Weakening of Antarctic Stratospheric Planetary Wave Activities in Early Austral Spring Since the Early 2000s: A Response to Sea Surface Temperature Trends

YIHANG HU, WENSHOU TIAN, JIANKAI ZHANG, TAO WANG, MIAN XU

Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric

Sciences, Lanzhou University, China

*Correspondence to: wstian@lzu.edu.cn

1

1 Abstract

2 Using multiple reanalysis datasets and modeling simulations, the trends of 3 Antarctic stratospheric planetary wave activities in early austral spring since the early 4 2000s are investigated in this study. We find that the stratospheric planetary wave 5 activities in September have weakened significantly since 2000, which is mainly related 6 to the weakening of the tropospheric wave sources in the extratropical southern 7 hemisphere. As the Antarctic ozone also shows clear shift around 2000, the impact of 8 ozone recovery on Antarctic planetary wave activity is also examined through 9 numerical simulations. Significant ozone recovery in lower stratosphere changes the 10 atmospheric state for wave propagation to some extent, inducing a slight decrease of vertical wave flux in upper troposphere and lower stratosphere (UTLS). However, the 11 12 changes of wave propagation environment in middle and upper stratosphere over 13 subpolar region are not significant. The ozone recovery has minor contribution to the 14 significant weakening of stratospheric planetary wave activity in September. Further 15 analysis indicates that the trend of September sea surface temperature (SST) over 20° 16 N-70°S is statistically well linked to the weakening of stratospheric planetary wave 17 activities. The model simulations reveal Numerical simulations support the result that 18 the SST trend in the extratropical southern hemisphere (20°S-70°S) and the tropics (20° 19 N-20°S) induce athe weakening of wave-1 component of tropospheric geopotential 20 height in the extratropical southern hemisphere, which subsequently leads to athe 21 decrease in stratospheric wave flux. The responses of stratospheric wave activities in 22 southern hemisphere to stratospheric ozone recovery is not significant in

23	simulationsIn addition, both reanalysis data and numerical simulations indicate that
24	the Brewer-Dobson circulation (BDC) related to wave activities in the stratosphere has
25	also been weakening in early austral spring since 2000 due to the trend of September
26	SST in the tropics and extratropical southern hemisphere.

27

28 Key words: Antarctic; Stratospheric planetary wave activities; Tropospheric wave
 29 sources; Sea surface temperature

30

31 **1. Introduction**

32 The stratospheric planetary wave activities have important influences on 33 stratospheric temperature (e.g., Hu & Fu, 2009; Lin et al., 2009; Li & Tian, 2017; Li et 34 al., 2018), polar vortex (e.g., Kim et al., 2014; Zhang et al., 2016; Hu et al., 2018) and 35 distribution of chemical substances (e.g., Gabriel et al., 2011; Ialongo et al., 2012; 36 Kravchenko et al., 2011; Zhang et al., 2019a). Meanwhile, the stratospheric circulation 37 modulated by planetary waves can exert impacts on tropospheric weather and climate 38 (e.g., Haigh et al., 2005; Zhang et al., 2019b) through downward control processes 39 (Haynes et al., 1991), which is useful for extended forecast by using preceding signals 40 in the stratosphere (e.g., Baldwin et al., 2001; Wang et al., 2020).

The planetary perturbations generated by large-scale topography, convection and continent-ocean heating contrast can propagate from the troposphere to the stratosphere (Charney & Drazin, 1961) and form stratospheric planetary waves. As the land-sea thermal contrast in the northern hemisphere is larger than that in the southern

45	hemisphere and produces stronger zonal forcing for the genesis of stratospheric waves,
46	the majority of attention has been given to wave activities and their impacts on weather
47	and climate in the northern hemisphere (e.g., Kim et al., 2014; Zhang et al., 2016; Hu
48	et al., 2018). However, planetary wave activities in the southern hemisphere also play
49	an important role in heating the stratosphere dynamically (e.g., Hu & Fu, 2009; Lin et
50	al., 2009), which suppresses Polar Stratospheric Clouds (PSCs) formation and ozone
51	depletion (e.g., Shen et al., 2020a; Tian et al., 20182017). The Antarctic sudden
52	stratospheric warming (SSW) that occurred in 2002 (e.g., Baldwin et al., 2003; Nishii
53	& Nakamura, 2004; Newman & Nash, 2005) and 2019 (e.g., Yamazaki el al., 2020;
54	Shen et al., 2020a; Shen et al., 2020b) were was associated with significant upward
55	propagation of wave flux. Such episodes are extraordinarily rare in the history, and the
56	one in 2019 contributed to the formation of the smallest Antarctic ozone hole on record
57	(WMO, 2019). In addition, some studies reported that wildfires in Australia at the end
58	of 2019 are related to negative phase of the Southern Annular Mode (SAM), which was
59	induced by the extended influence of the SSW event that occurred in September (Lim
60	et al., 2019; Shen et al., 2020b). In a word, the Antarctic planetary wave activities are
61	important for the stratosphere-troposphere interactions and climate system in the
62	southern hemisphere.

63 Long-term observations in the Antarctic stratosphere show a significant ozone 64 decline from the early 1980s to the early 2000s due to anthropogenic emission of 65 chlorofluorocarbons (CFCs) (WMO, 2011) and a recovery signal since 2000s because 66 of phasing out CFCs in response to Montreal <u>Protocol (e.g., Angell and Free,</u>

67	2009; Krzyścin, 2012; Zhang et al., 2014; Banerjee et al., 2020). The Antarctic
68	stratospheric ozone depletion and recovery have important impacts on climate in the
69	southern hemisphere. The ozone depletion cools the Antarctic stratosphere through
70	reducing absorption of radiation and leads to the strengthening of Antarctic polar vortex
71	during austral spring (e.g., Randel & Wu, 1999; Solomon-et al., 1999; Thompson et al.,
72	2011). The anomalous circulation in the Antarctic stratosphere during austral spring
73	exerts impacts on tropospheric circulations (e.g., intensification of SAM index,
74	poleward shift of tropospheric jet position and expansion of the Hadley cell edge) in
75	the subsequent months (e.g., Thompson et al., 2011; Swart & Fyfe, 2012; Son et al.,
76	2018; Banerjee et al., 2020) and influences the distribution of precipitation and dry zone
77	in the southern hemisphere (e.g., Thompson et al., 2011; Barnes et al., 2013; Kang et
78	al., 2011). Following the healing of ozone loss in the Antarctic ozone hole since 2000s
79	(e.g., Solomon et al., 2016; Susan et al., 2019), great attention has been paid on possible
80	impacts of ozone recovery on climate system in the southern hemisphere (e.g., Son et
81	al., 2008; Barnes et al., 2013; Xia et al., 2020; Banerjee et al., 2020). Son et al. (2008)
82	implemented the Chemistry-Climate Model Validation (CCMVal) models to predict the
83	response of the southern hemisphere westerly jet to stratospheric ozone recovery. Based
84	on the Phase 5 of Coupled Model Intercomparison Projects (CMIP5) models, Barnes et
85	al. (2013) proposed that the tropospheric jet and dry zone edge no longer shift poleward
86	during austral summer since the early 2000s due to ozone recovery. Banerjee et al.
87	(2020) analyzed observations and reanalysis datasets. They found that following the
88	ozone recovery after 2000, the increase of SAM index and the poleward shifting of

tropospheric jet position as well as the Hadley cell edge all experienced a pause. Their
results suggest that ozone depletion and recovery have made important contributions to
the climate shift that occurred around 2000 in the southern hemisphere.

92 However, some previous studies have reported zonally asymmetric warming 93 patterns in Antarctic stratosphere, which are generated by increased planetary wave 94 activities during austral spring from the early 1980s to the early 2000s (Hu & Fu, 2009; 95 Lin et al., 2009). Note that the Antarctic stratosphere was experiencing radiative cooling 96 in the same period due to ozone depletion (e.g., Randel & Wu, 1999; Solomon-et al., 97 1999; Thompson et al., 2011). The increase in stratospheric planetary wave activities 98 cannot be explained by ozone decline, because the acceleration of stratospheric 99 circumpolar wind caused by radiative cooling induces more wave energy to be reflected 100 back to the troposphere (e.g., Andrews et al., 1987; Holton 101 et al., 2004). Hu & Fu (2009) attributed the increase in Antarctic stratospheric wave 102 activities to the SST trend from the 1980s to the 2000s. Their results indicate that in 103 addition to ozone change, other factors such as changes in SST_SST trend-also 104 contribute to climate change in the southern hemisphere. Moreover, the phase of 105 Interdecadal Pacific Oscillation (IPO) also changed at around 2000 (e.g., Trenberth et 106 al., 2013). SST variation influences Rossby wave propagation and tropospheric wave 107 sources, and thereby indirectly affects stratospheric wave activities (e.g., Lin et al., 2012; 108 Hu et al., 2018; Tian et al., 20182017). The questions here are: (1) Has the trend of 109 stratospheric planetary wave activity-trend in the southern hemisphere been shifting 110 since the 2000s? (2) What are the factors responsible for the trend of Antarctic

111 stratospheric planetary wave activity since the 2000s?

112	In this study, we reveal the trend of Antarctic planetary wave activity in early
113	austral spring since the 2000s based on multiple reanalysis datasets. We also conduct
114	sensitive experiments forced by linear increments of ozone and SST fields since the
115	2000s to investigate the response of Antarctic planetary activity to above two factors.
116	The remainder of the paper is organized as follows. Section 2 describes the data,
117	methods and configurations of model simulations. Section 3 presents the trends of
118	stratospheric and tropospheric wave activities in early austral spring. Section 4
119	examines the impact of ozone recovery on Antarctic stratospheric planetary wave
120	activity. Section 4-5 investigates the connections between the trends of SST and
121	stratospheric wave activities. Sections 65 discusses the responses of tropospheric wave
122	sources and stratospheric wave activitiesy to SST trend-changes based on model
123	simulations. Major conclusions and discussion are presented in Section <u>7</u> 6.
124	2. Datasets, methods and experimental configurations
125	a. Datasets
126	In this study, daily and monthly mean data extracted from the Modern-Era
127	Retrospective analysis for Research and Applications Version 2 (MERRA-2;
128	Bosilovich et al., 2015) dataset are used to calculate trends of zonally averaged zonal
129	wind and temperature, Brewer-Dobson circulation (BDC), tropospheric wave sources,
130	and the Elisassen-Palm (E-P) flux and its divergence in September. To verify the trend
131	of stratospheric E-P flux, we also refer to the results derived from the European Centre
132	for Medium-range Weather Forecasting (ECMWF) Interim Reanalysis (ERA-Interim;

Dee et al., 2011) dataset, the Japanese 55-year Reanalysis (JRA-55; Kobayashi et al.,
2015) dataset and the National Centers for Environmental Prediction-Department of

135 Energy Global Reanalysis 2 (NCEP-2; Kanamitsu et al., 2002) dataset.

136 The observed total column ozone (TCO) data are extracted from SBUV v8.6

137 satellite dataset, which is a monthly and zonal mean dataset on 5° grid. Ozone data

138 <u>derived from MERRA-2 dataset are also used to calculate TCO.</u>

139 SST data are extracted from the Extended Reconstructed Sea Surface Temperature 140 (ERSST) dataset, which is a global monthly mean sea surface temperature dataset 141 derived from the International Comprehensive Ocean-Atmosphere Dataset (ICOADS). The ERSST is on global 2°×2° grid and covers the period from January 1854 to the 142 143 present. We use the newest latest version (version 5, i.e., v5) dataset to calculate trends 144 and correlations, and produce SST forcing field for model simulations. More details 145 about this version of ERSST can be found in Huang et al. (2017). 146 In addition, the unfiltered Interdecadal Pacific Oscillation (IPO) index derived

147 from the ERSST v5 dataset is also used in this study. The IPO index is available at

- 148 <u>https://psl.noaa.gov/data/timeseries/IPOTPI/tpi.timeseries.ersstv5.data</u> and mMore
- 149 detailed information about the index can be found in Henley et al. (2015).
- 150 b. Diagnosis of wave activities and Brewer-Dobson circulation

151 Planetary wave activities are measured by E-P flux ($\vec{F} \equiv (0, F^{(\phi)}, F^{(z)})$) and its

- 152 divergence D_F . Their algorithms are expressed by Eqs. (1)-(3) (Andrews et al., 1987):
- 153 $F^{(\phi)} = \rho_0 a \cos \phi (\overline{u_z v' \theta'} / \overline{\theta_z} \overline{v' u'})$ (1)

154
$$F^{(z)} = \rho_0 a \cos\phi \{ [f - (a \cos\phi)^{-1} (\overline{u} \cos\phi)_{\phi}] \overline{v'\theta'} / \overline{\theta_z} - \overline{w'u'} \}$$
(2)

155
$$D_F = \frac{\nabla \cdot \vec{F}}{\rho_0 a \cos \phi} = \frac{(a \cos \phi)^{-1} \frac{\partial}{\partial \phi} (F^{(\phi)} \cos \phi) + \frac{\partial F^{(z)}}{\partial z}}{\rho_0 a \cos \phi}$$
(3)

156 where \mathcal{U}, \mathcal{V} represent zonal and meridional components of horizontal wind, w157 is vertical velocity, θ is potential temperature, a is the Earth radius, f is the 158 Coriolis parameter, z is geopotential height, ϕ is latitude, ρ_0 is the background 159 air density.

The quasi-geostrophic refractive index (RI) is used to diagnose the environment
of wave propagation (Chen & Robinson, 1992). Its algorithm is written as <u>Eq. Equation</u>
(4):

163
$$RI = \frac{\overline{q}_{\varphi}}{\overline{u}} - \left(\frac{k}{a\cos\varphi}\right)^2 - \left(\frac{f}{2NH}\right)^2 \tag{4}$$

164 where the zonal-mean potential vorticity meridional gradient \overline{q}_{φ} is

165
$$\overline{q}_{\varphi} = \frac{2\Omega}{a} \cos \varphi - \frac{1}{a^2} \left[\frac{(\overline{u} \cos \varphi)_{\varphi}}{a \cos \varphi} \right]_{\varphi} - \frac{f^2}{\rho_0} \left(\rho_0 \frac{\overline{u}_z}{N^2} \right)_z \tag{5}$$

域代码已更改

166 <u>H, q, k, N^2 and Ω are the <u>scale height</u>, potential vorticity, zonal wave number, 167 buoyancy frequency, and Earth's angular frequency, respectively.</u>

The Brewer-Dobson circulation driven by wave breaking in the stratopause stratosphere is closely related to stratospheric wave activities. Its meridional and vertical components $(\overline{v}^*, \overline{w}^*)$ and stream function $(\psi^*(p, \phi))$ are expressed by Eqs. (4)-(6) (Andrews et al., 1987; Birner & Bönisch, 2011) :

172
$$\overline{v}^{\dagger} \equiv \overline{v} - \rho_0^{-1} (\rho_0 v' \theta' / \theta_z)_z$$
(6)

173
$$\overline{w}^* \equiv \overline{w} + (a\cos\phi)^{-1}(\cos\phi\cdot\overline{v'\theta'},\overline{\theta_z})_{\phi}$$
(7)

174
$$\psi^{*}(p,\phi) = \int_{0}^{p} \frac{-2\pi a \cdot \cos\phi \cdot \overline{\nu}^{*}(p'',\phi)}{g} dp''$$
(8)

175 where p is the air pressure, π is the circular constant, g is the gravitational 176 acceleration.

In Eqs. (1)-(8), the overbar and prime denote <u>a</u> zonal mean and departure from <u>the</u> zonal mean, respectively. The subscripts denote partial derivatives. The Fourier decomposition is used to obtain components of Eqs. (1)-(3) with different zonal wave numbers. Meanwhile, the Fourier decomposed components of geopotential height zonal deviations are also used to determine tropospheric wave sources.

182 c. Statistical methods

183 The trend is measured by the slope of linear regression based on the least square 184 estimation. The correlation is used to analyze statistical links between different 185 variables. In this paper, all the time series have been linearly detrended before 186 calculating correlation coefficients (*r*) and their corresponding significances.

187 The change-point testing (e.g. Banerjee et al., 2020) is used to make sure the 188 significance of trend or correlation coefficient is not unduly influenced by some 189 particular beginning or ending years, and thereby confirm that the trend exists 190 objectively.

```
We use two-tailed student's t test to calculate the significances of trend, correlation
coefficient or mean difference. The result of significance test is measured by p value or
confidence intervals in this paper. p \le 0.1, p \le 0.05 and p \le 0.01 suggest the trend,
correlation coefficient or mean difference is significant at/above the 90%, 95% and 99%
confidence levels, respectively. The confidence interval of trend is shown in (7). (Shirley
10
```

196 <u>et al., 2004)</u>:

197
$$[\hat{b} - t_{1-\alpha/2}(n-2)\hat{\sigma}_b, \hat{b} + t_{1-\alpha/2}(n-2)\hat{\sigma}_b]$$
(7)

198 where \hat{b} is estimated value of slope, $\hat{\sigma}_b$ is standard error of slope and it is written as:

199 $\hat{\sigma}_{b} = \hat{b} \cdot \sqrt{\frac{1}{n-2}}, t_{1-\alpha/2}(n-2)$ denotes the value of t-distribution with the degree of 200 freedom equal to n-2 and the two-tailed confidence level equal to $1-\alpha$ ($\alpha = 0.90$, 201 0.95 or 0.99). The confidence interval of mean difference is expressed by Eq. (8) 202 (Shirley et al., 2004):

203
$$[\bar{X} - \bar{Y} - t_{1-\alpha/2}(M+N-2) \cdot S_w \cdot \sqrt{\frac{1}{M} + \frac{1}{N}}, \bar{X} - \bar{Y} + t_{1-\alpha/2}(M+N-2) \cdot S_w \cdot \sqrt{\frac{1}{M} + \frac{1}{N}}]$$
 (8)

204 where

205
$$S_{w} = \sqrt{\frac{1}{M + N - 2} \left[\sum_{i=1}^{M} (X_{i} - \bar{X})^{2} + \sum_{j=1}^{N} (Y_{j} - \bar{Y})^{2} \right]}$$
(9)

Here, \overline{X} and \overline{Y} are the sample averages, M and N are the numbers of sample sizes with two populations, $t_{1-\alpha/2}(M+N-2)$ denotes the value of t-distribution with the degree of freedom equal to M+N-2 and the two-tailed confidence level equal to $1-\alpha$.

Previous studies have indicated that SST impact on the stratosphere shows a spatial dependence (e.g., Xie et al., 2020). To find out a robust relationship between the trend of SST in a specific region and the trend of stratospheric wave activities, we divide the global ocean into three regions: SH (the extratropical southern hemisphere, 70°S-20°S), TROP (the tropics, 20°S-20°N) and NH (the extratropical northern hemisphere, 20°N-70°N). Since the impacts in different regions might be combined, we also

216	consider three combined regions named as SHtrop (the extratropical southern
217	hemisphere and the tropics, 70°S-20°N), NHtrop (the extratropical northern hemisphere
218	and the tropics, 20°S-70°N) and the Globe (70°S-70°N). To find statistical connections
219	between the trend of SST and that of stratospheric wave activities, we examine the first
220	three leading patterns (EOF1, EOF2, EOF3) and principal components (PC1, PC2, PC3)
221	of SST in above six regions obtained from Empirical Orthogonal Function (EOF)
222	analysis. In all the six regions, there is always one EOF modes that shows great
223	similarity to the spatial pattern of trend (not shown) as we do not detrend SST time
224	series when the EOF analysis is carried out. Thus, the significance of the correlation
225	between the PC time series of that EOF mode and time series of stratospheric E-P flux
226	can be used as the criterion to determine the statistical connection between the trend of
227	SST and the trend of stratospheric wave activities.

228 d. The model and experiment configurations

229 The F 2000 WACCM SC (FWSC) component in the Community Earth System 230 Model (CESM; version 1.2.0) is used to verify the impacts of SST and ozone recovery 231 trends on tropospheric wave sources and stratospheric wave activities in early austral 232 spring. The FWSC component is the Whole Atmosphere Community Climate Model 233 version 4 (WACCM4) with specified chemistry forcing fields (such as ozone, 234 greenhouse gases (GHG), aerosols and so on), which have fixed values in 2000 by 235 default. The WACCM4 includes active atmosphere, data ocean (run as a prescribed 236 component, simply reading SST forcing data instead of running ocean model), land and 237 sea ice. Important pPhysics schemes in the WACCM4 are based on those in the

238	Community Atmospheric Model version 4 (CAM4; Neale et al., 2013). The WACCM4
239	uses a finite-volume dynamic framework and extends from the ground to approximately
240	145 km (5.1×10 ⁻⁶ hPa) altitude in the vertical with 66 vertical levels. The simulations
241	presented in this paper are conducted at a horizontal resolution of 1.9°×2.5°. More
242	information about the WACCM can be found in Marsh et al. (2013).

243 Control experiments and sensitive experiments are conducted to investigate 244 responses of Antarctic stratospheric wave activities to SST trends and the ozone 245 recovery trend in early austral spring. For the experiments of SST trends, monthly mean 246 global SST during 1980-2000 derived from the ERSST v5 dataset is used as SST 247 forcing field in the control experiment (sstctrl). For the four sensitive experiments (sstNH, sstSH, ssttrop, sstSHtrop), linear increments of SST in different regions in 248 September during 2000-2017 are used as the forcing field. Ozone, aerosols and 249 250 greenhouse gases (GHG) in the control experiment and the four sensitive experiments 251 all have the fixed values in 2000. For the experiments of ozone recovery trend, monthly 252 mean three-dimensional global ozone during 1980-2000 derived from the MERRA-2 253 dataset is used as the ozone forcing field in the control experiment (O3ctrl). The 254 sensitive experiment (O3sen) is forced by linear increments of ozone in September 255 during 2001-2017. The SSTs in O3ctrl and O3sen both are monthly mean global SST 256 during 1980-2000. The aerosol and greenhouse gases values in 2000 are used. These 257 experiment configurations are summarized and listed in Table 1 and Table 2.

Firstly, we run the FWSC component to generate randomly different initial conditions for 120 years with free run. Then, each experiment includes 100 ensemble 260 members that run from July to September forced by these initial conditions from the 261 21st year to the 120th year in July. The forcing fields of SST and ozone are only 262 superposed from July to September. July and August are taken as spin-up time and 263 simulations during this period are discarded. The ensemble mean in September derived from these 100 ensemble members is regarded as the final result of each experiment. A 264 265 similar approach is implemented for sensitive experiments, in which the forcing fields 266 superposed only in certain months. The same approach has been used in previous 267 studies (e.g., Zhang et al., 2018).

268 3. Trend of planetary wave activities in early austral spring

269 Figure 1 shows the trends of stratospheric planetary wave activities in the southern hemisphere September during 1980-2000 and 2000-2017, respectively. Note that the 270 271 vertical E-P flux entering into the stratosphere over 50°S-70°S in September has been 272 increasing during 1980-2000, accompanied by intensified wave flux convergence in the 273 upper stratosphere (Fig. 1a) that is mainly contributed by the wave-1 component (Fig. 274 1b). This feature implies that the stratospheric planetary wave activities have 275 strengthened in early austral spring during 1980-2000. A similar result has been 276 reported in previous studies (Hu & Fu, 2009; Lin et al., 2009). During 2000-2017, 277 however, vertical propagation transport of stratospheric E-P flux weakened over the 278 subpolar region of the southern hemisphere, which was accompanied by intensified 279 wave flux divergence in the upper stratosphere (Fig. 1d) mainly contributed by the 280 wave-1 component (Fig. 1e) while the wave-2 component also made certain 281 contributions (Fig. 1f). Similar features also appear in August, but not as significant as that in September (Fig. S1). For this reason, hereafter we focus on the features inSeptember.

284 The SSW that occurred in 2002 was accompanied with large upward wave fluxes 285 in the stratosphere, which is extremely rare in history and has been studied extensively 286 in-numerous previous studies (e.g., Baldwin et al., 2003; Nishii & Nakamura, 2004; 287 Newman & Nash, 2005). Since the period with a negative trend of stratospheric vertical 288 wave flux is short, it is necessary to further investigate whether such a negative trend 289 is artificially influenced by the single year of 2002. Therefore, following Banerjee et al. 290 (2020), we use a change-point method to test the significance of the trend during various 291 periods based on four reanalysis datasets (ERA-Interim, MERRA-2, JRA-55, NCEP-292 2). Figures 2a (including the year 2002) and 2b (excluding the year 2002) display the 293 time series (Fz) of area-weighted vertical stratospheric wave flux (Fz) over the southern 294 hemisphere subpolar region obtained from different reanalysis datasets. Note that the 295 wave flux time series obtained from the four reanalysis datasets all present a positive 296 trend from the early 1980s to the early 2000s and a negative trend from the early 2000s 297 to present, regardless of whether the extreme value in 2002 is removed or not. The 298 correlation coefficients of the time series between these reanalysis datasets are above 299 0.9 and statistically significant (Table 3), suggesting that the time series derived from 300 different datasets are consistent with each other. Figures 2c-f show the trends and 301 corresponding confidence intervals calculated with four different beginning years (1980, 302 1981, 1982, 1983), four different ending years (2015, 2016, 2017, 2018), and change-303 point years from 1998 to 2013. The trends and confidence intervals in Figures 2g-j are

304 the same as that in Figures 2c-f, except that the extreme value in 2002 is removed. The 305 positive trend from the early 1980s to the 21st century remains significant regardless of 306 different beginning years and ending change-point years (Figs. 2c-j). However, Figures 307 2c-f and Figures 2g-j indicate that the positive value of the trend is decreasing gradually 308 when the period is prolonged, which is apparently attributed to the negative trend with 309 the beginning change-point year of around 2000. Although the negative trend from the 310 change-point year to ending year becomes less significant when the value in 2002 is 311 removed, it remains significant in some periods, which are also illustrated on diagrams 312 of latitude-pressure profiles (Fig. S2). Therefore, the weakening of stratospheric wave 313 activities in early austral spring since the early 2000s is robust. In this paper, we take 314 the year 2000 as the beginning year of the weakening trend to simplify descriptions in 315 the following discussion.

316 Figure 3 shows the trends of tropospheric wave sources in September since 2000. 317 There is a significant positive trend of the wave-1 component in 500 hPa geopotential 318 height over the southern Indian ocean and a significant negative trend over the southern 319 Pacific, which form an out-of-phase superposition on its climatology (Fig. 3b). The 320 trend pattern of wave-2 component is also out-of-phase with its climatology, although 321 it is not significant (Fig. 3c). The above features still maintain when the values in 2002 322 are removed (Figs. S3b, c), implying that the southern hemispheric tropospheric wave 323 sources in early austral spring have weakened since 2000, which is also reflected in the 324 decrease of tropospheric vertical wave flux (Figs. 3d, e; Figs. S3d, e).

325 **<u>4. Response of Antarctic stratospheric wave activity to ozone recovery</u>**

带格式的:列出段落,首行缩进:0字符,行距:单倍行距, 多级符号+级别:1+编号样式:1,2,3,…+起始编号:1 +对齐方式:左侧+对齐位置:0厘米+缩进位置:0.63 厘米

带格式的: 字体: 四号, 加粗, 字体颜色: 自动设置 **带格式的:** 字体: (默认) Times New Roman, 小四, 字体颜 色: 文字 1

326	Previous studies have suggested that ozone depletion and recovery are important
327	to climate shift that occurred around 2000 in the southern hemisphere during austral
328	summer (e.g., Son et al., 2008; Thompson et al., 2011; Barnes et al., 2013; Banerjee et
329	al., 2020). The impacts of stratospheric ozone changes on Antarctic wave propagation
330	during austral summer has also been examined in previous studies (e.g., Hu et al., 2015).
331	However, whether ozone recovery in September explains the weakening of
332	stratospheric planetary waves at the same month remains unclear. The correlation
333	between detrended time series of September Antarctic total column ozone (TCO)
334	derived from SBUV and stratospheric vertical wave flux (Fz) is 0.70 (p=0.0011) during
335	2000-2017. The increase of wave activity in polar stratosphere causes heating effects
336	and suppresses the formation of PSCs, and hence, slow down the ozone depletion (e.g.,
337	Shen et al. 2020a). Therefore, the Antarctic ozone and stratospheric wave activity show
338	statistically significant positive correlation. Theoretically, heating effects caused by
339	ozone recovery in Antarctic stratosphere may also decelerate the Antarctic stratospheric
340	polar vortex and induce more waves to propagate into stratosphere (Andrews et al.,
341	1987; Holton et al., 2004). These preliminary analysis cannot verify that the ozone
342	recovery is responsible for weakening of stratospheric wave activity. The role of ozone
343	recovery in stratospheric wave changes needs to be further explored by model
344	simulations. In this section, we use a group of time-slice experiments (O3ctrl and O3sen)
345	to address this issue.
346	Figure 4 shows the time series and piecewise trends of September TCO in the
347	Antarctic during 1980-2017. As reported by previous studies (e.g., Angell and Free,

带格式的: 缩进: 首行缩进: 2 字符

348	2009; Banerjee et al., 2020; Krzyścin, 2012; Solomon et al., 2016; WMO, 2011; Zhang
349	et al., 2014), the Antarctic ozone show a significant decline during 1980-2000 (Figs. 4a,
350	b, c) and a slight recovery during 2001-2017 (Figs. 4a, d, e). The recovery trend is
351	calculated with data in 2002 removed because the large poleward transport induced by
352	SSW in 2002 leads to extreme values of ozone (e.g. Solomon et al., 2016). In addition,
353	the correlation of TCO between MERRA-2 and SBUV datasets is 0.61 (p=4.5×10 ⁻⁵),
354	suggesting the changes of TCO derived from the reanalysis dataset and the observations
355	have a good consistency. Thus, in order to get three-dimensional structure of ozone
356	changes, the ozone data from MERRA-2 are used to make forcing fields for CESM. As
357	described in Section 2, a control experiment (O3ctrl) forced by climatological ozone
358	and a sensitive experiment forced by the linear increment of global ozone in September
359	during 2001-2017 are conducted to explore the impacts of ozone recovery. The pattern
360	of ozone forcing fields is similar to its trend patterns (Figs. 4d, e; Figs. 5a, b). Other
361	details of these two experiments have been given in Section 2 and Table 2.
362	Fig. 6 and Fig. 7 show the responses of wave activity and wave propagation
363	environment forced by O3sen. Note that the significant ozone recovery over south pole
364	mainly appears in lower stratosphere (about 200 hPa to 50 hPa) (Fig. 4e). In most
365	southern polar regions from 50 hPa to 3 hPa, the ozone recovery is not significant (Fig.
366	4e). The features are attributed to limitation of ODSs emission and reduction of
367	heterogeneous reaction on PSCs, which mainly distribute in lower stratosphere (e.g.,
368	Solomon, 1999). Ozone recovery in polar lower stratosphere absorbs more ultraviolet
369	radiation and causes cooling in Antarctic troposphere (Fig. 6b). To maintain thermal

370	balance, zonal wind accelerates below 200 hPa over 60°S-70°S (Fig. 6a).	
371	The changes of zonal wind and temperature forced by ozone recovery induce	
372	changes in wave propagation environment. The refractive index (RI) is a good matric	
373	to reflect the atmosphere state for wave propagation. Theoretically, planetary waves	
374	tend to propagate into large RI regions (Andrews et al., 1987). The responses of RI and	
375	its terms are shown in Figs. 6c-f. Note that the second term of RI does not change with	
376	atmospheric state and the third term of RI is insignificant compared to the first term	
377	(Hu et al., 2019). Previous studies indicate that changes in zonal mean potential	
378	vorticity meridional gradient \overline{q}_{φ} could explain the changes in RI in middle and high	域代码已更改
379	latitudes (e.g. Hu et al., 2019; Simpson et al., 2009). Consistent with these studies, the	/
380	pattern of \bar{q}_{φ} show some similarity with pattern of RI (Figs. 6c, d), especially in lower	域代码已更改
381	stratosphere over subpolar regions (Figs. 6c, d). According to the Eq. (5), the first term	
382	of \bar{q}_{φ} does not change with atmospheric state. Therefore, the second term	域代码已更改
383	$(-[\frac{(\overline{u}\cos\varphi)_{\varphi}}{\cos\varphi}]_{\varphi}$, hereafter uyy term or barotropic term) and the third term	域代码已更改 带格式的:字体:小四 带格式的:字体:小四
384	$(-\frac{f^2}{\rho_0}(\rho_0\frac{\overline{u_z}}{N^2})_z, hereafter uzz term or baroclinic term) are investigated. Note that the$	域代码已更改
385	pattern of responses in baroclinic term is similar with \bar{q}_{φ} (Figs. 6d, f). The uzz term	域代码已更改
386	also can be written as $(\frac{f^2}{HN^2} + \frac{f^2}{N^4}\frac{dN^2}{dz})\overline{u}_z - \frac{f^2}{N^2}\overline{u}_{zz}$. Meanwhile, zonal wind	域代码已更改
387	acceleration in upper troposphere weakens the vertical shear of $u(\bar{u}_z)$ around 200 hPa	域代码已更改
388	over subpolar regions, inducing a decrease of baroclinic term and RI in upper	
389	troposphere and lower stratosphere (UTLS) over 60°S-70°S (Figs. 6d, f). The response	
390	of RI induce a slight decrease of vertical wave flux in UTLS over subpolar regions (Fig. 19	

1	域代码已更改
λ	域代码已更改
1	带格式的: 字体: 小四
-	带格式的: 字体: 小四
J	域代码已更改

域代码已更改	
域代码已更改	

391	7a), which is mainly contributed by its wave-1 component (Fig. 7b). However, the
392	changes of wave activity in UTLS are not significant in ensemble mean of simulations
393	(Figs. 7a, b, c). Meanwhile, note that the responses of zonal wind and temperature to
394	ozone recovery are not significant above 50 hPa over subpolar regions (Figs. 6a, b),
395	inducing negligible changes of wave propagation environment (Fig. 6c) and wave
396	activity (Fig. 7) in middle and upper stratosphere.
397	In a word, the significant ozone recovery in Antarctic lower stratosphere changes
398	wave propagation in upper troposphere and lower stratosphere to some extent. However,
399	these weak responses still cannot explain the significant decrease of stratospheric wave
400	flux in September.
401	4.5. Role of SST trends in the weakening of Antarctic stratospheric
402	wave activities
402	wave activities
402 403	wave activities In this section, we further explore factors that lead toresponsible for the weakening
402 403 404	wave activities In this section, we further explore factors that lead toresponsible for the weakening of tropospheric wave sources and stratospheric wave activities since the early 2000s in
402 403 404 405	wave activities In this section, we further explore factors that lead toresponsible for the weakening of tropospheric wave sources and stratospheric wave activities since the early 2000s in early austral spring. <u>ManyNumerous</u> studies reported that the <u>SST</u> variations-in sea
402 403 404 405 406	wave activities In this section, we further explore factors that lead toresponsible for the weakening of tropospheric wave sources and stratospheric wave activities since the early 2000s in early austral spring. <u>ManyNumerous</u> studies reported that the <u>SST</u> variations-in sea surface temperature can affect stratospheric climate (e.g., Li, 2009; Hurwitz et al., 2011;
402 403 404 405 406 407	wave activities In this section, we further explore factors that lead toresponsible for the weakening of tropospheric wave sources and stratospheric wave activities since the early 2000s in early austral spring. <u>ManyNumerous</u> -studies reported that the- <u>SST</u> variations-in-sea surface temperature can affect stratospheric climate (e.g., Li, 2009; Hurwitz et al., 2011; Lin et al., 2012; Hu et al., 2014; Hu et al., 2018; Tian et al., <u>20182017</u> ; Xie et al., 2020).
402 403 404 405 406 407 408	wave activities In this section, we further explore factors that lead toresponsible for the weakening of tropospheric wave sources and stratospheric wave activities since the early 2000s in early austral spring. <u>ManyNumerous</u> studies reported that the <u>SST</u> variations-in see surface temperature can affect stratospheric climate (e.g., Li, 2009; Hurwitz et al., 2011; Lin et al., 2012; Hu et al., 2014; Hu et al., 2018; Tian et al., <u>20182017</u> ; Xie et al., 2020). Hu & Fu (2009) also attributed the strengthened stratospheric wave activities in the
402 403 404 405 406 407 408 409	wave activities In this section, we further explore factors that lead toresponsible for the weakening of tropospheric wave sources and stratospheric wave activities since the early 2000s in early austral spring. <u>ManyNumerous</u> studies reported that the <u>SST</u> variations-in sea surface temperature can affect stratospheric climate (e.g., Li, 2009; Hurwitz et al., 2011; Lin et al., 2012; Hu et al., 2014; Hu et al., 2018; Tian et al., <u>20182017</u> ; Xie et al., 2020). Hu & Fu (2009) also attributed the strengthened stratospheric wave activities in the southern hemisphere to SST trend from the early 1980s to the early 2000s. Furthermore,

413	Atlantic ocean (Fig. 4b8b). A significant cooling pattern is located over the southeast
414	Pacific (Fig. 4b8b). In addition, the transitions around 2000 exist in SST time series
415	over some regions. In the southern Indian ocean, SST shows insignificant trend during
416	1980-2000 and significant warming trend during 2000-2017 (Fig. 8c). The subtropical
417	Pacific ocean in east of Australia is linked with the Pacific-Southern America (PSA)
418	wave train (e.g. Shen et al., 2020b), and the SST there shows significant warming trend
419	during 1980-2000 and insignificant trend during 2000-2017. The SST in southeast
420	Pacific shows insignificant trend during 1980-2000 and significant cooling during
421	2000-2017 (Fig. 8e). Trends of SST in southern Atlantic ocean are opposite during these
422	two piecewise periods, showing significant cooling during 1980-2000 and significant
423	warming during 2000-2017. It is apparent that the In a word, the spatial pattern of SST
424	trend during 2000-2017 is obviously different from that during 1980-2000 (Fig. 4a8a,
425	b), which may affect the tropospheric wave sources. Thus, it is necessary to analyze the
426	connection between SST trend and wave activity trend since the early 2000s.
427	Figure 5-9 shows the significance of the trend of principle component (PC) time
428	series trends (Figs. 5a-f) of SST in different regions (Figs. 9a-f), and the significance of
429	correlations (Figs. 5g9g-1) between the PC time series and Fz in September during
430	various periods-in September. The trend of PC1 time series in SH region is significant
431	during serval periods (Fig. 5a9a), while the correlation between PC1 and Fz is only
432	significant with the particular ending year of 2015 (Fig. 5g9g). This feature suggests
433	that the connection between the SST trend in SH region and the trend of stratospheric
434	wave activity is not robust. The correlation between trend of stratospheric wave activity

1	
435	and that of SST in TROP or NH region is also weak (Fig. 5e9e, f). As for the combined
436	regions, note that the PC2 time series in SHtrop region has a significant trend (Fig. 5d9d)
437	and the correlation between the PC2 time series in SHtrop and Fz with the beginning
438	year of around 2000 is also significant (Fig. 5j9j) regardless of different ending years.
439	This feature implies that the extratropical southern hemisphere and tropical SST has a
440	robust connection with stratospheric wave activities in early austral spring since the
441	early 2000s. The correlations between Fz and all PC time series in NHtrop (Fig. 5k9k)
442	and Globe (Fig. 5191) region are not as robust as that between Fz and PC2 time series
443	in SHtrop region (Fig. 5j9j), indicating that the connection between SST trend in
444	extratropical northern hemisphere and the trend of stratospheric wave activity is weak.
445	Figure $\frac{6-10}{2}$ shows the first three EOF modes of September SST in SHtrop region
446	during 2000-2017. The second mode (Fig. 6b10b) shows a great similarity to the spatial
447	pattern of SST trend (Fig. 4b8b), and the corresponding PC2 time series also has a
448	significant trend (slope=1.71, p<0.01). The correlation between PC2 and-the Fz is
449	significant (r=-0.56, p=0.016) and the correlation coefficient remains significant (r=-
450	0.46, p=0.065) at the 90% confidence level when the value in 2002 is removed. This
451	result suggests that the SST trend in SHtrop region is closely related to the recent
452	weakening of stratospheric wave activities. The first EOF mode is similar to IPO (Fig.
453	6a10a) and its corresponding principal component is highly significantly correlated (r=-
453 454	 6a10a) and its corresponding principal component is highly significantly correlated (r=-0.98, p<0.01) with the unfiltered IPO index. However, it shows no significant trend (Fig.

et al., 2013) and the weakening of Antarctic stratospheric wave activities is weak. The
correlation between PC3 and Fz is also not significant (Fig. <u>6i10i</u>). Therefore, it is
possible that the combined effect of SST trend (the second EOF mode) in the tropical
and extratropical southern hemisphere leads to the weakening of stratospheric wave
activities in early austral spring since the early 2000s.

462 5.6. Simulated changes in Antarctic stratospheric wave activities 463 forced by SST trends

The analysis in Section 4-<u>5</u> suggests that the SST <u>changestrend</u> in SHtrop region may contribute to the weakening of the southern hemispheric stratospheric wave activities. Here, numerical experiments sstNH, sstSH, sstTop and sstSHtrop forced by linear increments of SST in September during 2000-2017 (Fig. <u>711</u>; more details can be found in Section 2) are conducted to verify the results <u>presented discussed</u> in Section 469 4<u>5</u>.

470 Figure 8-12 shows the simulated response of 500 hPa geopotential height to SST 471 changes in different regions. The climatological distributions of the wave-1 component 472 (Figs. 8b12b, e, h, k) and the wave-2 component (Figs. 8e12c, f, i, l) from the 473 simulations are consistent with that from reanalysis dataset (Figs. 4b3b, c), indicating 474 that the model can well capture spatial distributions of the atmospheric waves. Note 475 that the Fourier component (wave-1 and wave-2) anomalies simulated with SST 476 changes in SH, TROP and SHtrop are all are significant. They superpose on the 477 corresponding climatological patterns in an out-of-phase style (Figs. 8e12e, f, h, i, k, l), 478 indicating that the changes in SST SST trends in SH, TROP and SHtrop lead to a

weakening of tropospheric wave sources in the extratropical southern hemisphere.
However, the 500 hPa geopotential height anomaly of the predominate wave-1
component of the 500 hPa geopotential height anomaly in the extratropical southern
hemisphere forced by the experiment with NH SST change is relatively weak (Fig.
8b12b). This feature suggests that the SST changes trend-in extratropical northern
hemisphere areis-incapable of inducing a robust response of tropospheric wave sources
in the extratropical southern hemisphere.

486 Figure 9-13 shows the simulated responses of stratospheric wave activities in the 487 southern hemisphere to SST changes in over different regions. It is apparent found that 488 the experiments with SST changes in SH, TROP and SHtrop show significantly 489 weakened stratospheric wave activities (Figs. 913d, g, j), which are mainly attributed to the responses of the wave-1 component (Figs. 913e, h, k). These results are consistent 490 491 with the responses of tropospheric wave sources (Figs. <u>812</u>d, e, g, h, j, k). However, 492 there are no significant anomalies of stratospheric wave flux in the subpolar region-as 493 exhibited in Figures 913 a and 913b, which is consistent with the response of 494 corresponding tropospheric wave sources (Figs. <u>\$12</u>a, b) and the weak correlation 495 between Fz and PC time series of SST in NH region (Fig. 59i). The result here It 496 suggests that the response of southern hemisphere stratospheric wave activities to SST 497 trend in NH region is weak.

<u>The rResults of all these experiments are summarized and displayed in Figure</u>
 <u>1014</u>, which <u>is-are quantified by the frequency distribution of southern hemisphere</u>
 stratospheric vertical wave flux derived from the 100 ensemble members of each

501	experiment. Compared to the blue fitting curves, the red fitting curves shift to the left
502	as shown in Figs. 10b14b, 10c-14c and 10d14d, suggesting that the SST changes in SH,
503	TROP and SHtrop regions weaken the upward propagation of stratospheric wave flux.
504	The area-weighted anomalies of vertical E-P flux in the subpolar region of the southern
505	hemisphere induced by SST changes in SH, TROP and SH trop regions are -0.084 $\!\times 10^5$
506	kg·s ⁻² , -0.12×10 ⁵ kg·s ⁻² and -0.13×10 ⁵ kg·s ⁻² , respectively. The sum of the anomalies
507	forced by sstSH and ssttrop is not equal to the anomaly forced by sstSHtrop, which may
508	be resulted from non-linear interactions between the responses of wave activities to
509	SST trends in SH region and TROP region. The weakening of stratospheric wave
510	activities forced by SST increment in the tropical region is-more obvious and more
511	significant than that in extratropical southern hemisphere (Figs. 10b14b, c, e), implying
512	that the SST trend in the tropical region contributes more to the weakening of
513	stratospheric wave activities since 2000. Meanwhile, it is apparent that the weakening
514	of the southern hemisphere stratospheric wave activities forced by sstSHtrop is the most
515	significant among all the sensitive experiments (Fig. 10e14e). The reduction of vertical
516	E-P flux over (50°S-70°S, 200 hPa-10 hPa) forced by sstSHtrop is approximately 12%.
517	These modeling simulation results indicate that the weakening of the Antarctic
518	stratospheric wave activities in September since 2000 is induced <u>mainly</u> by the
519	combined effects of SST trends in the tropical and extratropical southern hemisphere.
520	It also explains why the independent correlation between Fz and PC_time series
521	obtained overfor SH or TROP region is not as significant as that between Fz and PC
522	time series obtained over for SHtrop region (Figs. 5g9g, h, j). Moreover, the mean linear

524	in September during 2000-2017 derived from four reanalysis datasets is about -
525	0.38×10^5 kg·s ⁻² . Therefore, the contribution of SST trend over 20°N-70°S (the SHtrop
526	region) to the weakening of stratospheric activities is approximately 34%.
527	In addition, the reanalysis datasets show that the Brewer-Dobson circulation
528	related to wave activities in the stratosphere weakened significantly in early austral
529	spring during 2000-2017 (Fig. 15b), which is contrary to the intensified trend during
530	1980-2000 (Fig. 15a). The transition of BDC around 2000 is believed to be associated
531	with ozone depletion and recovery (e.g., Polvani et al., 2017; Polvani et al., 2018).
532	However, our modeling results suggest that the SST trend is responsible for the
533	weakening of BDC in September since 2000 (Figs. 15d, e, f). The response of BDC to
534	ozone recovery is not significant (Fig. 15c) in September, especially for the branch near
535	the Antarctic. These results indicate that apart from the ozone depletion and recovery
536	the SST trend should also be taken into consideration when exploring the mechanism
537	for the climate transition in the southern hemispheric stratosphere around 2000.
538	Previous studies reported that there is usually a time lag for tropic SST to affect
539	extratropical circulation (e.g., Shaman & Tziperman, 2011). Thus, the impact of tropical
540	SST change before September needs to be further examined. Our simulations indicate
541	that the tropical SST trend in September plays a dominate role in weakening of
542	stratospheric wave activity at the same month, and the effect of tropical SST change
543	before September is negligible compared to that in September (The detailed evidences
544	to address this issue are shown in the appendix).

increment of area-weighted vertical E-P flux from 200 hPa to 10 hPa over 70°S-50°S

545 6.7. Conclusions and Discussions

546 This study analyzes the trend of Antarctic stratospheric planetary wave activities 547 in early austral spring since the early 2000s based on various reanalysis datasets and 548 model simulations. Using the change-point method, we find that the Antarctic stratospheric wave activities in September have been weakening significantly since 549 550 2000, which means the intensified trend of wave activities noted in previous researches 551 (Hu & Fu, 2009; Lin et al., 2009) are reversed after 2000 in early austral spring. Further 552 analysis suggests that the weakening of stratospheric wave activities is related to the 553 weakening of tropospheric wave sources in extratropical Southern southern 554 Hemispherehemisphere, which is mainly contributed by the wave-1 component.

555 As the Antarctic ozone also shows clear shift around the 2000, we firstly examine 556 the impact of ozone recovery on Antarctic stratospheric planetary wave activity. Our 557 simulation results indicate that significant ozone recovery in lower stratosphere changes 558 the atmospheric state for wave propagation to some extent, inducing a slight decrease 559 of vertical wave flux over UTLS region in subpolar southern hemisphere. Meanwhile, 560 the changes of wave activity in middle and upper stratosphere over subpolar region induced by ozone recovery are not significant. Therefore, the ozone recovery has minor 561 562 contribution to the significant weakening of stratospheric planetary wave activity in 563 September.

Moreover, EOF analysis and correlation analysis indicate that the stratospheric wave activities in early austral spring during 2000-2017 are related to PC2 of SST over 20°N-70°S (i.e., the SHtrop region). The corresponding EOF2 mode also shows a

567	goodgreat similarity to the spatial pattern of SST trend, suggesting that the weakening
568	of stratospheric wave activities is connected to the trend of SST in SHtrop region.
569	Meanwhile, the linkage between the SST trend in NH region and the weakening of
570	stratospheric wave activities is weak. Finally, tThe model simulations also support the
571	conclusion that the SST changes in SHtrop region lead to the a weakening of
572	tropospheric wave sources and stratospheric wave activities. The contribution of SST
573	trend in tropical region to the weakening of stratospheric wave activities is larger than
574	that in the extratropical southern hemisphere. However, the response of tropospheric
575	wave sources and stratospheric wave activities to SST trend in NH region is not
576	significant. The contribution of SST trend over SHtrop region to the weakening of
577	stratospheric wave activities is about 34%. Finally, both reanalysis datasets and
578	numerical simulations indicate that the Brewer-Dobson circulation related to
579	stratospheric wave activity has also been weakening in early austral spring since 2000,
580	which is also attributed to the changes of September SST in tropics and extratropical
581	southern hemisphere.
582	Although many researchers claimed that the climate transition around 2000 in
583	southern hemisphere is related to ozone depletion and recovery (e.g., Barnes et al., 2013;
584	Banerjee et al., 2020), there is no contradiction between our results and these previous
585	studies. Firstly, the southern hemisphere tropospheric circulation (i.e., the SAM index,
586	the tropospheric jet position and the Hadley cell edge) shifts related to ozone changes
587	in these previous studies basically occurred in austral summer (e.g., Son et al, 2008;
588	Thompson et al., 2011; Barnes et al, 2013; Banerjee et al., 2020). These tropospheric

589	circulation changes are induced by downward coupling of circulation anomalies in the
590	stratosphere (e.g., Thompson et al., 2011) during October and November, when solar
591	radiation covers the entire Antarctic and causes heating effects. However, the Antarctic
592	stratospheric circulation response to ozone variation in September is not as strong as
593	that in October or November (e.g., Thompson et al., 2011, Figs. 1b, d) because solar
594	radiation can only reach part of Antarctic stratosphere during a majority period of
595	September. This implies that the response of atmospheric state in September to
596	Antarctic stratospheric ozone change is not significant. Secondly, the FWSC
597	component used in this study is an atmospheric module with prescribed SST and forcing
598	gases. Therefore, our model results only indicate that the weakening of stratospheric
599	wave activity can be attributed to SST changes, while the impact of ozone change in
600	middle and low latitudes on SST cannot be determined based on these simulations.
601	Whether the transition signal of Antarctic stratospheric ozone is stored in the ocean
602	needs more efforts to explore. This is an issue beyond the scope of this study and further
603	investigation is necessary by using a fully coupled earth system model.
604	The southern hemisphere stratospheric wave activity trend from the early 1980s to
605	the early 2000s has been examined by Hu and Fu (2009) and hence is not analyzed in
606	the present study. Wang and Waugh (2012) used stratosphere-resolving chemistry-
607	climate model forced by time-varying factors to evaluate the trends of stratospheric
608	temperature, residual circulation as well as wave activity during recent decades, and the
609	trend of cumulative eddy heat flux shown in their paper is not significant (Fig. 6 in
610	Wang and Waugh (2012)). In addition, Polvani et al. (2018) used time-varying ODSs

I	
611	to simulate Brewer-Dobson circulation and attained obvious trend transition around
612	2000. Their simulations cover from 1960s to 2080s. The significance of simulated trend
613	may be related to model performance and the length of simulating period. As the period
614	we focus is relatively short and our purpose is attribution rather than generating a real
615	trend, we perform the ensemble time-slice experiments in this study, which are also
616	used in many other previous researches (e.g., Hu et al., 2018; Kang et al., 2011; Zhang
617	et al., 2016) to attribute trends in the atmosphere. In addition, most of the current
618	climate models cannot generate a realistic wave activity trend as waves in the
619	atmosphere are linked with various processes and factors (e.g., Baldwin & Dunkerton,
620	2005; Garcia & Randel, 2008; Labitzke, 2005; Shindell et al., 1999; Shu et al., 2013;
621	<u>Xie et al., 2008).</u>
622	The question that remains answered is whether the ozone recovery trend also
622 623	The question that remains answered is whether the ozone recovery trend also contributes to the weakening of stratospheric wave activities in September since the
623	contributes to the weakening of stratospheric wave activities in September since the
623 624	contributes to the weakening of stratospheric wave activities in September since the early 2000s. As described in Section 2, a control experiment (O3ctrl) forced by
623 624 625	contributes to the weakening of stratospheric wave activities in September since the early 2000s. As described in Section 2, a control experiment (O3ctrl) forced by elimatological ozone and a sensitive experiment forced by the linear increment of
623 624 625 626	contributes to the weakening of stratospheric wave activities in September since the early 2000s. As described in Section 2, a control experiment (O3ctrl) forced by climatological ozone and a sensitive experiment forced by the linear increment of global ozone in September during 2001-2017 are conducted to address the above
623 624 625 626 627	contributes to the weakening of stratospheric wave activities in September since the early 2000s. As described in Section 2, a control experiment (O3ctrl) forced by climatological ozone and a sensitive experiment forced by the linear increment of global ozone in September during 2001-2017 are conducted to address the above question. The pattern of ozone forcing field is similar to its trend pattern (Figs. S4e, d;
 623 624 625 626 627 628 	contributes to the weakening of stratospheric wave activities in September since the early 2000s. As described in Section 2, a control experiment (O3ctrl) forced by elimatological ozone and a sensitive experiment forced by the linear increment of global ozone in September during 2001-2017 are conducted to address the above question. The pattern of ozone forcing field is similar to its trend pattern (Figs. S4c, d; Fig. S5). We choose the period of 2001-2017 because we notice that the ozone recovery
 623 624 625 626 627 628 629 	contributes to the weakening of stratospheric wave activities in September since the early 2000s. As described in Section 2, a control experiment (O3etrl) forced by elimatological ozone and a sensitive experiment forced by the linear increment of global ozone in September during 2001-2017 are conducted to address the above question. The pattern of ozone forcing field is similar to its trend pattern (Figs. S4c, d; Fig. S5). We choose the period of 2001-2017 because we notice that the ozone recovery trend derived from MERRA-2 in September with the beginning year of 2000 is not

1	
633	Table 2. The simulated results indicate that there is no significant response of wave flux
634	(Fig. 11a, d) as well as its Fourier decomposed components (Fig. 11b, c) over southern
635	hemisphere subpolar region in the stratosphere, suggesting that the prescribed ozone
636	recovery is incapable of inducing the weakening of stratospheric wave activities.
637	Many researchers claimed that the climate transition around 2000 in the southern
638	hemisphere is related to ozone depletion and recovery (e.g., Barnes et al., 2013;
639	Banerjee et al., 2020). Note that there is no contradiction between our results and these
640	previous studies. Firstly, the southern hemisphere tropospheric circulation (i.e., the
641	SAM index, the tropospheric jet position and the Hadley cell edge) transition related to
642	ozone depletion and recovery reported in these previous studies basically occurred in
643	austral summer (e.g., Son et al., 2008; Thompson et al., 2011; Barnes et al., 2013;
644	Banerjee et al., 2020). These tropospheric circulation transitions are induced by
645	downward coupling of circulation anomalies in the stratosphere (e.g., Thompson et al.,
646	2011) during October and November, when solar radiation covers the entire Antarctic
647	and causes radiative heating effects. However, we focus on September in the present
648	study. The Antarctic stratospheric circulation response to ozone variation in September
649	is not as strong as that in October or November (e.g., Thompson et al., 2011, Fig. 1b, d)
650	because solar radiation can only reach part of the Antarctic stratosphere during a
651	majority period of September. This fact implies that the response of wave propagation
652	environment in the Antarctic stratosphere to ozone trend is also not significant (Fig. S6).
653	Secondly, the FWSC component used in this study is an atmospheric module with
654	prescribed SST and gases. Therefore, the model results only indicate that the weakening

655	of stratospheric wave activities can be attributed to SST trends, while the impact of	
656	ozone depletion and recovery trend in the tropics and mid-latitudes on the shift of SST	
657	trend pattern cannot be determined based on the model simulations. This is an issue	
658	beyond the scope of this study and further investigation is necessary using a fully	
659	coupled earth system model.	
660	In addition, the reanalysis datasets show that the Brewer Dobson circulation	
661	related to wave activities in the stratosphere weakened significantly in early austral	
662	spring during 2000-2017 (Fig. 12b), which is contrary to the intensified trend during	
663	1980-2000 (Fig. 12a). The transition of BDC around 2000 is believed to be associated	
664	with ozone depletion and recovery (e.g., Polvani et al., 2017; Polvani et al., 2018).	
665	However, our modeling results suggest that the SST trend is responsible for the	
666	weakening of BDC in September since 2000 (Fig. 12d, e, f), The response of BDC to	
667	ozone recovery is not significant (Fig. 12c), especially for the branch near the Antarctic.	
668	These results indicate that the SST trend should be taken into consideration when	
669	exploring the mechanism for the climate transition in the southern hemispheric	
670	stratosphere around 2000.	
671		
672	Data availability:	
673	The ERA-Interim is available at: https://apps.ecmwf.int/datasets/data/interim-	带换
674	full-daily/levtype=sfc/. The MERRA-2 is available at: https://disc.gsfc.nasa.gov/d	
675	atasets?keywords=%22MERRA-2%22&page=1&source=Models%2FAnalyses%20M	
676	ERRA-2. The JRA-55 is available at: https://jra.kishou.go.jp/JRA-55/index_en.ht	

带格式的: 缩进: 首行缩进: 2 字符, 允许文字在单词中间 ^{换行}

677	ml#download. The NCEP-2 is available at: http://www.cpc.ncep.noaa.gov/product		
678	s/wesley/reanalysis2/. The ERSST v5 dataset is available at: https://www1.ncdc.		
679	noaa.gov/pub/data/cmb/ersst/v5/netcdf/. The observations of TCO from SBUV v	_	带格式的: 字体: 非加粗 带格式的: 字体: 非加粗
680	8.6 satellite dataset are available at: https://acd-ext.gsfc.nasa.gov/Data_services/m		带格式的: 字体: 非加粗
681	erged/data/sbuv_v86_mod.int_lyr.70-18.za.r7.txt. The unfiltered IPO index derived		
682	_from ERSST v5 dataset is available at: https://psl.noaa.gov/data/timeseries/IPOT		
683	PI/tpi.timeseries.ersstv5.data.		带格式的: 字体: 非加粗
684	Author contributions:		
685	Yihang Hu conducted experiments, produced figures and tables, organized and	\checkmark	带格式的: 字体:非加粗
005	Timang The conducted experiments, produced figures and dotes, organized and		带格式的: 缩进: 首行缩进: 2 字符
686	wrote the manuscript. Wenshou Tian, Jiankai Zhang and Tao Wang contributed to revise		
687	the manuscript. Mian Xu helped to design experiments.		带格式的: 字体: 非加粗
688	Competing interests:		
689	The authors declare that they have no competing interest.		带格式的: 缩进: 首行缩进: 2 字符
001			带格式的: 字体: 非加粗
690	Acknowledgements:		
691	This work is supported by the National Natural Science Foundation of China		
692	(41630421 and 42075062). We thank Institute Pierre Simon Laplace (IPSL), NCEP and		
693	NCAR, National Aeronautics and Space Administration (NASA) and Japan		
694	Meteorological Agency (JMA) for providing ERA-Interim, NCEP-2, MERRA-2 and		
695	JRA-55 datasets. We thank National Aeronautics and Space Administration (NASA)		
696	for providing MERRA-2 dataset and SBUV v8.6 satellite dataset. We thank National		
697	Oceanic and Atmospheric Administration (NOAA) for providing ERSST v5 dataset and		
698	IPO index. We also thank the scientific team at NCAR for providing CESM-1 model.		

699	Finally, we thank the computing support provided by the <u>Supercomputing Center and</u>	
700	the College of Atmospheric Sciences, <u>from</u> Lanzhou University.	
701	4	
702	APPENDIX	1
703	Analysis of time lag for tropical SST affects Antarctic stratospheric	1
704	wave activity	1
705	As stated in the Section 2, the tropical SST anomalies (the linear inecrements) in	
706	experiment ssttrop are also applied in July and August (Fig. S4) to avoid abrupt SST	
707	variations from month to month, and the two months are taken as spin-up time.	
708	Therefore, whether the SST forcing in July and August also contribute to the weakening	
709	of Antarctic stratospheric wave activity in September or not cannot be justified based	
710	on the experiment ssttrop only. Here, we performed an additional experiment	
711	ssttropAug without September SST anomalies (Fig. S4f) to clarify whether the	
712	weakening of Antarctic stratospheric wave activity is induced by the tropical SST trend	
713	at the same month. Like other numerical experiments described in Table 1, the	
714	ssttropAug also includes 100 ensemble members that run from July to September forced	
715	by the same initial conditions from the 21st year to the 120th year in July generated by	
716	free run. The detailed descriptions of ssttropAug and other relevant experiments in the	
717	manuscript are displayed together in the Table S1 for comparison. Figure S4 shows the	
718	applied global SST anomalies in ssttrop and ssttropAug from July to September.	
719	The responses of tropospheric wave sources and stratospheric wave activities in	
720	ssttropAug are shown in Figs. S5a-c and Figs. S5d-f, respectively. Note that the	

-1	带格式的:	舌中, 缩进: 首行缩进: 0 字符
Ι	带格式的:	주体: 四号
Λ	带格式的:	2体:加粗
Λ	带格式的:	字体: 四号, 加粗
-1	带格式的:	宿进: 首行缩进: 2 字符

721	anomalies of subpolar tropospheric geopotential height in September forced by changes	
722	in tropical SST in August does not superpose on their climatological patterns in an	
723	evident out-of-phase style (Figs. S5a-c). The anomaly of wave-1 component of	
724	geopotential height shows a slight in-phase overlap with its climatology over subpolar	
725	region (Fig. S5b). Accordingly, the responses of stratospheric wave activities over	
726	subpolar of southern hemisphere are not significant (Figs. S5d-f). The results here	
727	suggest that, the decrease of September vertical wave flux induced by SST changes in	
728	August is negligible comparing to that in the experiment with anomalous SST forcing	
729	in September (Figs. S5g), and the tropical SST trend in September plays a dominate	
730	role in weakening of stratospheric wave activity at the same month.	
731	Furthermore, we also use a linear barotropic model (LBM) (e.g., Shaman &	
732	Tziperman, 2007; Shaman & Tziperman, 2011) to quantify the time scale for	
733	propagation of tropical anomalies to high latitudes. The LBM are developed to solve	
734	the barotropic vorticity equation, which is given as Eq. (A1):	
735	$J(\overline{\psi}, \nabla^2 \psi') + J(\psi', \nabla^2 \overline{\psi} + f) + \alpha \nabla^2 \psi' + K \nabla^4 \nabla^2 \psi' = R$	带格式的: 缩进: 首行缩进: 6 字符
		域代码已更改
736	<u>(A1)</u>	
737	where the Jacobian $J(A, B)$ is	域代码已更改
738	$J(A,B) = \frac{1}{r^2} \left(\frac{\partial A}{\partial \lambda} \frac{\partial B}{\partial \mu} - \frac{\partial A}{\partial \mu} \frac{\partial B}{\partial \lambda} \right) $ (A2)	带格式的:居中 域代码已更改
	$r^2 \partial \lambda \partial \mu \partial \mu \partial \lambda'$	
739	the forcing function R_is	域代码已更改
		带格式的: 缩进: 首行缩进: 16 字符
740	$R = -(f + \nabla^2 \overline{\psi})D $ (A3)	城代码已更改
7.4.1		域代码已更改
741	ψ is the streamfunction, f is the Coriolis force, α is the Rayleigh coefficient, K	域代码已更改
I		域代码已更改
		域代码已更改

742	is the diffusion coefficient, λ is the longitude, $\mu = \sin(\theta)$, θ is the latitude, r is		域代码已更改 域代码已更改
		\langle	
743	the earth's radius and <u>D</u> is the divergence.		域代码已更改 (封)() () () () () () () () () () () () ()
			域代码已更改 域代码已更改
744	We use the wave-1 component of streamfunction derived from ensemble mean of		~
,	the use the wave i component of subalifunction derived none ensemble mean of		带格式的: 缩进: 首行缩进: 2字符, 行距: 2 倍行距
745	sstetrl as the background field. In LBM, the initial anomaly is given by the divergence.		
746	The divergence forcing field is limited in 40°E-140°W, 10°S-0° (Fig. S6) to ensure that		
747	the tropical initial anomaly of streamfunction superpose on its background field in an		
748	out-of-phase style. We set $D = -7.9 \times 10^{-7} s^{-1}$, which is the mean divergence over the	/	域代码已更改
749	forcing region. The LBM simulated streamfunction anomalies are shown in Figs. S7b-		
750	i. Note that the anomalies in tropics only take a few days to arrive the high latitudes in		
751	southern hemisphere. After about four days, a stable anti-phase superposition of		
752	streamfunction is well established in extratropical southern hemisphere (Figs. S7f-i).		
753	These results are supported by previous studies (e.g., Shaman & Tziperman, 2011),		
754	which also indicate that the horizontal propagation of anomaly in atmosphere takes a		
755	few days.		
756	Previous studies also reported that it takes about 4 days for wave-1 to propagate		带格式的: 行距: 2 倍行距
757	from troposphere into stratosphere and 1-2 days for wave-2 (e.g., Randel, 1987). Thus,		
758	the tropical oceans affect the stratosphere at mid-high latitudes with a lag of several		
759	days. However, the SST forcing field applied in CESM is on monthly scale. It is		
760	reasonable to use September SST trend to drive and explain the trends of extratropical		
761	circulation and wave activity at the same month.		
762	*		带格式的: 缩进: 首行缩进: 2 字符
763	Reference		

764	Andrews, D. G., Holton, J. R., & Leovy, C. B.: Middle atmosphere dynamics, (p. 489), San Diego,		
765	Calif: Academic Press Inc, 1987.		
766	Angell, J. K., & Free, M.: Ground-based observations of the slowdown in ozone decline and onset		
767	of ozone increase, J. Geophys. Res., 114(D7), D07303,		
768	https://doi.org/10.1029/2008JD010860, 2009.		
769	Brewer, A. W.: Evidence for a world circulation provided by the measurements of helium and water		
770	vapour distribution in the stratosphere, Q. J. Roy. Meteor. Soc., 75(326), 351-363,		
771	https://doi.org/10.1002/qj.49707532603, 1949.		
772	Baldwin, M., P., Dunkerton, T. J.: Stratospheric harbingers of anomalous weather regimes, Science.		
773	https://doi.org/10.1126/science.1063315, 2001.		
774	Baldwin, M., P., Dunkerton, T., J.: The solar cycle and stratosphere-troposphere dynamical coupling.		
775	J. Atmos. Sol-Terr. Phy., 67(1-2), 71-82, https://doi.org/10.1016/j.jastp.2004.07.018, 2005.		
776	Baldwin, M., Hirooka, T., O'Neill, A., Yoden, S., Charlton, A. J., Hio, Y., & Yoden, S.: Major		
777	stratospheric warming in the Southern Hemisphere in 2002: Dynamical aspects of the		
778	ozone hole split, SPARC Newsletter, 20, 24–26, 2003.		
779	Banerjee, A., Fyfe, J. C., Polvani, L. M., Waugh D., Chang K. L.: A pause in Southern Hemisphere		
780	circulation trends due to the Montreal Protocol, Nature, 579(7800), 544-548,		
781	https://doi.org/10.1038/s41586-020-2120-4, 2020.		
782	Birner, T., & Bönisch, H.: Residual circulation trajectories and transit times into the extratropical		
783	lowermost stratosphere, Atmos. Chem. Phys., 11(2), 817-827, https://doi.org/10.5194/acp-		
784	11-817-2011, 2011.		
785	Barnes, E. A., Barnes, N. W., Polvani, L. M.: Delayed southern hemisphere climate change induced		

786	by stratospheric ozone recovery, as projected by the cmip5 models, J. Climate, 27(2), 852-	
787	867, https://doi.org/10.1175/JCLI D 13 00246.1, 2014	
788	Bosilovich, M., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R. and Suarez, M.: MERRA-2:	
789	Initial Evaluation of the Climate, NASA Technical Report Series on Global Modeling and Data	
790	Assimilation, 43, 139, 2015.	
791	4	带格式的: 缩进: 左侧: 0 厘米, 首行缩进: 0 厘米
792	Banerjee, A., Fyfe, J. C., Polvani, L. M., Waugh D., Chang K. L.: A pause in Southern Hemisphere	
793	eireulation trends due to the Montreal Protocol, Nature, 579(7800), 544-548,	
794	https://doi.org/10.1038/s41586-020-2120-4, 2020.	
795	Charney, J. G., & Drazin, P. G.: Propagation of planetary-scale disturbances from the lower into the	
796	upper atmosphere, J. Geophys. Res., 66(1), 83-109,	
797	https://doi.org/10.1029/JZ066i001p00083, 1961.	
798	Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al.: The ERA-	
799	Interim reanalysis: Configuration and performance of the data assimilation system, Q. J.	
800	Roy. Meteor. Soc., 137(656), 553-597, https://doi.org/10.1002/qj.828, 2011.	
801	Gillett, N. P., Allen, M. R., & Williams, K. D.: Modelling the atmospheric response to doubled CO2	
802	and depleted stratospheric ozone using a stratosphere-resolving coupled GCM, Q. J. Roy.	
803	Meteor. Soc., 129(589), 947-966, https://doi.org/10.1256/qj.02.102, 2003.	
804	Garcia, R. R., & Randel, W. J.: Acceleration of the brewer-dobson circulation due to increases in	
805	greenhouse gases, J. Atmos. Sci., 65(8), 2731-2739.	
806	https://doi.org/10.1175/2008JAS2712.1, 2008.	
807	Gabriel, A., H. Körnich, Lossow, S., Peters, D. H. W., & Murtagh, D.: Zonal asymmetries in middle	

808	atmospheric ozone and water vapour derived from odin satellite data 2001-2010, Atmos.			
809	Chem. and Phys., 11(18), 9865-9885, https://doi.org/10.5194/acp-11-9865-2011, 2011.			
810	Garcia, R. R., & Randel, W. J.: Acceleration of the brewer-dobson circulation due to increases in			
811	greenhouse gases, J. Atmos. Sci., 65(8), 2731-2739.			
812	https://doi.org/10.1175/2008JAS2712.1, 2008.			
813	Haigh, J. D., Blackburn, M., & Day, R.: The response of tropospheric circulation to perturbations in			
814	lower-stratospheric temperature, J. Climate, 18(17), 3672-3685.			
815	https://doi.org/10.1175/JCL13472.1, 2005.			
816	Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine.: On the "Downward			
817	Control" of Extratropical Diabatic Circulations by Eddy-Induced Mean Zonal Forces, J.			
818	Atmos. Sci., 48(4), 651–678, https://doi.org/10.1175/1520-			
819	0469(1991)048<0651:OTCOED>2.0.CO;2, 1991.			
820	Haigh, J. D., Blackburn, M., & Day, R.: The response of tropospheric circulation to perturbations in			
821	lower-stratospheric temperature, J. Climate, 18(17), 3672-3685.			
822	https://doi.org/10.1175/JCLI3472.1, 2005.			
823	Holton, J.: An introduction to dynamic meteorology, (p. 535), Elsevier Academic Pr., 2004.			
824	Hu, Y., & Fu, Q.: Stratospheric warming in southern hemisphere high latitudes since 1979, Atmos.			
825	Chem. Phys., 9(13), 4329-4340, https://doi.org/10.5194/acp-9-4329-2009, 2009.			
826	Hurwitz, M. M., Newman, P. A., Oman, L. D., & Molod, A. M.: Response of the antarctic			
827	stratosphere to two types of El niño events, J. Atmos. Sci., 68(4), 812-822.			
828	https://doi.org/10.1175/2011JAS3606.1, 2011.			
829	Haarsma, R. J., & Selten, F.: Anthropogenic changes in the Walker circulation and their impact on			

830	the entry territed chartery proveduration in the Nethern Hamingham Clim Demons	
830	the extra-tropical planetary wavestructure in the Northern Hemisphere, Clim. Dynam.,	
831	39(7-8), 1781-1799, https://doi.org/10.1007/s00382-012-1308-1, 2012.	
832	Huang, B., Peter W. Thorne, et. al.: Extended Reconstructed Sea Surface Temperature version 5	
833	(ERSSTv5), Upgrades, validations, and intercomparisons, J. Climate, 30(20), 8179-	
834	8205, https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.	
835	Hu, D., Tian, W., Xie, F., Shu, J., Dhomse, S.: Effects of meridional sea surface temperature changes	
836	on stratospheric temperature and circulation, Adv. Atmos. Sci., 31, 888-900.	
837	https://doi.org/10.1007/s00376-013-3152-6, 2014.	
838	Hu, D., Tian, W., Xie, F., Wang, C., Zhang, J.: Impacts of stratospheric ozone depletion and recovery	
839	on wave propagation in the boreal winter stratosphere, J. Geophys. Res-Atmos., 120(16),	
840	8299-8317, https://doi.org/10.1002/2014JD022855, 2015.	带格式的: 字体: (默认) Times New Roman, 10 磅
841	Hu, D., Guan, Z., Tian, W., & Ren, R.: Recent strengthening of the stratospheric Arctic vortex	
841 842	Hu, D., Guan, Z., Tian, W., & Ren, R.: Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific, Nat. Commun., 9(1), 1697.	
842	response to warming in the central North Pacific, Nat. Commun., 9(1), 1697.	
842 843	response to warming in the central North Pacific, Nat. Commun., 9(1), 1697. https://doi.org/10.1038/s41467-018-04138-3, 2018.	
842 843 844	response to warming in the central North Pacific, Nat. Commun., 9(1), 1697. https://doi.org/10.1038/s41467-018-04138-3, 2018. Hu, D., Guo, Y., & Guan, Z.: Recent weakening in the stratospheric planetary wave intensity in early	
842 843 844 845	 response to warming in the central North Pacific, Nat. Commun., 9(1), 1697. https://doi.org/10.1038/s41467-018-04138-3, 2018. Hu, D., Guo, Y., & Guan, Z.: Recent weakening in the stratospheric planetary wave intensity in early winter, Geophys. Res. Lett., 46(7), 3953-3962, https://doi.org/10.1029/2019GL082113, 	
 842 843 844 845 846 	 response to warming in the central North Pacific, Nat. Commun., 9(1), 1697. https://doi.org/10.1038/s41467-018-04138-3, 2018. Hu, D., Guo, Y., & Guan, Z.: Recent weakening in the stratospheric planetary wave intensity in early winter, Geophys. Res. Lett., 46(7), 3953-3962, https://doi.org/10.1029/2019GL082113, 2019. 	
 842 843 844 845 846 847 	 response to warming in the central North Pacific, Nat. Commun., 9(1), 1697. https://doi.org/10.1038/s41467-018-04138-3, 2018. Hu, D., Guo, Y., & Guan, Z.: Recent weakening in the stratospheric planetary wave intensity in early winter, Geophys. Res. Lett., 46(7), 3953-3962, https://doi.org/10.1029/2019GL082113, 2019. Hurwitz, M. M., Newman, P. A., Oman, L. D., & Molod, A. M.: Response of the antarctic 	
 842 843 844 845 846 847 848 	 response to warming in the central North Pacific, Nat. Commun., 9(1), 1697. https://doi.org/10.1038/s41467-018-04138-3, 2018. Hu, D., Guo, Y., & Guan, Z.: Recent weakening in the stratospheric planetary wave intensity in early winter, Geophys. Res. Lett., 46(7), 3953-3962, https://doi.org/10.1029/2019GL082113, 2019. Hurwitz, M. M., Newman, P. A., Oman, L. D., & Molod, A. M.: Response of the antarctic stratosphere to two types of El niño events, J. Atmos. Sci., 68(4), 812-822. 	

852	Huang, B., Peter W. Thorne, et. al.: Extended Reconstructed Sea Surface Temperature version 5	
853	(ERSSTv5), Upgrades, validations, and intercomparisons, J. Climate, 30(20), 8179-	
854	8205, https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.	
855	4	带格式的: 缩进: 左侧: 0 厘米, 首行缩进: 0 厘米
856	Ialongo, I., Sofieva, V., Kalakoski, N., Tamminen, J., & E. Kyrölä.: Ozone zonal asymmetry and	
857	planetary wave characterization during antarctic spring, Atmos. Chem. Phys., 12(5), 2603-	
858	2614, https://doi.org/10.5194/acp-12-2603-2012, 2012.	
859	Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J., Fiorino, M., & Potter, G. L.:	
860	NCEP-DOE AMIP-II Reanalysis (R-2), B. Am. Meteorol. Soc., 83(11), 1631-1644.	
861	https://doi.org/10.1175/BAMS-83-11-1631, 2002.	
862	Kang, S. M., Polvani, L. M., Fyfe, J. C., & Sigmond, M.: Impact of polar ozone depletion on	
863	subtropical precipitation, Science, 332(6032), 951-954,	
864	https://doi.org/10.1126/science.1202131, 2011.	
865	Kim, B. M., Son, S. W., Min, S. K., Jeong, J. H., Kim, S. J., Zhang, X., Shim, T., Yoon, J.	
866	H.: Weakening of the stratospheric polar vortex by Arctic sea-ice loss, Nat.	
867	Commun., 5(1), 4646, https://doi.org/10.1038/ncomms5646, 2014.	
868	Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C.	
869	Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi,: The JRA-55 Reanalysis: General	
870	specifications and basic characteristics, J. Meteorol. Soc. of Jpn., 93(1), 5-48,	
871	https://doi.org/10.2151/jmsj.2015-001, 2015.	
872	Kravchenko, V. O., Evtushevsky, O. M., Grytsai, A. V., Klekociuk, A. R., Milinevsky, G. P., and	
873	Grytsai, Z. I.: Quasi-stationary planetary waves in late winter Antarctic stratosphere	

874	temperature as a possible indicator of spring total ozone, Atmos. Chem. Phys., 11(10),
875	28945-28967, https://doi.org/10.5194/acp-12-2865-2012, 2011.
876	Krzyścin, J. W.: Onset of the total ozone increase based on statistical analyses of global ground-
877	based data for the period 1964 - 2008, Int. J. Climatol., 32(2), 240-246,
878	https://doi.org/10.1002/joc.2264, 2012.
879	Kim, B. M., Son, S. W., Min, S. K., Jeong, J. H., Kim, S. J., Zhang, X., Shim, T., Yoon, J.
880	H.: Weakening of the stratospheric polar vortex by Arctic sea-ice loss, Nat.
881	Commun., 5(1), 4646, https://doi.org/10.1038/ncomms5646, 2014.
882	Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C.
883	Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi,: The JRA-55 Reanalysis: General
884	specifications and basic characteristics, J. Meteorol. Soc. of Jpn., 93(1), 5-48,
885	https://doi.org/10.2151/jmsj.2015-001, 2015.
886	Labitzke, K.: On the solar cycle-QBO relationship: A summary. J. Atmos. Sol-Terr. Phy., 67(1-2),
887	45-54, https://doi.org/10.1016/j.jastp.2004.07.016, 2005.
888	Lin, P., Fu, Q., Solomon, S., & Wallace, J. M.: Temperature trend patterns in southern hemisphere
889	high latitudes: novel indicators of stratospheric change, J. Climate, 22(23), 6325-6341.
890	https://doi.org/10.1175/2009JCLI2971.1, 2009.
891	Li, S.: The influence of tropical indian ocean warming on the southern hemispheric stratospheric
892	polar vortex, Sci. China. Ser. D., 52(3), 323-332, https://doi.org/10.1007/s11430-009-
893	0029-8, 2009.
894	Lin, P., Fu, Q., & Hartmann, D.: Impact of tropical sst- <u>SST</u> on stratospheric planetary waves in the
895	southern hemisphere, J. Climate, 25(14), 5030-5046. https://doi.org/10.1175/JCLI-D-11-

896	00378.1, 2012.
897	Li, S.: The influence of tropical indian ocean warming on the southern hemispheric stratospheric
898	polar vortex, Sci. China. Ser. D., 52(3), 323-332, https://doi.org/10.1007/s11430-009-
899	<u>0029-8, 2009.</u>
900	Li, Y., & Tian, W.: Different impact of central pacific and eastern pacific el-El niñno on the duration
901	of sudden stratospheric warming, Adv. Atmos. Sci., 34(06), 771-782.
902	https://doi.org/10.1007/s00376-017-6286-0, 2017.
903	Li, Y., Tian, W., Xie, F., Wen, Z., Zhang, J., Hu, D., & Han, Y.: The connection between the second
904	leading mode of the winter North Pacific sea surface temperature anomalies and
905	stratospheric sudden warming events, Clim. Dynam., 51(1-2), 581 - 595.
906	https://doi.org/10.1007/s00382-017-3942-0, 2018.
907	Lim, E. P., Hendon, H. H., Boschat, G. Hudson, D., Thompson, D. J., Dowdy, A., J., Arblaster, J.
908	M.: Australian hot and dry extremes induced by weakenings of the stratospheric polar
909	vortex, Nat. Geosci., 12, 896–901, https://doi.org/10.1038/s41561-019-0456-x, 2019.
910	Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J. F., Calvo, N., & Polvani, L. M.: Climate
911	change from 1850 to 2005 simulated in CESM1 (WACCM), J. Climate, 26(19), 7372-7391.
912	https://doi.org/10.1175/JCLI-D-12-00558.1, 2013.
913	Nishii, K. and Nakamura, H.: Tropospheric influence on the diminished Antarctic ozone hole in
914	September 2002, Geophys. Res. Lett., 31(16), L16103,
915	https://doi.org/10.1029/2004GL019532, 2004.
916	Neale, R. B., Richter, J., Park, S., Lauritzen, Lauritzen, P. H., Vavrus, S. J., Rasch, P. J., & Zhang,
917	M.:The mean climate of the community atmosphere model (cam4) in forced sst and fully

918	coupled experiments, J. Climate, 26(14), 5150-5168, https://doi.org/10.1175/JCLI-D-12-		
919	00236.1, 2013.		
920	Newman, P. A., & Nash, E. R.: The unusual Southern Hemisphere stratosphere winter of 2002, J.		
921	Atmos. Sci., 62(3), 614–628. https://doi.org/10.1175/JAS-3323.1, 2005.		
922	Nishii, K. and Nakamura, H.: Tropospheric influence on the diminished Antarctic ozone hole in		
923	September 2002, Geophys. Res. Lett., 31(16), L16103,		
924	https://doi.org/10.1029/2004GL019532, 2004.		
925	Neale, R. B., Richter, J., Park, S., Lauritzen, Lauritzen, P. H., Vavrus, S. J., Rasch, P. J., & Zhang,		
926	M.:The mean climate of the community atmosphere model (cam4) in forced sst and fully		
927	coupled experiments, J. Climate, 26(14), 5150-5168, https://doi.org/10.1175/JCLI-D-12-		
928	00236.1, 2013.		
929	Polvani, L. M., & Bellomo, K.: The key role of ozone depleting substances in weakening the walker		
930	circulation in the second half of the 20th century, J. Climate, 32(5), 1411-1418.		
931	https://doi.org/10.1175/JCLI-D-17-0906.1, 2013.		
932	Polvani, L. M., Wang, L., Aquila, V., & Waugh, D. W.: The impact of ozone depleting substances		
933	on tropical upwelling, as revealed by the absence of lower stratospheric cooling since the		
934	late 1990s, J. Climate, 30(7), 2523-2534. https://doi.org/10.1175/JCLI-D-16-0532.1, 2017.		
935	Polvani, L. M., Abalos, M., Garcia, R., Kinnison, D., & Randel, W. J.: Significant weakening of		
936	Brewer-Dobson circulation trends over the 21st century as a consequence of the Montreal		
937	Protocol, Geophys. Res. Lett., 45(1), 401-409, <u>https://doi.org/10.1002/2017GL075345</u> ,		
938	2018.		
939	Randel, W. J.: A study of planetary waves in the southern winter troposphere and stratosphere. Part		

940	I: Wave structure and vertical propagation, J. Atmos. Sci., 44(6), 917-935, 1987.		
941	Randel, W. J., & Wu, F.: Cooling of the arctic and antarctic polar stratospheres due to ozone		
942	depletion, J. Climate, 12(5), 1467-1479. https://doi.org/10.1175/1520-		
943	0442(1999)012<1467:COTAAA>2.0.CO;2, 1999.		
944	Shaman, J., & Tziperman, E.: An atmospheric teleconnection linking ENSO and southwestern		
945	European precipitation, J. Climate., 24(1), 124-139,		
946	https://doi.org/10.1175/2010JCLI3590.1, 2011.		
947	Shaman, J., & Tziperman, E.: Summertime ENSO-North African-Asian Jet teleconnection and		
948	implications for the Indian monsoons, Geophys. Res. Lett., 34(11), L11702, https://doi.org/		
949	<u>10.1029/2006GL029143, 2007.</u>		
950	Shen, X., Wang, L., & Osprey, S.: The southern hemisphere sudden stratospheric warming of		
951	september 2019, Sci. Bull., 65(21), 1800-1802. https://doi.org/10.1016/j.scib.2020.06.028,		
952	<u>2020a.</u>		
953	Shen, X., Wang, L., & Osprey, S.: Tropospheric forcing of the 2019 antarctic sudden stratospheric		
954	warming, Geophys. Res. Lett., 47(20), e2020GL089343,		
955	https://doi.org/10.1029/2020GL089343, 2020b.		
956	Shindell, D., T., Miller, R., L., Schmidt, G., A., & Pandolfo, L.: Simulation of recent northern winter		
957	climate trends by greenhouse-gas forcing, Nature, 399(6735), 452-455,		
958	https://doi.org/10.1038/20905, 1999.		
959	Shirley, D., Stanley, W., & Daniel, C.: Statistics for Research (Third Edition). (p. 627). Hoboken,		
960	New Jersey: John Wiley & Sons Inc., 2004.		
961	Shu, J., Tian, W., Hu, D., Zhang, J., Shang, L., Tian, Hu., & Xie, F.: Effects of the quasi-biennial		

962	oscillation and stratospheric semi-annual oscillation on tracer transport in the upper	
963	stratosphere. J. Atmos. Sci., 70(5), 1370-1389, https://doi.org/10.1175/JAS-D-12-053.1,	
964	<u>2013.</u>	
965	Simpson, I. R., Blackburn, M., & Haigh, J. D.: The role of eddies in driving the tropospheric	
966	response to stratospheric heating perturbations, J. Atmos. Sci., 66(5), 1347-1365,	
967	https://doi.org/10.1175/2008JAS2758.1, 2009.	带格式的: 超链接, 字体: (默认) Times New Roman, 字体 颜色: 文字 1
968	Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely, R. R., & Schmidt, A.: Emergence of	
969	healing in the antarctic ozone layer, Science, 353(6296), 269-274,	
970	https://doi.org/10.1126/science.aae0061, 2016.	
971	Solomon, S.: Stratospheric ozone depletion: a review of concepts and history, Rev. Geophys., 37(3),	
972	275-316, https://doi.org/10.1029/1999RG900008, 1999.	
973	Son, S. W., Han, B. R., Garfinkel, C. I., Seo-Yeon, K., Rokjin, P., & Luke, A. N., et al.: Tropospheric	带格式的: 缩进: 左侧: 0 厘米, 悬挂缩进: 2 字符, 首行缩 进: -2 字符
974	jet response to antarctic ozone depletion: an update with chemistry-climate model initiative	
975	(CCMI) models, Environ. Res. Lett., 13(5), 054024 https://doi.org/10.1088/1748-	
976	<u>9326/aabf21, 2018.</u>	
977	Son, S. W., P. G. Edwin, K. H. Seo,: The impact of stratospheric ozone recovery on the Southern	
978	Hemisphere westerly jet, Science, 320(5882),: 1486-1489,	
979	https://doi.org/10.1126/science.1155939, 2008.	
980	Susan, E., S., Douglass, A. R., Damon, M. R.: Why do antarctic ozone recovery trends vary?, J.	
981	Geophys. ResAtmos., 124(15), 8837-8850. https://doi.org/10.1029/2019JD030996, 2019.	
982	Swart, N. C. & Fyfe, J. C.: Observed and simulated changes in the Southern Hemisphere surface	
983	westerly wind-stress, Geophys. Res. Lett., 39(16), L16711,	

984 https://doi.org/10.1029/2012GL052810, 2012.

985	Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely, R. R., & Schmidt, A.: Emergence of
986	healing in the antarctic ozone layer, Science, 353(6296), 269-274,
987	https://doi.org/10.1126/science.aae0061, 2016.
988	Son, S. W., Han, B. R., Garfinkel, C. I., Seo Yeon, K., Rokjin, P., & Luke, A. N., et al.: Tropospheric
989	jet response to antarctic ozone depletion: an update with chemistry-climate model initiative
990	(CCMI) models, Environ. Res. Lett., 13(5), 054024 https://doi.org/10.1088/1748-
991	9326/aabf21, 2018.
992	Susan, E., S., Douglass, A. R., Damon, M. R.: Why do antarctic ozone recovery trends vary?, J.
993	Geophys. ResAtmos., 124(15), 8837-8850. https://doi.org/10.1029/2019JD030996, 2019.
994	Shen, X., Wang, L., & Osprey, S.: The southern hemisphere sudden stratospheric warming of
995	september 2019, Sei. Bull., 65(21), 1800-1802. https://doi.org/10.1016/j.seib.2020.06.028,
996	2020a
997	Shen, X., Wang, L., & Osprey, S.: Tropospheric forcing of the 2019 antarctic sudden stratospheric
998	warming, Geophys. Res. Lett., 47(20), e2020GLO89343,
999	https://doi.org/10.1029/2020GL089343, 2020b.
1000	Thompson, D., Solomon, S., Kushner, P. England, M., Grise, K. M., Karoly, D. J.: Signatures of the
1001	Antarctic ozone hole in Southern Hemisphere surface climate change, Nat. Geosci., 4, 741-
1002	749. https://doi.org/10.1038/ngeo1296, 2011.
1003	Tian, W., Li, Y., Xie, F., Zhang, J., Chipperfield, M., & Feng, W., Hu, Y., Zhao, S., Zhou, X., Zhang,
1004	Y. & Ma, X.: The relationship between lower-stratospheric ozone at southern high latitudes
1005	and sea surface temperature in the east Asian marginal seas in austral spring, Atmos. Chem.

1006	Phys., 17(11), 6705-6722. https://doi.org/10.5194/acp-17-6705-2017, 2017.	
1007	Trenberth, K. E., & Fasullo, J. T.: An apparent hiatus in global warming?, Earth's Future, 1(1), 19-	
1008	32, https://doi.org/10.1002/2013EF000165, 2013.	
1009	Tian, W., Li, Y., Xie, F., Zhang, J., Chipperfield, M., & Feng, W., Hu, Y., Zhao, S., Zhou, X., Zhang,	
1010	Y. & Ma, X.: The relationship between lower stratospheric ozone at southern high latitudes	
1011	and sea surface temperature in the east Asian marginal seas in austral spring, Atmos. Chem.	
1012	Phys., 17(11), 6705-6722. https://doi.org/10.5194/acp-17-6705-2017, 2017.	
1013	Wang, T., Tian, W., Zhang, J., Xie, F., Zhang, R., Huang, J. & Hu, D.: Connections between Spring	
1014	Arctic Ozone and the Summer Circulation and Sea Surface Temperatures over the Western	
1015	North Pacific, J. Climate, 33(7): 2907–2923, https://doi.org/10.1175/JCLI-D-19-0292.1,	
1016	2020	带格式的: 字体颜色: 文字 1
1017	WMO.: Scientific assessment of ozone depletion: 2010, World Meteorological Organization/United	
1018	Nations Environment Programme Rep. 52, 516 pp, 2011.	
1019	WMO.: Antarctic ozone hole is smallest on record, World Meteorological Organization. Accessed	
1020	October 2019 at https://public.wmo.int/en/media/news/antarctic-ozone-hole-smallest-	
1021	record, 2019.	
1022	Xia, Y., Xu, W., Hu, Y., & Xie, F.: Southern-hemisphere high-latitude stratospheric warming	
1023	revisit, Clim. Dynam., 54(3): 1671-1682. https://doi.org/10.1007/s00382-019-05083-7,	
1024	2020.	
1025	Xie, F., Tian, W., & Chipperfield, M., P.: Radiative effect of ozone change on stratosphere-	
1026	troposphere exchange. J. Geophys. Res., 113, D00B09,	
1027	https://doi.org/10.1029/2008JD009829, 2008_	

1028	Xie, F., Zhang, J., Huang, Z., Lu, J., & Sun, C.: An estimate of the relative contributions of sea
------	--

- 1029 surface temperature variations in various regions to stratospheric change, J.
- 1030 Climate, 33(12), 4994-5011, https://doi.org/10.1175/JCLI-D-19-0743.1, 2020.
- Yamazaki, Y., Matthias, V., Miyoshi, Y., Stolle, C., Siddiqui, T., Kervalishvili, G., et al.: September
 2019 Antarctic sudden stratospheric warming: Quasi-6-day wave burst and ionospheric
 effects, Geophys. Res. Lett., 47(1), e2019GL086577.
- 1034 https://doi.org/10.1029/2019GL086577, 2020.
- 1035 Zhang, J., Tian, W., Xie, F., Tian, H., Luo, J., Zhang, J., Liu, W., Dhomse, S.: Climate warming and
- 1036 decreasing total column ozone over the tibetan plateau during winter and spring, Tellus B.,
- 1037 66(1), https://doi.org/10.3402/tellusb.v66.23415, 2014.
- 1038 Zhang, J., Tian, W. , Chipperfield, M. P. , Xie, F. , & Huang, J.: Persistent shift of the arctic polar
- 1039 vortex towards the eurasian continent in recent decades, Nat. Clim. Change. 6, 1094–1099.
- 1040 https://doi.org/10.1038/nclimate3136, 2016.
- 1041Zhang, P., Wu, Y. & Smith, K. L.: Prolonged effect of the stratospheric pathway in linking Barents-1042Kara Sea sea ice variability to the midlatitude circulation in a simplified model, Clim.
- 1043 Dynam. 50(17), 527–539. https://doi.org/10.1007/s00382-017-3624-y, 2018.
- 1044Zhang, J., Tian, W., Xie, F., Sang, W., Guo, D., Chipperfield, M., Feng, W., Hu, D.: Zonally1045asymmetric trends of winter total column ozone in the northern middle latitudes, Clim.
- 1046 Dynam., 52(7-8), 4483-4500, https://doi.org/10.1007/s00382-018-4393-y, 2019a.
- 1047 Zhang, P., Wu, Y. & Smith, K. L.: Prolonged effect of the stratospheric pathway in linking Barents-
- 1048 Kara Sea sea ice variability to the midlatitude circulation in a simplified model, Clim.
- 1049 Dynam. 50(17), 527–539. https://doi.org/10.1007/s00382-017-3624-y, 2018.

1050	Zhang, R., Tian, W., Zhang, J., Huang, J., & Xu, M.: The corresponding tropospheric environments
1051	during downward-extending and nondownward-extending events of stratospheric northern
1052	annular mode anomalies, J. Climate, 32(6), 1857-1873, https://doi.org/10.1175/JCLI-D-
1053	18-0574.1, 2019b.
1054	

Table 1. Configurations of experiments for SST trends.

Experiments	Descriptions
sstctrl	Control run. Seasonal cycle of monthly mean global SST dat over 1980-2000 is derived from the ERSST v5 dataset. Fixed values of ozone greenhouse gases and aerosol fields in 2000 are used.
sstNH	As in sstctrl, but with linear increments of SST in September over 2000-2017 in NH (20°N-70°N). The applied global SS anomalies are shown in Fig. 7a.
sstSH	As in sstetrl, but with linear increments of SST in September over 2000-2017 in SH (20°S-70°S). The applied global SS anomalies are shown in Fig. 7b.
ssttrop	As in sstctrl, but with linear increments of SST in September over 2000-2017 in the tropics (20°S-20°N). The applied globe SST anomalies are shown in Fig. 7c.
sstSHtrop	As in sstetrl, but with linear increments of SST in September over 2000-2017 in SHtrop (20°N-70°S). The applied globa SST anomalies are shown in Fig. 7d.
ble 2. Configurati	ions of experiments for the ozone recovery trend.
Experiments	Descriptions

O3ctrl	Control run. The seasonal cycle of monthly averaged global SST data over 1980-2000 is derived from ERSST v5 dataset. The seasonal cycle of monthly mean three-dimensional global ozone over 1980-2000 is derived from MERRA-2 dataset. The GHGs and aerosol fields are specified to be fixed values in 2000.
O3sen	As in O3ctrl, but superposed with linear increments of global ozone in September over 2001-2017. The ozone data in 2002 are removed when the linear increments are calculated. The applied ozone anomalies in Southern Hemisphere are shown in Fig. S5.

_

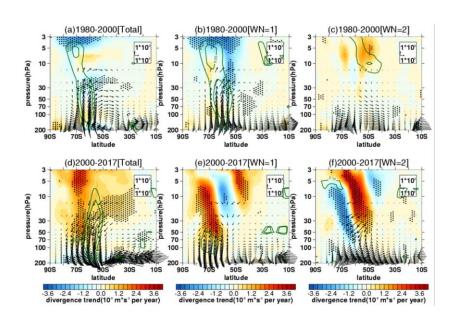
1057 Table 3. Correlations of stratospheric vertical wave flux time series (area-weighted

1058	from 100 hPa to 30 hPa over 70°S-50°S) between different reanalysis dataset.
	· · ·

	ERA-Interim	JRA-55	MERRA-2	NCEP-2
ERA-Interim	1.00 (p=0.00)	0.99 (p<0.01)	0.98 (p<0.01)	0.93 (p<0.01)
JRA-55		1.00 (p=0.00)	0.98 (p<0.01)	0.93 (p<0.01)
MERRA-2			1.00 (p=0.00)	0.94 (p<0.01)
NCEP-2				1.00 (p=0.00)

1059	
1060	Figure captions:
1061	FIG. 1. Trends of southern hemisphere (a, d) stratospheric E-P flux (arrows, units of
1062	horizontal and vertical components are 10 ⁵ and 10 ³ kg·s ⁻² per year, respectively) and its
1063	divergence (shadings) with their (b, e) wave 1 components and (c, f) wave 2
1064	components over (a, b, c) 1980-2000 and (d, e, f) 2000-2017 in September derived from
1065	MERRA-2 dataset. The stippled regions indicate the trend of E-P flux divergence
1066	significant at/above the 90% confidence level. The green contours from outside to
1067	inside (corresponding to $p=0.1, 0.05$) indicate the trend of vertical E-P flux significant 51

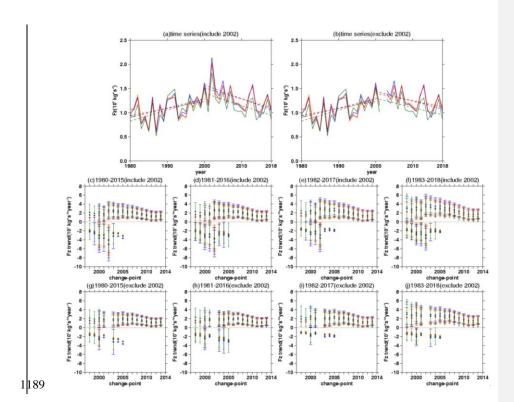
1068	at the 90% and 95% confidence level, respectively.
1069	FIG. 2. (a) The mean time series (solid line) and piecewise (during 1980-2000 and
1070	2000-2018) linear regressions (dashed lines) of vertical E-P flux area-weighted from
1071	100 hPa to 30 hPa over 70°S-50°S in September during 1980-2018 derived from ERA-
1072	Interim (yellow), MERRA-2 (blue), JRA-55 (red) and NCEP-2 (green). Figure (b) is
1073	the same as Figure (a), except for that the data in 2002 are removed. (c, d, e, f) The
1074	trends (dots) and uncertainties (error bars) calculated during various periods using the
1075	change-point method with different beginning and ending years (titles). Circles and
1076	squares in Figures (c, d, e, f) represent positive trends from beginning years to change-
1077	point years (x axes) and negative trends from change point years to ending years,
1078	respectively. Different colors of dots and error bars in Figures (c, d, e, f) correspond to
1079	colors in Figure (a), which represent trends and uncertainties derived from different
1080	datasets. The long and short error bars in same color reflect the 95% and 90%
1081	confidence intervals calculated by two-tailed t test. The error bar is omitted when the
1082	significance of trend is lower than corresponding confidence level. Negative trends and
1083	corresponding uncertainties with the beginning change point years after 2005 are also
1084	omitted, since the trend value shows large fluctuation with shortening of time series.
1085	Figures (g, h, i, j) are the same as Figures (c, d, e, f), except that the data in 2002 are
1086	removed when calculating trends and uncertainties.
1087	FIC. 3. Trends (shadings) and climatological distributions (contours with an interval
1088	of 20 gpm, positive and negative values are depicted by solid and dashed lines
1089	respectively, zeroes are depicted by thick solid lines) of southern hemispheric (a) 500

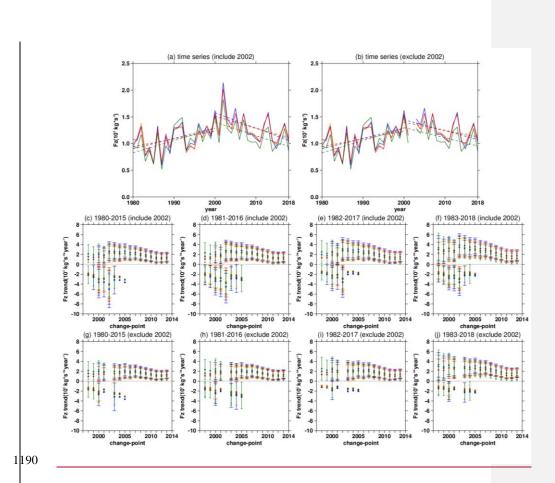

1090	hPa geopotential height zonal deviations with their (b) wave 1 component and (c)
1091	wave 2 component in September during 2000-2017 derived from MERRA 2 dataset.
1092	Trends of southern hemispheric (d) tropospheric E-P flux (arrows, units of horizontal
1093	and vertical components are 3×10^5 and 3×10^3 kg s ⁻² per year, respectively) and its
1094	vertical component (shading) with their (e) wave 1 component and (f) wave 2
1095	component in September during 2000-2017 derived from MERRA-2 dataset. The
1096	stippled regions represent the trend significant at/above the 90% confidence level.
1097	FIG. 4. Trends of SST in September over (a) 1980-2000 and (b) 2000-2017 derived
1098	from ERSST v5 dataset. The stippled regions represent the trends significant at/above
1099	the 90% confidence level.
1100	FIG. 5. Trend significance of the first three SST principal components (PCs) in (a) the
1101	extratropical southern hemisphere (SH, 70°S-20°S), (b) the tropics (TROP, 20°S-20°N),
1102	(c) the extratropical northern hemisphere (NH, 20°N-70°N), (d) the extratropical
1103	southern hemisphere and the tropics (SHtrop, 70°S-20°N), (e) the extratropical northern
1104	hemisphere and the tropics (NHtrop, 20°S-70°N), (f) the globe (70°S-70°N) and the
1105	corresponding (g, h, i, j, k, l) correlation significances between them and vertical E-P
1106	flux (Fz, area weighted from 100 hPa to 30 hPa over 70°S 50°S) during different
1107	beginning years (x axes) and ending years (y axes). The red and blue dots indicate
1108	positive and negative trend or correlation coefficient are significant, respectively. The
1109	black dots indicate the trends or correlation coefficients are not significant. The stars
1110	indicate that the trends and the corresponding correlation coefficients are both
1111	significant. Each panel is divided into three regions from bottom to top, corresponding

1112	to the first, the second and the third principal components, respectively. The criterion
1113	to distinguish whether the trends and correlations are significant or not is the 90%
1114	confidence level.
1115	FIG. 6. (a, b, c) The first three EOF patterns of SST in SHtrop region. (d, e, f) The
1116	original time series of the first three principle components (PCs, blue solid lines
1117	correspond to left inverted y axes) and stratospheric vertical E P flux (Fz, area-
1118	weighted from 100 hPa to 30 hPa over 70°S-50°S, red solid lines correspond to right y-
1119	axes) in September during 2000-2017. The blue and red dashed lines in (d, e, f)
1120	represent the linear regressions of PC time series and Fz time series, respectively. The
1121	meaning of (g, h, i) are the same as (d, e, f) correspondingly, except the detrended time
1122	series. The unbracketed and bracketed numbers in (g, h, i) represent the correlation
1123	coefficients between detrended PC time series and Fz time series and the corresponding
1124	p values calculated by two-tailed t test, respectively.
1125	FIG. 7. Differences in SST forcing field between sensitive experiments ((a) sstNH; (b)
1126	sstSH; (c) ssttrop; (d) sstSHtrop) and the control experiment (sstetrl).
1127	FIG. 8. Differences (shadings) of (a, d, g, j) 500 hPa geopotential height zonal
1128	deviations with their (b, e, h, k) wave-1 component and (c, f, i, l) wave-2 component
1129	between sensitive experiments ((a, b, c) sstNH; (d, e, f) sstSH; (g, h, i) ssttrop; (j, k, l)
1130	sstSHtrop) and the control experiment (sstetrl). The mean distributions (contours with
1131	an interval of 20 gpm, positive and negative values are depicted by solid and dashed
1132	lines respectively, zeroes are depicted by thick solid lines) of them are derived from the
1133	control experiment. The stippled regions represent the mean difference significant

1134	at/above the 90% confidence level.

1135	FIG. 9. Differences of (a, d, g, j) stratospheric E-P flux (arrows, units in horizontal and
1136	vertical components are 0.05×10 ⁷ and 0.05×10 ⁵ kg·s ⁻² , respectively) and its divergence
1137	(shadings) with their (b, e, h, k) wave-1 component and (c, f, i, l) wave-2 component
1138	between sensitive experiments ((a, b, c) sstNH; (d, e, f) sstSH; (g, h, i) ssttrop; (j, k, l)
1139	sstSHtrop) and the control experiment (sstetrl). The stippled regions represent the mean
1140	differences of E-P flux divergence significant at/above the 90% confidence level. The
1141	green contours from outside to inside (corresponding to p=0.1, 0.05) represent the mean
1142	differences of vertical E-P flux significant at the 90% and 95% confidence levels,
1143	respectively.
1144	FIG. 10. (a, b, c, d) Frequency distributions (pillars, blue for control experiment and
1145	orange for sensitive experiments) of vertical E-P flux (Fz, area-weighted from 200 hPa
1146	to 10 hPa over 70°S-50°S) and its 5-point low-pass filtered fitting curves (solid lines,
1147	blue for control experiment and red for sensitive experiments) derived from 100
1148	ensemble members of the control experiment (sstetrl) and sensitive experiments ((a)
1149	sstNH; (b) sstSH; (c) ssttrop; (d) sstSHtrop), respectively. (e) Mean differences (grey
1150	pillars) and corresponding uncertainties (error bars) of Fz between sensitive
1151	experiments and the control experiment. The blue and red error bars reflect the 90%
1152	and 95% confidence levels calculated by two tailed t test, respectively. The error bar is
1153	omitted when the significance of mean difference is lower than the corresponding
1154	confidence level.
1155	FIG. 11. Differences of (a) stratospheric E P flux (arrows, units in horizontal and


1156	vertical components are 0.02×10^7 and 0.05×10^5 kg·s ⁻² , respectively) and its divergence
1157	(shadings) with their (b) wave-1 component and (c) wave-2 component between the
1158	sensitive experiment (O3sen) and the control experiment (O3ctrl). The stippled regions
1159	represent the mean differences of E-P flux divergence significant at/above the 90%
1160	confidence level. The green contours from outside to inside (corresponding to p=0.1,
1161	0.05) represent the mean differences of vertical E-P flux significant at the 90% and 95%
1162	confidence levels, respectively. (d) Frequency distributions (pillars, blue for O3ctrl and
1163	orange for O3sen) of vertical E-P flux (Fz, area-weighted from 200 hPa to 10 hPa over
1164	70°S-50°S) and it 5-point low-pass filtered fitting curves (solid lines, blue for O3ctrl
1165	and red for O3sen) derived from 100 ensemble members.
1166	FIG. 12. (a) Trends of southern hemispheric Brewer-Dobson circulation (arrows, units
1167	in horizontal and vertical components are 0.2×10^{-2} and 0.2×10^{-4} m·s ⁻¹ per year,
1168	respectively) and its stream function (shadings) in September during (a) 1980-2000 and
1169	(b) 2000-2017 derived from MERRA-2 dataset. Data in 2002 are removed when trends
1170	are calculated in Figure (b). (c) Differences of Brewer Dobson circulation (arrows,
1171	units in horizontal and vertical components are 10 ⁻² and 10 ⁻⁴ m·s ⁻¹ , respectively) and its
1172	stream function (shadings) between the O3ctrl and O3sen. (d, e, f) Differences of
1173	Brewer-Dobson circulation and its stream function between the control experiment
1174	(sstetrl) and various sensitive experiments ((d) sstSH; (e) ssttrop; (f) sstSHtrop) with
1175	SST changes. The stippled regions represent the trends or differences of the stream
1176	function significant at/above the 90% confidence level. The green contours from
1177	outside to inside (corresponding to p=0.1, 0.05) represent the trends or differences of



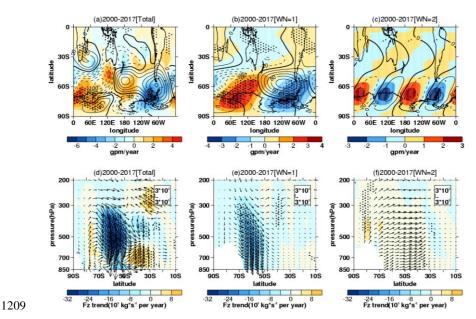
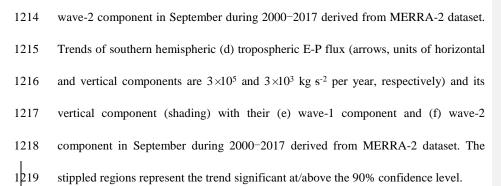
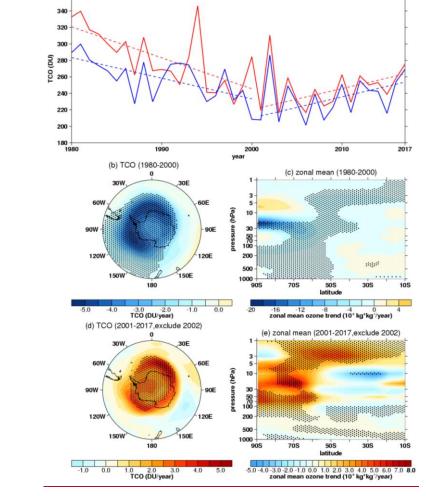
1178 the vertical components significant at the 90% and 95% confidence levels, respectively.

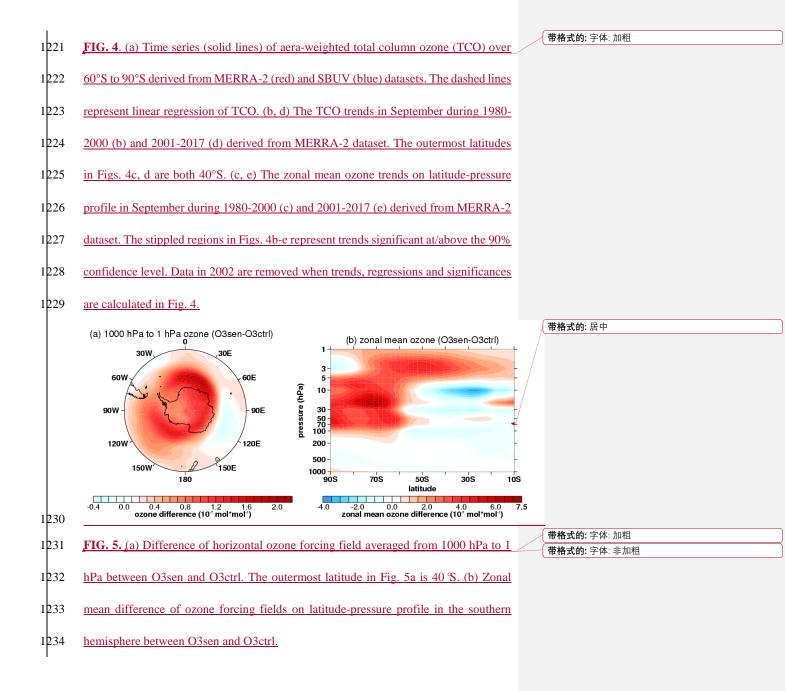
1179

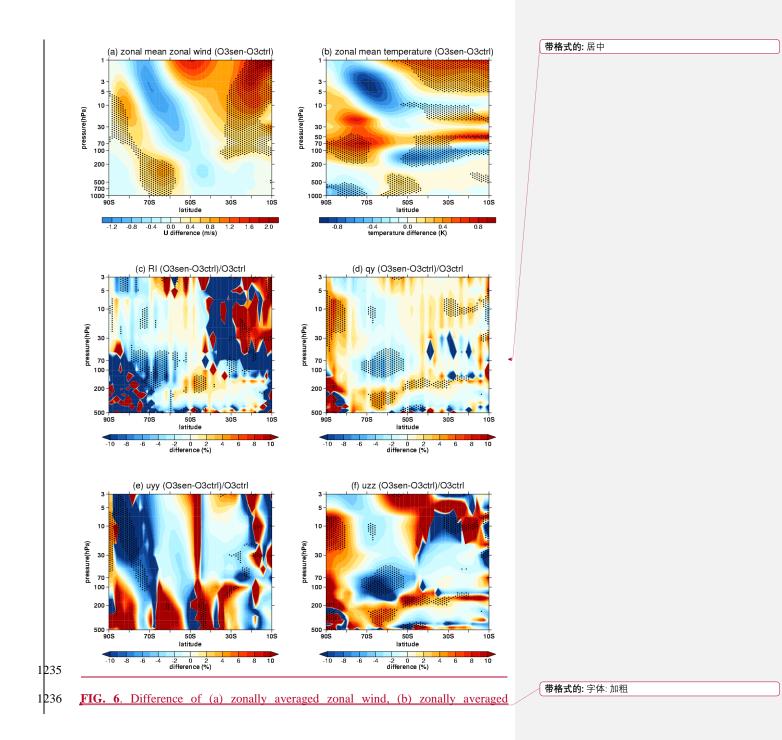
FIG. 1. Trends of southern hemisphere (a, d) stratospheric E-P flux (arrows, units of 1181 horizontal and vertical components are 105 and 103 kg·s-2 per year, respectively) and its 1182 divergence (shadings) with their (b, e) wave-1 components and (c, f) wave-2 1183 components over (a, b, c) 1980-2000 and (d, e, f) 2000-2017 in September derived from 1184 1185 MERRA-2 dataset. The stippled regions indicate the trend of E-P flux divergence 1186 significant at/above the 90% confidence level. The green contours from outside to 1187 inside (corresponding to p=0.1, 0.05) indicate the trend of vertical E-P flux significant 1188 at the 90% and 95% confidence level, respectively.

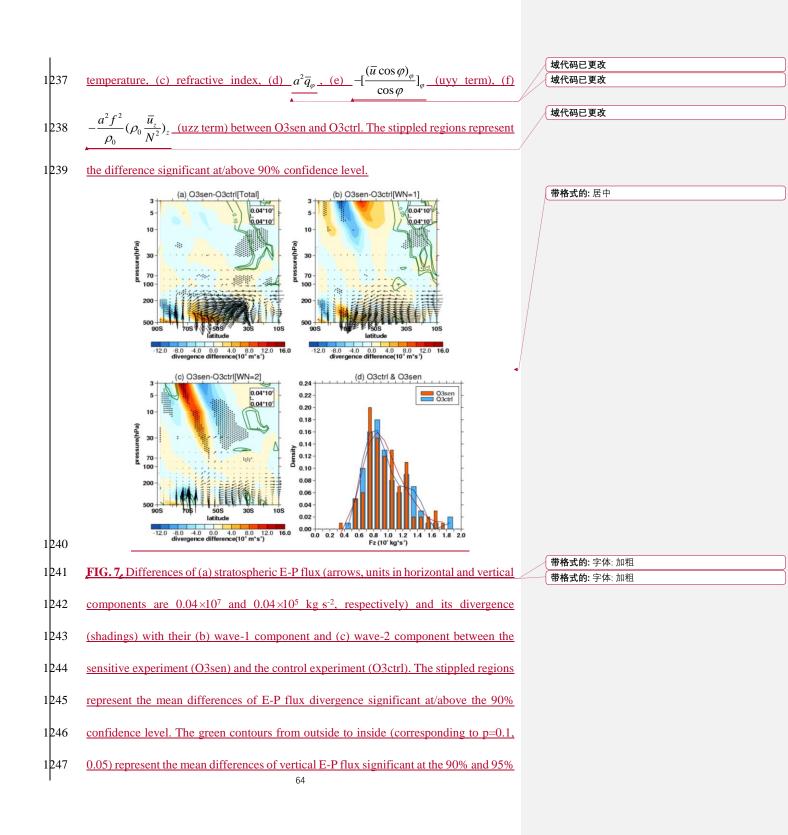
1191 FIG. 2. (a) The mean time series (solid lines) and piecewise (during 1980-2000 and 1192 2000-2018) linear regressions (dashed lines) of vertical E-P flux area-weighted from 1193 100 hPa to 30 hPa over 70°S-50°S in September during 1980-2018 derived from ERA-1194 Interim (yellow), MERRA-2 (blue), JRA-55 (red) and NCEP-2 (green). Figure (b) is 1195 the same as Figure (a), except for that the data in 2002 are removed. (c, d, e, f) The 1196 trends (dots) and uncertainties (error bars) calculated during various periods using the 1197 change-point method with different beginning and ending years (titles). Circles and 1198 squares in Figures (c, d, e, f) represent positive trends from beginning years to change-1199 point years (x-axes) and negative trends from change-point years to ending years, 59

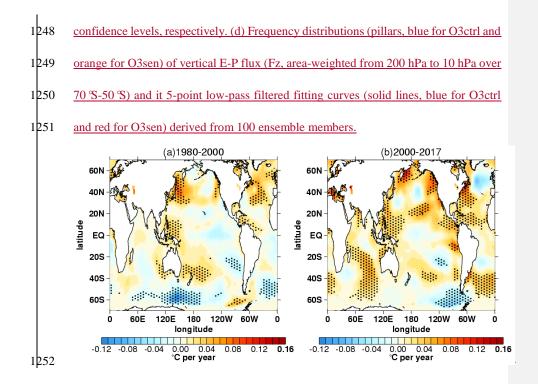
1200 respectively. Different colors of dots and error bars in Figures (c, d, e, f) correspond to 1201 colors in Figure (a), which represent trends and uncertainties derived from different 1202 datasets. The long and short error bars in same color reflect the 95% and 90% 1203 confidence intervals calculated by two-tailed t test. The error bar is omitted when the 1204 significance of trend is lower than corresponding confidence level. Negative trends and corresponding uncertainties with the beginning change-point years after 2005 are also 1205 omitted, since the trend value shows large fluctuation with shortening of time series. 1206 1207 Figures (g, h, i, j) are the same as Figures (c, d, e, f), except that the data in 2002 are 1208 removed when calculating trends and uncertainties.

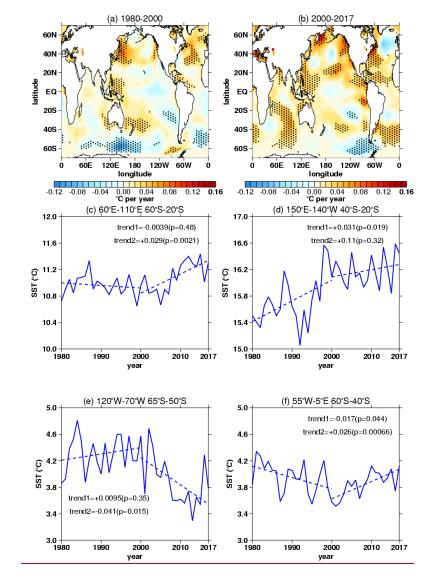





FIG. 3. Trends (shadings) and climatological distributions (contours with an interval of 20 gpm, positive and negative values are depicted by solid and dashed lines respectively, zeroes are depicted by thick solid lines) of southern hemispheric (a) 500
hPa geopotential height zonal deviations with their (b) wave-1 component and (c) 60







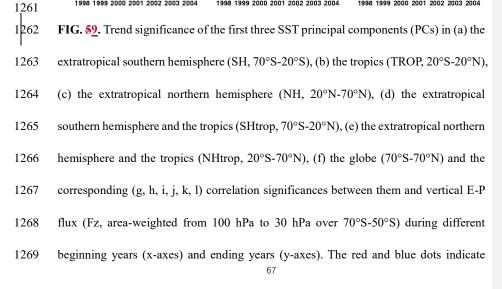


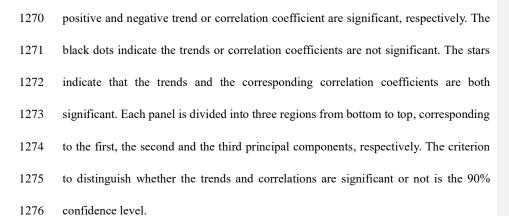
 1254
 FIG. 48. Trends of SST in September over (a) 1980-2000 and (b) 2000-2017 derived

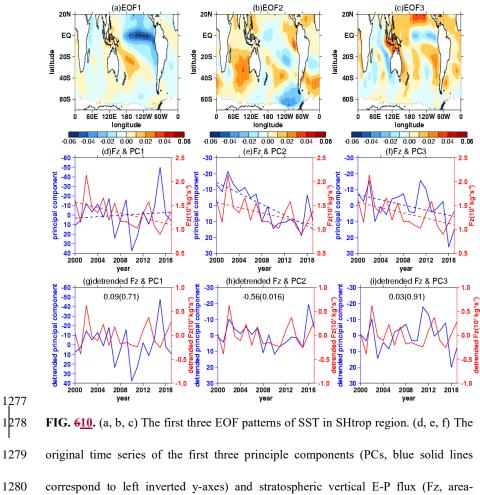
 1255
 from ERSST v5 dataset. The stippled regions represent the trends significant at/above

 1256
 the 90% confidence level. (c-f) Time series (blue solid lines) of SST during 1980-2017

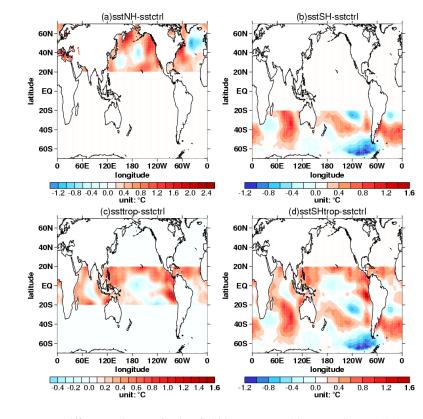
 1257
 over different regions (titles). The dashed lines represent linear regressions of SST time

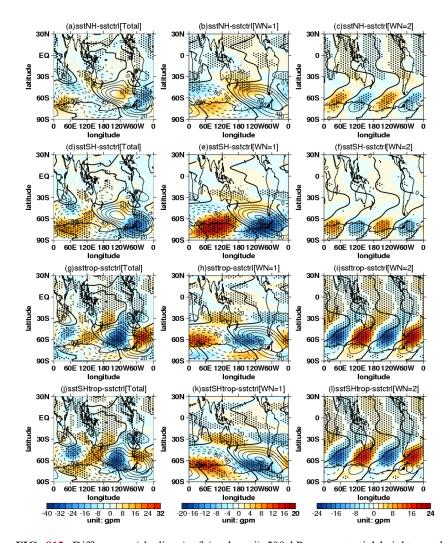

 1258
 series on piecewise periods (1980-2000 and 2000-2017). The "trend1" and "trend2"

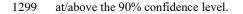

 66

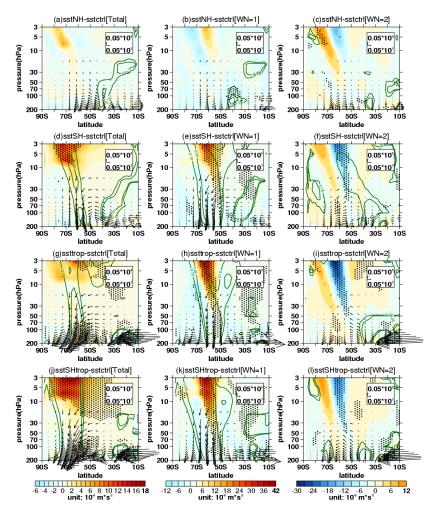

1259 <u>labeled in Figs. 8c-f represent the trend coefficients and the corresponding significances</u>

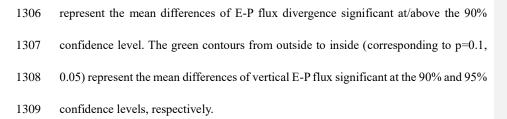
1260 (bracketed) over 1980-2000 and 2000-2017, respectively.

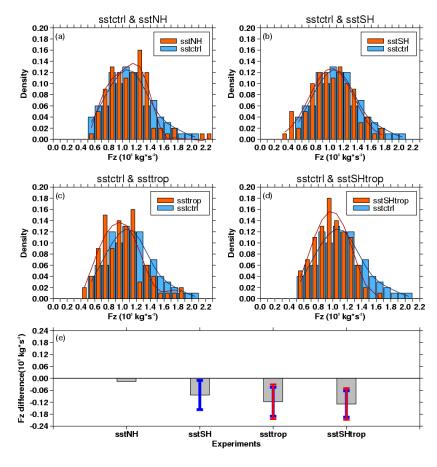

(4		(b)trend	_trop		(c)trend_NH			
		2017				* * • •		
2016 • • 2015 • •		2016		• *	2016		. T	
2015		2015			2015			
							• T	
2016 • • 2015 • •	••••	2016			2016		. T	
2017 • •	• • • •	2017	•••	•••	2017 +	• • • •	•	
2016		2016	• • •	•••	2016	••••	• T	
2015 + +	000 2001 2002 2003 20	2015 +	1999 2000 200	1 2002 2003 20	▶ 2015 04 1998 '	1999 2000 2001 200	2 2003 2004	
	trend SHtrop		(e)trend			(f)trend Glob		
2017 + +		2017 🛧			2017 +		→	
2016 🔶 🔸	• • • •	2016	• • •	• • •	2016 -	• * * *	• •	
2015	• • • •	2015 🔶	• • •	•••	2015	• • • •	_ • _•	
2017 \star \star	* * * •	2017 +	• • •	• • •	2017 +		• +	
2016 \star \star	* * • •	► 2016 •	• • •	• • •	2016 🔶		• +	
2015 🛧 📩	* * * *	2015	· · · ·	- • • • •	2015 🛧 🚽	* * * •	_ • _•	
2017 🔶 🔹		► 2017 	• • •	• • •	2017 🔶	• • • •	• +	
2016 🔶 🔸		► 2016 	• • •	• • •	2016 🔶	• • • •	• +	
2015 🔶 🔶 🔶	• • • •	F 2015	+ + +	+ + •	2015 🔶	+ + + +	 +∔	
1998 1999 20	000 2001 2002 2003 20	04 1998		1 2002 2003 20	04 1998 [·]	1999 2000 2001 200	2 2003 2004	
	(g)cor_SH		(h)cor_	trop		(i)cor_NH		
2017 + +	• • • •	2017 +	• • •	* * •	2017 🛧 🚽	* * • •	•	
2016 🔸 🔹	• • • •	2016 🕈	• • •	• * •	2016 🔶		• +	
2015 • •	••••	2015	• • •	•••	2015	• • • •		
2017 🔶 🔹	• • • •	2017 -	• • •	•••	2017 •	• • • •	• †	
2016 • •	• • • •	2016 🔶	• • •	•••	2016 🔸	• • • •	• †	
2015	• • • •	2015	•••	• * •	2015	• * * •		
2017 • •	• • • •	2017 •	• • •	•••	2017 •	• • • •	• †	
2016 🔶 🔹	• • • •	▶ 2016 🛉	• • •	•••	2016 🔶	• • • •	• •	
2015 + +	* * • •	⊢ 2015 ↓	1000 2000 200	1 2002 2003 20		1999 2000 2001 200	2 2002 2004	
)cor SHtrop	04 1990	(k)cor N		04 1998	(I)cor Globe		
2017 + • 0/		• 2017 †			2017 +			
2016 •		2016			2016	····		
2015		2015		_	2015			
2017 * *	* * * •	2017 -			2017 -			
	* * • •	2016			2016			
2015	* * * *	2015	· · · ·	- • • •	2015 *	* * * •	• •	
2017	•••••	2017			2017			
2016 •		2016			2016		•	
2015		2015		_	2015			
	000 2001 2002 2003 20		1998 1999 2000 2001 2002 2003 2004			1998 1999 2000 2001 2002 2003 2004		

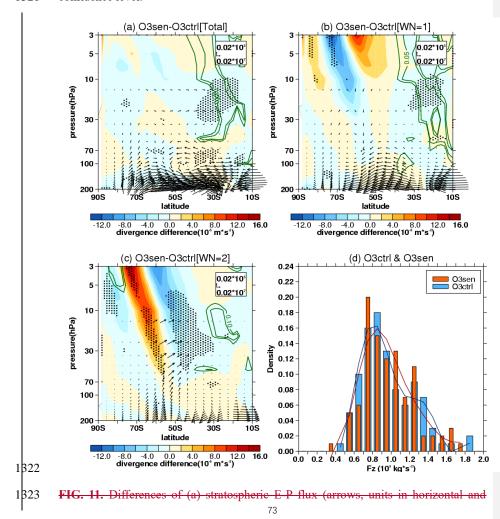

weighted from 100 hPa to 30 hPa over 70°S-50°S, red solid lines correspond to right yaxes) in September during 2000-2017. The blue and red dashed lines in (d, e, f) represent the linear regressions of PC time series and Fz time series, respectively. The meaning of (g, h, i) are the same as (d, e, f) correspondingly, except the detrended time series. The unbracketed and bracketed numbers in (g, h, i) represent the correlation coefficients between detrended PC time series and Fz time series and the corresponding p values calculated by two-tailed t test, respectively.

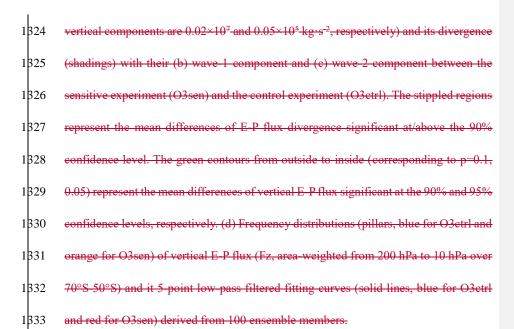

1289 FIG. 7<u>11</u>. Differences in SST forcing field between sensitive experiments ((a) sstNH;

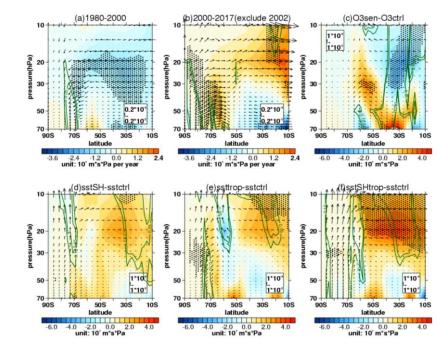

1290 (b) sstSH; (c) ssttrop; (d) sstSHtrop) and the control experiment (sstctrl).


FIG. 812. Differences (shadings) of (a, d, g, j) 500 hPa geopotential height zonal deviations with their (b, e, h, k) wave-1 component and (c, f, i, l) wave-2 component between sensitive experiments ((a, b, c) sstNH; (d, e, f) sstSH; (g, h, i) ssttrop; (j, k, l) sstSHtrop) and the control experiment (sstctrl). The mean distributions (contours with an interval of 20 gpm, positive and negative values are depicted by solid and dashed lines respectively, zeroes are depicted by thick solid lines) of them are derived from the


1298 control experiment. The stippled regions represent the mean difference significant


FIG. 913. Differences of (a, d, g, j) stratospheric E-P flux (arrows, units in horizontal and vertical components are 0.05×10^7 and 0.05×10^5 kg·s⁻², respectively) and its divergence (shadings) with their (b, e, h, k) wave-1 component and (c, f, i, 1) wave-2 component between sensitive experiments ((a, b, c) sstNH; (d, e, f) sstSH; (g, h, i) ssttrop; (j, k, l) sstSHtrop) and the control experiment (sstctrl). The stippled regions





Iβ11 FIG. 1014. (a, b, c, d) Frequency distributions (pillars, blue for control experiment and orange for sensitive experiments) of vertical E-P flux (Fz, area-weighted from 200 hPa
to 10 hPa over 70°S-50°S) and its 5-point low-pass filtered fitting curves (solid lines, blue for control experiment and red for sensitive experiments) derived from 100

ensemble members of the control experiment (sstctrl) and sensitive experiments ((a) sstNH; (b) sstSH; (c) ssttrop; (d) sstSHtrop), respectively. (e) Mean differences (grey pillars) and corresponding uncertainties (error bars) of Fz between sensitive experiments and the control experiment. The blue and red error bars reflect the 90% and 95% confidence levels calculated by two-tailed t test, respectively. The error bar is omitted when the significance of mean difference is lower than the corresponding confidence level.

FIG. 1215. (a) Trends of southern hemispheric Brewer-Dobson circulation (arrows, units in horizontal and vertical components are 0.2×10^{-2} and 0.2×10^{-4} m·s⁻¹ per year, 74

1337	respectively) and its stream function (shadings) in September during (a) 1980-2000 and
1338	(b) 2000-2017 derived from MERRA-2 dataset. Data in 2002 are removed when trends
1339	are calculated in Figure (b). (c) Differences of Brewer-Dobson circulation (arrows,
1340	units in horizontal and vertical components are 10^{-2} and 10^{-4} m·s ⁻¹ , respectively) and its
1341	stream function (shadings) between the O3ctrl and O3sen. (d, e, f) Differences of
1342	Brewer-Dobson circulation and its stream function between the control experiment
1343	(sstctrl) and various sensitive experiments ((d) sstSH; (e) ssttrop; (f) sstSHtrop) with
1344	SST changes. The stippled regions represent the trends or differences of the stream
1345	function significant at/above the 90% confidence level. The green contours from
1346	outside to inside (corresponding to p=0.1, 0.05) represent the trends or differences of
1347	the vertical components significant at the 90% and 95% confidence levels, respectively.