1	Environmental Effects on Aerosol-Cloud Interaction in non-precipitating MBL		
2	Clouds over the Eastern North Atlantic		
3			
4	Xiaojian Zheng ¹ , Baike Xi ¹ , Xiquan Dong ¹ , Peng Wu ² , Yuan Wang ^{3,4} and Timothy Logan ⁵		Deleted: and
5			
6	¹ Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA		
7	² Pacific Northwest National Laboratory, Richland, WA, USA		
8	³ Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA,		
9	USA		
10	⁴ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA		
11	⁵ Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA		
12			
13	Correspondence: Baike Xi (baikex@arizona.edu)		
14			
15	Abstract. Over the eastern north Atlantic (ENA) ocean, a total of 20 non-precipitating single-layer		
16	marine boundary layer (MBL) stratus and stratocumulus cloud cases are selected to investigate the		Deleted: in order
17	impacts of the environmental variables on the aerosol-cloud interaction (\mbox{ACI}_r) using the ground-based		
18	measurements from the Department of Energy Atmospheric Radiation Measurement (ARM) facility at		
19	the ENA site during $2016 - 2018$. The ACI _r represents the relative change of cloud-droplet effective		Deleted: the period
20	radius r_e with respect to the relative change of cloud condensation nuclei (CCN) number concentration		
21	at 0.2% supersaturation ($N_{CCN,0.2\%}$) in the water vapor stratified environment. The ACI _r values vary from	/	Deleted: 004
22	-0.01 to 0.22 with increasing sub-cloud boundary layer precipitable water vapor (<u>PWV_{BL}</u>) conditions,		Deleted: 207
23	indicating that r_e is more sensitive to the CCN loading under sufficient water vapor supply, owing to the		Deleted: PWV.
24	combined effect of enhanced condensational growth and coalescence processes associated with higher		Moved down [1]: The environmental effects on ACI _r
25	N_c and <u>PWV_{BL}</u> . The principal component analysis shows that the most pronounced pattern during the	/	Deleted: are examined by stratifying the data into different lower tropospheric stability (LTS) and
26	selected cases is the co-variations of the MBL conditions characterized by the vertical component of		Moved (insertion) [1]
27	turbulence kinetic energy (TKE _w), decoupling index (D_i) and PWV _{BL} . The environmental effects on		Deleted:)
28	ACI _r emerge after the data are stratified into different TKE _w regimes. The ACI _r values, under both	Ľ	adiabatic cloud layer and a lower boundary layer and thus results in higher CCN to cloud droplet conversion and ACI _r .
29	relatively lower and higher PWV_{BL} conditions, increase more than double from the low TKE_w to high		Deleted: a range of PWV
30	TKE _w regime. It can be explained by the fact that stronger boundary layer turbulence maintains a well- $_{\rightarrow}$	<	Deleted: , indicating a strong impact of turbulence on the ACI_r . The
31	mixed MBL, strengthening the connection between cloud microphysical properties and underneath CCN		Deleted: represented by higher TKE _w strengthens
32	and moisture sources. With sufficient water vapor and low CCN loading, the active coalescence process	$\overline{\ }$	Deleted: and interaction

1

Deleted: the

53 broadens the cloud droplet size spectra, and consequently results in an enlargement of r_e . The enhanced

54 N_c conversion and condensational growth induced by more intrusions of CCN effectively decrease r_e .

55 which jointly presents as the increased ACI_r. This study examines the importance of environmental

<u>effects on the ACI_r assessments and provides observational constraints to future model evaluations on</u>
 aerosol-cloud interactions.

- 58
- 59

60 1. Introduction

61 Clouds are one of the most important parts of the Earth's climate system. They can impact the global 62 climate by modulating the radiative balance in the atmosphere. Moreover, the radiative effects of cloud 63 adjustments due to aerosols remain one of the largest uncertainties in climate modeling (IPCC, 2013). 64 Over the oceanic area, the lower troposphere is dominated by marine boundary layer (MBL) clouds. 65 MBL clouds can persistently reflect the solar radiation by their long-lasting nature maintained by cloudtop radiative cooling, and therefore act as a major modulator of the Earth radiative budget (Seinfeld et 66 al., 2016). The climatic importance of MBL cloud radiative properties is primarily induced by cloud 67 68 microphysical properties, namely the cloud-droplet number concentration (N_c) , and effective radius (r_{ρ}) , 69 and has been intensively investigated by many researchers (Garrett and Zhao, 2006; Rosenfeld, 2007; 70 Wood et al., 2015; Seinfeld et al., 2016). The ambient aerosol conditions can influence these cloud 71 microphysical properties via the aerosol-cloud interaction (ACD, Compared to the clean regions, clouds 72 under the regions having relatively higher below-cloud aerosol concentrations exhibited more small 73 cloud droplets (reduced r_e and increased N_c) and enhanced both cloud liquid water contents and optical 74 depths (McComiskey et al., 2009; Chen et al., 2014; Wang et al., 2018). The changes of MBL cloud 75 microphysical properties, induced by aerosols have been investigated from previous studies using in-situ 76 measurements, ground- and satellite-based observations, and model simulations in multiple oceanic areas 77 such as the eastern Pacific and eastern Atlantic (Twohy et al., 2005; Lu et al., 2007; Hill et al., 2009; 78 Costantino and Bréon, 2010; Mann et al., 2014; Dong et al., 2015; Diamond et al., 2018; Yang et al., 79 2019; Zhao et al., 2019; Wang et al., 2020). 80 The assessments of ACI, particularly using ground-based remote sensing, vary in terms of the 81 quantitative values, which represent the different cloud susceptibilities to aerosol loadings. Owing to the

82 numerous approaches in assessing the ACI, such as the spatial and temporal scales, N_c and r_e retrieval

83 methods, and more importantly, the different aerosol proxies used in the ACI quantification, different

84 ACI results could be achieved. For example, the studies using total aerosol number concentration and

Deleted: distribution

Deleted: as

 $\begin{array}{l} \textbf{Deleted:} \mbox{ The TKE}_w \mbox{ median value of } 0.08 \mbox{ m}^2 \mbox{s}^{-2} \mbox{ suggests a } \\ \mbox{feasible way in distinguishing the turbulence-enhanced} \\ \mbox{aerosol-cloud interaction in non-precipitating MBL clouds.} \end{array}$

Deleted: the		
Deleted: the		

Deleted: These		
Deleted: can be influenced by the ambient aerosol conditions		
Deleted:), where		
Deleted: that have		
Deleted: than the clouds under relatively clean regions		
Deleted:). The		
Deleted: changes		

Deleted: 2018

-{	Deleted: in particular
-	Deleted: are found to

Deleted: that

104 aerosol scattering/extinction coefficients to represent the aerosol loadings would result in relatively lower 105 ACI values (Pandithurai et al., 2009; Liu et al., 2016). This is primarily attributed to the inclusion of 106 aerosol species with different abilities to activate, which is determined by their physicochemical 107 properties, and thus will cause non-negligible uncertainties in capturing the information of aerosol 108 intrusion to the cloud (Feingold et al. 2006; Logan et al., 2014). While some studies found relatively 109 higher ACI values using cloud condensation nuclei (CCN) number concentration (N_{CCN}), presumably 110 due to the fact that CCN represents the portion of aerosols that can be activated and possesses the 111 potential ability to further grow into cloud droplets, this favorably yields a more straightforward 112 assessment of ACI (McComiskey et al., 2009; Qiu et al., 2017; Zheng et al., 2020). It is noteworthy that 113 the ACI variations have been found to have both increasing and decreasing trends in response to changing 114 environmental water availability (Martin et al., 2004; Kim et al., 2008; McComiskey et al., 2009; 115 Pandithurai et al., 2009; Martin et al., 2011; Liu et al., 2016; Zheng et al., 2020). Although these 116 contradicting results have been postulated due to multiple factors such as cloud adiabaticity, 117 condensational growth, collision coalescence, and atmospheric thermodynamics and dynamics, the 118 underlying mechanisms in altering the ACI and causing the uncertainties in the ACI assessments remain 119 unclear, Therefore, further studies are necessary (Fan et al., 2016; Feingold and McComiskey, 2016; 120 Seinfeld et al., 2016).

121 The Eastern North Atlantic (ENA) is a remote oceanic region that features persistent but diverse 122 subtropical MBL clouds, owing to complex meteorological influences from the semi-permanent Azores 123 High and prevailing large-scale subsidence (Wood et al., 2015). The ENA has become a favorable region 124 to study the aerosol indirect effects on MBL clouds under a relatively clean environment with occasional 125 intrusions of long-range transport of continental air mass (Logan et al., 2014; Wang et al., 2020). The 126 atmospheric radiation measurement (ARM) program established the ENA permanent observatory site on 127 the northern edge of Graciosa Island, Azores, in 2013, which continuously provides comprehensive 128 measurements of the atmosphere, radiation, cloud, and aerosol from ground-based observation 129 instruments. Owing to the location of the site, where sits in between the boundaries of mid-latitude and 130 subtropical regimes, the ENA is under the mixed influence of diverse meteorological conditions. So that 131 in terms of the aerosol influence on the cloud properties, the roles of meteorological factors on cloud 132 formation and development are not negligible and hence are being explored in this study. The large-scale 133 thermodynamic variables of the lower troposphere are widely used, such as the lower tropospheric 134 stability (LTS), where the higher LTS values are found to be associated with a relatively shallow and 135 well-mixed marine boundary layer, and are prone to stratiform cloud formations with higher cloud fractions (Klein and Hartmann, 1993; Wood, 2012; Wood and Bretherton, 2006; Yue et al., 2011; 136

Deleted: , therefore

Deleted: In terms of the aerosol influence on the cloud properties, the roles of meteorological factors on cloud formation and development are not negligible and hence are being explored in this study. The large-scale thermodynamic variables of the lower troposphere are widely used, such as the lower tropospheric stability (LTS), where the higher LTS values are found to be associated with a relatively shallower and well-mixed marine boundary layer, and is prone to stratiform cloud formations with higher cloud fractions (

Moved down [2]: Wood and Bretherton, 2006; Yue et al., 2011; Rosenfeld et al.,

Deleted: 2019). In the cloud-topped marine boundary layer maintained by cloud-top radiative cooling, the buoyancy generations ...

Moved down [3]: contribute most to the turbulence kinetic energy (TKE) production (Nicholls, 1984; Hogan et al., 2009), where the intensity of turbulence denotes the coupling of MBL clouds to the below-cloud boundary layer.

Deleted: In terms of the cloud droplet growing process, especially in a clean environment with low below-cloud N_{CCN} , the cloud droplets at the cloud base experience rapid growth via the diffusion of water vapor, and subsequently enter the regime of active coalescence process

Moved down [4]: (Rosenfeld and Woodley, 2003; Martins et al., 2011).

Deleted: The intensive turbulence is effectively modulating

Moved down [5]: the cloud droplet growth by strengthening the coalescence process and the cloud cycling (Feingold et al., 1996, 1999; Pawlowska et al., 2006). The environmental

Moved down [6]: The environmental effects on the MBL cloud formation and development processes and cloud microphysical properties have been widely implemented and considered in climate modeling (Medeiros and Stevens, 2011; West et al., 2014; Zhang et al., 2016). Thus, it is important to provide observational constraints on the environmental effects. The assessment of ACI from the ground-based perspective highly relies on the sensitivities of cloud droplet number concentrations and size distribution

Deleted: spectra to the changing of below-cloud CCN loadings. Hence, it is a nontrivial task to study the relationship between the environmental effect and the MBL cloud microphysical responses.¶

Moved (insertion) [2]

180	Rosenfeld et al., 2019), especially over the subtropical ocean such as the southeast Atlantic. Over the	
181	ENA site, the spatial gradient of the LTS has been studied to be associated with the contribution terms	
182	of MBL turbulence and the wind directional change (Wu et al., 2017).	
183	In the cloud-topped MBL which is maintained by cloud-top radiative cooling, the buoyancy	
184	generations and shears contribute most to the turbulence kinetic energy (TKE) production (Nicholls,	N
185	1984; Hogan et al., 2009), where the intensity of turbulence denotes the coupling of MBL clouds to the	
186	below-cloud boundary layer. In terms of the cloud droplet growing process, especially in a clean	
187	environment with low N_{CCN} below the cloud layer, the cloud droplets at the cloud base experience rapid	
188	growth via the diffusion of water vapor, and subsequently enter the regime of active coalescence	
189	(Rosenfeld and Woodley, 2003; Martins et al., 2011). The intensive turbulence effectively modulates the	N
190	cloud droplet growth by strengthening the coalescence process and the cloud cycling (Feingold et al.,	N
191	1996, 1999; Pawlowska et al., 2006). And particularly giving the unique topography of the Graciosa	
192	Island, the island effect would cause disturbances on the updraft and hence impact the MBL turbulence,	
193	depending on the surface wind directions (Zheng et al., 2016). The environmental effects on the MBL	N
194	cloud formation and development processes and cloud microphysical properties have been widely	
195	implemented and considered in climate modeling (Medeiros and Stevens, 2011; West et al., 2014; Zhang	
196	et al., 2016). Thus, it is important to provide observational constraints on the environmental effects. The	
197	assessment of ACI from the ground-based perspective highly relies on the sensitivities of cloud droplet	
198	number concentrations and size distribution to the changing of below-cloud CCN loadings. Hence,	
199	studying the relationship between the environmental effect and the MBL cloud microphysical responses	
200	is a nontrivial task.	
201	In this study, we target the non-precipitating single-layer MBL stratus and stratocumulus clouds	
202	during the period between September 2016 and May 2018 and examine the role of thermodynamical and	
203	dynamical variables on ACIs. This study aims to <u>advance</u> the understanding of ACI, by disentangling	
204	the environmental effects and providing observational constraints on quantifying the ACI when modeling	D
205	aerosol <u>effects</u> on MBL clouds. The ground-based observations and retrievals, and the reanalysis are	
206	introduced in section 2. Section 3 describes the aerosol, cloud and meteorological properties, and the	
207	variations of cloud microphysical properties under different environmental regimes. Moreover, the ACIs	
208	under given water vapor conditions and the roles of environmental effects on ACI are discussed in	D
209	Section 3. The conclusion of the key findings and the future work are presented in section 4.	
210		
211	2. Data and methods	
212	2.1, Cloud and aerosol properties	
1		

Moved (insertion) [3]

Moved (insertion) [4]

Moved (insertion) [5]

Moved (insertion) [6]

-	Deleted: enhance
-	Deleted: , particularly
-	Deleted: effect
Υ	Deleted: reducing the uncertainty in
1	Deleted: influences

Deleted: effect

Deleted:

220 The cloud boundaries at the ARM ENA site are primarily determined by the ARM Active Remotely-221 Sensed Cloud Locations (ARSCL) product, which is a combination of data detected by multiple active 222 remote-sensing instruments, including the Ka-band ARM Zenith Radar (KAZR) and laser ceilometer. 223 The KAZR has an operating frequency at 35 GHz and is sensitive in cloud detection with very minimum 224 attenuation up to the cloud top height (Widener et al., 2012). The temporal and vertical resolutions of 225 KAZR reflectivity are 4 seconds and 30 m, respectively. The ceilometer operates at 910 nm, and its 226 attenuated backscatter data can be converted to the cloud base height up to 7.7 km with an uncertainty 227 of ~10 m (Morris, 2016). Combing both KAZR and ceilometer measurements, the cloud base (z_h) and 228 top (z_t) heights can be identified accordingly. The single-layer low cloud is defined as having a cloud 229 top height lower than 3 km, with no additional cloud layer in the atmosphere above (Xi et al., 2010).

230 The cloud microphysical properties are retrieved from a combination of ground-based observations, 231 including KAZR, ceilometer, and microwave radiometer. The detailed retrieval methods and procedures 232 are described in Wu et al. (2020a). The retrieved cloud microphysical properties, both in time series and 233 vertical profiles, have been validated using the collocated aircraft in-situ measurements during the 234 Aerosol and Cloud Experiments in the Eastern North Atlantic field campaign (ACE-ENA). The retrieval 235 uncertainties are estimated to be ~15% for cloud droplet effective radius (r_e), ~35% for cloud droplet number concentration (N_c) , and ~30% for the cloud liquid water content (LWC) (Wu et al., 2020a). 236 237 Furthermore, the cloud adiabaticity is calculated using the retrieved in-cloud vertical profile of LWC and 238 the adiabatic LWC_{ad}. The LWC_{ad} is given by LWC_{ad(z)} = $\Gamma_{ad}(z - z_b)$, following the method in Wu et 239 al. (2020b), where Γ_{ad} denotes the linear increase of LWC with height under an ideal adiabatic condition 240 (Wood, 2005). The cloud adiabaticity (f_{ad}) is defined as the ratio of LWC to LWC_{ad}. 241 The surface CCN number concentrations (N_{CCN}) are measured by the CCN-100 (single-column)

242 counter. Since the supersaturation (SS) levels are set to cycling between 0.10% and 1.10% approximately 243 within one hour, N_{CCN} under a relatively stable supersaturation level has to be carefully calculated to rule 244 out the impact of supersaturation on N_{CCN} . This study adopts the interpolation method given by N_{CCN} = 245 cSS^k (Twomey, 1959), where parameters c and k are fitted by a power-law function for every periodic 246 cycle. In this study, the supersaturation level of 0.2% is used because it represents typical supersaturation 247 conditions of boundary-layer stratiform clouds (Hudson and Noble, 2013; Logan et al., 2014; Wood et 248 al., 2015; Siebert et al., 2021), and N_{CCN} at 0.2% supersaturation (hereafter $N_{CCN,0.2\%}$) is interpolated to 249 5-min temporal resolution.

250

251 **2.2 Environmental conditions and cloud case selections**

Deleted: laser beam

Moved (insertion) [7]

M	oved (insertion) [8]		
Deleted:) and \sim 35% for cloud droplet number concentratio (N_c) (Wu et al., Moved up [7]: 2020a).			
Mo	oved (insertion) [9]		
Mo	oved (insertion) [10]		
Mo	oved up [10]: number concentrations (N _{CCN}) are		

measured by the CCN-100 (single-column) counter.

260 The integrated precipitable water vapor (PWV) is obtained from a 3-channel microwave radiometer (MWR3C), which operates at three frequency channels of 23.834, 30, and 89 GHz. The uncertainty of 261 262 PWV is estimated to be ~0.03 cm (Cadeddu et al., 2013). To capture the information of MBL water vapor more accurately, the sub-cloud boundary layer integrated precipitable water vapor (PWV_{BL}) is calculated 263 264 using the interpolated sounding product following:

.

265

$$PWV_{BL} = \frac{1}{\rho_w} \sum (z_{i+1} - z_i) * (\rho_{v,i+1} + \rho_{v,i})/2.$$
(1)

266 where the $\rho_{\rm w}$ is the liquid water density and the $\rho_{\rm v}$ is the water vapor density collected from the 267 Interpolated Sounding and Gridded Sounding Value-Added Products (Toto and Jensen, 2016), the 268 subscripts i and i + 1 represent the bottom and top of each interpolated sounding height layer. Both PWV and PWVBL are temporally collocated to 5-min resolution and plotted against each other in Fig. 269 270 S1a to test the contribution of PWV_{BL} to the PWV. The Pearson correlation coefficient of 0.85 shows 271 that the PWV_{BL} are strongly positively correlated with the PWV, while the distribution of the percentage 272 ratio of PWV_{BL} to PWV (Fig. S1b) indicates that, on average, the PWV_{BL} contribute to ~58% of the 273 PWV. Considering the cloud-topped MBL, the majority of cases (~74%) associate with a relatively moist 274 boundary layer compared to the amount of water vapor in the free troposphere, where the PWV_{BL} already 275 contributed over 50% of the total column PWV. In contrast, only ~9% of cloud samples occur under a 276 relatively dry boundary layer and moist free troposphere, where PWV_{BL} contributions are less than 40%. 277 In general, the PWV can well capture the variation of the PWV_{BL} . In the rest of the study, the PWV_{BL} 278 are used, as it represents the sub-cloud boundary layer water vapor availabilities which are more closely 279 related to the MBL cloud processes.

280 The LTS parameter is used as a proxy of large-scale thermodynamic structure and is defined as the 281 difference between the potential temperature at 700 hPa and surface ($\theta_{700} - \theta_{sfc}$). The LTS values are 282 calculated from European Centre for Medium-Range Weather Forecasts (ECMWF) model outputs of 283 potential temperature, by averaging over a grid box of 0.56°×0.56° centered at the ENA site. To match 284 the temporal resolutions of the other variables, the original 1-hour LTS data are downscaled to 5-min 285 under the assumption that the large-scale forcing would not have significant changes within an hour.

286 The boundary layer decoupling condition is represented by the decoupling index (D_i) , which is 287 given by $D_i = (z_b - z_{LCL})/z_b$, where the z_{LCL} is the lifting condensation level calculated analytically 288 following the method in Romp (2017), with an uncertainty of around 5 m. The surface temperature, 289 pressure, relative humidity, and mass fraction of water vapor that used in the z_{LCL} calculation, as long as

290 the vector-averaged wind directions (in 360° coordinate) over the ENA site are obtained from the ARM 291 surface meteorology systems (ARM MET handbook, 2011). 292 As for the boundary layer dynamics, the higher-order moments of vertical velocity are widely used 293 in different model parameterization practices, such as higher-order turbulence closure and probability 294 density function methods (Lappen and Randall, 2001; Zhu and Zuidema, 2009; Ghate et al., 2010). The 295 vertical velocity variance can be used to represent the turbulence intensity in the below-cloud boundary 296 layer (Feingold et al., 1999). In this study, the vertical component of the turbulence kinetic energy (TKE_w) 297 are used, which is defined as: $\text{TKE}_{w} = \frac{1}{2} \overline{(w')^2}$ 298 <u>(2)</u> 299 where the $(w')^2$ is the variance of vertical velocity measured from the Doppler lidar standard 10-min 300 integration, which is collected in the Doppler Lidar Vertical Velocity Statistics Value-Added Product 801 (Newson et al., 2019). The noise correction has been applied to reduce the uncertainty of the variance to 802 ~10% (Hogan et al., 2009; Pearson et al., 2009). In this study, the mean value of TKE_w in the sub-cloud 803 boundary layer proportion of the Doppler lidar range is used, and the data temporal resolution is further 804 downscaled to 5-min for temporal collocation purposes. 305 In this study, the non-precipitating cloud periods are determined when the KAZR reflectivity at the 306 ceilometer-detected cloud base height range does not exceed -37 dBZ (Wu et al., 2015, 2020b), which 307 extensively rules out the wet-scavenging depletion on below-cloud CCN (Wood, 2006) and ensures the 308 accuracy in capturing the below-cloud CCN loadings. Both retrieved cloud microphysical properties and 309 CCN data are available from September 2016 to May 2018 and confine this period in this study. 310 311 3. Result and Discussion 312 3.1 Aerosol, cloud, and meteorological properties of selected cloud cases 813 A total of 20 non-precipitating cloud cases are selected in this study, with the detailed time periods 814 listed in Table 1, including 1143 samples with temporal resolution of 5-min, which corresponds to ~95 315 hours. Among the selected cases, there are three, eight, five, and four cases for Spring, Summer, Fall, 316 and Winter seasons, respectively. MBL clouds often produce precipitation in the form of drizzle (Wood 317 2012, Wu et al., 2015, 2020b). A recent study of the seasonal variation of the drizzling frequencies (Wu

Deleted: mean

Deleted: ,	(1
Formatted: TNR, Line space	ng: 1.5 lines
Formatted: Font: (Asian) +B	ody Asian (等线)
Formatted: Font: (Asian) +B	ody Asian (等线)
Deleted: with the	
Deleted: The original	
Deleted: vertical velocity has	a
Deleted: of 10-min (Newson	et al., 2019), and it is
Deleted: the	
Deleted: purpose	

Deleted: to conduct Deleted: in

818 et al., 2020b) showed that the MBL clouds in the cold months (Oct-Mar) have the highest drizzling 319 frequency of the year (~70%), while the clouds in the warm months (Apr-Sept) are found to have a lower 320 chance of drizzling (~45%). Therefore, the selection of a non-precipitating single-layer low cloud case

331	that lasts at least 2 hours is limited, with only 6 cases found in the cold months and 14 cases found during
332	the warm months.

333 The probability distribution functions (PDFs) of the aerosol and cloud properties, and the 334 environmental conditions for the selected cases are shown in Fig. 1. The PDF of N_{CCN.0.2%} presents a normal distribution with a mean value of 215 cm⁻³ and median value of 217 cm⁻³. About 97% of the 335 $N_{CCN,0.2\%}$ samples <u>lie</u> below 350 cm⁻³ and represents a relatively clean environment (Logan et al., 2014, 336 337 2018). A few instances of aerosol intrusions (~3%) with higher $N_{CCN,0.2\%}$ were likely a result of 338 continental air mass transport from North America, Europe, and Africa (Logan et al., 2014; Wang et al., 339 2020). As for the cloud microphysical properties, the cloud-layer mean N_c and r_e (Fig. 1b and 1c) are 340 also both normally distributed with median values close to the mean values. The majority of the N_c 341 values (~91%) are lower than 125 cm⁻³ with a mean value of 86 cm⁻³, and the r_{ρ} distribution peaks at 342 9 - 11 μ m with a mean value of 10.1 μ m. Both N_c and r_e values fall in the typical ranges of the non-343 precipitating MBL cloud characteristics over the ENA site (Dong et al., 2014; Wu et al., 2020b). The 344 distribution of f_{ad} is slightly skewed to the left with a median value of 0.66 (Fig. 1d), indicates that the 345 bulk of cloud samples are close to adiabatic environments, while the left tail denotes a wide range of 346 cloud sub-adiabaticities, which allows us to investigate the role of cloud adiabaticities on the cloud 347 microphysical variations. 348 For all selected cases, the LTS, which represents the large-scale thermodynamic structure, is 349 distributed bimodally across the range from 14K to 23K with mean and median values of 19.1K in Fig. 850 Je. A higher LTS magnitude represents a relatively stable environment and is favorable to the formation 351 of marine stratocumulus (Medeiros and Stevens, 2011; Gryspeerdt et al., 2016). Note that the median 352 LTS of 19.1 K in this study is close to the separation threshold of 18.55K suggested by prior studies to 353 distinguish the marine stratocumulus from a global assessment of marine shallow cumulus clouds 854 (Smalley and Rapp, 2020). Therefore, leveraging the demarcation line at 19.1K may allow us to 355 investigate the aerosol-cloud relationships under contrasting thermodynamic regimes. The PDF of D_i 356 parameter spreads widely with a median value of 0.34 for the selected cases (Fig. 1f), which provides an 857 opportunity to study the cloud sample behaviors under MBL conditions range from well-mixed to 358 decoupled. Higher Di values indicate more decoupled MBL with weaker turbulence which cannot 359 sufficiently maintain the well-mixed MBL, while lower D_i values often associate with stronger 860 turbulence which maintains a coupled MBL (Jones et al., 2011). As an indicator of the below-cloud boundary layer turbulence, the TKE_w values present a gamma distribution that is highly skewed to the 361 right (Fig. 1e), with a mean value of 0.11 and a median value of 0.08 m²s⁻². About half of the cloud 362

Deleted: lay
Deleted:

Deleted: The distributions

Deleted: 1d

Deleted:

Deleted: Leveraging the demarcation line at 19.1K may provide an opportunity to investigate the aerosol-cloud relationships under contrasting thermodynamic regimes.

samples are under relatively less turbulent environment (which is also implied by the higher half of D_i). suggesting weak connections between the cloud layer and the below-cloud boundary layer. The other half of the cloud samples, with relatively higher TKE_w values up to 0.4 m²/s², imply tighter connections between cloud microphysical properties and below-cloud boundary layer accompanied by intensive turbulent conditions, which is favorable to enhance cloud droplet growth (Albrecht et al., 1995; Hogan et al., 2009; Ghate et al., 2010; West et al., 2014; Ghate and Cadeddu, 2019).

877 It is noteworthy that $\frac{PWV_{BL}}{PWV_{BL}}$ values exhibit a bimodal distribution with a median value of 1.2 cm 878 (Fig. 1f). About $\frac{49}{9}$ % of the samples have their <u>PWV_{BL}</u> values in the range of 0.4 - 1.2 cm with the first 879 peak in 0.6 - 0.8 cm, and 51% of the samples have <u>PWV_{BL}</u> values higher than 1.2 cm with a second peak 880 in 1.6 - 1.8 cm, which may be due to the seasonal difference of the selected cases. Fig. S2 shows the 381 seasonal variation of the PWV_{BL} from 2016 to 2018 when single-Jayered low clouds are present. The 382 monthly <u>PWV_{BL}</u> values are as low as ~ 0.9 cm and remain nearly invariant from January through March, 383 then increase to ~ 2.0 cm (doubled) in <u>September</u>, and decrease dramatically to the winter months. The 384 selected cloud cases are distributed across the seasons, with $\sim 34\%$ of the samples occurring during the 885 months with the lowest mean \underline{PWV}_{BL} (Jan-Mar), while ~43% of the samples fall in the highest \underline{PWV}_{BL} 386 months (Jun-Sept). These two different PWV_{BL} regions will provide a great opportunity for us to further 387 examine the ACI under relatively lower and higher water vapor conditions.

3.2 Dependent of cloud microphysical properties on CCN and PWVBL

388

390 Figure 2 shows the cloud microphysical properties as a function of $N_{CCN,0.2\%}$ and $\underline{PWV_{BL}}$ for the 391 samples from 20 selected cases. As illustrated in Fig. 2a, there is a statistically significant positive 392 correlation ($R^2=0.9$) between $ln(N_c)$ and $ln(N_{CCN,0.2\%})$. The linear fit of $ln(N_c)$ to $ln(N_{CCN,0.2\%})$ is then 393 mathematically transformed to a power-law fitting function of N_c to $N_{CCN,0,2\%}$, and plotted as dash lines 394 in Fig. 2a. The power-law fitting indicates that 90.3% of the variation in binned $ln(N_c)$ can be explained 395 by the change in the binned $ln(N_{CCN,0.2\%})$ and further suggests that with more available below-cloud 396 CCN, higher number concentrations are expected. The logarithmic ratio $\partial ln(N_c)/\partial ln(N_{CCN,0.2\%})$ is 397 computed to be 0.435 from our study. This ratio is very close to 0.48 found by McComiskey et al. (2009), 398 who also used ground-based measurements to study the marine stratus clouds over the California coast. 399 The logarithmic ratio (0,435) is also close to the result (0.458) of Lu et al. (2007) who used aircraft in-400 situ measured cloud droplet and accumulation mode aerosol number concentration for the marine stratus 401 and stratocumulus clouds over the eastern Pacific Ocean. The ratio reflects the relative conversion 402 efficiency of cloud droplets from the CCN, regardless of the water vapor availabilities. Theoretically, it Deleted: , Deleted: suggests

Formatted: Font color: Auto

-	Deleted: PWV
-	Deleted: .4
	Deleted: 43
	Deleted: PWV
$\langle \rangle$	Deleted: 1.
$\left(\right)$	Deleted: -
//	Deleted: .0
//	Deleted: 1.2 - 1
()	Deleted: 56
())	Deleted: PWV
$\langle \rangle$	Deleted: 2
$\left(\right)$	Deleted: 2.4 - 2
$\left(\right)$	Deleted: S1
	Deleted: PWV
	Deleted: layer
	Deleted: PWV
	Deleted: 1.7 mm
	Deleted: monotonically
	Deleted: up
M	Deleted: 3.4
	Deleted: August
	Deleted: finally
	Deleted: December.
	Deleted: PWV
	Deleted: PWV
	Deleted: obvious PWV
	Deleted: different
	Deleted: PWV
1	Formatted: Justified
	Deleted: PWV
1	Deleted: 44
	Deleted: 44

436	has the boundaries of 0 - 1, where the lower bound means no change of N_c with N_{CCN} , and the upper
437	bound indicates a linear relationship that every CCN would result in one cloud droplet. Our result is
438	comparable with the previous studies targeting the MBL stratiform clouds, indicating a certain similarity
439	of the bulk cloud microphysical responses with respect to aerosol intrusion in those types of cloud and
440	over different marine environments, further support that the assessment in this study is valid.
441	The <u>PWV_{BL}</u> values are represented as blue circles (larger one for higher <u>PWV_{BL}</u>) in Fig. 2a in order
442	to study the role of water vapor availability on the CCN- N_c conversion process. As demonstrated in Fig.
443	2a, the <u>PWV_{BL}</u> values almost mimic the increasing $N_{CCN,0.2\%}$ trend, which is also governed by the
444	seasonal $N_{CCN,0.2\%}$ and the selected cloud cases. Fig. <u>\$3</u> shows the seasonal variation of $N_{CCN,0.2\%}$ from
445	2016 to 2018. It is noticeable that the monthly $N_{CCN,0.2\%}$ values, which mimic the monthly variation of
446	<u>PWV_{BL}</u> , are much higher during warm months (May-Oct) than during cold months (Nov-Apr). This
447	seasonal $N_{CCN,0.2\%}$ variation is also found in recent studies of MBL aerosol composition and number
448	concentration. During the warm months, the below-cloud boundary layer is enriched by the accumulation
449	mode of sulfate and organic particles via local generation and long-range transport induced by the semi-
450	permanent Azores High, which are found to be hydrophilic and can be great CCN contributors (Wang et
451	al., 2020; Zawadowicz et al., 2020; Zheng et al., 2018, 2020). Therefore, the coincidence of high
452	$N_{CCN,0.2\%}$ and <u>PWV_{BL}</u> does not necessarily imply a physical relationship, but instead is the result of their
453	similar seasonal trend. The potential co-variabilities between $N_{CCN,0.2\%}$ and PWV_{BL} , and hence the
454	implication on the N_c variation will be further investigated in the latter section. When taking the <u>PWV_{BL}</u>
455	into account, R^2 increases from 0.903 to 0.982, and this new relationship suggests that the <u>co-variability</u>
456	between the binned $ln(N_{CCN,0.2\%})$ and $ln(PWV_{BL})$ are in a stronger correlation with the change in
457	binned $ln(N_c)$. Intuitively, if the CCN- N_c relationship is primarily dominated by the diffusion of water
458	vapor, more CCN and higher $\frac{PWV_{BL}}{PWV_{BL}}$ should result in a continuously increasing of N_c . However, the
459	rapid increase of N_c (37 to 92 cm ⁻³) in the first half of $N_{CCN,0.2\%}$ bins (<250 cm ⁻³) does not happen in
460	the second half of the $N_{CCN,0.2\%}$ bins (>250 cm ⁻³) where the slope of N_c increase (96 to 103 cm ⁻³)

461 appears to be flattened for higher $N_{CCN,0.2\%}$ and <u>PWV_{BL}</u> bins. Furthermore, the joint power-law fitting of

462 N_c (to $N_{CCN,0.2\%}$ and <u>PWV_{BL}</u>) appears to be constantly lower than the single power-law fitting of N_c (to 463 $N_{CCN,0.2\%}$ solely) in each bin. The negative power of <u>PWV_{BL}</u> in this relationship suggests that <u>PWV_{BL}</u>

might play a stabilization role in the diffusional growth process, which will be further analyzed in the following sections.

The relationship between r_e and $N_{CCN,0.2\%}$ is shown in Fig. 2b where there is no significant relationship between r_e with $N_{CCN,0.2\%}$ solely, given a near-zero slope and the low correlation coefficient

Deleted: agrees well	
Deleted: on the relationship between cloud droplet and Co in	CN
Deleted: which elaborate	
Deleted: of <i>N_c</i>	
Deleted: N _{CCN,0.2%}	
Deleted: locations	
Deleted: PWV	
Deleted: PWV	
Deleted: PWV	
Deleted: S2	

Deleted: PWV

Deleted: PWV

-(Deleted: PWV
-{	Deleted: 9
-(Deleted: 98
1	Deleted: covariability
1	Deleted: PWV) can explain 98% of
-	Deleted: PWV

-{	Deleted: PWV
-{	Deleted: PWV
-{	Deleted: PWV
-	Deleted: PWV

Deleted:	

492	(fitted line not plotted). However, after applying a multiple linear regression to the logarithmic form of
493	r_e , $N_{CCN,0.2\%}$ and \underline{PWV}_{BL} , a significant correlation among those three variables is found. The r_e is
494	negatively correlated with $N_{CCN,0.2\%}$ and positively correlated with <u>PWV_{BL}</u> , and <u>73.7</u> % of the variations /
495	in binned $\ln(r_e)$ can be explained by the joint changes of the binned $\ln(N_{CCN,0.2\%})$ and $\ln(\text{PWV}_{\text{BL}})_2$
496	This indicates that in the bulk part, r_e decreases with increasing $N_{CCN,0.2\%}$ and enlarges with increasing /
497	<u>PWV_{BL}</u> . Notice that in <u>the</u> lower $N_{CCN,0.2\%}$ bins (<150 cm ⁻³) where the <u>PWV_{BL}</u> values are the lowest
498	among all the bins ($0.76 - 0.85$ cm), the limitation of cloud droplet growth by competing for the available
499	water vapor is evident by the changes in N_c and r_e . For example, the $N_{CCN,0.2\%}$ changes from 47 to 128
500	cm ⁻³ , the N_c increases from 37 to 71 cm ⁻³ and r_e only increases from 9.30 to 9.74 μ m. In other words,
501	nearly tripling the CCN loading leads to roughly doubling N_c , while the r_e is only enlarged by 0.44 μ m
502	(4.7%). In the relatively low available <u>PWV_{BL}</u> regime, it is clear that even with more CCN being
503	converted into cloud droplets, the limited water vapor condition prohibits the further diffusional growth
504	of those cloud droplets. However, in the higher $N_{CCN,0.2\%}$ bins (>150 cm ⁻³) with relatively higher
505	<u>PWV</u> _{BL} , the binned r_e values fluctuate and decrease with increasing CCN bins under similar <u>PWV</u> _{BL} (i.e.,
506	the two $N_{CCN,0.2\%}$ ranges from 200-400 cm ⁻³ , and from 400-500 cm ⁻³). Since r_e essentially represents
507	the area-weighted information of the cloud droplet size distribution (DSD), this sorting method of r_e
508	inevitably entangles multiple cloud droplet evolution processes and environmental effects that can alter
509	the DSD, especially under the condition of sufficient water supply. Therefore, the further assessment of
510	the r_e responses to the $N_{CCN,0.2\%}$ loading under the <u>constraint</u> of water vapor should be discussed in order
511	to untangle the impacts of different processes and environmental effects on $r_{e_{\mathbf{x}}}$
512	•
513	3.3 Aerosol-cloud interaction under different water vapor availabilities
514	As previously discussed above and suggested by earlier studies, the conditions of water vapor
515	supply have a substantial impact on various processes from $\text{CCN-}N_c$ conversion to in-cloud droplet
516	condensational growth and coalescence processes, hence effectively altering the cloud DSD (Feingold et
E 1 C	

517 al., 2006; McComiskey et al., 2009; Zheng et al., 2020). Moving forward to examine how r_e responds to 518 the changes of $N_{CCN,0.2\%}$ in the context of given water vapor availability, an index describing the aerosol-519 cloud interaction process is introduced as follows:

520 $\operatorname{ACI}_{\mathbf{r}} = -\frac{\partial \ln (\mathbf{r}_{e})}{\partial \ln (N_{CCN,0.2\%})}\Big|_{\mathrm{PWV}_{\mathrm{BL}}}$

<u>(3</u>)

11

521 The ACI_r represents the relative change of r_e with respect to the relative change of $N_{CCN,0.2\%}$, where 522 positive ACI_r denotes the decrease of r_e with increasing $N_{CCN,0.2\%}$ under binned <u>PWV_{BL}</u>. This

Deleted: PWV	
Deleted: PWVWV _{BL} , and nearly 823.7% of the	
Deleted:).	
Deleted: the	
Deleted: PWV	
Deleted: PWVWV _{BL} values are the lowest among all the	hſ.
Deleted: PWV	
Deleted: PWV	
Deleted: PWV	
Deleted: constraintsonstraint of water vapor should be	٢.
Formatted	ſ
Formatted	ſ
Formatted	Ċ
	<u> </u>
Merced deems [11]:) which is a loss be a set (Ŀ
Moved down [11]:), which is given by $z_n = (z - z_n)$	/
Moved down [12]: The normalized r_e increases from ~8.	6
Moved down [15]: 2018; Wu et al. 2020b).	_
Formatted	[.
Deleted: To better understand the implication of cloud	(.
Deleted: PWV, and the $N_{CCN,0.2\%}$ and PWV appear to pla	I) [1
Moved down [17]: , that is, with increasing water vapor	
Deleted: slow increase of N_c .	
Formatted	[
Formatted	ſ
Deleted: , primarily through condensational growth and	ſ
Moved down [13]: Profiles of retrieved LWC and calcula	ite
Deleted: 33% compared to that for the near-adiabatic clou	ud.
Moved down [19]: As previously studied, the coalescent	ce
Deleted: In the sub-adiabatic cloud regime, the decrease of	5
Formatted	ſ
Formatted	ſ
Formatted	<u>ل</u>
Deleted: Ab where	L
Moved up [8]: $IWC = \Gamma(z-z)$	_
Novel de $[16]$. Evel $ad(z) = T_{ad}(z - z_b)$,	
Moved down [16]: For the near-adiabatic regime, N_c	
Moved down [18]: The mean reduction of N_c in the sub-	
Deleted: marine boundary cloud	
Moved down [20]: (Feingold et al., 1996; Wood, 2006).	
Moved down [21]: lower N_c in the sub-adiabatic regime	_
Formatted	
Formatted	(
Deleted: and	
Formatted	
Moved up [9]: Γ_{ad} denotes the linear increase of LWC w	vit
Deleted: The LWC _{ad} is computed using an interpolated	ſ
Moved down [14]: , the f_{ad} values, which is the ratio of	
Formatted	٢
Deleted: Thus, the	
Formatted	<u>ر</u>
	ſ
	L
	٢
	Ŀ

728 assessment of ACI_r focuses on the relative sensitivity of the cloud microphysics response in the water 729 vapor stratified environment, while previous studies used the cloud liquid water path (LWP) as the 730 constraint (Twomey, 1977; Feingold et al., 2003; Garrett et al., 2004). LWP describes the liquid water 731 (i.e., existing cloud droplets) physically linked to r_e and N_c which have an interdependent relationship 732 in cloud retrieval procedures, and hence to a certain extent, share co-variabilities with cloud 733 microphysical properties (Dong et al., 1998; Wu et al., 2020a). In this study, by using the PWV as a 734 sorting variable, we are trying to capture the role of ambient available water vapor in the cloud droplet 735 growth process (especially the water vapor diffusional growth), using measurement independent to the 736 <u>cloud retrievals. Fig. 3</u> shows the variation of ACI_r under different <u>PWV_{BL}</u> bins, and illustrates the 737 calculation of ACI_r in three different PWV_{BL} ranges. Note that in Fig. 3a, the regressions are derived 738 from all points (statistically significant with a confidence level of 95%). As shown in Fig. 3a, the ACIr 739 values range from close-to-zero values (-0.01) to 0.22, with the mean value of 0.117 ± 0.052 . The ACIr 740 range of this study agrees well with the previous studies of MBL cloud aerosol-cloud interactions 741 (McComiskey et al., 2009; Pandithurai et al., 2009; Liu et al., 2016). It is noteworthy that the variation 742 of ACI_r with PWV_{BL} suggests two different relationships under separated PWV_{BL} conditions, as 743 discussed in the following two paragraphs. 744 Under the relatively lower <u>PWV_{BL}</u> condition (<1.2, cm), the low values of ACI_r (-0.01 - 0.057)

-[Moved (insertion) [22]
1	Deleted: Fig. 5
ſ	Deleted: PWV
ſ	Deleted: PWV
ſ	Deleted: 5b
ſ	Deleted: %) except for one point at PWV=2.0 cm.
C	Deleted: 5b
C	Deleted: 004
C	Deleted: 207
C	Deleted: 096
C	Deleted: 026
ſ	Deleted: PWV
C	Deleted: PWV
ſ	Deleted: PWV
C	Deleted: .0
C	Deleted: 004 - 0.074
C	Deleted: PWV
C	Deleted: dash
C	Deleted: 17
C	Deleted: 5b
C	Deleted: near quadruple
C	Deleted: 41
	Deleted: PWV
C	Deleted: 2-1.4
C	Deleted: 5a
C	Deleted: PWV
C	Deleted: the
C	Deleted:
Ć	Deleted: PWV
C	Deleted: 2
Ć	Deleted: PWV
C	Deleted: 95

745 indicate that r_e is less sensitive to $N_{CCN,0.2\%}$, and the dependence on <u>PWV_{BL}</u> is also insignificant given 746 by the flat regression line (green <u>dashed</u> line) and low correlation coefficient of 0.38 (Fig. 3a). As 747 discussed in section 3.2, the limited water vapor can weaken the ability of condensational growth of the 748 cloud droplet converted from CCN, that is, the increase of CCN loading cannot be effectively reflected 749 by a decrease in r_e . For example, a <u>307%</u> increase of $N_{CCN,0.2\%}$ only leads to a <u>10</u>% decrease in r_e in the 750 <u>PWV_{BL}</u> range of 0.8-1 0 cm as shown in Fig. <u>3b</u>. So that in this regime, even with a slight <u>PWV_{BL}</u> increase, 751 the lack of a sufficient amount of large cloud droplets is favorable to the predominant condensational 752 growth process, which effectively narrows the cloud DSD and, in turn, confines the variable range of r_e 753 with respect to N_{CCN.0.2%} (Pawlowska et al., 2006; Zheng et al., 2020). In this situation, the abilities of 754 CCN to cloud droplet conversion and the droplet condensational growth are limited by insufficient water 755 vapor, rather than an influx of CCN. 756 However, under the relatively higher <u>PWV_{BL}</u> regime (>1.2 cm), the ACI_r values become more

positive and express a significant increasing trend with $\underline{PWV_{BL}}$ (correlation coefficient of 0.83, blue dashed line), which indicates that r_e is more susceptible to $N_{CCN,0.2\%}$ in this regime. On the one hand, due to the sufficient water vapor supply, the enhanced condensational growth process allows more CCN

- 1	\mathbf{a}	
1	7	

791	to grow into cloud droplets, so that the limiting factor of the droplet growth corresponds to the changes
792	in CCN loading. On the other hand, the increased N_c values associated with higher water vapor supply
793	in the cloud effectively enhance the coalescence process. This results in broadening the cloud DSD and
794	increasing the variation range of r_e in response to the changes of $N_{CCN,0.2\%}$. To test our hypothesis of
795	active coalescence under higher water vapor conditions, Table 2 lists the occurrence frequencies of large
796	r_e values (> 12 and 14 µm) under the six high <u>PWV_{BL}</u> bins (<u>1.2, -2, 4 cm</u>), because this range of 12-14
797	µm can serve as the critical demarcation of an efficient coalescence process (Gerber, 1996; Freud and
798	Rosenfeld, 2012; Rosenfeld et al., 2012). As listed in Table 2, for the six high <u>PWV_{BL}</u> bins, the
799	occurrence frequencies of $r_e > 12 \ \mu\text{m}$ are 25.0% , 30.6% , 54.1% , 74.2% , 93.8% and 97.5% , and the
800	occurrence frequencies of $r_e > 14 \ \mu\text{m}$ are $1, \frac{25\%}{1.77\%}, \frac{7.4\%}{7.4\%}, \frac{17.7\%}{31.9}\%$ and $\frac{20.1}{\%}$, respectively.
801	The increasing trends of large r_e occurrences mimic the trend of ACI _r and suggest that with
802	increased <u>PWV_{BL}</u> , cloud droplets have a greater chance to grow via the effective coalescence process
803	and subsequently lead to an enlargement of ACIr. Although previous studies have brought up the
804	potential impacts of the cloud droplet coalescence process on ACI, it is rarely seen that the relationship
805	among them has been discussed in detail. Here we provide possible explanations on how the enhanced
806	coalescence process can enlarge ACI_r . Quantitatively, ACI_r is described by the log partial derivative ratio
807	of r_e to $N_{CCN,0.2\%}$, thus a sharper decrease of r_e with respect to a given $N_{CCN,0.2\%}$ range can result in a
808	steeper slope and in turn, larger ACI _r (i.e., a 239% increase in $N_{CCN,0.2\%}$ leads to a r_e decrease of 48% in
809	the 2, <u>2-2.4</u> cm bin in Fig. <u>3b</u>). Physically, this relies on how the cloud droplet size distribution (DSD)
810	would change with different CCN loadings. Therefore, particularly in low CCN conditions, sufficient
811	water vapor availability will allow cloud droplets to continuously grow via diffusion of water vapor (i.e.,
812	condensational growth), and enter the active cloud-droplet coalescence regime. In contrast, the increase
813	in cloud <u>droplet size</u> can effectively reduce N_c via the process of large cloud droplets collecting small
814	droplets, and small droplets be coalesced into large droplets. Consequently, the cloud DSD becomes
815	effectively broadened toward the large tail by the coalescence, so that r_e is enlarged. With more CCN
816	available, the <u>cloud DSD is</u> narrowed by the enhanced condensational growth and <u>regresses</u> toward the
817	small tail by increasing the amount of newly converted cloud droplets which result in decreased r_e . These
818	interactions between CCNs and cloud droplets ultimately result in the broadened changeable range of r_e ,
819	and in turn, the enlarged ACI _r .
820	In order to investigate the theoretical implication of supersaturation conditions on the aerosol-cloud
821	interaction observed here in the MBL stratiform clouds, the ACI _r values are calculated with respect to

822	the surface N _{CCN}	theoretically	at two	additional	high	supersaturation	levels	(0.5%)	and	1.2%),	under all
						-					

Deleted:

-	Deleted: PWV
-	Deleted: .
١	Deleted: - 3
-	Deleted: PWV
-	Deleted: 22.4%, 32
-	Deleted: 51
١	Deleted: 70.1%, 96.5
	Deleted: 95.1
J	Deleted: 72%, 2.41%, 4.35%, 16.4%, 35.1
	Deleted: 9.76
4	Deleted: PWV

1	Deleted: increase of 49%
-	Deleted: 41
-	Deleted: 8-3.0
1	Deleted: 5a
١	Deleted: spectra
-	Deleted: allows
-	Deleted: droplets
1	Deleted: coalescing
-	Deleted: size distribution spectra are
1	Deleted: size distribution spectra are
-	Deleted: regress
-	Deleted: and

847	PWV _{BL} conditions. The results in Table 3 show that the ACI _r signals are both weak and do not have
848	significant changes under relatively lower PWV _{BL} conditions, while the ACI _r signals tend to strengthen
849	with the increase of supersaturation under the relatively higher PWV _{BL} . Base on the Köhler theory, if the
850	supersaturation exceeds the critical point for the given droplet, the droplet will thus experience continued
851	growth, so theoretically the ACI should increase with the supersaturation under same aerosol number
852	concentration. However, the observed limited water vapor cannot support this ideal droplet growth,
853	results in weak responses of cloud droplets to aerosol intrusion. With the increase of observed water
854	vapor, the continued growth of cloud droplets becomes more plausible, hence the high supersaturation
855	yields larger droplets with low number of aerosols, more efficient droplet activation with a large number
856	of aerosols, and in turns, larger ACIr (even out of the theoretical bounds). However, considering these
857	high supersaturation environments are unphysical in the observed MBL cloud layers, and estimating the
858	real supersaturation conditions using ground-based remote-sensing is beyond the scope of this study, we
859	chose the supersaturation level of 0.2% because it represents the most typical supersaturation conditions
860	of MBL stratiform clouds.
861	

862 <u>3.4 The co-variabilities of the meteorological factors</u>

863 The environmental conditions over the ENA have been widely studied as not independent but entangled with each other (Wood et al., 2015; Zheng et al., 2016; Wu et al., 2017; Wang et al., 2021). 864 865 To better understand the dependencies and the co-variabilities of the meteorological factors, a principal component analysis (PCA) is performed targeting on the following variables: (1) PWV_{BL} denotes the 866 867 water vapor availabilities within the boundary layer; (2) Di describes the boundary layer coupling 868 conditions; (3) TKE_w represents the strength of boundary layer turbulence; (4) W_{dir,NS} reflects the 869 surface wind directions in terms of northerly and southerly; and (5) LTS infers the large-scale 870 thermodynamic structures. Note that the $W_{dir,NS}$ are taken as $W_{dir,NS} = abs(W_{dir} - 180^\circ)$, so that the 871 original W_{dir} (0-360°) can be transformed to $W_{dir,NS}$ (0-180°) where the values smaller than 90° are 872 close to the southerly wind, and those greater than 90° are close to the northerly wind. The $W_{dir,ns}$ are 873 transformed as such to capture the island effects better, because the cliff is located north of the ENA site. 874 The input data metric is constructed from the above five variables to apply the PCA, and the 875 principal components (PCs) that serving to explain the variation of those dependent variables can be 876 output from the eigenanalysis. The result shows that for the five selected meteorological factors, the 877 proportions of the total intervariable variance explained by the PCs are 43.72%, 22.01%, 18.26%, 8.95% 878 and 7.06%, and the eigenvalues are 2.19, 1.10, 0.91, 0.45, and 0.35, respectively. Note that the first three

879	<u>PCs have the highest eigenvalues and explain most (~84%) of the total variance, which indicates that</u>
880	they can capture the significant variation patterns of the selective meteorological factors.
881	To determine the relative contributions of the variables to PCs, all the five selected meteorological
882	variables are projected to the first three PCs and the Pearson correlation coefficients between them are
883	listed in Table 4. For the first PC (PC1) which accounts for the highest proportion (43.72%) of the total
884	variance, the PC1 is strongly negatively correlated with PWV _{BL} (-0.84) and D_i (-0.73), but strongly
885	positively correlated with TKE _w (0.69). These results suggest that PC1 mainly represents the boundary
886	layer conditions, and the co-variations of the boundary layer water vapor and turbulence are the most
887	distinct environmental patterns for the selected cloud cases. The PC2 and PC3 are most correlated with
888	LTS (0.58 and 0.65 for PC2 and PC3, respectively) and W _{dir,NS} (0.60 and -0.50 for PC2 and PC3,
889	respectively), indicating that the PC2 and PC3 mainly describe the variations in large-scale
890	thermodynamic and the surface wind patterns, which are likely associated with the variations of the
891	Azores High position and strength (Wood et al., 2015).
892	To further understand the correlations between the meteorological variables, the principal
893	component loadings plot is constructed by projecting the variables onto PC1 and PC2 as shown in Fig.
894	4. Each point denotes the variable correlations with PC1 (x-coordinate) and PC2 (y-coordinate), so that
895	each vector represents the strength and direction of the original variable influences on the pair of PCs.
896	The angle between the two vectors represents the correlation between each other. In Fig. 4, both TKE_w
897	and $W_{dir,NS}$ vectors are located in the same quadrant (positive in both PC1 and PC2) and close to each
898	other with a small degree of an acute angle, which means the TKE _w are strongly correlated with the
899	$W_{dir,NS}$. When the surface wind is coming from the north side of the island, the topographic lifting effect
900	of the cliff would induce additional updraft over the ENA site (Zheng et al., 2016), so that the wind closer
901	to the northerly wind (larger $W_{dir,NS}$) is more correlated with higher TKE _w . Note that TKE _w and D_i
902	vectors are almost in an opposite direction, which denotes a strongly negative correlation between the
903	two variables. The angles of PWV _{BL} with D_i (~45°) and TKE _w (~142°) suggest that PWV _{BL} is
904	moderately positively correlated with D_i but negatively correlated with TKE _w . A higher D_i indicates a
905	more decoupled MBL, where MBL is not well-mixed and separated into a radiative-driven layer and a
906	surface flux driven layer that caps the surface moisture (Jones et al., 2011). This situation is more likely
907	to associate with a relatively higher PWV _{BL} and weaker TKE _w condition. As for the LTS parameter, the
908	close to 90° angle with TKEw suggests no correlation between them, since the LTS is mostly capturing
909	the large-scale thermodynamical structures and is obtained from a coarser temporal resolution. Thus, the
910	LTS does not essentially have correspondence to the strength of boundary layer turbulence and can be

treated as independent to TKE_w over the ENA site. The loading plot intuitively tells us the directions and

912 strengths of the co-variabilities of the selected meteorological variables, and sheds the light on

913 determining the key factors that are feasible to use in examining the environmental impacts on the

914 <u>aerosol-cloud interactions.</u>

- 916 <u>3.5 Linking the meteorological factors to aerosol-cloud interaction</u>
- 917

915

918 <u>3.5.1 Relations of meteorological factors with aerosol and cloud properties</u>

919 The PCs are, mathematically, the linear combination of the selected variables, and hence 920 independent of each other after the PCA. Therefore, treating the aerosol and cloud properties as 921 dependents and correlated with the PCs allows us to infer their co-variation with the meteorological 922 factors statistically. A weakly negative correlation between $N_{CCN,0.2\%}$ and PC1 ($R_{PC1,CCN} = -0.35$) 923 suggests that the relatively higher N_{CCN,0.2%} could be sometimes found under higher PWV_{BL} and lower 924 TKEw. Though the correlation is low, the plausible contributions could come from the seasonal variations 925 of N_{CCN,0.2%} and PWV_{BL} as discussed in the previous section, and the weaker TKE_w might prevent the 926 vertical mixing of CCN and induce higher surface N_{CCN,0.2%}. On the other hand, a weakly positive 927 <u>correlation between $N_{CCN,0.2\%}$ and PC2 ($R_{PC2,CCN} = 0.21$) suggests that there are no fundamental</u> 928 relationships between CCN with thermodynamic and the surface wind direction, and they are not the key 929 controlling factor of surface N_{CCN.0.2%} variation because the surface CCN concentration is primarily 930 contributed by the accumulation-mode aerosols which come from the condensational growth of Aitken-931 mode aerosols (Zheng et al., 2018). As for the cloud properties, both N_c and f_{ad} are negatively correlated 932 with PC1 ($R_{PC1,Nc} = -0.51 \text{ and } R_{PC1,fad} = -0.62$, respectively), suggesting a moderate relationship 933 between N_c , f_{ad} , and the boundary layer condition. Moreover, their low correlations with PC2 934 $(R_{PC2,Nc} = -0.10 \text{ and } R_{PC2,fad} = -0.17, \text{ respectively})$ indicate very weak relations with the large-scale 935 thermodynamic variables. Note that the same sign of correlations with PC1 statistically inferring the 936 similar directional co-variation of $N_{CCN,0.2\%}$, N_c , and f_{ad} to a certain extent. 937 To examine the physical relation between $N_{CCN,0.2\%}$, N_c and f_{ad} , the profiles of cloud r_e and 938 LWC are plotted in normalized height from cloud base (z_b) to cloud top height (z_t) (Fig. 5), which is

- 939 given by $z_n = (z z_b) / (z_t z_b)$. The solid lines denote the mean values, and the shaded area
- 940 represents one standard deviation at each normalized height z_{ne} . The normalized r_{e} increases from ~8.6 941 μm , at the cloud base toward ~11 μm , near the upper part of the cloud where z_{n} is 0.7 (Fig. 5a), through
- $\mu m_{\underline{x}}$ at the cloud base toward ~11 $\mu m_{\underline{x}}$ near the upper part of the cloud where z_{n} is 0.7 (Fig. 5a), through condensational growth and coalescence processes, and then decreases toward the cloud top due to cloud-

Moved (insertion) [23] Formatted: Font: Not Bold Moved (insertion) [24]

Moved (insertion) [11]
Formatted: Font: Liberation Serif
Formatted: Font: Liberation Serif
Moved (insertion) [12]
Formatted: Font: Liberation Serif

h42	ton optimized. Similar is aloud variation of r is also found by maximum to be using simulations	
043	top entrainment. Similar in-cloud vertical variation of r_e is also found by previous study using aircraft in site masses ments (Zhao et al. 2018; We et al. 2020a). Profiles of retrieved LWC and calculated	
944	m-situ measurements (Znao et al., 2018; wu et al. 2020a). Promes of refrieved LwC and calculated	M
945	adiabatic LWC $_{ad}$ (blue line) are presented in Fig. 5b. As demonstrated in Fig. 5b, the f_{ad} values, which	M
946	is the ratio of LWC to LWC _{ad} , reach a maximum of 0.8 at the cloud base and a minimum of 0.58 at the	
047	<u>croud top.</u> The shaded areas of r_e and LWC denote the range from hear-adiabatic to sub-adiabatic croud	
948	environments, where in the near-adiabatic cloud (higher f_{ad}) the cloud droplets experience adiabatic	
949	growth and LWC should close to LWC _{ad} . In contrast, in the sub-adiabatic cloud regime, the decrease of	
950	<i>f_{ad}</i> is largely due to cloud-top entrainment and coalescence processes even in non-precipitating MBL	
951	clouds (Wood, 2012; Braun et al., 2018; Wu et al. 2020b). Furthermore, to understand the implication of	
952	cloud adiabaticity with respect to CCN- N_c conversion, all of the f_{ad} samples are separated into two	
953	groups by the median value of the layer-mean f_{ad} (0.66) for a further analysis.	
954	Figure 6 shows N_c against the binned $N_{CCN,0.2\%}$ for the near-adiabatic regime ($f_{ad} > 0.66$) and	_
955	sub-adiabatic regime ($f_{ad} < 0.66$). For the near-adiabatic regime, N_c increases from ~60 cm ⁻³ to 119	M
956	cm^{-3} with increased $N_{CCN,0.2\%}$ and PWV_{BL} , and both $N_{CCN,0.2\%}$ and PWV_{BL} appear to play positive roles	
957	in terms of the N_c increase. The result is as expected because the process of condensational growth is	
958	predominant in the near-adiabatic clouds, that is, with increasing water vapor supply, the higher CCN	M
959	loading can effectively lead to more cloud droplets. However, in the sub-adiabatic cloud regime, N_c	
960	increases with increased $N_{CCN,0.2\%}$ but possesses a negative correlation with PWV, which results in a	
961	slower increase of N_c under higher $N_{CCN,0.2\%}$ and PWV _{BL} conditions. The mean reduction of N_c in the	M
962	sub-adiabatic regime is computed to be \sim 37% compared to that for the near-adiabatic clouds, As	M
963	previously studied, the coalescence process contributes significantly to $N_{c_{\star}}$ depletion, even in a non-	Fo
964	precipitating MBL clouds (Feingold et al., 1996; Wood, 2006). Thus, lower N _c in the sub-adiabatic	Fo
965	regime may be partly due to the combined effect of coalescence and entrainment (Wood, 2006; Hill et	M
966	al., 2009; Yum et al., 2015; Wang et al., 2020). Note that the retrieved N _c is representing the cloud layer-	E E
967	mean information. In summary, the Wu et al. (2020a) retrieval works as separating the reflectivity to the	D
968	contributions of cloud (Z_c) and drizzle, the cloud procedure assumes an initial guess of the representative	3.
969	layer-mean N_c based on the climatology over ENA sites (Dong et al., 2014), and such allows the first	
970	guess of the vertical profile of LWC based on N_c and Z_c , and then constrains back the N_c and LWC using	
971	the LWP from MWR, finally output r _e (Fig.3 in Wu et al., 2020a). Therefore, the final retrieved N _c is	
972	updated to in response to the cloud microphysical processes within this time-step. From the aircraft in-	
973	situ measurements during the ACE-ENA, we used the in-situ measurement during ACE-ENA to validate	
974	the retrieval outputs and found that the observed N_c profile is near-constant in middle part of the cloud,	
1		

Moved (insertion) [13]	
Moved (insertion) [14]	

Moved (insertion) [15]
Formatted: Font: Liberation Serif

Ioved (insertion) [16]

Moved (insertion) [17]

Moved (insertion) [18]
Moved (insertion) [19]
Formatted: Font: Liberation Serif
Formatted: Font: Liberation Serif
Moved (insertion) [20]
Moved (insertion) [21]
Formatted: Font: Liberation Serif
Deleted: ¶

3.5 Impacts of meteorological factors on ACI

977	with the signal of entrainment-induced depletion near the cloud top, even in the drizzling cloud where
978	the collision-coalescence processes are more active (Wu et al., 2020a). However, it is hard and beyond
979	the scope of the ground-based retrieval to compare the vertical dependency of depletion rate within one
980	time-step. Therefore, as the retrieval currently work as representing the layer-mean information from the
981	given time-step, the preferred method in this study is to compare N_c at different times, where in this case
982	are the adiabatic versus sub-adiabatic conditions which hence yields different N_c that we retrieved from
983	the ground-based snapshot perspective. From the PCA and binning analysis, the effect of cloud
984	adiabaticities on CCN-N _c conversions may shed light on interpreting the aerosol-cloud interaction under
985	different environmental effects.
986	
987	3.5.2 The role of meteorological factors on ACI _r assessment
988	Since ACI _r can only be calculated by the logarithmic derivatives from a set of $N_{CCN,0.2\%}$ and r_e
989	data within a certain regime, it will be inappropriate to linearly correlate the data with PCs directly, in
990	both mathematical and physical perspectives. Therefore, the meteorological factors which have the
991	strongest influence on the most explanatory PCs, namely PWV _{BL} and TKE _w are selected to be the sorting
992	variables in assessing the environmental impacts on the ACI _r . In addition, LTS is also selected as it
993	represents the large-scale thermodynamic factor and is independent to the boundary-layer environment
994	conditions. The data samples are first separated into two regimes using the median values of the targeting
995	factors, and then separated into four quadrants by the median PWV _{BL} because ACI _r is found to have
996	significant differences under different water vapor availabilities. The ACI _r values are further calculated
997	for all quadrants to examine whether the ACI _r can be distinguished by the targeting factors.
998	Combining LTS and PWV _{BL} as sorting variables, the ACI _r values for four regimes are shown in
999	Fig. S4. The ACI _r differences between low and high PWV_{BL} regimes are still retained. In the low PWV_{BL}
000	regime, the ACI _r values are limited to $0,016$ and $0,056$ for low and high LTS regimes, respectively. In
001	the high <u>PWV_{BL}</u> regime, the ACI _r values are $0,150$ and 0.171 for low and high LTS regimes, respectively,
002	which is about 3-5 times greater than those in low <u>PWV_{BL} regime. However, the ACI_r in different LTS</u>
003	regimes cannot be distinctly differentiated (ACI _r differences between LTS regimes are ~0.02 and ~0.04),
004	and the main difference in ACI _r are still induced by the PWV _{BL} . Owing to the location of the ENA site
005	where it locates near the boundary of mid-latitude and subtropical climate regimes, the MBL clouds over
006	the ENA are found to be often under the influences of cold fronts associated with mid-latitude cyclones,
007	where the cloud evolutions are subject to the combine effects of post-frontal and large-scale subsidence
008	(Wood et al., 2015; Zheng et al., 2020; Wang et al., 2021). Therefore, over the ENA, although the spatial

Moved up [23]: ¶ 3.5

Moved up [22]: Fig.

Formatted: Font: Not Bold

Deleted: .1 The role of lower tropospheric

thermodynamics¶ The LTS parameter is used to infer the large-scale

thermodynamic structures for the selected cases in order to examine their impacts on ACI. The samples are separated into two regimes: high LTS and low LTS using the median LTS value (19.1K) as a threshold. The N_c values for the high LTS regime are generally higher than those in the low LTS region (

Deleted: S3), though their difference is only 4.7%. Since LTS is calculated by the difference between free tropospheric and surface potential temperatures, a high LTS value represents a strong temperature inversion that caps the boundary layer, and implies a thin entrainment zone that restricts the effectiveness of the cloud-top entrainment. Moreover, a more stable lower troposphere is prone to boundary layer cloud formation with a lower cloud base height and accompanies a well-mixed boundary layer that couple the surface moisture and aloft (Klein and Hartmann, 1993; Wood and Bretherton, 2006; Wood, 2012). Thus, the high LTS values are often found to be associated with clouds that more close to adiabatic (Kim et al., 2008), which results in more N_c with less depletion. ¶

To examine the impact of LTS on the water constrained ACI_r , the

Deleted: further

	Deleted: by
	Deleted: PWV (2.4 cm) and median LTS, so each regime has ~25% of the total samples. As shown in Fig. 6, where the regression lines for the
	Formatted: Indent: First line: 0.49"
	Deleted: fitted to the 95% confidence interval, the
	Deleted: PWV
	Formatted: Subscript
	Deleted: PWV
_	Deleted: 03
	Deleted: 053
-	Deleted: PWV
$\langle $	Formatted: Subscript
$\langle \rangle$	Deleted: 154
	D-1-4-1 DWW

Deleted: PWV regime. It appears that PWV plays a more important role in ACI_r than LTS since the LTS is mostly capturing the large-scale thermodynamical structures, and is obtained from a coarser temporal resolution. Thus, the LTS does not essentially have strict correspondence to the strength of boundary layer turbulence (which more directly interferes with the cloud processes). LTS may not effectively represent the connection between cloud layer and boundary layer CCN and moisture in terms of both spatial and temporal scales, and thus induces limitations in assessing the role of thermodynamics on the ACI_r.

1060	gradient of LTS is studied to be associated with the production of MBL turbulence and the change in	
1061	wind direction (Wu et al., 2017), the LTS value itself is examined to has a weak impact on the aerosol-	
1062	cloud interaction from this study,	
1063	The TKE _w has been found to be strongly positively correlated with $W_{dir,NS}$ and negatively	
1064	correlated with D_i from the PCA, that is, the values of TKE _w already account for the co-variabilities in	1
1065	these variables. Therefore, treating TKE _w as the sorting variable would lead to a more physical process-	
1066	orientated assessment. Accordingly, to examine the role of the dynamical factors on ACI, the samples	
1067	are separated into four regimes demarcated by the median values of PWVBL and TKEw (Fig. 7), and the	
1068	mean values of D_i and f_{ad} in the four quadrants are also displayed in Fig. 7. The effect of PWV _{BL} on	
1069	ACI_r is demonstrated by the mean ACI_r values where they are much higher in the high PWV _{BL} regime	
1070	than those in the low PWV _{BL} regime no matter what the TKE _w regimes, Furthermore, the result illustrates	Haddon
1071	that TKE_w does play an important role in ACI_{re} because the ACI_r values in the high TKE_w regime are	
1072	more than double than the values in the low TKE _w regime.	THE PARTY IN COLUMN
1073	In the regimes of high TKE _w and PWV _{BL} , which are closely associated with coupled MBL ($D_i =$	Contraction of the local division of the loc
1074	0.21) and more sub-adiabatic cloud conditions ($f_{ad} = 0.52$), r_e is highly sensitive to CCN loading with	ALL STREET, ST
1075	the highest ACI_r of 0.259. The sufficient water vapor availability allows CCN to be converted into cloud	10101010101000
1076	droplets more effectively, while the relatively higher TKE_w indicates stronger turbulence in the below-	
1077	cloud boundary layer, and maintains a nearly well-mixed MBL. The CCN and moisture below-cloud layer	100000000000000000000000000000000000000
1078	are efficiently transported and mixed aloft via the ascending branch of the eddies (Nicholls, 1984; Hogan	
1079	et al., 2009), hence are effectively connected to the cloud layer. Therefore, under the lower CCN loading	
1080	condition, the active coalescence process (which indicated by the low f_{ad} values) results in the depletion	
1081	of small cloud droplets and broadening of cloud DSD (Chandrakar et al., 2016), and in turn, leads to	
1082	further enlarged r_e . However, with higher CCN intrusion into the cloud layer, the enhanced cloud droplet	
1083	conversion and the subsequential condensational growth behave contradictorily to <u>narrow</u> the DSD	
1084	(Pinsky and Khain, 2002; Pawlowska et al., 2006), which leads to decreased r_e . Therefore, the MBL	
1085	clouds are distinctly susceptible to CCN loading under the environments of sufficient water vapor and	
1086	strong turbulence in which the ACI _r is enlarged.	
1087	Under high <u>PWV_{BL}</u> but low TKE _w conditions, the mean ACI _r reduces to 0.101 (~ 39% of that	
1088	under high TKE _w). The <u>MBL is more likely decoupled where $D_i = 0.54$, which indicates that the weaker</u>	
1089	turbulence loosens the connection between the cloud layer and the underlying boundary layer, This	

1090	results in a less effective conversion of CCN into cloud droplets, while the more adiabatic cloud
1091	environment ($f_{ad} = 0.75$) denotes the lack of coalescence growths and thus diminishes the r_e sensitivity

Formatted: Font: Liberation Serif
Moved up [24]: ¶ 3.5.
Deleted:
Deleted: 2
Formatted: Font: Not Bold
Deleted: role of boundary layer turbulence¶ To
Deleted: TKE _w parameter is used to represent the intensity of below-cloud boundary layer turbulence. The median TKE _w (0.08 m ² s ⁻²) is used to separate the N _c variation with N _{CCN,0.2%} for low and high TKE _w regimes (Fig. S4). The N _c values are higher (with a mean increase of 20%) under high TKE _w environments than those under lower TKE _w , across all CCN bins. The higher logarithmic ratios of N _c to PWV for high TKE _w regime suggest a more sensitive N _c response to CCN with an increased water vapor supply. This is mainly due to a closer connection between the CCN below and the cloud layer loft, accompanied by stronger boundary layer turbulence, so that more CCN can be converted into cloud droplets. When using the mean values of 215 cm ⁻³ for \dots
Deleted: further
Deleted: PWV
Deleted: in
Deleted: . Similar to the results
Deleted: Fig. 6, the
Deleted: in the higher PWV regime
Deleted: also
Deleted: than those
Deleted: lower PWV
Deleted: low or high
Deleted: , whereas
Deleted: plays a more
Deleted: than LTS
Deleted: those
Deleted: higher
Deleted: PWV,
Deleted: the
Deleted: 252
Deleted: .
Deleted: which
Deleted:
Deleted: narrows
Deleted: PWV
Deleted: 125 (~ 50
Deleted: ,
Deleted: and then

1158	to CCN. Although the constraints of insufficient water vapor on ACI _r are still evident, the ACI _r values	
1159	<u>increase</u> from $0,008$ in <u>the</u> low TKE _w regime to $0,024$ in <u>the</u> high TKE _w regime. The ACI _r differences	
1160	between the two TKE _w regimes attest that ACI _r strongly depends on the connection between the cloud	/
1161	layer and the below-cloud boundary layer CCN and moisture, that is, stronger turbulence can enhance	
1162	the susceptibility of r_e to CCN.	
1163	In this study, the relationship between turbulence and ACI is found to be valid in non-precipitating	
1164	\underline{MBL} clouds. Theoretically, the effect of turbulence on ACI _r would appear to be artificially amplified, if	
1165	in the presence of precipitation. The intensive turbulence can enhance the coalescence process and	/
1166	accelerate the CCN-cloud cycling, and subsequently, the CCN depletion due to precipitation and	
1167	coalescence scavenging would result in quantitatively enlarged ACI _r (Feingold et al., 1996, 1999; Duong	
1168	et al., 2011; Braun et al., 2018). Though it is beyond the <u>scope</u> of this study, it would be of interest to	_
1169	perform such analysis on the aerosol-cloud-precipitation interaction using ground-based remote sensing	

- 1170 <u>and model simulations in the future study</u>.
- 1171

1172 4. Summaries and Conclusions

1173Over the ARM-ENA site, a total of 20 non-precipitating single-Jayered MBL stratus and1174stratocumulus cloud cases have been selected in order to investigate the aerosol-cloud interaction (ACI).1175The distributions of CCN and cloud properties for selected cases represent the typical characteristics of1176non-precipitating MBL clouds in a relatively clean environment over the remote oceanic area. The1177diversity of boundary layer conditions and cloud adiabaticities among the selected cases enable the1178investigation of different environmental effects on ACI.

1179	The overall variations of N_c with $N_{CCN,0.2\%}$ show an increasing trend, regardless of the water vapor
1180	condition, while the sufficient $\underline{PWV_{BL}}$ appears to stabilize the CCN- N_c conversion process. The water
1181	vapor limitation on cloud droplet growth is evident in the lower $N_{CCN,0.2\%}$ up to 150 cm ⁻³ with low
1182	<u>PWV</u> _{BL} values, where a near tripling of CCN loading leads to a near doubling of N_c but only 4.7%
1183	increase in r_e . When $N_{CCN,0.2\%}$ is greater than 250 cm ⁻³ and <u>PWV_{BL}</u> values are also relatively high, r_e
1184	appears to decrease with increasing $N_{CCN,0.2\%}$ under similar water vapor conditions. As for bulk aerosol-
1185	cloud <u>interaction</u> , the ACI _r values vary from -0.01 to 0.22 for different <u>PWV_{BL}</u> conditions <u>where ACI</u> _r
1186	appears to be diminished under limited water vapor availability due to the limited droplet activation and
1187	condensational growth process. While under relatively sufficient water supply condition, r_e shows more
1188	sensitive responses to the changes of $N_{CCN,0.2\%}$, due to the combined effect of condensational growth and
1189	coalescence processes accompanying the higher N_c and $\frac{PWV_{BL}}{PWV_{BL}}$

Deleted: the	
Deleted: value is doubled	
Deleted: 017	
Deleted: 035	
Deleted: strong	

Deleted: Given the significant increase of ACI_r, the TKE_w demarcation line of 0.08 m²s⁻², which corresponds to the mean vertical velocity variation of 0.16 m²s⁻², may be a feasible way to distinguish the impact of turbulence effect on the cloud microphysical responses to the change in CCN loadings.

Formatted: Font: Times New Roman

Deleted: marine boundary-layer

Deleted: slope

(I	Deleted: layer
Ū	Deleted: are
1	Deleted: the
1	Deleted: The impact
1	Deleted: is analyzed.
1	Deleted: PWV
I	Deleted: PWV
1	Deleted: PWV
I	Deleted: In a more adiabatic
I	Deleted: vertical structure
1	Deleted: cloud droplet is dominated by condensational growth, so N_c
I	Moved down [25]: responses to increased N _{CCN,0.2%}
	Deleted: and PWV are strengthened. When the cloud layer become more sub-adiabatic, the effect of coalescence leads o the depletion of N_c and thus, the competition between the condensational growth and coalescence processes has a strong impact on the variations of cloud microphysics to CCN loading.¶
I	Deleted: 004
1	Deleted: 207
J	Deleted: PWV
1	Deleted: where the AC
	Deleted DWW The eveloperate an even further enlarges at

Deleted: PWV. The coalescence process further enlarges r_e , particularly in low CCN loading, while the enhanced condensational growth narrows the cloud DSD and decreases r_e , so that a broader variable range of r_e with respect to $N_{CCN,0.2\%}$ change results in a higher ACI_r value.

1232	The theoretical diagram describing the mechanism proposed above is shown in Fig. 8. Under the
1233	relatively lower PWV _{BL} condition, the limited water vapor weakens the ability of condensational growth
1234	of the cloud droplet converted from CCN, which results in both less newly converted as well as large
1235	cloud droplets, with the lack of chance of coalescence process under this circumstance. Therefore, the
1236	<u>variable range of r_e versus $N_{CCN,0.2\%}$ is narrowed and presented as small ACI_r. While under the relatively</u>
1237	higher PWV _{BL} condition, particularly in low CCN conditions, the sufficient water vapor availability
1238	allows cloud droplets growing via the condensation of water vapor, and thus enter the active cloud-
1239	droplet coalescence regime. In contrast, the increase in cloud droplet size can effectively reduce N_c via
1240	the coalescence process and the size distributions are effectively broadened toward the large tail by the
1241	<u>coalescence</u> , so that r_e is enlarged. Under a higher $N_{CCN,0.2\%}$ intrusion, the cloud droplet size distribution
1242	is narrowed by the enhanced condensational growth and regresses toward the small tail by increasing the
1243	amount of newly converted cloud droplets which results in decreased r_e . Combinedly, the interactions
1244	between CCNs and cloud droplet growing processes ultimately result in a broadened changeable range
1245	of r_e , and in turn, the enlarged ACI _r .
1246	The co-variabilities among the environmental factors are examined using the multi-dimensional
1247	PCA. The variables of PWV_{BL} , D_i , TKE_w , LTS and $W_{dir,NS}$ are constructed as the input of the
1248	eigenanalysis. Results show that the first three PCs can describe the majority (~84%) of the variance
1249	among the selected variables. The most explanatory PC1 (account for 43.72% contribution) strongly
1250	correlated with PWV _{BL} , D_i (both negatively) and TKE _w (positively), and hence describe the co-variation
1251	of the boundary layer conditions. While the PC2 and PC3 (account for 22.01% and 18.26% contributions,
1252	respectively) are strongly correlated with LTS and $W_{dir,NS}$, which likely indicates the variations of the
1253	Azores High position and strength. By projecting the variables onto PC1 and PC2, the PCA loading
1254	analysis shows that TKE _w is strongly negatively correlated with D_i , which is what we expected. A
1255	decoupled MBL cloud is often separated into two layers where the lower one can cap the surface moisture,
1256	while the higher TKE _w denote sufficient turbulence that maintains the well-mixed MBL. Additionally,
1257	the island effect is also indicated by the eigenanalysis, where surface northerly wind would induce
1258	additional updraft velocity and hence disturb $\mbox{TKE}_{w,}$ owing to the topographic effect of the cliff north of
1259	the ENA site. The role of cloud adiabaticities on the behaviors of CCN-N _c conversion is examined using
1260	both binning and eigenanalysis. In a near-adiabatic cloud vertical structure, the cloud droplet growing
1261	process is dominated by condensational growth, thus the N_c responses to increased $N_{CCN,0.2\%}$ and
1262	$\underline{PWV_{BL}}$ are strengthened. When the cloud layer becomes more sub-adiabatic, the effect of coalescence
1263	leads to the depletion of N_c and thus results in the lower retrieved N_c from a ground-based snapshot

Moved (insertion) [25]

1264	perspective. The competition between the condensational growth and coalescence processes strongly
1265	impacts the variations of cloud microphysics to CCN loading.
1266	To investigate the environmental effects on ACI_r , the factors having the most influence on the
1267	explanatory PCs are selected as the sorting variables in the ACI _r assessments. The LTS sorting method
1268	cannot distinguish the ACI _r values, which means the LTS values themselves have a weak impact on ACI _r
1269	due to the MBL cloud cover over the ENA is mainly impacted by the mid-latitude cyclone systems. In
1270	contrast, the intensity of boundary layer turbulence, represented by TKE _{we} plays a more important role in
1271	ACI _{re} since the values of TKE _w already account for the co-variations of the MBL conditions, and hence
1272	leads to a physical process-orientated assessment. The ACI _{re} assessments in four different TKE _w and
1273	<u>PWV_{BL}</u> regimes <u>show that</u> the constraints of insufficient water vapor on the ACI _r are still evident, but in
1274	both PWV_{BL} regimes the ACI _r values increase more than double from low TKE _w to high TKE _w regimes.
1275	Noticeably, the ACI _r increases from $0,101$ in the low TKE _w regime to $0,259$ in the high TKE _w regime,
1276	under high \underline{PWV}_{BL} conditions. The intensive below-cloud boundary layer turbulence strengthens the
1277	connection between the cloud layer and below-cloud CCN and moisture. So that with sufficient water
1278	vapor, an active coalescence leads to further enlarged r_e , particularly for low CCN loading condition,
1279	while the enhanced N_c from condensational growth induced by increased $N_{CCN,0.2\%}$ can effectively
1280	decrease r_e . Combining these processes together, the enlarged ACI _r is presented.
1281	In this study, the non-precipitating MBL clouds are found to be most susceptible to the below-cloud
1282	CCN loading under environments with sufficient water vapor and stronger turbulence. This study
1283	examines the importance of the environmental effects on the ACI _r assessments, and provides the
1284	observational constraints to the future model evaluations on the aerosol-cloud interactions. Future studies
1285	will be focusing on exploring the role of environmental effects on the aerosol-cloud-precipitation
1286	interactions in MBL stratocumulus through an integrative analysis of observations and model simulations.
1287 1288	•
1289	Data availability. Data used in this study can be accessed from the DOE ARM's Data Discovery at
1290	https://adc.arm.gov/discovery/
1291	
1292	Author contributions. The original idea of this study is discussed by XZ, BX, and XD. XZ performed the
1293	analyses and wrote the manuscript. XZ, BX, XD, PW, YW and TL participated in further scientific
1294	discussions and provided substantial comments and edits on the paper.
1295	
1000	

Competing interests. The authors declare that they have no conflict of interest.

	Deleted: impacts of
	Deleted: effect
	Deleted: the
ĺ	Deleted: LTS parameter is used as a proxy of
	Deleted: thermodynamic structure. A higher LTS regime is favorable to
	Deleted: adiabatic cloud with lower cloud base height, accompanied by a well-mixed boundary layer, which likel enhances the cloud microphysical responses to CCN loadings. However,
ĺ	Deleted: in different
2	Deleted: regimes
ĺ	Deleted: be distinctly differentiated, partly
	Deleted: competing effect of adiabaticities and turbulence characteristics on the cloud droplet development processes
$\left(\right)$	Deleted: , which is
	Deleted: ,
	Deleted: than LTS. The N_c shows more sensitive response to CCN with increased water vapor supply
	Deleted: higher TKE _w regime, which may be due to enhanced CCN to cloud droplet conversion induced by intensive boundary layer turbulence. As for
ĺ	Deleted: ,
ĺ	Deleted: PWV
ĺ	Deleted: ,
ĺ	Deleted: PWV
ĺ	Deleted: when going
ĺ	Deleted: 125
ſ	Deleted: 252
ĺ	Deleted: PWV
Ì	Deleted: And the TKE_w demarcation line of 0.08 m ² s ⁻² might be feasible in distinguishing the turbulence-enhance aerosol-cloud interaction.
ſ	Formatted: Normal, Left, Indent: First line: 0 ch, Line spacing: single

-	Deleted: PW
_	Deleted: discussion

1333	Special issue statement. This article is part of the special issue "Marine aerosols, trace gases, and clouds
1334	over the North Atlantic (ACP/AMT inter-journal SI)". It is not associated with a conference.

1335

1332

1336	Acknowledgments. The ground-based measurements were obtained from the Atmospheric Radiation
1337	Measurement (ARM) Program sponsored by the U.S. Department of Energy (DOE) Office of Energy
1338	Research, Office of Health and Environmental Research, and Environmental Sciences Division. The
1339	reanalysis data were obtained from the ECMWF model output, which provides explicitly for the analysis
1340	at the ARM ENA site. The data can be downloaded from https://adc.arm.gov/discovery/. This work was
1341	supported by the NSF grants AGS-1700728/1700727 and AGS-2031750/2031751, and was also
1342	supported as part of the "Enabling Aerosol-cloud interactions at GLobal convection-permitting scalES
1343	(EAGLES)" project (74358), funded by the U.S. Department of Energy, Office of Science, Office of
1344	Biological and Environmental Research, Earth System Modeling program with the subcontract to the
1345	University of Arizona. The Pacific Northwest National Laboratory is operated for the Department of
1346	Energy by Battelle Memorial Institute under Contract DE-AC05-76 RL01830. And a special thanks to
1347	three anonymous reviewers for the constructive comments and suggestions, which helped to improve the
1348	manuscript.
1349	·

Deleted: A special thanks to Dr. Timothy Logan for the input and advice to improve this

Deleted: ¶ ¶

1350 References.

1351	Albrecht, B. A., Bretherton, C. S., Johnson, D., Schubert, W. H. and Frisch, A. S.: The Atlantic
1352	Stratocumulus Transition Experiment - ASTEX, Bull Am. Meteorol. Soc., doi:10.1175/1520-
1353	0477(1995)076<0889:TASTE>2.0.CO;2, 1995.
1854	ARM MET Handbook: ARM Surface Meteorology Systems (MET) Handbook, DOE ARM Climate
1355	Research Facility, DOE/SC-ARM/TR-086. Available at:
1356	https://www.arm.gov/publications/tech_reports/handbooks/met_handbook.pdf, last_access: 21
1357	<u>August 2021.</u>
1358	Braun, R. A., Dadashazar, H., MacDonald, A. B., Crosbie, E., Jonsson, H. H., Woods, R. K., Flagan, R.
1359	C., Seinfeld, J. H. and Sorooshian, A.: Cloud Adiabaticity and Its Relationship to Marine

1360 Stratocumulus Characteristics Over the Northeast Pacific Ocean, J. Geophys. Res. Atmos.,
1361 doi:10.1029/2018JD029287, 2018.

- 1366 Cadeddu, M. P., Liljegren, J. C. and Turner, D. D.: The atmospheric radiation measurement (ARM)
- 1367 program network of microwave radiometers: Instrumentation, data, and retrievals, Atmos. Meas.
- 1368 Tech., doi:10.5194/amt-6-2359-2013, 2013.
- 1369 Chandrakar, K. K., Cantrell, W., Chang, K., Ciochetto, D., Niedermeier, D., Ovchinnikov, M., Shaw, R.
- A. and Yang, F.: Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size
 distributions, Proc. Natl. Acad. Sci. U. S. A., doi:10.1073/pnas.1612686113, 2016.
- 1372 Chen, Y. C., Christensen, M. W., Stephens, G. L. and Seinfeld, J. H.: Satellite-based estimate of global
- aerosol-cloud radiative forcing by marine warm clouds, Nat. Geosci., doi:10.1038/ngeo2214, 2014.
- Costantino, L. and Bréon, F. M.: Analysis of aerosol-cloud interaction from multi-sensor satellite
 observations, Geophys. Res. Lett., doi:10.1029/2009GL041828, 2010.
- Diamond, M. S., Dobracki, A., Freitag, S., Griswold, J. D. S., Heikkila, A., Howell, S. G., Kacarab, M.
 E., Podolske, J. R., Saide, P. E. and Wood, R.: Time-dependent entrainment of smoke presents an
- 1378 observational challenge for assessing aerosol-cloud interactions over the southeast Atlantic Ocean,
- 1379 Atmos. Chem. Phys., doi:10.5194/acp-18-14623-2018, 2018.
- Dong, X., Xi, B., Kennedy, A., Minnis, P. and Wood, R.: A 19-month record of marine aerosol-cloud radiation properties derived from DOE ARM mobile facility deployment at the Azores. Part I: Cloud
- 1382 fraction and single-layered MBL cloud properties, J. Clim., doi:10.1175/JCLI-D-13-00553.1, 2014.
- 1383 Dong, X., Schwantes, A. C., Xi, B. and Wu, P.: Investigation of the marine boundary layer cloud and
- 1384 CCN properties under coupled and decoupled conditions over the azores, J. Geophys. Res.,
 1385 doi:10.1002/2014JD022939, 2015.
- Duong, H. T., Sorooshian, A. and Feingold, G.: Investigating potential biases in observed and modeled
 metrics of aerosol-cloud-precipitation interactions, Atmos. Chem. Phys., doi:10.5194/acp-11-4027 2011, 2011.
- Fan, J., Wang, Y., Rosenfeld, D., Liu, X.: Review of Aerosol-Cloud Interactions: Mechanisms,
 Significance and Challenges, J. Atmo. Sci. 73(11), 4221-4252, 2016.

- 1391 Feingold, G., Kreidenweis, S. M., Stevens, B. and Cotton, W. R.: Numerical simulations of stratocumulus
- 1392 processing of cloud condensation nuclei through collision-coalescence, J. Geophys. Res. Atmos.,
- 1393 doi:10.1029/96jd01552, 1996.
- 1394 Feingold, G., Frisch, A. S., Stevens, B. and Cotton, W. R.: On the relationship among cloud turbulence,
- droplet formation and drizzle as viewed by Doppler radar, microwave radiometer and lidar, J.
 Geophys. Res. Atmos., doi:10.1029/1999JD900482, 1999.
- 1397 Feingold, G., Furrer, R., Pilewskie, P., Remer, L. A., Min, Q. and Jonsson, H.: Aerosol indirect effect
- studies at Southern Great Plains during the May 2003 Intensive Operations Period, J. Geophys. Res.
 Atmos., doi:10.1029/2004JD005648, 2006.
- Feingold, G. and McComiskey, A.: ARM's Aerosol–Cloud–Precipitation Research (Aerosol Indirect
 Effects), Meteorol. Monogr., doi:10.1175/amsmonographs-d-15-0022.1, 2016.
- 1402 Freud, E. and Rosenfeld, D.: Linear relation between convective cloud drop number concentration and
- depth for rain initiation, J. Geophys. Res. Atmos., doi:10.1029/2011JD016457, 2012.
- Garrett, T. J. and Zhao, C.: Increased Arctic cloud longwave emissivity associated with pollution from
 mid-latitudes, Nature, doi:10.1038/nature04636, 2006.
- 1406 Garrett, T. J., Zhao, C., Dong, X., Mace, G. G. and Hobbs, P. V.: Effects of varying aerosol regimes on
- 1407 low-level Arctic stratus, Geophys. Res. Lett., doi:10.1029/2004GL019928, 2004.
- 1408 Gerber, H.: Microphysics of marine stratocumulus clouds with two drizzle modes, J. Atmos. Sci.,
- 1409 doi:10.1175/1520-0469(1996)053<1649:MOMSCW>2.0.CO;2, 1996.
- 1410 Ghate, V. P., Albrecht, B. A. and Kollias, P.: Vertical velocity structure of nonprecipitating continental
- 1411 boundary layer stratocumulus clouds, J. Geophys. Res. Atmos., doi:10.1029/2009JD013091, 2010.
- 1412 Ghate, V. P. and Cadeddu, M. P.: Drizzle and Turbulence Below Closed Cellular Marine Stratocumulus
- 1413 Clouds, J. Geophys. Res. Atmos., doi:10.1029/2018JD030141, 2019.
- 1414 Gryspeerdt, E., Quaas, J. and Bellouin, N.: Constraining the aerosol influence on cloud fraction, J.
- 1415 Geophys. Res., doi:10.1002/2015JD023744, 2016.

Formatted: Font: Liberation Serif

		G 1 71 77			
1416	Hill A A Feingold	G and hang H.	The influence of entr	ainment and mixing a	ssumption on aerosol
1410	rinn, rit, rit, ronigoid,	O. und stung, II	The influence of entry	annione and mixing a	ssumption on acrosor

1417	cloud interactions in marine stratocumulus, J. Atmos. Sci., doi: 10.1175/2008JAS2909.1, 2009).
------	--	----

- 1418 Hogan, R. J., Grant, A. L. M., Illingworth, A. J., Pearson, G. N. and O'Connor, E. J.: Vertical velocity
- 1419 variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar, Q.
- 1420 J. R. Meteorol. Soc., doi:10.1002/qj.413, 2009.
- Hudson, J. G. and Noble, S.: CCN and Vertical Velocity Influences on Droplet Concentrations and
 Supersaturations in Clean and Polluted Stratus Clouds, J. Atmos. Sci., doi:10.1175/jas-d-13-086.1,
- 1423 2013.
- Jones, C. R., Bretherton, C. S., and Leon, D.: Coupled vs. decoupled boundary layers in VOCALS-REx,
 Atmos. Chem. Phys., 11, 7143–7153, https://doi.org/10.5194/acp-11-7143-2011, 2011.
- Klein, S. A. and Hartmann, D. L.: The seasonal cycle of low stratiform clouds, J. Clim.,
 doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2, 1993.
- Kim, B. G., Miller, M. A., Schwartz, S. E., Liu, Y. and Min, Q.: The role of adiabaticity in the aerosol
 first indirect effect, J. Geophys. Res. Atmos., doi:10.1029/2007JD008961, 2008.
- 1430 Liu, J., Li, Z. and Cribb, M.: Response of marine boundary layer cloud properties to aerosol perturbations
- associated with meteorological conditions from the 19-month AMF-Azores campaign, J. Atmos.
 Sci., doi:10.1175/JAS-D-15-0364.1, 2016.
- 1433 Lappen, C. L. and Randall, D. A.: Toward a unified parameterization of the boundary layer and moist
- 1434 convection. Part I: A new type of mass-flux model, J. Atmos. Sci., doi:10.1175/15201435 0469(2001)058<2021:TAUPOT>2.0.CO;2, 2001.
- Logan, T., Xi, B. and Dong, X.: Aerosol properties and their influences on marine boundary layer cloud
 condensation nuclei at the ARM mobile facility over the Azores, J. Geophys. Res.,
 doi:10.1002/2013JD021288, 2014.

Formatted: Justified

1439 Logan, T., Dong, X. and Xi, B.: Aerosol properties and their impacts on surface CCN at the ARM-1440 Southern Great Plains site during the 2011 Midlatitude Continental Convective Clouds Experiment,

1441 Adv. Atmos. Sci., doi:10.1007/s00376-017-7033-2, 2018.

- 1442 Lu, M. L., Conant, W. C., Jonsson, H. H., Varutbangkul, V., Flagan, R. C. and Seinfeld, J. H.: The marine
- 1443 stratus/stratocumulus experiment (MASE): Aerosol-cloud relationships in marine stratocumulus, J.
- 1444 Geophys. Res., doi:10.1029/2006JD007985, 2007.
- 1445 Mann, J. A., Christine Chiu, J., Hogan, R. J., O'Connor, E. J., L'Ecuyer, T. S., Stein, T. H. and Jefferson,
- 1446 A.: Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and
- 1447 continental deployments, J. Geophys. Res., doi:10.1002/2013JD021339, 2014.
- 1448 Martin, G. M., Johnson, D. W. and Spice, A.: The Measurement and Parameterization of Effective Radius
- 1449 of Droplets in Warm Stratocumulus Clouds, J. Atmos. Sci., doi:10.1175/1520-1450 0469(1994)051<1823:tmapoe>2.0.co;2, 1994.
- 1451 Martins, J. V., Marshak, A., Remer, L. A., Rosenfeld, D., Kaufman, Y. J., Fernandez-Borda, R., Koren,
- 1452 I., Correia, A. L., Zubko, V. and Artaxo, P.: Remote sensing the vertical profile of cloud droplet
- 1453 effective radius, thermodynamic phase, and temperature, Atmos. Chem. Phys., doi:10.5194/acp-11-1454 9485-2011, 2011.
- 1455 McComiskey, A, Feingold, G., Frisch, A. S., Turner, D. D., Miller, M., Chiu, J. C., Min, Q. and Ogren,
- 1456 J.: An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote
- 1457 sensing, J. Geophys. Res., 114, D09203, doi:10.1029/2008JD011006, 2009.
- 1458 McComiskey, A. and Feingold, G.: The scale problem in quantifying aerosol indirect effects, Atmos.
- 1459 Chem. Phys., doi:10.5194/acp-12-1031-2012, 2012.
- 1460 Medeiros, B. and Stevens, B.: Revealing differences in GCM representations of low clouds, Clim. Dyn.,
- 1461 doi:10.1007/s00382-009-0694-5, 2011.
- 1462 Morris, V. R.: Ceilometer Instrument Handbook, DOE ARM Climate Research Facility, DOE/SC-ARM-1463 TR-020, 2016. Available at:

Formatted: Justified

1464	https://www.arm.gov/publications/tech_reports/handbooks/ceil_handbook.pdf, last access: 23					
1465	April 2021.					
1466	Newsom, R. K., Sivaraman, C., Shippert, T.R. and Riihimaki, L. D.: Doppler Lidar Vertical Velocity					
1467	Statistics Value-Added Product. DOE ARM Climate Research Facility, DOE/SC-ARM/TR-149,					
1468	2019. Available at: https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-149.pdf, last					
1469	access: <u>2 September</u> 2021.	Del				
1470	Nicholls, S.: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer					
1471	model, Q. J. R. Meteorol. Soc., doi:10.1002/qj.49711046603, 1984.					
1472	Pandithurai, G., Takamura, T., Yamaguchi, J., Miyagi, K., Takano, T., Ishizaka, Y., Dipu, S. and Shimizu,					
1473	A.: Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East					
1474	China Sea region, Geophys. Res. Lett., doi:10.1029/2009GL038451, 2009.					
1475	Pawlowska, H., Grabowski, W. W. and Brenguier, J. L.: Observations of the width of cloud droplet					
1476	spectra in stratocumulus, Geophys. Res. Lett., doi:10.1029/2006GL026841, 2006.					
1477	Pearson, G., Davies, F. and Collier, C.: An analysis of the performance of the UFAM pulsed Doppler					
1478	lidar for observing the boundary layer, J. Atmos. Ocean. Technol.,					
1479	doi:10.1175/2008JTECHA1128.1, 2009.					
1480	Pinsky, M. B. and Khain, A. P.: Effects of in-cloud nucleation and turbulence on droplet spectrum					
1481	formation in cumulus clouds, Q. J. R. Meteorol. Soc., doi:10.1256/003590002321042072, 2002.	Form				
1482	Qiu, Y., Zhao, C., Guo, J. and Li, J.: 8-Year ground-based observational analysis about the seasonal					
1483	variation of the aerosol-cloud droplet effective radius relationship at SGP site, Atmos. Environ.,					
1484	doi:10.1016/j.atmosenv.2017.06.002, 2017.					
1485	Romps, D. M.: Exact expression for the lifting condensation level, J. Atmos. Sci., doi:10.1175/JAS-D-					
1486	<u>17-0102.1, 2017.</u>					

- Rosenfeld, D. and Woodley, W. L.: Closing the 50-year circle: From cloud seeding to space and back to
- 1488 climate change through precipitation physics. Chapter 6 of "Cloud Systems, Hurricanes, and the

Deleted: 23 April

Formatted: Font: Liberation Serif

1490 Tropical Rainfall Measuring Mission (TRMM)", edited by: Tao, W.-K. and Adler, R. F., Meteor.

1491 Monogr., 51, 234 pp., 59–80, AMS, 2003.

- 1492 Rosenfeld, D.: Aerosol-Cloud Interactions Control of Earth Radiation and Latent Heat Release Budgets,
 1493 in Solar Variability and Planetary Climates., 2007.
- Rosenfeld, D., Wang, H. and Rasch, P. J.: The roles of cloud drop effective radius and LWP in
 determining rain properties in marine stratocumulus, Geophys. Res. Lett.,
 doi:10.1029/2012GL052028, 2012.
- Rosenfeld, D., Zhu, Y., Wang, M., Zheng, Y., Goren, T. and Yu, S.: Aerosol-driven droplet
 concentrations dominate coverage and water of oceanic low-level clouds, Science (80-.).,
 doi:10.1126/science.aav0566, 2019.
- Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., Feingold, G., Ghan,
 S., Guenther, A. B., Kahn, R., Kraucunas, I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner,
 J. E., Prather, K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R., Rosenfeld,
 D., Stephens, G. and Wood, R.: Improving our fundamental understanding of the role of aerosol-
- cloud interactions in the climate system, Proc. Natl. Acad. Sci. U. S. A.,
 doi:10.1073/pnas.1514043113, 2016.
- 1506 Siebert, H., Szodry, K.-E., Egerer, U., Wehner, B., Henning, S., Chevalier, K., Lückerath, J., Welz, O.,
- 1507 Weinhold, K., Lauermann, F., Gottschalk, M., Ehrlich, A., Wendisch, M., Fialho, P., Roberts, G.,
- 1508 Allwayin, N., Schum, S., Shaw, R. A., Mazzoleni, C., Mazzoleni, L., Nowak, J. L., Malinowski, S.
- 1509 P., Karpinska, K., Kumala, W., Czyzewska, D., Luke, E. P., Kollias, P., Wood, R. and Mellado, J.
- 1510 P.: Observations of Aerosol, Cloud, Turbulence, and Radiation Properties at the Top of the Marine
- Boundary Layer over the Eastern North Atlantic Ocean: The ACORES Campaign, Bull. Am.
 Meteorol. Soc., doi:10.1175/bams-d-19-0191.1, 2021.
- Thorsen, T. J. and Fu, Q.: Automated retrieval of cloud and aerosol properties from the ARM Raman
 Lidar. Part II: Extinction, J. Atmos. Ocean. Technol., doi:10.1175/JTECH-D-14-00178.1, 2015.

1515	Toto, T, and Jensen, M: Interpolated Sounding and Gridded Sounding Value-Added Products. DOE							
1516	ARM Climate Research Facility, DOE/SC-ARM-TR-183, 2016. Available at:							
1517	https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-183.pdf, last_access: 2_September							
1518	<u>2021.</u>							
1519	Twohy, C. H., Petters, M. D., Snider, J. R., Stevens, B., Tahnk, W., Wetzel, M., Russell, L. and Burnet,							
1520	F.: Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size,							
1521	liquid water path, and radiative impact, J. Geophys. Res. D Atmos., doi:10.1029/2004JD005116,							
1522	2005.							
1523	Twomey, S.: The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the							
1524	variation of cloud droplet concentration, Geofis. Pura e Appl., doi:10.1007/BF01993560, 1959.							
1525	Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds, J. Atmos. Sci.,							
1526	doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.							
1527	Wang, Y., Jiang, J.H., Su, H., Choi, S., Huang, L., Guo, J., and Yung, Y. L.: Elucidating the Role of							
1528	Anthropogenic Aerosols In Arctic Sea Ice Variations, J. Climate 31(1), 99-114, 2018.							
1529	Wang, Y., Zheng, X., Dong, X., Xi, B., Wu, P., Logan, T., and Yung, Y. L.: Impacts of long-range							
1530	transport of aerosols on marine-boundary-layer clouds in the eastern North Atlantic, Atmos. Chem.							
1531	Phys., 20, 14741–14755, https://doi.org/10.5194/acp-20-14741-2020, 2020.							
1532	West, R. E. L., Stier, P., Jones, A., Johnson, C. E., Mann, G. W., Bellouin, N., Partridge, D. G. and							
1533	Kipling, Z.: The importance of vertical velocity variability for estimates of the indirect aerosol							
1534	effects, Atmos. Chem. Phys., doi:10.5194/acp-14-6369-2014, 2014.							
1535	Widener, K, Bharadwaj, N, and Johnson, K: Ka-Band ARM Zenith Radar (KAZR) Instrument Handbook.							
1536	DOE ARM Climate Research Facility, DOE/SC-ARM/TR-106, 2012. Available at:							
1537	https://www.arm.gov/publications/tech_reports/handbooks/kazr_handbook.pdf, last access: 23							

1538 April 2021.

Formatted: Justified

- 1539 Wood, R.: Rate of loss of cloud droplets by coalescence in warm clouds, J. Geophys. Res. Atmos.,
- 1540 doi:10.1029/2006JD007553, 2006.
- 1541 Wood, R. and Bretherton, C. S.: On the relationship between stratiform low cloud cover and lower-
- 1542 tropospheric stability, J. Clim., doi:10.1175/JCLI3988.1, 2006.
- 1543 Wood, R.: Stratocumulus clouds, Mon. Weather Rev., doi:10.1175/MWR-D-11-00121.1, 2012.
- 1544 Wood, R., Wyant, M., Bretherton, C. S., Rémillard, J., Kollias, P., Fletcher, J., Stemmler, J., De Szoeke,
- 1545 S., Yuter, S., Miller, M., Mechem, D., Tselioudis, G., Chiu, J. C., Mann, J. A. L., O'Connor, E. J.,
- 1546 Hogan, R. J., Dong, X., Miller, M., Ghate, V., Jefferson, A., Min, Q., Minnis, P., Palikonda, R.,
- 1547 Albrecht, B., Luke, E., Hannay, C. and Lin, Y.: Clouds, aerosols, and precipitation in the marine
- boundary layer: An arm mobile facility deployment, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-
- 1549 D-13-00180.1, 2015.
- 1550 Wu, P., Dong, X. and Xi, B.: Marine boundary layer drizzle properties and their impact on cloud property
- 1551 retrieval, Atmos. Meas. Tech., doi:10.5194/amt-8-3555-2015, 2015,
- Wu, P., Dong, X., Xi, B., Liu, Y., Thieman, M. and Minnis, P.: Effects of environment forcing on marine
 boundary layer cloud-drizzle processes, J. Geophys. Res., doi:10.1002/2016JD026326, 2017.
- 1554 Wu, P., Dong, X., Xi, B., Tian, J. and Ward, D. M.: Profiles of MBL Cloud and Drizzle Microphysical
- Properties Retrieved From Ground-Based Observations and Validated by Aircraft In Situ
 Measurements Over the Azores, J. Geophys. Res. Atmos., doi:10.1029/2019JD032205, 2020a.
- 1557 Wu, P., Dong, X. and Xi, B.: A climatology of marine boundary layer cloud and drizzle properties
- derived from ground-based observations over the azores, J. Clim., doi:10.1175/JCLI-D-20-0272.1,
- 1559 2020b.
- 1560 Xi, B., Dong, X., Minnis, P. and Khaiyer, M. M.: A 10 year climatology of cloud fraction and vertical 4
 1561 distribution derived from both surface and GOES observations over the DOE ARM SPG site, J.
- usubution derived from both surface and OOES observations over the DOE AKM SIC
- 1562 Geophys. Res. Atmos., doi:10.1029/2009JD012800, 2010.

Formatted: Font: Liberation Serif

Formatted: Justified

1563	Yang, Y., Zhao, C., Dong, X., Fan, G., Zhou, Y., Wang, Y., Zhao, L., Lv, F. and Yan, F.: Toward
1564	understanding the process-level impacts of aerosols on microphysical properties of shallow cumulus
1565	cloud using aircraft observations, Atmos. Res., doi:10.1016/j.atmosres.2019.01.027, 2019.

1566 Yue, Q., Kahn, B. H., Fetzer, E. J. and Teixeira, J.: Relationship between marine boundary layer clouds

- and lower tropospheric stability observed by AIRS, CloudSat, and CALIOP, J. Geophys. Res.
 Atmos., doi:10.1029/2011JD016136, 2011.
- Yum, S. S., Wang, J., Liu, Y., Senum, G., Springston, S., McGraw, R. and Yeom, J. M.: Cloud
 microphysical relationships and their implication on entrainment and mixing mechanism for the
 stratocumulus clouds measured during the VOCALS project, J. Geophys. Res.,
 doi:10.1002/2014JD022802, 2015.
- Zhang, S., Wang, M., J. Ghan, S., Ding, A., Wang, H., Zhang, K., Neubauer, D., Lohmann, U., Ferrachat,
 S., Takeamura, T., Gettelman, A., Morrison, H., Lee, Y., T. Shindell, D., G. Partridge, D., Stier, P.,
- 1575 Kipling, Z. and Fu, C.: On the characteristics of aerosol indirect effect based on dynamic regimes
- 1576 in global climate models, Atmos. Chem. Phys., doi:10.5194/acp-16-2765-2016, 2016,

1577 Zhao, C., Qiu, Y., Dong, X., Wang, Z., Peng, Y., Li, B., Wu, Z. and Wang, Y.: Negative Aerosol-Cloud

- 1578 re Relationship From Aircraft Observations Over Hebei, China, Earth Sp. Sci.,
 1579 doi:10.1002/2017EA000346, 2018.
- Zhao, C., Zhao, L. and Dong, X.: A case study of stratus cloud properties using in situ aircraft
 observations over Huanghua, China, Atmosphere (Basel)., doi:10.3390/atmos10010019, 2019.
- Zawadowicz, M. A., Suski, K., Liu, J., Pekour, M., Fast, J., Mei, F., Sedlacek, A., Springston, S., Wang,
 Y., Zaveri, R. A., Wood, R., Wang, J., and Shilling, J. E.: Aircraft measurements of aerosol and
 trace gas chemistry in the Eastern North Atlantic, Atmos. Chem. Phys. Discuss. [preprint],
 https://doi.org/10.5194/acp-2020-887, in review, 2020.
- 1586 Zheng, G., Wang, Y., Aiken, A. C., Gallo, F., Jensen, M. P., Kollias, P., Kuang, C., Luke, E., Springston,
- 1587 S., Uin, J., Wood, R., and Wang, J.: Marine boundary layer aerosol in the eastern North Atlantic:

Formatted: Font: Liberation Serif

1588	seasonal variations and key controlling processes, Atmos. Chem. Phys., 18, 17615-17635	5,
1589	nttps://doi.org/10.5194/acp-18-17615-2018, 2018.	

- 1590 Zheng, G., Kuang, C., Uin, J., Watson, T., and Wang, J.: Large contribution of organics to condensational
- 1591 growth and formation of cloud condensation nuclei (CCN) in the remote marine boundary layer,
- 1592 Atmos. Chem. Phys., 20, 12515–12525, https://doi.org/10.5194/acp-20-12515-2020, 2020.
- 1593 Zheng, X., Xi, B., Dong, X., Logan, T., Wang, Y. and Wu, P.: Investigation of aerosol-cloud interactions
- 1594 under different absorptive aerosol regimes using Atmospheric Radiation Measurement (ARM)
- 1595 southern Great Plains (SGP) ground-based measurements, Atmos. Chem. Phys., doi:10.5194/acp-
- 1596 20-3483-2020, 2020.
- 1597 Zheng, Y., Rosenfeld, D. and Li, Z.: Quantifying cloud base updraft speeds of marine stratocumulus
 1598 from cloud top radiative cooling, Geophys. Res. Lett., doi:10.1002/2016GL071185, 2016.
- 1599 Zheng, Y., Rosenfeld, D. and Li, Z.: A More General Paradigm for Understanding the Decoupling of
- 1600 Stratocumulus-Topped Boundary Layers: The Importance of Horizontal Temperature Advection,
- 1601 <u>Geophys. Res. Lett., doi:10.1029/2020GL087697, 2020.</u>
- 1602 Zhu, P. and Zuidema, P.: On the use of PDF schemes to parameterize sub-grid clouds, Geophys. Res.
- 1603 Lett., doi:10.1029/2008GL036817, 2009.

1604 1605 **Formatted:** Indent: Left: 0", First line: 0 ch, Line spacing: single

Case	Start	Start	End	End	Valid
No.	Date	UTC	Date	UTC	Samples
1	20160915	2200	20160916	0020	24
2	20170219	2110	20170220	0520	87
3	20170222	0830	20170222	1200	38
4	20170605	1430	20170605	1900	54
5	20170616	1230	20170616	1510	32
6	20170617	0320	20170617	0520	24
7	20170627	0020	20170627	0250	28
8	20170630	0530	20170630	0930	42
9	20170630	1400	20170630	1700	34
10	20170706	0140	20170706	0900	62
11	20170707	0130	20170707	1000	91
12	20170910	2100	20170911	0600	94
13	20170911	1930	20170911	2150	24
14	20170912	0820	20170912	1100	32
15	20171006	2110	20171006	2320	26
16	20180130	1030	20180131	0500	152
17	20180203	1930	20180204	0500	72
18	20180324	0210	20180324	0600	46
19	20180508	0730	20180508	1110	42
20	20180513	2130	20180514	1200	139

Table 1. Dates and time periods of selected non-precipitatingMBL cloud periods

relatively mg	, ii i ii	onunion	,			
DWW (am)	1.2-	1.4-	1.6-	2.8-	2.0-	2.2-
I w v (em)	1.4	1.6	1.8	2.0	2.2	2.4
r _e > 12 μm (%)	25.0	30.6	54.1	74.2	93.8	97.5
r _e > 14 μm (%)	1.25	1.77	7.4	17.7	31.9	20.1

Table 2. Occurrence frequencies of large in-cloud $r_e *$ under relatively high PWV conditions

*The occurrence of large r_e is defined when the r_e is found to be larger than 12 µm or 14 µm using the retrieved in-cloud vertical profiles.

...

Deleted: ¶

Table 3. ACIr calcul	ated with resp	sect to N _{CCN}	theoretically at	different supe	ersaturation lev	vels, under all	PWV _{BL} condit	tions		
PWV_{BL} (cm)	0.4-0.6	0.6-0.8	0.8-1.0	1.0-1.2	1.2-1.4	1.4-1.6	1.6-1.8	1.8-2.0	2.0-2.2	2.2-2.4
ACI _r (N _{CCN} @0.2%SS)	0.020	0.057	0.002	-0.014	0.108	0.076	0.145	0.151	0.221	0.175
(N _{ccN} @0.5%SS)	0.023	0.057	0.0002	0.024	0.129	0.121	0.309	0.136	0.293	0.159
(N _{CCN} @1.2%SS)	0.023	0.045	0.002	0.072	0.125	0.123	0.323	0.175	0.347	0.186

Eigenanalysis	PC1	PC2	PC3
Eigenvalues	2.17	1.10	0.91
Proportion of variance explained (%)	43.72	22.01	18.26
Cumulative proportion (%)	43.72	65.73	83.99
Correlations (Variables vs. PCs)	PC1	PC2	PC3
PWV_{BL}	-0.84	0.20	-0.11
D _i	-0.73	-0.48	-0.20
TKE _W	0.69	0.35	-0.44
W _{dir,ns}	0.52	0.60	-0.50
LTS	-0.43	0.58	0.65

Table 4. The first three principal components from eigenanalysis

Figure 1. Probability distribution functions (PDFs), mean, standard deviation and median values (dash lines) of aerosol, cloud_a and meteorological properties for 20 selected non-precipitating cloud cases at the DOE ENA site during the period 2016-2018. (a) Cloud condensation nuclei (CCN) number concentration at 0.2% supersaturation ($N_{CCN,0.2\%}$): (b) cloud-droplet number concentration (N_{c}): (c) cloud-droplet effective radius (r_{e}): (d) cloud adiabaticity (f_{ad}): (e) lower tropospheric stability (LTS); (f) decoupling index (D_i): (g) mean vertical component of turbulence kinetic energy (TKE_w): and (h) sub-cloud boundary-layer precipitable water vapor (PWV_{BL}).

Deleted:),			
Deleted:),			
Deleted:),			
Deleted:), (e			
Deleted:,			
Deleted: f)			
Deleted: PWV	V		

Figure 2. (a) N_c and (b) r_e as a function of $N_{CCN,0.2\%}$ (x-axis) and PWV (blue filled circles) for all selected samples. The larger blue circles represent relatively higher PWV values. Whiskers denote one standard deviation for each bin.

Deleted:

40

Moved down [28]: . N_c as a function of N_{CCN,0.2%} (x-axis) and PWV (dots) for high adiabaticity f_{ad} (red) and low f_{ad} (black) regimes. The larger circles represent relatively higher

Moved down [29]: The larger circles represent relatively higher PWV values. Whiskers denote one standard deviation for each bin.¶ ¶

Figure 4. The projections of TKE_w (purple), $W_{dir,NS}$ (red), LTS (orange), PWV_{BL} (blue) and D_i (green) onto the first principal component (PC1) and the second principal component (PC2). The x-coordinates denote variables' correlations with PC1, and the y-coordinates denote variables' correlations with PC2.

Moved (insertion) [28]
Moved (insertion) [29]

Formatted: Font: Times New Roman

Formatted: Space After: 0 pt, No widow/orphan control

Figure 7. ACI_r derived from r_e to $N_{CCN,0.2\%}$ for (a) low TKE_w and (b) high TKE_w regimes. Samples in the low PWV regime are plotted in green, and samples in the high PWV regime are plotted in blue. The mean values of D_i and f_{ad} are displayed for each quadrant with the corresponding color-coded.

Figure 8. Theoretical mechanism of the responses of cloud droplet size distributions to different CCN intrusion, under relative insufficient (low PWV_{BL}) versus sufficient (high PWV_{BL}) water vapor availabilities.

Formatted: Font: Calibri

Formatted: Normal, Space After: 8 pt