous •OH oxidation and 63 

direct photodegradation.  Photodegradation kinetics and aqSOA yields have been reported for direct VL photodegradation 64 

(Smith et al., 2016), with oxygenated aliphatic-like compounds (high H:C, ≥1.5 and low O:C, ≤0.5 ratios) reported as the 65 

most likely products (Loisel et al., 2021). Additionally, aqueous-phase reactions of phenols with reactive nitrogen species 66 

have been proposed to be a significant source of nitrophenols and SOA (Grosjean, 1985; Kitanovski et al., 2014; Kroflič et 67 

al., 2015; Pang et al., 2019a; Kroflič et al., 2021; Yang et al., 2021). For instance, nitrite-mediated VL photo-oxidation can 68 

generate nitrophenols, and the reactions are influenced by nitrite/VL molar ratios, pH, and the presence of •OH scavengers 69 

(Pang et al., 2019a).  70 

As BB aerosols are typically internally mixed with other aerosol components (Zielinski et al., 2020), VL may 71 

coexist with nitrate in BB aerosols. The aqueous-phase photo-oxidation of VL and nitrate may then reveal insights into the 72 

atmospheric processing of BB aerosols. In addition, pollution from large BB events in central Amazonia has been reported to 73 

interact with volatile organic compounds (VOCs) and soil dust (Rizzo et al., 2010). Moreover, the production, growth, and 74 

chemical complexity of SOA can be influenced by the uptake and aerosol-phase reactions of VOCs (Pöschl, 2005; De Gouw 75 

and Jimenez, 2009; Ziemann and Atkinson, 2012). Accordingly, studies incorporating other atmospherically relevant species 76 

(e.g., VOCs and inorganic anions) in photo-oxidation experiments are warranted. 77 

To evaluate the potential significance of VL and its reactions with nitrate in aqSOA formation in cloud/fog water, 78 

we studied the direct photosensitized oxidation of VL and nitrate-mediated VL photo-oxidation under atmospherically 79 

relevant conditions. In this work, reactions were characterized based on VL decay kinetics, light absorbance changes, and 80 

products. The influences of secondary oxidants from VL triplets, solution pH, the presence of VOCs and inorganic anions, 81 

and reactants concentration and molar ratios on these two photo-oxidation pathways were also assessed. The 3C* of non-82 

phenolic aromatic carbonyls (e.g., 3-4-dimethoxybenzaldehyde, DMB; a non-phenolic aromatic carbonyl) (Smith et al., 83 

2014; Yu et al., 2014; Jiang et al., 2021) and phenolic aromatic carbonyls (e.g., acetosyringone, vanillin) (Smith et al., 2016) 84 

have been shown to oxidize phenols, but the reaction products from the latter are unknown. We then examined the photo-85 

oxidation of guaiacol, another non-carbonyl phenol, in the presence of VL and compared it with nitrate-mediated photo-86 

oxidation. Finally, we proposed photo-oxidation pathways of VL under different reaction conditions. This work presents a 87 

comprehensive comparison of VL photo-oxidation by VL photosensitization and in the presence of inorganic nitrate.  88 

 89 

2 Methods  90 

2.1 Aqueous phase photo-oxidation experiments 91 

Photo-oxidation experiments were performed in a 500-mL custom-built quartz photoreactor equipped with a magnetic 92 

stirrer. The solutions were bubbled with synthetic air or nitrogen (N2) (>99.995%) for 30 min before irradiation to achieve 93 
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air- and N2-saturated conditions, respectively, and the bubbling was continued throughout the reactions (Du et al., 2011; 94 

Chen et al., 2020). The aim of the air-saturated experiments was to enable the generation of secondary oxidants (1O2, O2
•-95 

/•HO2, •OH) from 3VL* as O2 is present. Conversely, the N2-saturated experiments would inhibit the formation of these 96 

secondary oxidants, leading to 3VL*-driven reactions. Solutions were irradiated through the quartz window of the reactor 97 

using a xenon lamp (model 6258, Ozone free xenon lamp, 300 W, Newport) equipped with a longpass filter (20CGA-305 nm 98 

cut-on filter, Newport) to eliminate light below 300 nm. Cooling fans positioned around the photoreactor and lamp housing 99 

maintained reaction temperatures at 27±2 °C. The averaged initial photon flux in the reactor from 300 to 380 nm measured 100 

using a chemical actinometer (2-nitrobenzaldehyde) was 2.6×1015 photons cm-2 s-1 nm-1 (Fig. S1). Although the 101 

concentration of VL in cloud/fog water has been estimated to be <0.01 mM (Anastasio et al., 1996), a higher VL 102 

concentration (0.1 mM) was used in this study to guarantee sufficient signals for product identification (Vione et al., 2019). 103 

The chosen ammonium nitrate (AN) concentration (1 mM) was based on values observed in cloud and fog water (Munger et 104 

al., 1983; Collett et al., 1998; Zhang and Anastasio, 2003; Li et al., 2011; Giulianelli et al., 2014; Bianco et al., 2020). We 105 

also examined the role of VOCs (2-propanol, IPA) (1 mM) and inorganic anions (sodium bicarbonate, NaBC) (1 mM) in 106 

these reactions. IPA can be classified as both a biogenic (from grass, Olofsson et al., 2003) and anthropogenic VOC (e.g., 107 

from solvents and industrial processes, Hippelein, 2004; Lewis et al., 2020), while bicarbonate is an inorganic anion 108 

observed in fog water from both urban and rural locations (Collett et al., 1999; Straub et al., 2012; Straub, 2017). IPA and 109 

NaBC are particularly interesting also because they can produce other radicals (e.g., •HO2 and carbonate radical, CO3
•) that 110 

may react with nitrate photolysis products (Vione et al., 2009; Wang et al., 2021) and they can act as •OH scavengers 111 

(Warneck and Wurzinger, 1988; Vione et al., 2009; Gen et al., 2019b; Pang et al., 2019a), although it must be noted that 112 

these compounds were not added in excess for our experiments. Moreover, comparisons were made between the photo-113 

oxidation of guaiacol (0.1 mM), a non-carbonyl phenol, in the presence of VL (0.1 mM) or AN (1 mM). Samples (10 mL) 114 

were collected hourly for a total of 6 h for offline optical and chemical analyses. Absorbance measurements, VL (and GUA) 115 

decay kinetics (calibration curves for VL and GUA standard solutions; Fig. S2), small organic acids measurements, and 116 

product characterization were conducted using UV-Vis spectrophotometry, ultra-high-performance liquid chromatography 117 

with photodiode array detector (UHPLC-PDA), ion chromatography (IC), and UHPLC coupled with quadrupole time-of-118 

flight mass spectrometry (UHPLC-qToF-MS) equipped with an electrospray ionization (ESI) source and operated in the 119 

positive ion mode (the negative ion mode signals were too low for our analyses), respectively. Each experiment was repeated 120 

independently at least three times and measurements were done in triplicate. Details on the materials and analytical 121 

procedures are provided in the Supporting Information (Text S1 to S6). The pseudo-first-order rate constant (k’) for VL 122 

decay was determined using the following equation (Huang et al., 2018): 123 

 124 

𝑙𝑛⁡([VL]𝑡/[VL]0) ⁡= ⁡−⁡𝑘′𝑡      (Eq. 1) 125 

 126 
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where [VL]t and [VL]0 are the concentrations of VL at time t and 0, respectively. Replacing VL with GUA in Eq. 1 enabled 127 

the calculation of GUA decay.  128 

2.2 Calculation of normalized abundance of products 129 

The normalized abundance of a product, [P] (unitless), was calculated as follows: 130 

[P] =
A𝑃,𝑡

A𝑉𝐿,𝑡
∙
[VL]𝑡

[VL]0
          (Eq. 2) 131 

where AP,t, and AVL,t are the extracted ion chromatogram (EIC) signal peak areas of the product P and VL from UHPLC-132 

qToF-MS analyses at time t, respectively; [VL]t and [VL]0 are the VL concentrations (μM) determined using UHPLC at time 133 

t and 0, respectively. Here, we relied on the more accurate measurements of [VL] using UHPLC for semi-quantification. It 134 

should be noted that the ionization efficiency may greatly vary for different classes of compounds (Kebarle, 2000). Hence, 135 

we assumed equal ionization efficiency of different compounds to calculate their normalized abundance, which is commonly 136 

used to estimate O:C ratios of SOA (Bateman et al., 2012; Lin et al., 2012; De Haan et al., 2019). Typical fragmentation 137 

behavior observed in MS/MS spectra for individual functional groups from Holčapek et al. (2010) are outlined in Table S1.  138 

 139 

 3 Results and Discussion 140 

3.1 Kinetics, mass spectrometric, and absorbance changes analyses during aqueous phase photo-oxidation of vanillin 141 

Table S2 summarizes the reaction conditions, initial VL (and GUA) decay rates, normalized abundance of products, and 142 

average carbon oxidation state (<OSc> (of the 50 most abundant products). In general, the 50 most abundant products 143 

contributed more than half of the total normalized abundance of products. For clarity purposes, the reactions involving 144 

reactive species referred to in the following discussions are provided in Table 1.  145 

As shown in Figure S3, VL underwent oxidation both directly and in the presence of nitrate upon simulated sunlight 146 

illumination. VL absorbs light and is promoted to its excited singlet state (1VL*), then undergoes intersystem crossing (ISC) 147 

to the excited triplet state, 3VL*. In principle, 3VL* can oxidize ground-state VL (Type I photosensitized reactions) via H-148 

atom abstraction/electron transfer and form O2
•- or HO2

• in the presence of O2 (Tinel et al., 2018), or react with O2 (Type II 149 

photosensitized reactions) to yield 1O2 via energy transfer or O2
•- via electron transfer (Lee et al., 1987; Foote et al., 1991). 150 

The disproportionation of HO2
•/O2

•- (Anastasio et al., 1996) and reaction of HO2
• with O2

•- (Du et al., 2011) form hydrogen 151 

peroxide (H2O2), which is a photolytic source of •OH. Overall, air-saturated conditions, in which O2 is present, enable the 152 

generation of secondary oxidants from 3VL* (1O2, O2
•-/•HO2, •OH). Moreover, •OH, •NO2, and NO2

-/HNO2, i.e., N(III), 153 

generated via nitrate photolysis (Reactions 1-3; Table 1) can also oxidize or nitrate VL. In this work, the direct 154 

photosensitized oxidation of VL (by 3VL* or secondary oxidants from 3VL* and O2) and nitrate-mediated VL photo-155 

oxidation are referred to as VL* and VL+AN, respectively. 156 
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3.1.1 Effect of secondary oxidants from VL triplets 157 

As mentioned earlier, secondary oxidants (1O2, O2
•-/•HO2, •OH) can be generated from 3VL* when O2 is present (e.g., under 158 

air-saturated conditions), while 3VL* is the only oxidant expected under N2-saturated conditions. To examine the 159 

contributions of 3VL*-derived secondary oxidants and 3VL* only on VL photo-oxidation, experiments under both air- and 160 

N2-saturated conditions (Fig. S3a) were carried out at pH 4, which is representative of moderately acidic aerosol and cloud 161 

pH values (Pye et al., 2020). No significant VL loss was observed for dark experiments. The low decay rate for VL* under 162 

N2-saturated conditions suggests a minimal role for 3VL* in VL photo-oxidation. Contrastingly, the VL* decay rate under 163 

air-saturated conditions was 4 times higher, revealing the importance of 3VL*-derived secondary oxidants for 164 

photosensitized oxidation of VL. Aside from •OH, O2
•-/•HO2 and 1O2 can also promote VL photo-oxidation (Kaur and 165 

Anastasio, 2018; Chen et al., 2020). 1O2 is also an efficient oxidant for unsaturated organic compounds and has a lifetime that 166 

is much longer than 3C* (Chen et al., 2020). Similar to VL*, the decay rate for VL+AN under air-saturated conditions was 167 

faster (6.6 times) than N2-saturated conditions, which can be due to several reactions facilitated by nitrate photolysis 168 

products and the enhancement of N(III)-mediated photo-oxidation in the presence of O2 as reported in early works (Vione et 169 

al., 2005; Kim et al., 2014; Pang et al., 2019a). An example is enhanced VL nitration likely from increased •NO2 formation 170 

such as from the reaction of •OH and O2
•- with NO2

-
 (Reactions 4 and 5, respectively; Table 1) or the autoxidation of •NO 171 

from NO2
- photolysis (Reactions 6-9; Table 1) in aqueous solutions (Pang et al., 2019a). Reactions involving •HO2/O2

•- which 172 

may originate from the photolysis of nitrate alone, likely from the production and subsequent photolysis of peroxynitrous 173 

acid (HOONO) (Reaction 10; Table 1) (Jung et al., 2017; Wang et al., 2021), or the reactions of 3VL* in the presence of O2, 174 

may have contributed as well. For instance, Wang et al. (2021) recently demonstrated that nitrate photolysis generates 175 

•HO2/O2
•-

(aq) and HONO(g) in the presence of dissolved aliphatic organic matter (e.g., nonanoic acid, ethanol), with the 176 

enhanced HONO(g) production caused by secondary photochemistry between •HO2/O2
•-

(aq) and photoproduced NOx(aq) 177 

(Reactions 11 and 12; Table 1), in agreement with Scharko et al. (2014). The significance of this increased HONO 178 

production is enhanced •OH formation (Reaction 13; Table 1). In addition, •HO2 can react with •NO (Reaction 10; Table 1) 179 

from NO2
- photolysis (Reaction 6; Table 1) to form HOONO, and eventually •NO2 and •OH (Reaction 14; Table 1) (Pang et 180 

al., 2019a). Nevertheless, the comparable decay rates for VL* and VL+AN imply that VL* chemistry still dominates even at 181 

1:10 molar ratio of VL/nitrate, probably due to the much higher molar absorptivity of VL compared to that of nitrate (Fig. 182 

S1) and the high VL concentration (0.1 mM) used in this study. Although we have no quantification of the oxidants in our 183 

reaction systems as it is outside the scope of this study, these observations clearly substantiate that secondary oxidants from 184 

3VL*, which are formed when O2 is present, are required for efficient photosensitized oxidation of VL and nitrate-mediated 185 

VL photo-oxidation.  186 

The products from VL* under N2-saturated conditions were mainly oligomers (e.g., C16H14O4) (Fig. 1a), consistent 187 

with triplet-mediated oxidation forming higher molecular weight products, probably with less fragmentation relative to 188 

oxidation by •OH (Chen et al., 2020). A threefold increase in the normalized abundance of products was noted upon addition 189 
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of nitrate (VL+AN under N2-saturated conditions; Fig. 1b), and in addition to oligomers, functionalized monomers (e.g., 190 

C8H6O5) and nitrogen-containing compounds (e.g., C8H9NO3; No. 2, Table S3) were also observed, in agreement with •OH-191 

initiated oxidation yielding more functionalized/oxygenated products compared to triplet-mediated oxidation (Chen et al., 192 

2020). Compared to N2-saturated conditions, the normalized abundance of products such as oligomers and functionalized 193 

monomers (e.g., demethylated VL; Fig. S4) were significantly higher under air-saturated conditions (Figs. 1c-d), likely due 194 

to the secondary oxidants from 3VL* and O2 and their interactions with nitrate photolysis products. The nitrogen-containing 195 

compounds (e.g., C16H10N2O9; No. 3, Table S3) were also more relatively abundant under air-saturated conditions. For both 196 

VL* and VL+AN under air-saturated conditions, the most abundant product was C10H10O5 (No. 4, Table S3), a substituted 197 

VL. Irradiation of VL by 254-nm has also been reported to lead to VL dimerization and functionalization via ring-retaining 198 

pathways, as well as small oxygenates but only when •OH from H2O2 were involved (Li et al., 2014). In this work, small 199 

organic acids were observed from both VL* and VL+AN under air-saturated conditions (Fig. S5) due to simulated sunlight 200 

that could access the 308-nm VL band (Smith et al., 2016). Interestingly, we observed a potential imidazole derivative 201 

(C5H5N3O2; Fig. 1d) from VL+AN under air-saturated conditions, which may have formed from reactions induced by 202 

ammonium. This compound was not observed in a parallel experiment in which AN was replaced with sodium nitrate (SN) 203 

(Fig. S6a; see Sect. 3.3 for discussion). The molecular transformation of VL upon photo-oxidation was examined using the 204 

van Krevelen diagrams (Fig. S7). For all experiments (A1-19; Table S2) in this study, the O:C and H:C ratios of the products 205 

were mainly similar to those observed from the aging of other phenolics (Yu et al., 2014) and BB aerosols (Qi et al., 2019). 206 

Oligomers with O:C ratios ≤0.6 were dominant in VL* under N2-saturated conditions. For VL+AN under N2-saturated 207 

conditions, smaller molecules (nc ≤8) with higher O:C ratios (up to 0.8) were also observed. More products with higher O:C 208 

ratios (≥0.6) were noted under air-saturated conditions for both VL* and VL+AN. The H:C ratios were mostly around 1.0, 209 

indicating that the products for experiments A5 to A8 (Table S2) were mainly aromatic species. Compounds with H:C ≤1.0 210 

and O:C ≤0.5 are common for aromatic species, while compounds with H:C ≥1.5 and O:C ≤0.5 are typical for more aliphatic 211 

species (Mazzoleni et al., 2012; Kourtchev et al., 2014; Jiang et al., 2021). Moreover, majority of the products for 212 

experiments A5 to A8 have double bond equivalent (DBE) values >7, which corresponds to oxidized aromatic compounds 213 

(Xie et al., 2020). In contrast, Loisel et al. (2021) reported mainly oxygenated aliphatic-like compounds (H:C, ≥1.5 and O:C, 214 

≤0.5 ratios) from the direct irradiation of VL (0.1 mM), which may be due to their use of ESI in the negative ion mode, 215 

which has higher sensitivity for detecting compounds such as carboxylic acids (Holčapek et al., 2010; Liigand et al., 2017) 216 

and solid-phase extraction (SPE) procedure causing the loss of some oligomers (LeClair et al., 2012; Zhao et al., 2013; 217 

Bianco et al., 2018). Among experiments A5 to A8 (Table S2), VL+AN under air-saturated conditions (A7) had the highest 218 

normalized abundance of products and <OSc>, most probably due to the combined influence of the secondary oxidants from 219 

3VL* and O2, and nitrate photolysis products. In our calculations, the increase in <OSc> (except for VOCs and inorganic 220 

anions experiments; A9 to A12; Table S2) was lower than those in •OH- or triplet-mediated oxidation of phenolics (e.g., 221 

phenol, guaiacol) measured using an aerosol mass spectrometer (Sun et al., 2010; Yu et al., 2014), likely because we 222 

excluded contributions from ring-opening products which may have higher OSc values as these products are not detectable in 223 
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the positive ion mode. Thus, the <OSc> in this study likely were lower estimates. In brief, the secondary oxidants from 3VL* 224 

and O2 increased the abundance of products and promoted the formation of more oxidized aqSOA. These trends were 225 

reinforced in the presence of nitrate, indicating synergistic effects between secondary oxidants from VL triplets and nitrate 226 

photolysis products. 227 

Illumination of phenolic aromatic carbonyls with high molar absorptivities (ελmax) (~8 to 22 × 103 M-1 cm-1) leads to 228 

an overall loss of light absorption but increased absorbance at longer wavelengths (>350 nm), where the carbonyls did not 229 

initially absorb light (Smith et al., 2016). Fig. 2a illustrates the changes in total absorbance from 350 to 550 nm of VL* and 230 

VL+AN under air- and N2-saturated conditions. The absorption spectra of VL* under air- and N2- saturated conditions (pH 231 

4) at different time intervals are shown in Fig. S8. For both VL* and VL+AN, evident absorbance enhancement was 232 

observed under air-saturated conditions, while the absorbance changes under N2-saturated conditions were minimal, 233 

consistent with the VL decay trends. This absorbance enhancement can be explained by the formation of oligomers with 234 

large, conjugated π-electron systems (Chang and Thompson, 2010) and hydroxylated products (Li et al., 2014; Zhao et al., 235 

2015), in agreement with the observed reaction products. In this work, phenoxy radicals can be generated from several 236 

processes such as the oxidation (Vione et al., 2019) of ground-state VL by 3VL* via H-atom abstraction (Huang et al., 2018) 237 

and photoinduced O-H bond-breaking (Berto et al., 2016). Moreover, 3VL* can initiate H-atom abstraction from the -CHO 238 

group of VL, generating ketyl radicals via Norrish-type reactions (Vione et al., 2019). Also, similar reactions can be initiated 239 

by •OH (Gelencsér et al., 2003; Hoffer et al., 2004; Chang and Thompson, 2010; Sun et al., 2010), which in this study can be 240 

generated from the reaction between 3VL* and O2, as well as nitrate photolysis. Oligomers can then form via the coupling of 241 

phenoxy radicals or phenoxy and ketyl radicals (Sun et al., 2010; Berto et al., 2016; Vione et al., 2019). Absorbance increase 242 

at >350 nm has also been reported for photosensitized oxidation of phenol and 4-phenoxyphenol (De Laurentiis et al., 2013a, 243 

2013b) and direct photolysis of tyrosine and 4-phenoxyphenol (Bianco et al., 2014) in which dimers have been identified as 244 

initial substrates. The continuous absorbance enhancement throughout 6 h of irradiation correlated with the observation of 245 

oligomers and nitrated compounds after irradiation. However, the increasing concentration of small organic acids (Fig. S5) 246 

throughout the experiments suggests that fragmentation, which results in the decomposition of initially formed oligomers 247 

and formation of smaller oxygenated products (Huang et al., 2018), is important at longer irradiation times. Overall, these 248 

trends establish that secondary oxidants from 3VL*and O2 are necessary for the efficient formation of light-absorbing 249 

compounds from both VL* and VL+AN. 250 

3.1.2 Effect of pH 251 

The reactivity of 3C* (Smith et al., 2014, 2015, 2016), aromatic photonitration by nitrate (Machado and Boule, 1995; 252 

Dzengel et al., 1999; Vione et al., 2005; Minero et al., 2007), and N(III)-mediated VL photo-oxidation (Pang et al., 2019a) 253 

have been demonstrated to be pH-dependent. In this study, the effect of pH on VL photo-oxidation was investigated within 254 

the range of 2.5 to 5, corresponding to typical cloud (2-7) pH values (Pye et al., 2020). The decay rates for both VL* and 255 

VL+AN increased as pH decreased (VL* and VL+AN at pH 2.5: 1.5 and 1.3 times faster than at pH 4, respectively) (Fig. 256 
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S3b). For VL*, this pH trend indicates that 3VL* are more reactive in their protonated form, which is opposite to that 257 

reported for 0.005 mM VL (Smith et al., 2016), likely due to the concentration dependence of the relative reactivities of 258 

protonated and neutral forms of 3VL*. It has been reported that the quantum yield for direct VL photodegradation is higher at 259 

pH 5 than at pH 2 for 0.005 mM VL, but they are not statistically different for 0.03 mM VL (Smith et al., 2016). Also, 260 

increases in hydrogen ion concentration can enhance the formation of HO2
• and H2O2 and in turn, •OH formation (Du et al., 261 

2011). In addition to these pH influences on VL*, the dependence of N(III) (NO2
- + HONO) speciation on solution acidity 262 

(Pang et al., 2019a) also contributed to the observed pH effects for VL+AN. At pH 3.3, half of N(III) exists as HONO 263 

(Fischer and Warneck, 1996; Pang et al., 2019a), which has a higher quantum yield for •OH formation than that of NO2
- in 264 

the near-UV region (Arakaki et al., 1999; Kim et al., 2014). The increased •OH formation rates as pH decreases can lead to 265 

faster VL decay (Pang et al., 2019a). Also, NO2
-/HONO can generate •NO2 via oxidation by •OH (Reactions 4 and 15; Table 266 

1) (Pang et al., 2019a). As pH decreases, the higher reactivity of 3VL* and HONO being the dominant N(III) species can 267 

lead to faster VL photo-oxidation.  268 

As pH decreased, the normalized abundance of products, particularly oligomers and functionalized monomers, was 269 

higher for both VL* and VL+AN, further indicating that 3VL* are more reactive in their protonated form. The most 270 

abundant products observed were a substituted VL (C10H10O5) and VL dimer (C16H14O6; No. 5, Table S3) at pH 4 and pH 271 

<4, respectively (Figs. 1c-h). Furthermore, a tetramer was observed only in VL* at pH 2.5. For VL+AN, the normalized 272 

abundance of nitrogen-containing compounds also increased at lower pH (Table S2), likely due to increased •OH and •NO2 273 

formation. The potential imidazole derivative (C5H5N3O2) was observed only at pH 4 possibly due to the pH dependence of 274 

ammonium speciation (pKa = 9.25). Imidazole formation requires the nucleophilic attack of ammonia on the carbonyl group 275 

(Yu et al., 2011), and at pH 4, the concentration of dissolved ammonia in VL+AN was about 10 or 30 times higher than that 276 

at pH 3 or pH 2.5, respectively. At different pH, the O:C and H:C ratios in VL* and VL+AN had no significant differences 277 

(Figs. S7c-d and S9), but molecules with higher O:C ratios (>0.6) were more abundant at pH <4. Accordingly, the <OSc> at 278 

pH <4 for both VL* and VL+AN were higher than that at pH 4, consistent with higher <OSc> observed at pH 5 compared to 279 

pH 7 for the •OH-mediated photo-oxidation of syringol (Sun et al., 2010). Essentially, the higher reactivity of 3VL* and 280 

predominance of HONO over nitrite at lower pH result in increased formation of products mainly composed of oligomers 281 

and functionalized monomers.  282 

The higher absorbance enhancement for both VL* and VL+AN (Fig. 2b) as pH increased may be attributed to 283 

redshifts and increased visible light absorption of reaction products (Pang et al., 2019a). When a phenolic molecule 284 

deprotonates at higher pH, an ortho- or para- electron-withdrawing group, such as a nitro or aldehyde group, can attract a 285 

portion of the negative charge towards its oxygen atoms through induced and conjugated effects, leading to the extension of 286 

chromophore from the electron-donating group (e.g., -O-) to the electron-withdrawing group via the aromatic ring (Carey, 287 

2000; Williams and Fleming, 2008; Pang et al., 2019a). Hence, the delocalization of the negative charge in phenolates leads 288 

to significant redshifts (Mohr et al., 2013). 289 
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3.1.3 Effect of VOCs and inorganic anions  290 

Aerosols are a complex mix of organic and inorganic compounds (Kanakidou et al., 2005). We explored the photo-oxidation 291 

behavior of VL, with and without nitrate, in the presence of VOCs (2-propanol, IPA) and inorganic anions (sodium 292 

bicarbonate, NaBC). For both VL* and VL+AN, there was no significant change in VL decay (Figs. S3c-d), and comparable 293 

absorbance enhancements (Figs. 2c-d) were observed upon the addition of IPA and NaBC. However, the characterization of 294 

reaction products revealed the distinct effects of these compounds on the photo-oxidation of VL. Both IPA and NaBC 295 

increased the normalized abundance of products from VL* (by a factor of 2.4 and 1.4, respectively) and VL+AN (by a factor 296 

of ~4) (Table S2). The major product observed in VL*+IPA (Fig. S10a) was a dimer (C16H14O6). Also, higher oligomers up 297 

to tetramers (e.g., C31H22O12) not observed in VL* were noted. A possible explanation may be the additional generation of 298 

•HO2
 from the reaction of IPA with •OH (Warneck and Wurzinger, 1988) (Reactions 16 and 17; Table 1), which can originate 299 

from 3VL* or nitrate photolysis, inducing reactions such as oxidation and nitration. As discussed earlier, •HO2 can form 300 

H2O2, a photolytic source of •OH (Anastasio et al., 1996; Du et al., 2011). In the presence of IPA, the increase in normalized 301 

abundance of products (VL+AN+IPA: 3.8 times vs. VL*+IPA: 2.4 times; Table S2) and <OSc> (VL+AN+IPA: -0.13 to 0.08 302 

vs. VL*+IPA: -0.16 to -0.10; Table S2) being more evident for VL+AN compared to VL* also supports the potential 303 

importance of reactions involving •HO2 and nitrate photolysis products such as the secondary photochemistry between 304 

•HO2/O2
•-

(aq) and photoproduced NOx(aq) enhancing HONO(g) production from nitrate photolysis in the presence of dissolved 305 

aliphatic organic matter (Wang et al., 2021) as discussed in Sect. 3.1.1. This chemistry may have operated in VL+AN+IPA 306 

considering that •HO2/O2
•-may originate from multiple sources in this experiment: nitrate photolysis (Reaction 10; Table 1) 307 

(Jung et al., 2017; Wang et al., 2021), the reactions of 3VL* in the presence of O2 (see Sect. 3.1), or reaction of IPA with •OH 308 

(Warneck and Wurzinger, 1988) (Reactions 16 and 17; Table 1). In other words, the role of nitrate in VL photo-oxidation is 309 

enhanced in the presence of IPA, likely due to additional •HO2/O2
•- formation. In VL+AN+IPA, nitrate photolysis likely 310 

converted C16H14O6 (from VL*+IPA) to C15H12O8 (Figs. S10a-b) via demethylation and then multiple hydroxylations. 311 

Nitrate photolysis generates •OH, and demethylation has been reported to be enhanced at high •OH exposure (Gold et al., 312 

1983). Moreover, alcohols can affect the structure of water, causing a localized patterning or organization that changes the 313 

solvation environment, which can account for reactivity enhancement in the presence of alcohol-containing solvents (Berke 314 

et al., 2019). Berke et al. (2019) has demonstrated that IPA and other alcohols (e.g., ethanol) can promote the production of 315 

light-absorbing compounds, i.e., imidazoles, from the reactions between glyoxal and ammonium sulfate. This phenomenon 316 

has been attributed to the formation of micro-heterogeneities of hydrated alcohol molecules in a complex solution 317 

environment composed of solvated sulfate ions and a mixture of reactants and products upon the addition of alcohols. As 318 

proposed by an earlier study (Onori and Santucci, 1996), if the water in the SOA-mimicking solutions exists in two forms, 319 

bulk and hydrating, the micro-heterogeneities may interact with water/nitrate matrix to sequester the reactants and products, 320 

concentrating them within a smaller effective solvent volume and consequently resulting in increased normalized abundance 321 

of products (Berke et al., 2019). 322 
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 For NaBC which does not produce •HO2 upon reactions with •OH under air-saturated conditions (Gen et al., 2019b), 323 

the increased normalized abundance of products may be due to other reactions promoted by the carbonate radical (CO3
•-), 324 

which can be generated from the reactions of bicarbonate/carbonate with •OH (Reactions 18 and 19; Table 1) (Neta et al., 325 

1988; Wojnárovits et al., 2020) or 3VL* (Reactions 20 and 21; Table 1) (Canonica et al., 2005). CO3
•- is a selective oxidant 326 

that reacts with organic molecules at a lower rate than •OH and readily reacts with electron-rich parts of phenols, aromatic 327 

amines, and sulfur-containing compounds (e.g., glutathione) through both electron transfer and H-abstraction (Huang and 328 

Mabury, 2000; Wojnárovits et al., 2020). Similar to IPA, the enhancement of normalized abundance of products 329 

(VL+AN+NaBC: 4.3 times vs. VL*+NaBC: 1.4 times; Table S2) and <OSc> (VL+AN+NaBC: -0.13 to 0.08 vs. 330 

VL*+NaBC: -0.16 to -0.11; Table S2) was more obvious for VL+AN+NaBC than VL*+NaBC, further underlining the 331 

contributions of nitrate photolysis products. For example, it has been reported that carbonate and bicarbonate can 332 

substantially increase the photodegradation of electron-rich compounds (e.g., catechol) by nitrate (Vione et al., 2009). 333 

Bicarbonate can enhance the photolysis of nitrate via a solvent-cage effect, reacting with photolysis-derived •OH before it 334 

escapes the surrounding cage of the water molecules. This prevents the recombination of •OH and •NO2 inside the solvent 335 

cage that otherwise would yield back NO3
- + H+, which reduces the quantum yield of •OH photoproduction (Bouillon and 336 

Miller, 2005). This scavenging of in-cage •OH by bicarbonate would then hinder recombination, resulting in a higher 337 

generation rate of CO3
•- + •OH with bicarbonate compared to •OH alone without bicarbonate. However, in our experiments, 338 

NaBC did not cause any substantial change in the decay of VL for both VL* and VL+AN, although it promoted higher 339 

normalized abundance of products. The major product in VL*+NaBC was a functionalized monomer (C7H4O4; No. 6, Table 340 

S3; Fig. S10c). Unlike VL*+IPA, no tetramers were observed in VL*+NaBC. Similar to VL+AN+IPA, the addition of 341 

NaBC to VL+AN resulted in trimers and a high-abundance dimer (C15H12O8; No. 7, Table S3) (Figs. S10b and S10d). 342 

Overall, VL+AN+IPA had more oligomers while VL+AN+NaBC had more functionalized monomers (e.g., C8H6O4; No. 8, 343 

Table S3). These findings suggest that aside from low pH (<4), the formation of oligomers from VL photo-oxidation can 344 

also be promoted by presence of VOCs and inorganic anions likely via the generation of radicals such as •HO2 and CO3
•- 345 

which can also interact with nitrate photolysis products.  346 

The addition of IPA or NaBC to VL* resulted in products with higher O:C and H:C ratios (Figs. S11a and S11c). 347 

Although the products were more abundant in VL*+IPA than with NaBC, the distribution of their products in van Krevelen 348 

diagrams was rather similar. The increased in <OSc> in the presence of IPA or NaBC was more significant for VL+AN than 349 

VL*, likely due to the interactions of nitrate photolysis products with •HO2 and CO3
•-. For VL+AN, IPA and NaBC also 350 

increased the O:C and H:C ratios (Figs. S11b and S11d), and most products had OSc >0, similar to less volatile and semi-351 

volatile oxygenated organic aerosols (LV-OOA and SV-OOA) (Kroll et al., 2011).  352 
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3.1.4 Distribution of potential BrC compounds 353 

Figure S12 plots the DBE values vs. number of carbons (nc)
 (Lin et al., 2018) for the 50 most abundant products from pH 4 354 

experiments under air-saturated conditions, along with reference to DBE values corresponding to fullerene-like 355 

hydrocarbons (Lobodin et al., 2012), cata-condensed polycyclic aromatic hydrocarbons (PAHs) (Siegmann and Sattler, 2000), 356 

and linear conjugated polyenes with a general formula 𝐶x𝐻x+2. As light absorption by BrC requires uninterrupted conjugation 357 

across a significant part of the molecular structure, compounds with DBE/nC ratios (shaded area in Fig. S12) greater than that 358 

of linear conjugated polyenes are potential BrC compounds (Lin et al., 2018). Based on this criterion and the observed 359 

absorbance enhancement at >350 nm (Fig. 2), the majority of the 50 most abundant products from pH 4 experiments under 360 

air-saturated conditions were potential BrC chromophores composed of monomers and oligomers up to tetramers. However, 361 

as ESI-detected compounds in BB organic aerosols has been reported to be mainly molecules with nc⁡<25 (Lin et al., 2018), 362 

there may be higher oligomers that were not detected in our reaction systems. 363 

3.2 Effect of reactants concentration and molar ratios on the aqueous photo-oxidation of vanillin 364 

To examine the influence of VL and nitrate concentration and their molar ratios on VL photo-oxidation, we also 365 

characterized the reaction products from lower [VL] (0.01 mM VL*; A14; Table S2), lower concentrations and an equal 366 

molar ratio of VL/nitrate (0.01 mM VL + 0.01 mM AN; A15; Table S2), and lower [VL] and 1:100 molar ratio of VL/nitrate 367 

(0.01 mM VL + 1 mM AN; A16; Table S2) at pH 4. The normalized abundance of products from low [VL] experiments 368 

(A14-A16; Table S2) were up to 1.4 times higher than that of high [VL] experiments (A5 and A7; Table S2). Nevertheless, 369 

the major products for both low and high [VL] experiments were functionalized monomers (Figs. 1c-d and S13a-c) such as 370 

C8H6O4 and C10H10O5. For both VL* and VL+AN, the contribution of <200 m/z to the normalized abundance of products 371 

was higher at low [VL] than at high [VL], while the opposite was observed for >300 m/z (Fig. S13d). This indicates that 372 

functionalization was favored at low [VL], as supported by the higher <OSc>, while oligomerization was the dominant 373 

pathway at high [VL], consistent with more oligomers or polymeric products reported from high phenols concentration (e.g., 374 

0.1 to 3 mM) (Li et al., 2014; Slikboer et al., 2015; Ye et al., 2019). A possible explanation is that at 1:1 VL/nitrate, VL 375 

efficiently competes with NO2
- for •OH (from nitrate or nitrite photolysis, Reaction 4; Table 1) and indirectly reduces •NO2. 376 

Similarly, hydroxylation has been suggested to be an important pathway for 1:1 VL/nitrite than in 1:10 VL/nitrite (Pang et 377 

al., 2019a). This may also be the reason why 1:1 VL/nitrate (A15; Table S2) had higher <OSc> than 1:100 (A16; Table S2) 378 

VL/nitrate but had fewer N-containing compounds compared to the latter. Moreover, the contribution of <200 m/z to the 379 

normalized abundance of products was higher for 1:1 than 1:100 VL/nitrate molar ratio, further suggesting the formation of 380 

more oxidized products. 381 

https://doi.org/10.5194/acp-2021-396
Preprint. Discussion started: 17 May 2021
c© Author(s) 2021. CC BY 4.0 License.



13 

 

3.3 Participation of ammonium in the aqueous photo-oxidation of vanillin 382 

Imidazole and imidazole derivatives have been reported to be the major products of glyoxal and ammonium sulfate reactions 383 

at pH 4 (Galloway et al., 2009; Yu et al., 2011; Sedehi et al., 2013; Gen et al., 2018; Mabato et al., 2019). Here, we 384 

compared VL+AN and VL+SN at pH 4 in terms of reaction products and oxidative characteristics to confirm the 385 

participation of ammonium in the aqueous photo-oxidation of VL. In both experiments, the normalized abundance of the 386 

products was comparable (A7 and A13; Table S2), with C10H10O5 as the most abundant product (Figs. 1d and S6a), but in 387 

VL+SN, there was a significant amount of a VL dimer (C15H12O8; No. 9, Table S3). Moreover, the nitrogen-containing 388 

compounds were distinct. Aside from the potential imidazole derivative (C5H5N3O2; No. 10, Table S3), C8H9NO3 was also 389 

observed from VL+AN but only under N2-saturated conditions (Fig. 1b), probably due to further oxidation by secondary 390 

oxidants from 3VL*. The product analysis suggests the participation of ammonium in the aqueous-phase reactions. 391 

Ammonium salts are an important constituent of atmospheric aerosols particles (Jimenez et al., 2009), and reactions between 392 

dicarbonyls (e.g., glyoxal) and ammonia or primary amines have been demonstrated to form BrC (De Haan et al., 2009, 2011; 393 

Nozière et al., 2009; Shapiro et al., 2009; Lee et al., 2013; Powelson et al., 2014; Gen et al., 2018; Mabato et al., 2019).  394 

Relative to VL+AN, the products from VL+SN had higher O:C ratios (e.g., C7H4N2O7; No. 11, Table S3), OSc, and <OSc> 395 

values (Table S2).  396 

3.4 Oxidation of guaiacol by photosensitized reactions of vanillin and photolysis of nitrate 397 

The oxidation of phenols by 3C* has been mainly studied using non-phenolic aromatic carbonyls (Anastasio et al., 1996; 398 

Smith et al., 2014, 2015; Yu et al., 2014; Chen et al., 2020) and aromatic ketones (Canonica et al., 2000) as triplet precursors. 399 

Recently, 3VL* have also been shown to oxidize syringol (Smith et al., 2016), a non-carbonyl phenol, although the reaction 400 

products remain unknown. In this section, we discussed the photo-oxidation of guaiacol (GUA), a lignocellulosic BB 401 

pollutant (Kroflič et al., 2015) that is also a non-carbonyl phenol, in the presence of VL (GUA+VL) or nitrate (GUA+AN). 402 

The dark experiments did not show any substantial loss of VL or GUA (Fig. S3e). Due to its poor light absorption in the 403 

solar range, GUA is not an effective photosensitizer (Smith et al., 2014; Yu et al., 2014). Accordingly, the direct GUA 404 

photodegradation resulted in minimal decay, which plateaued after ~3 hours. However, in the presence of VL or nitrate, the 405 

GUA decay was faster by 2.2 (GUA+VL) and 1.2 (GUA+AN) times, respectively, than for direct GUA photodegradation. 406 

This enhanced GUA decay rate may be due to the following main reactions: oxidation of GUA by 3VL* (or the secondary 407 

oxidants it generates upon reaction with O2), oxidation by •OH produced from nitrate photolysis, or nitration by •NO2 from 408 

nitrate photolysis. As mentioned earlier, the 3VL* chemistry appears to be more important than that of nitrate photolysis 409 

even at 1:10 molar ratio of VL/nitrate on account of the much higher molar absorptivity of VL compared to that of nitrate 410 

(Fig. S1) and the high VL concentration (0.1 mM) used in this study. The decay of VL in GUA+VL (A18; Table S2) was 3 411 

times slower than that of VL* (A5; Table S2), which may be due to competition between ground-state VL and GUA for 412 

reactions with 3VL* (or the secondary oxidants it generates upon reaction with O2) or increased conversion of 3VL* back to 413 
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the ground state through the oxidation of GUA (Anastasio et al., 1996; Smith et al., 2014). The corresponding absorbance 414 

changes for the GUA experiments (Fig. 1e) were consistent with the observed decay trends. The minimal absorbance 415 

changes for the direct GUA photodegradation also plateaued after ~3 hours. Moreover, the difference between GUA photo-416 

oxidation in the presence of VL or nitrate was more evident, with the former showing much higher absorbance enhancement. 417 

Similarly, Yang et al. (2021) also observed greater light absorption during nitrate-mediated photo-oxidation relative to direct 418 

GUA photodegradation.  419 

For the direct GUA photodegradation, GUA+VL, and GUA+AN, the normalized abundance of products was 420 

calculated only for GUA+VL (2.2; Table S2), as the GUA signal from the UHPLC-qToF-MS in the positive ion mode was 421 

weak, which may introduce large uncertainties during normalization. Nonetheless, the number of products detected from 422 

these experiments (178, 266, and 844 for the direct GUA photodegradation, GUA+AN, and GUA+VL, respectively) 423 

corroborates the kinetics and absorbance results. The major products (Fig. 3a) from the direct photodegradation of GUA 424 

were C14H14O4 (No. 19, Table S3), a typical GUA dimer, and a trimer (C21H20O6; No. 20, Table S3) which likely originated 425 

from photoinduced O-H bond-breaking (Berto et al., 2016). In general, higher absolute signal areas was noted for oligomers 426 

(e.g., C14H14O4, C21H20O6) and hydroxylated products (e.g., C7H8O4) in both GUA+VL and GUA+AN, similar to those 427 

observed from GUA oxidation by triplets of 3,4-dimethoxybenzaldehyde (DMB; a non-phenolic aromatic carbonyl) or •OH 428 

(from H2O2 photolysis) (Yu et al., 2014). In contrast to the GUA aqSOA reported by Yu et al. (2014), the photo-oxidation of 429 

GUA in this study yielded nitrated compounds (e.g., C9H14N2O6, C11H14N2O9) from GUA+AN and VL dimers (e.g., 430 

C16H12O6) from GUA+VL. However, based on a recent work on the aqueous photo-oxidation of guaiacyl acetone (another 431 

aromatic phenolic carbonyl) by DMB triplets, the hydroxylation and dimerization of DMB can also contribute to aqSOA 432 

(Jiang et al., 2021). The contributions from DMB-participated reactions were only minor due to the low initial DMB 433 

concentration (0.005 mM). Relative to GUA+AN, higher signals for dimers such as C14H14O4 and C16H12O6 were noted in 434 

GUA+VL, possibly due to both GUA and ground-state VL being available as oxidizable substrates for 3VL* and the 435 

secondary oxidants it can generate. Also, a potential GUA tetramer (C28H24O8, No. 21, Table S3) was observed only in 436 

GUA+VL, consistent with higher oligomer formation from the triplets-mediated photo-oxidation of phenolics relative to 437 

•OH-assisted photo-oxidation (Yu et al., 2014). In general, the products from the direct GUA photodegradation, GUA+VL, 438 

and GUA+AN had similar OSc values (-0.5 to 0.5) (Figs. 3b-d), falling into the criterion of BBOA and SV-OOA (Kroll et 439 

al., 2011).  In this work, efficient GUA photo-oxidation was observed in the presence of VL and AN, forming aqSOA 440 

composed of oligomers, hydroxylated products, and nitrated compounds (for GUA+AN). The higher product signals from 441 

GUA+VL compared to GUA+AN is likely due to the availability of both GUA and ground-state VL as aqSOA precursors.  442 

3.5 Photo-oxidation pathways of vanillin via direct photosensitization and in the presence of nitrate 443 

The most probable pathways of direct photosensitized and nitrate-mediated photo-oxidation of VL were proposed (Fig. 4). In 444 

Scheme 1 (pH 4 and pH <4 under air-saturated conditions), 3VL* and •OH (from 3VL* or nitrate photolysis) can initiate H-445 
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atom abstraction to generate phenoxy or ketyl radicals (Huang et al., 2018; Vione et al., 2019).  At pH 4, ring-opening 446 

products (Fig. S5) from fragmentation in both VL* and VL+AN may have reacted with VL or dissolved ammonia to 447 

generate C10H10O5 (Pang et al., 2019b) and a potential imidazole derivative (C5H5N3O2), respectively. Moreover, nitrate 448 

photolysis products promoted functionalization and nitration (e.g., C16H10N2O9). At pH <4, the reactivity of 3VL* increased 449 

as suggested by the abundance of oligomers (e.g., C16H14O6) and increased normalized abundance of N-containing 450 

compounds. 451 

 In Scheme 2 (pH 4, IPA or NaBC, under air-saturated conditions), additional radicals generated (•HO2 and CO3
•-) 452 

likely promoted more reactions. An abundant dimer (C16H14O6) and higher oligomers (e.g., tetramers, C31H22O12) were 453 

identified in VL*+IPA, possibly due to •HO2-initiated reactions, while a functionalized monomer (C7H4O4) was abundant in 454 

VL*+NaBC. In general, nitrate enhanced both oligomerization and functionalization in VL+IPA or VL+NaBC. In 455 

VL+AN+IPA, C15H12O8 likely originated from C16H14O6 via demethylation and multiple hydroxylations. In VL+AN+NaBC, 456 

C8H6O4 was possibly generated via H-atom abstraction from -OCH3 by •OH, and further addition with O2 is energy 457 

barrierless (Priya and Lakshmipathi, 2017; Sun et al., 2019), generating a hydroperoxide (-OCH2OOH) that readily 458 

decompose to form -OCH2O• and •OH (Yaremenko et al., 2016). -OCH2O• is finally transformed into -OCHO with the 459 

elimination of HO2 in the presence of O2 (Sun et al., 2019).  Moreover, the abundance of C15H12O8 was higher in 460 

VL+AN+NaBC than in VL*+NaBC.  461 

4 Conclusions and atmospheric implications 462 

This study shows that the photo-oxidation of VL via its direct photosensitized reactions and in the presence of nitrate can 463 

generate aqSOA composed of oligomers, functionalized monomers, oxygenated ring-opening products, and nitrated 464 

compounds (for nitrate-mediated reactions). The characterization of products presented in this work complements earlier 465 

studies (e.g., Smith et al. 2014, 2015, 2016) that mainly discussed the kinetics and aqSOA yield of triplet-driven oxidation of 466 

phenols. Although nitrate did not substantially affect the VL decay rates, likely due to much higher molar absorptivity of VL 467 

than nitrate and high VL concentration used in this work, the presence of nitrate promoted functionalization and nitration, 468 

indicating the significance of nitrate photolysis in this aqSOA formation pathway. While nitration can be an important 469 

process for producing light-absorbing organics or BrC (Jacobson, 1999; Kahnt et al., 2013; Mohr et al., 2013; Laskin et al., 470 

2015; Teich et al., 2017; Li et al., 2020), its effect on triplet-generating aromatics has not yet been examined in detail. On a 471 

related note, a recent work (Ma et al., 2021) mimicking phenol oxidation by DMB (a non-phenolic aromatic carbonyl) 472 

triplets in more concentrated conditions in aerosol liquid water (ALW) showed that significantly higher AN concentration 473 

(0.5 M) increased the photodegradation rate constant for guaiacyl acetone (an aromatic phenolic carbonyl with high Henry's 474 

law constant, 1.2 × 106 M atm-1; McFall et al., 2020) by >20 times which was ascribed to •OH formation from nitrate 475 

photolysis (Brezonik and Fulkerson-Brekken, 1998; Chu and Anastasio, 2003). The same study also estimated that reactions 476 

of phenols with high Henry's law constants (106 to 109 M atm-1) can be important for SOA formation in ALW, with 477 
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mechanisms mainly governed by 3C* and 1O2 (Ma et al., 2021). Likewise, Zhou et al. (2019) reported that the direct 478 

photodegradation of acetosyringone was faster by about 6 times in the presence of 2 M NaClO4. However, the opposite was 479 

noted for the photodegradation of VL in sodium sulfate or sodium nitrate, which would occur slower (2 times slower in 0.5 480 

M sodium sulfate and ~10 times slower in 0.124 M sodium nitrate) in ALW relative to dilute aqueous phase in clouds. These 481 

suggest that the nature of inorganic ions may have an essential role in the photodegradation of organic compounds in the 482 

aqueous phase (Loisel et al., 2021).  483 

Furthermore, a potential imidazole derivative observed from the VL+AN (A7; Table S2) experiment suggests that 484 

ammonium may participate in aqSOA formation from the photo-oxidation of phenolic aromatic carbonyls. Also, the 485 

oligomers from these reaction systems may be rather recalcitrant to fragmentation based on their high abundance, even at the 486 

longest irradiation time used in this study. Nonetheless, the increasing concentration of small organic acids over time implies 487 

that fragmentation becomes important at extended irradiation times. Aromatic carbonyls and nitrophenols have been reported 488 

to be the most important classes of BrC in cloud water heavily affected by biomass burning in the North China Plain 489 

(Desyaterik et al., 2013). Correspondingly, the most abundant products from our reaction systems (pH 4, air-saturated 490 

solutions) are mainly potential BrC chromophores. These suggest that aqSOA generated in cloud/fog water from the 491 

oxidation of biomass burning aerosols via direct photosensitized reactions and nitrate photolysis products can impact aerosol 492 

optical properties and radiative forcing, particularly for areas where biomass burning is intensive.  493 

Our results indicate that the photo-oxidation of VL is influenced by secondary oxidants from VL triplets, pH, the 494 

presence of VOCs and inorganic anions, and reactants concentration and molar ratios. Compared to N2-saturated conditions, 495 

more efficient VL photo-oxidation was observed under air-saturated conditions (O2 is present), which can be attributed to the 496 

generation of secondary oxidants (e.g., 1O2, O2
•-/•HO2, •OH) from 3VL*. Further enhancement of VL photo-oxidation under 497 

air-saturated conditions in the presence of nitrate indicates synergistic effects between secondary oxidants from VL triplets 498 

and nitrate photolysis products. Additionally, the formation of oligomers from VL photo-oxidation was observed to be 499 

promoted at low pH (<4) or in the presence of IPA/NaBC, which likely generated additional radicals such as •HO2 and CO3
•-. 500 

As aerosols comprise more complex mixtures of organic and inorganic compounds, it is worthwhile to explore the impacts 501 

of other potential aerosol constituents on aqSOA formation and photo-oxidation studies. This can also be beneficial in 502 

understanding the interplay among different reaction mechanisms during photo-oxidation. Low VL concentration favored 503 

functionalization, while oligomerization prevailed at high VL concentration, consistent with past works (Li et al., 2014; 504 

Slikboer et al., 2015; Ye et al., 2019). Hydroxylation was observed to be important for equal molar ratios of VL and nitrate, 505 

likely due to VL competing with nitrite for •OH. The oxidation of guaiacol, a non-carbonyl phenol, by photosensitized 506 

reactions of vanillin was also shown to be more efficient than that by nitrate photolysis products.  507 

In this study, we investigated reactions of VL and nitrate at concentrations in cloud/fog water. The concentrations of 508 

VL and nitrate can be significantly higher in aqueous aerosol particles. As a major component of aerosols, the concentration 509 

of nitrate can be as high as sulfate (Huang et al., 2014). More studies should then explore the direct photosensitized 510 

oxidation and nitrate-mediated photo-oxidation of other biomass burning-derived phenolic aromatic carbonyls, particularly 511 
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those with high molar absorption coefficients and can generate 3C*. The influences of reaction conditions should also be 512 

investigated to better understand the oxidation pathways. Considering that biomass burning emissions are expected to 513 

increase continuously, further studies on these aqSOA formation pathways are strongly suggested.  514 
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hv 

HOONO 

Table 1. List of reactions involving reactive species relevant to this study. 1095 

  1096 

No. Reactions References 

1 NO3
- + hv → •NO2 + O-; ϕ = 0.01   

Vione et al., 2006; Scharko 

et al., 2014 
2 O- + H3O+ ↔ •OH + H2O 

3 NO3
- + hv → NO2

-
 + O(3P); ϕ = 0.001 

 

4 

 

NO2
- + •OH → •NO2 + OH- (k = 1.0 × 1010 M-1 s-1)  

Mack and Bolton, 1999; 

Pang et al., 2019a 

 

5 

 

O2
•- + NO2

- + 2H+ → •NO2 + H2O2  

Vione et al., 2001; Pang et 

al., 2019a 

 

6 

 

NO2
- + hv → •NO + O-; ϕOH,300 = 6.7(±0.9)% 

Fischer and Warneck, 1996; 

Mack and Bolton, 1999; 

Pang et al., 2019a 

7 •NO + O2 ↔ •ONOO Goldstein and Czapski, 

1995a; Pang et al., 2019a 8 •ONOO + •NO → ONOONO 

9 ONOONO → 2•NO2 

 

10 

 

NO3
- + hv → •NO2 + OH (reactions 1 & 2) → HOONO          •NO + •HO2                                                                                           

                                                                                                               (pKa = 6.8) 

   

Goldstein et al., 2005; Vione 

et al., 2005; Sturzbecher-

Höhne et al., 2009; Abida et 

al., 2011; Wang et al., 2021 

 

11 

                                                                        
•HO2 ⇌ H+ + O2

•-                      OONO2
-                    O2 + NO2

-         
               HONO 

(pKa = 4.8)                                                                                                                            (pKa = 3.2)                                                                                                                                                                 

Lammel et al., 1990; 

Goldstein et al., 1998; Wang 

et al., 2021 

 

12 

                                                         NO2
- + HOONO2 ⇌ OONO2

- + H+ 

O2
•- + NO ⇌ OONO-                                                    (pKa = 5.9)  

                                                         NO3
- 

Goldstein and Czapski, 

1995b; Wang et al., 2021 

 

13 

 

HNO2 + hv → •NO + OH; ϕOH,300 = 36.2(±4.7)% 

Fischer and Warneck, 1996; 

Kim et al., 2014; Pang et al., 

2019a 

 

14 

 

HOONO → •NO2 + •OH (k = 0.35 ± 0.03 s-1) 

Goldstein et al., 2005; Pang 

et al., 2019a 

 

15 

 

HNO2
 + •OH → •NO2 + H2O (k = 2.6 × 109 M-1 s-1) 

Kim et al., 2014; Pang et al., 

2019a 

16 (CH3)2CHOH + •OH → (CH3)2COH• + H2O Warneck and Wurzinger, 

1988; Pang et al., 2019a 17 (CH3)2COH• + O2 → (CH3)2CO + 
•HO2 

18 •OH + HCO3
- → CO3

•- + H2O (k = 8.5 × 106 M-1 s-1) Wojnárovits et al., 2020 

19 •OH + CO3
2- → CO3

•- + OH- (k = 3.9 × 108 M-1 s-1) 

 

20 

3C* + HCO3
- → CO3

•- + H+ + C•-  

(k = 106-107 M-1 s-1; 3C*: triplet aromatic ketones) 

Canonica et al., 2005 

 

21 

3C* + CO3
2- → CO3

•- + C•-  

(k = 106-107 M-1 s-1; 3C*: triplet aromatic ketones) 

NO2 +H+ H2O 
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 1097 

Figure 1. Reconstructed mass spectra of assigned peaks from (a) VL* pH 4 (N2-saturated; A6), (b) VL+AN pH 4 (N2-1098 

saturated; A8), (c) VL* pH 4 (air-saturated; A5), (d) VL+AN pH 4 (air-saturated; A7), (e) VL* pH 3 (air-saturated; A3), (f) 1099 
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VL+AN pH 3 (air-saturated; A4), (g) VL* pH 2.5 (air-saturated; A1), and (h) VL+AN pH 2.5 (air-saturated; A2) after 6 h 1100 

of simulated sunlight irradiation. The normalized abundance of products was calculated from the ratio of the peak area of the 1101 

product to that of VL (Eq. 2). The 50 most abundant products contributed more than half of the total normalized abundance 1102 

of products, and they were identified as monomers (blue), dimers (green), trimers (red), and tetramers (orange). Grey peaks 1103 

denote peaks with low abundance or unassigned formula. Examples of high-intensity peaks were labeled with the 1104 

corresponding neutral formulas. Note the different scales on the y-axes.  1105 
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 1140 

 1141 

 1142 

 1143 

Figure 2. (a-d) Increase in light absorption under different experimental conditions for direct photosensitized oxidation of 1144 

VL (VL*) and nitrate-mediated VL photo-oxidation (VL+AN): (a) Effect of secondary oxidants from VL triplets on VL* 1145 

and VL+AN at pH 4 under N2- (A6, A8) and air-saturated (A5, A7) conditions. (b) Effect of pH on VL* and VL+AN at pH 1146 

2.5 (A1, A2), 3 (A3, A4), and 4 (A5, A7) under air-saturated conditions. (c) Effect of VOCs and inorganic anions: IPA (A9) 1147 

and NaBC (A10) on VL* at pH 4 under air-saturated conditions. (d) Effect of VOCs and inorganic anions: IPA (A11) and 1148 

NaBC (A12) on VL+AN at pH 4 under air-saturated conditions. (e) Increase in light absorption during direct GUA 1149 

photodegradation (A17) and photo-oxidation of GUA in the presence of VL (GUA+VL; A18) or nitrate (GUA+AN; A19) at 1150 

pH 4 under air-saturated conditions after 6 h of simulated sunlight irradiation. Error bars represent 1 standard deviation. 1151 
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 1152 

 1153 

Figure 3. (a) Reconstructed mass spectra of assigned peaks from the direct GUA photodegradation (A17) and photo-1154 

oxidation of GUA in the presence of VL (GUA+VL; A18) or nitrate (GUA+AN; A19) at pH 4 under air-saturated conditions 1155 

after 6 h of simulated sunlight irradiation. The y-axis is the absolute signal area of the products. Examples of high-intensity 1156 

peaks were labeled with the corresponding neutral formulas. (b-d) van Krevelen diagrams of the 50 most abundant products 1157 

from the (b) direct photodegradation of GUA (A17), (c) GUA+VL (A18), and (d) GUA+AN (A19) at pH 4 under air-1158 

saturated conditions after 6 h of simulated sunlight irradiation. The color bar denotes the absolute signal area. The grey 1159 

dashed lines indicate the carbon oxidation state values (e.g., OSc =-1, 0, and 1).  1160 
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 1161 

 1162 

 1163 

Figure 4. Potential photo-oxidation pathways of VL via direct photosensitized reactions and in the presence of nitrate to 1164 

illustrate the effects of secondary oxidants from VL triplets, pH, and the presence of VOCs (IPA) and inorganic anions 1165 

(NaBC). Product structures were proposed based on the molecular formulas, DBE values, and MS/MS fragmentation 1166 

patterns. The molecular formulas presented were the most abundant products or products with a significant increase in 1167 

normalized abundance. 1168 
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