Formaldehyde evolution in U.S. wildfire plumes during FIREX-1 AQ

- 3
- Jin Liao^{1,2}, Glenn M. Wolfe¹, Reem A. Hannun^{1,3}, Jason M. St. Clair^{1,3}, Thomas F. Hanisco¹, 4
- 5 Jessica B. Gilman⁴, Aaron Lamplugh^{4,5}, Vanessa Selimovic⁶, Glenn S. Diskin⁷, John B. Nowak⁷,
- Hannah S. Halliday⁸, Joshua P. DiGangi⁷, Samuel R. Hall⁹, Kirk Ullmann⁹, Christopher D. 6
- Holmes¹⁰, Charles H. Fite¹⁰, Anxhelo Agastra¹⁰, Thomas B. Ryerson^{4,*}, Jeff Peischl^{4,5}, Ilann 7
- Bourgeois^{4,5}, Carsten Warneke⁴, Matthew M. Coggon^{4,5}, Georgios I. Gkatzelis^{4,5,**}, Kanako 8
- 9 Sekimoto¹¹, Alan Fried¹², Dirk Richter¹², Petter Weibring¹², Eric C. Apel⁹, Rebecca S. Hornbrook⁹,
- Steven S. Brown⁴, Caroline C. Womack^{4,5}, Michael A. Robinson^{4,5}, Rebecca A. Washenfelder⁴, 10
- 11 Patrick R. Veres⁴, J. Andrew Neuman^{4,5}
- 12

- 14 ²Universities Space Research Association, Columbia, MD, USA
- 15 ³Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
- 16 ⁴NOAA Chemical Science Laboratory (CSL), Boulder, CO, USA
- 17 ⁵Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder, CO, USA
- 18 ⁶Department of Chemistry, University of Montana, Missoula, MT, USA
- 19 ⁷NASA Langley Research Center, Hampton, VA, USA
- 20 ⁸Environmental Protection Agency, Durham, NC, USA
- 21 22 23 24 25 26 27 ⁹Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
- ¹⁰Earth, Ocean and Atmospheric Science, Florida State University, FL, USA
- ¹¹Yokohama City University, Japan
- ¹²Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Colorado, USA.
- *now at Scientific Aviation, Boulder, Colorado, USA.
- **now at Forschungszentrum Jülich GmbH, Julich, Nordrhein-Westfalen, DE, Germany. 28
- 29 Correspondence to: Jin Liao (jin.liao@nasa.gov)

¹³ ¹Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA

- 30 Abstract. Formaldehyde (HCHO) is one of the most abundant non-methane volatile organic compounds (VOCs)
- 31 emitted by fires. HCHO also undergoes chemical production and loss as a fire plume ages, and it can be an important
- 32 oxidant precursor. In this study, we disentangle the processes controlling HCHO by examining its evolution in wildfire
- 33 plumes sampled by the NASA DC-8 during the FIREX-AQ field campaign. In nine of the twelve analyzed plumes,
- 34 dilution-normalized HCHO increases with physical age (range 1 6 h). The balance of HCHO loss (mainly via
- 35 photolysis) and production (via OH-initiated VOC oxidation) seems to control the sign and magnitude of this trend.
- 36 Plume-average OH concentrations, calculated from VOC decays, range from $-0.5 (\pm 0.5) \times 10^6$ to $5.3 (\pm 0.7) \times 10^6$
- 37 cm⁻³. The production and loss rates of dilution-normalized HCHO seem to decrease with plume age. Plume-to-plume
- 38 variability in dilution-normalized secondary HCHO production correlates with OH abundance rather than normalized
- 39 OH reactivity, suggesting that OH is the main driver of fire-to-fire variability in HCHO secondary production.
- 40 Analysis suggests an effective HCHO yield of $0.33 (\pm 0.05)$ per VOC molecule oxidized for the 12 wildfire plumes.
- 41 This finding can help connect space-based HCHO observations to the oxidizing capacity of the atmosphere and to
- 42 VOC emissions.
- 43

44 1. Introduction

Wildfire biomass burning is a large source of trace gases and aerosols that affect regional atmospheric chemistry, human health, air quality, radiative balance and climate. Wildfire frequency and intensity are expected to increase with global warming under higher temperatures and drier conditions in the future (Westerling et al., 2006). Wildfire emissions of volatile organic compounds (VOCs) are a complex mixture spanning orders of magnitude in concentration, reactivity, and volatility (Gilman et al., 2015; Koss et al., 2018). These VOCs contribute to increased regional tropospheric ozone (Alvarado et al., 2010; Jaffe and Wigder, 2012; Mauzerall et al., 1998; Wotawa and

- 51 Trainer, 2000) and can deposit onto or evaporate from organic aerosols in biomass burning air masses (Garofalo et al.,
- 52 2019; Majdi et al., 2019; Palm et al., 2020).
- 53

54 Formaldehyde (HCHO) is one of the most abundant non-methane VOCs emitted by wildfires (Akagi et al., 2011; 55 Gilman et al., 2015; Simpson et al., 2011). HCHO emissions vary with total carbon emissions, modified combustion 56 efficiency (MCE) and fuel type. Emission factors of HCHO decrease as MCE increases (e.g., Liu et al., 2017; 57 Yokelson et al., 1999), indicating that more HCHO is produced from smoldering fires than from flaming fires. HCHO 58 emissions can vary by more than a factor of 2 among tropical forest, savanna, boreal forest and temperate forest biomes 59 (Akagi et al., 2011). In addition to direct emissions, HCHO is formed in fire plumes via VOC oxidation. Alvarado et 60 al. (2020) used TROPOMI data to show that HCHO enhancements in wildfire plumes persist for days downwind. 61 HCHO also serves as an important source of peroxy radicals (HO₂), thereby influencing the formation of ozone and 62 other secondary pollutants (Yokelson et al., 1999).

63

64 Few studies have investigated the photochemical evolution of HCHO in biomass burning plumes, and these studies 65 have reported both net HCHO production and loss. Mauzerall et al. (1998) reported average HCHO enhancement 66 $(\Delta HCHO/\Delta CO)$ of 9.5 ppt/ppb for fresh plumes (less than 0.5 day), 1.8 ppt/ppb for recent plumes (less than 1 day), 67 2.3 ppt/ppb for aged plumes (< 5 days old), and 0.9 ppt/ppb for old plumes (>5 days old). Trentmann et al. (2005) 68 observed a potential increasing trend of Δ HCHO/ Δ CO from 20 ppt/ppb to over 30 ppt/ppb with limited data and 69 simulated a flat trend of Δ HCHO/ Δ CO within 1 h age since emission from a Savanna fire plume in Africa. Müller et 70 al. (2016) also observed an increasing trend of Δ HCHO/ Δ CO with an average of 22.7 ppt/ppb and simulated a flat or 71 slightly decreasing trend of Δ HCHO/ Δ CO in a small fresh agricultural biomass burning plume in Georgia, US. While 72 such case studies are valuable, we lack a general understanding of the drivers of plume trends and plume-to-plume 73 variability in HCHO evolution.

74

75 HCHO is also one of the few VOCs that can be observed from space, and the global coverage of satellite observations 76 has been leveraged to provide insights into a variety of atmospheric chemistry questions. HCHO is correlated with

- 77 organic aerosols in biomass burning air masses, and this correlation might be exploited to estimate organic aerosol
- abundance from satellite HCHO measurements (Liao et al., 2019). In regions with constant or very high OH reactivity,
- 79 HCHO variability is closely linked to OH variability (Valin et al., 2016; Wolfe et al., 2019) and may be used to infer
- 80 OH. Satellite HCHO columns have also been widely used to constrain emissions of isoprene and other VOCs (Fu et

al., 2007; Kaiser et al., 2018; Marais et al., 2014; Millet et al., 2008; Stavrakou et al., 2009). Understanding the
 emissions, chemistry and trends of HCHO in wildfires will facilitate the application of satellite HCHO towards broad-

- 83 scale wildfire smoke processes and impacts.
- 84

The Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ) deployed a comprehensive suite of instruments aboard the NASA DC-8 aircraft to study wildfires and agricultural fires in the US.

87 It provided a great opportunity to systematically study the emissions and chemistry of HCHO in wildfire plumes. In

88 the following, we describe the HCHO dependence on plume age in wildfire plumes from FIREX-AQ, assess the

89 drivers of HCHO trends, and examine the factors controlling variability in secondary HCHO production.

90

91 2. Methods

92 2.1 FIREX-AQ field campaign and measurements description

93 During FIREX-AQ, a combination of four aircraft (the NASA DC-8, NASA ER-2, and two NOAA Twin Otters)

94 with a comprehensive suite of in situ and remote sensing instruments were deployed to characterize fire emissions

95 and chemistry with operational bases in Boise, ID and Salina, KS from July to September 2019. This study focuses

96 on wildfire plumes sampled by the NASA DC-8 aircraft during FIREX-AQ.

97

In situ HCHO observations were acquired by several instruments onboard the DC-8; here we primarily use measurements from the In Situ Airborne Formaldehyde (ISAF) instrument (Cazorla et al., 2015). ISAF uses laserinduced fluorescence to detect HCHO. A tunable UV laser excites HCHO molecules to an excited electronic state and the resulting fluorescence is detected with a photon-counting photomultiplier tube. The laser wavelength is modulated on and off a rotational absorption feature (353.163 nm), and the difference between the "online" and "offline" signals is proportional to the HCHO concentration.

104

105 ISAF was calibrated pre- and post-mission with a compressed-gas HCHO cylinder (584 ± 15 ppbv in nitrogen, Air 106 Liquide). Sensitivity typically varies by less than 5% between calibrations. Flow meters for the standard dilution 107 system were calibrated against a DryCal calibrator (Mesa Labs) with an accuracy of > 99%. The HCHO standard 108 concentration was calibrated before and after the field deployment with an MKS Multigas 2031 Fourier transform 109 infrared spectrometer. Gas standard mixing ratios are typically reproducible to within 2% of the mean value measured 110 over multiple years. IR-determined mixing ratios are adjusted by a factor of 0.96 based on a separate long-path UV 111 absorption experiment (Cazorla et al., 2015). Thus, ISAF HCHO mixing ratios are ultimately tied to the UV cross 112 sections of Meller and Moortgat (2000) as recommended by the JPL 2011 evaluation (Sander et al., 2011). The 113 detection limit of ISAF was 30 pptv for 1-Hz data at signal/noise = 1 and the accuracy of ISAF HCHO measurements 114 was estimated as 10% + 10 pptv. The 1/e response time of ISAF during FIREX-AQ was about 300 ms, limited mainly 115 by flow through the sample cell.

- 117 During FIREX-AQ, ISAF HCHO measurements correlated with those from the Compact Atmospheric Multispecies
- 118 Spectrometer (CAMS) (Richter et al., 2015), with a coefficient of determination r^2 of 0.99, a slope of 1.27 (CAMS vs.
- 119 ISAF), and a near-zero intercept for 1-Hz average wildfire data from equally weighted orthogonal distance regression
- 120 (Fig. S1). The systematic bias between the CAMS and ISAF measurements exceeds the combined stated uncertainty
- 121 (10% for ISAF, 6% for CAMS). Post-mission comparisons suggest this discrepancy is due to the absolute calibration
- 122 of compressed-gas HCHO standards, which are tied to literature-recommended UV (ISAF) or IR (CAMS) cross
- 123 sections; the source of this discrepancy is still under investigation. Remotely-sensed HCHO column retrievals rely on
- 124 the same UV cross sections (De Smedt et al., 2018) that are used to calibrate the ISAF instrument. The HCHO
- 125 enhancements in the plumes (Sect 3.1) and the estimated effective yield of HCHO from VOC oxidation by OH (Sect.
- 126 3.3) can have a potential low bias of 27% due to the ISAF and CAMS HCHO measurement difference. This uncertainty
- 127 proportionally affects quantitative analysis results but does not alter qualitative conclusions.
- 128

129 We also use several supporting measurements in our analysis. CO was measured via mid-IR wavelength modulation 130 spectroscopy by the Differential Absorption Carbon Monoxide Measurement (DACOM) instrument (Sachse et al., 131 1991). Photolysis rates were derived from the Actinic flux measurements by the Charged-coupled device Actinic Flux 132 Spectroradiometer (CAFS) (Hall et al., 2018). Alkenes were measured by the NOAA Whole Air Sampler (iWAS) 133 (Lerner et al., 2017). Ozone (O₃) measurements were from the NOAA Chemiluminescence instrument (Bourgeois et 134 al., 2020). OH reactivity calculations used VOCs measurements from the NOAA Proton-Transfer Reaction Time-of-135 Flight Mass Spectrometry (PTR-ToF-MS) (Yuan et al., 2016), NCAR Trace Organic Gas Analyzer (TOGA) (Apel et 136 al., 2015) outfitted with a Time-of-Flight Mass Spectrometer, NOAA Airborne Cavity Enhanced Spectrometer (ACES) 137 (Min et al., 2016), and NOAA Iodide Ion Time-of-Flight (ToF) Chemical Ionization Mass Spectrometer (CIMS) 138 (Veres et al., 2020), listed in Table S1. Our analysis uses in situ measurements that are merged to the iWAS sampling 139 period, which ranged from 1-9 seconds per canister, such that multiple samples were often acquired within a single 140 plume crossing.

141

142 **2.2** Normalized excess mixing ratio (NEMR) and physical age definitions

NEMR is defined as the difference between the concentration of species X in the plume and in the background air outside of the plume, normalized by the difference between CO concentrations in the plume and the background outside of the plume. Because photochemical production of CO is very small compared to the high CO concentrations in the biomass burning plumes (e.g., CO production from HCHO photolysis and oxidation for 1 h is < 1% of CO concentrations in the plumes), trace gases concentrations are normalized to CO in the biomass burning plumes to account for dilution, as in many previous biomass burning studies (e.g., Müller et al., 2016; Selimovic et al., 2019).

149 NEMR=
$$\frac{\Delta x}{\Lambda co}$$
 (1)

150 The background air outside of the plumes was manually selected and could be different or the same for different

151 transects of the same plume, depending on the availability of the iWAS data. The HCHO NEMR is denoted by nHCHO 152 below.

- 154 Physical age was estimated using a Lagrangian trajectory analysis (Holmes et al., in preparation) and described briefly
- 155 here. Fire source locations were pinpointed using the MODIS/ASTER Airborne Simulator (MASTER) instrument
- 156 data onboard the DC-8. Upwind trajectories from aircraft locations were computed and the advection age was
- 157 calculated from the time when a trajectory was closest to the fire. Plume rise time from the surface to the trajectory
- 158 initialization altitude assumed a vertical wind speed of 7 m/s. The smoke age is the sum of advection age plus rise age
- 159 averaged over several meteorological models. The average uncertainty of the estimated physical age for the analyzed
- 160 wildfire plumes was 37% with an interquartile range of 20% based on the range of ages derived from the High-
- 161 Resolution Rapid Refresh (HRRR), North American Mesoscale Forecast System (NAM) CONUS Nest, and Global
- 162 Forecast System (GFS 0.25°) meteorological datasets.
- 163

164 **2.3 Plume selection**

165 Details about the specific selected wildfire plumes among all sampled wildfire plumes during FIREX-AQ are provided

- 166 in Table S2. Wildfire plumes that meet the conditions listed below are above the background HCHO concentrations,
- which typically vary from 100 ppt 1 ppb during FIREX-AQ, and are selected to study the evolution of HCHO in
 wildfires.
- 169 a) Lagrangian sampling pattern
- 170 Lagrangian sampling patterns are defined as flight tracks intercepted the plumes with flight leg directions
- 171 approximately perpendicular to the horizontal wind directions and more than three transects downwind with different
- 172 distances from the fire.
- b) Appropriate VOC decay for the period analyzed with sufficient data samples
- 174We selected the plume samples where chemical age correlated with physical age. This was defined by a coefficient of175determination $r^2 \ge 0.57$ for a plot of ln(trans-2-butene/propene) or ln(cis-2-butene/propene) vs physical age. We used
- 176 2-butenes/propene as chemical age tracers in this analysis because these gases have comparable lifetimes to physical
- 177 age for most of the analyzed plumes. We filtered out plume data if the correlation coefficient of ln(trans-2-
- 178 butene/propene) or ln(cis-2-butene/propene) vs. physical age degraded at older physical ages. Figure S2 shows
- 179 ln(trans-2-butene/propene) and ln(cis-2-butene/propene) vs. physical age for the plumes that satisfied conditions a)
- 180 and had iWAS data available. The threshold of $r^2 = 0.57$ is chosen by visual inspection of all VOC decay in Fig. S2.
- 181 We also filtered out plumes with total number of data points < 8 in the iWAS sample periods for an entire selected
- 182 circuit of multiple plume transects with good VOC decay. Due to the inhomogeneity of the plumes, too few data points
- 183 can introduce large bias. In the analyzed plume periods, ln(trans-2-butene/propene) or ln(cis-2-butene/propene) also
- 184 has good correlations with the maleic anhydride/furan ratio (Fig. S3), another tracer of chemical age in biomass
- 185 burning plumes (Coggon et al., 2019; personal communication with Carsten Warneke and Matthew M. Coggon, 2021).
- 186 The Mica and Lick Creek plume on 02 August 2019 is the plume with the least number of data points among the
- 187 selected plumes (N = 8).
- 188

- 189 The above filters, applied to a total of 26 fire plumes, yield 11 daytime plumes and 1 nighttime plume that are
- 190 suitable for our analysis (Table S2). The nighttime plume on 12 August was after 8:00 pm local time with average
- 191 O3 photolysis rate of essentially zero. One of the twelve plumes (Blackwater) occurred in the southeast US and the
- remaining 11 plumes were in the western US.
- 193

194 **2.4 Estimating average OH concentrations in the plumes**

195 Plume photochemical age is estimated based on the relative decay of primary emitted VOCs that have different 196 reaction rate coefficients with OH (e.g., Warneke et al., 2007). We can estimate the average concentration of OH by 197 combining the photochemical age with the trajectory-based air mass age. Cis-2-butene/propene ratios and trans-2-198 butene/propene ratios are used to estimate OH in this analysis because these gases have lifetimes comparable to 199 physical age (2–6 h) for most of the analyzed plumes and using two VOC ratios help reduce the uncertainty. The 200 lifetimes of propene, cis-2-butene, and trans-2-butene are approximately 4.5 h, 2.3 h, and 1.8 h, respectively, at OH 201 concentrations of 2 ×10⁶ molecules cm⁻³ (Atkinson et al., 2006). Because both 2-butenes also differ from propene in 202 O_3 reaction rate coefficients, the reactions of these alkenes with O_3 are also considered when we estimate the OH 203 concentrations. We assume that the variability in the butenes-propene relationship is driven by OH and O_3 and that 204 there is negligible change in the relative emission ratios over the sampled plumes. Different slopes in cis-2-205 butene/propene and trans-2-butene/propene vs plume age (Fig. S2) depend on the differences in reaction rate 206 coefficients of OH and O₃ with 2-butene (cis-2-butene and trans-2-butene) and propene, in addition to OH and O₃ 207 concentrations, as shown in Eq. (2). These reaction rate coefficients are those reported by Atkinson et al. (2006) with 208 real time temperature and pressure dependence. The plumes average reaction rate coefficients are $k_{\text{propene OH}} =$ $3.1 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1}\text{s}^{-1}, k_{\text{cis}-2-\text{butene}_OH} = 6.4 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1}\text{s}^{-1}, k_{\text{trans}-2-\text{butene}_OH} = 8.0 \times 10^{-11} \text{ cm}^3$ 209 molecule⁻¹s⁻¹, $k_{\text{propene}_{0_3}} = 6.4 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1}\text{s}^{-1}$, $k_{\text{cis}-2-\text{butene}_{0_3}} = 9.9 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1}\text{s}^{-1}$, and 210 211 $k_{\text{trans-2-butene}_{0_3}} = 1.5 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}.$

212
$$\ln \frac{\text{butene}}{\text{propene}} = \ln \frac{\text{butene}_0}{\text{propene}_0} - \{(k_{\text{butene+OH}} - k_{\text{propene+OH}})[\text{OH}] + (k_{\text{butene+O}_3} - k_{\text{propene+O}_3})[\text{O}_3]\}t$$
213 (2)

- 214 OH concentrations are derived from the slope of $\ln \frac{\text{butene}}{\text{propene}}$ vs. *t* (physical age), the measured ozone concentrations
- and the reaction rate coefficients.

216
$$[OH] = \frac{slope_{butene} + (k_{butene+O_3} - k_{propene+O_3})[O_3]}{k_{propene+OH} - k_{butene+OH}}$$
(3)

- Because the instantaneous O₃ measurements do not reflect the oxidation history, the average ozone concentration of the entire circuit with multiple transects is used to represent the integrated O₃ effect on alkene oxidation. The uncertainty due to O₃ variation and the uncertainty in the slope of $\ln \frac{\text{butene}}{\text{propene}}$ vs. *t* are propagated to estimate the total uncertainty in plume-average OH. Butene in Eq. (2) and (3) represents trans-2-butene or cis-2-butene, both of which are used in average OH estimation. O₃ variation, uncertainty in OH due to O₃ variation, total OH uncertainty, and
- estimated OH are listed in Table S3.

224 2.5 Calculating primary HCHO normalized mixing ratios and secondary HCHO production rates 225 To understand the relative importance of primary emission vs. secondary production of HCHO in fire plumes 226 downwind, we calculate primary and secondary HCHO as the plume ages. The primary HCHO time profile is 227 calculated by the following equation: 228 nHCHO_{primary} = nHCHO₀ exp $(-(J_{HCHO} + k_{HCHO} [OH])t)$ (4)229 where nHCHO₀ is equal to the fitted observed nHCHO (HCHO NEMR) closest to the fire source, J_{HCHO} is the measured 230 HCHO photolysis frequency in iWAS sample periods averaged and interpreted in physical age space, k_{HCHO} is the 231 reaction rate coefficient between HCHO and OH, and t is the physical age. nHCHO_{secondary} is calculated by subtracting 232 nHCHO_{primary} from the measured nHCHO. Here we assumed the fitted observed nHCHO closest to the fire source is 233 equal to nHCHO at the emission source. This assumption will not impact the secondary nHCHO production rate 234 calculated below. 235 236 To characterize secondary HCHO production in wildfire plumes, we calculate the secondary nHCHO production rate. 237 The secondary nHCHO production rate is derived from the HCHO mass balance equation. $\frac{d \text{ HCHO}}{dt} = P - L - D$ 238 (5) 239 where P is chemical production, L is chemical loss, and D is dilution. The calculation of the secondary nHCHO 240 production rate is shown in Eq. (6). The derivation of Eq. (6) from Eq. (5) can be found in Appendix A. $\frac{P}{\Delta CO} \text{ (or } P_{\text{nHCHO}} = \frac{dnHCHO}{dt} + (J_{\text{HCHO}} + k_{\text{HCHO}}[OH])nHCHO.$ 241 (6) Here, $\frac{d \text{ nHCHO}}{dt}$ is taken as the slope of measured nHCHO vs physical age and other parameters are as defined above. 242 243 244 2.6 Impact of potential variation in HCHO emission ratios on nHCHO trend 245 In this analysis, we assume the variability in the HCHO/CO emission ratio (that is, nHCHO at the source) is much 246 smaller than the variability in nHCHO induced by chemistry for any single fire plume. Emission factors of both HCHO 247 and CO (that is, g of gas per kg of fuel burned) depend on MCE, fuel type, and other factors (e.g., Liu et al., 2017; 248 Yokelson et al., 1999). Normalizing HCHO by CO removes the strong negative dependence of HCHO emission factors 249 on MCE. A small positive trend of nHCHO vs. MCE is due to higher nHCHO and MCE for the eastern US wildfire 250 plume than the western US wildfire plumes (Fig. S4). No clear trend of MCE in nHCHO plume evolution was observed 251 in FIREX-AQ data (Fig. S5). Emissions of CO₂ correlate with fire radiative power (FRP) detected by satellite during 252 FIREX-AQ, and the variability of FRP could affect the variability of downwind concentrations (Wiggins et al., 2020). 253 We found that HCHO correlates with CO₂ (Fig. S6a) and thus likely also with FRP because the change of measured 254 CO₂ correlates with the change of FRP (Wiggins et al., 2020). To account for emission variation and dilution, which 255 are main factors affecting the absolution concentrations of trace gases and aerosols in the plumes, HCHO is normalized 256 to CO to investigate the impact of photochemistry on HCHO evolution in the plumes. Photochemistry takes place

while emission varies. When normalized to CO, nHCHO does not strongly depend on CO₂ (Fig. S6b and Fig. S7) or FRP. FRP and MCE do not control the trends of nHCHO.

259

260 2.7 OH reactivity calculation

We calculate the observed OH reactivity using the Framework for 0-D Atmospheric Modeling (F0AM v4) (Wolfe et al., 2016) with the Master Chemical Mechanism v3.3.1 (MCM; Jenkin et al., 2015) and additional chemical reactions from recent publications of newly-observed biomass burning species and reactions (Coggon et al., 2019; Decker et al., 2019). The VOC chemical species included in the F0AM model are listed in Table S1. We calculate the OH-VOC reactivity ($\sum k_i VOC_i$) by excluding OH reactions with NO₂ and CO from the total OH reactivity and define the normalized OH-VOC reactivity or normalized total OH reactivity as OH-VOC reactivity normalized by CO or total OH reactivity normalized by CO.

268

269 **3. Results and discussion**

270 **3.1 OH concentration estimation**

271 OH is the main oxidant that reacts with VOCs to produce HCHO in the daytime. As described in Sect. 2.4, we estimate 272 plume-average OH concentrations using the relative decays of 2-butenes to propene via Eq. (3). The decay of the 273 natural logarithm of the trans-2-butene to propene ratio and the cis-2-butene to propene ratio with physical age is 274 plotted in Fig. S2. Figure S2 includes all the plumes that meet selection condition (a) in Sect.2.3, 12 plumes of which 275 with good correlations ($r^2 = 0.57-0.99$) between 2-butenes/propene and plume age and sufficient data (data points > 276 8) are selected for this analysis. The lowest correlation coefficient of the selected plumes occurs for the nighttime 277 plume on 12 August 2019 and the daytime plume on 29 July 2019. This indicates that the photochemical age of these 278 plumes is consistent with their physical age, and the oxidation chemistry can be reasonably represented by average 279 OH and O₃. The slopes in Fig. S2 infer the estimated OH concentrations and their coefficients of determination (r^2) 280 imply how good the VOC decay can be used to estimate OH.

281

282 The estimated average OH concentrations for the 12 plumes are shown in Fig. 1. The uncertainties in OH

283 concentrations are based on the standard error in the slope of ln(butenes/propene) vs physical age and the standard

284 deviation of O₃ concentrations. The average and standard deviation of O₃ concentrations and the uncertainty in OH

estimation due to the impact of O₃ standard deviation are listed in Table S3. Plume-to-plume variability in average

- 286 OH concentrations is generally consistent between the two ratio methods. OH concentrations from trans-2-butene
- are systematically higher than those from cis-2-butene by 27% on average, which may reflect systematic bias in
- 288 reaction rate coefficients or observations. For all plumes where both calculations were available, differences are
- within the combined uncertainties. The average OH concentrations from trans-2-butene to propene and cis-2-butene

290 to propene were used to represent the average OH concentrations of the plumes. The average OH concentrations

291 covered a large range, varying from $-0.5(\pm 0.5) \times 10^6$ (for a nighttime plume) to $5.3(\pm 0.7) \times 10^6$ molecules cm⁻³.

292

293 **3.2** Trends of HCHO in wildfire plumes

nHCHO in wildfire plumes can increase or decrease as plumes age. The trends of measured nHCHO vs. physical age and the corresponding quadratic polynomial regression for 12 selected plumes are plotted in Fig. 2. Quadratic polynomial regression is used because it has suitable degrees of freedom to capture the trends. Considering the CO measurement uncertainty of \leq 7% and HCHO measurement uncertainty of 10%, the uncertainty of nHCHO is estimated to be \pm 12% with a potential systematic low bias of as much as 27% (based on the difference between ISAF and CAMS). Random error due to HCHO and CO measurement precision is negligible when averaging over the iWAS integration time in high-concentration biomass burning plumes.

301

In the absence of secondary production, we expect nHCHO to decay with a time constant of a few hours in the daytime. The blue curves in Fig. 2 show the predicted decay of initial nHCHO using observed HCHO photolysis rates and measurement-derived OH concentrations. Because the variability in nHCHO in one transect is significant, we use the start point of the observed nHCHO fitted curve to represent the observed nHCHO closest to fire. HCHO photolysis frequencies are averaged generally over each transect and linearly interpolated to determine continuous age-dependent photolysis frequencies. The calculated nHCHO without production is higher than primary (emitted) nHCHO because some HCHO production and loss had already occurred before the closest transect.

309

310 The fraction of primary and secondary nHCHO varies from plume to plume and depends on secondary HCHO 311 production rates and total HCHO loss rates. This can be inferred from nHCHO trends and the loss-only nHCHO 312 decays in Fig. 2 and is also shown in Fig. S8. We estimate the fraction of primary HCHO by assuming nHCHO and 313 the loss rate of nHCHO are constant between emission and the closest observation. The primary HCHO fraction could 314 decay rapidly to be 60% in about 1 h of aging or it could decay slowly to still account for 60% in about 5h of aging. 315 The primary and secondary fractions of HCHO indicate the impact of direct emission and photochemistry on the fire 316 plume composition downwind. The slowing down increase in secondary nHCHO fraction with time probably indicate 317 that the production of secondary nHCHO slows down with physical age. The average and standard deviation of 318 nHCHO production and loss rates for each plume are provided in Table S4.

319

HCHO production exceeds loss in 9 of the 12 selected plumes, indicated by overall positive trends of nHCHO vs. physical age in Fig. 2. Plumes exhibiting overall negative nHCHO trends (20190725 Shady 2, 20190803 Williams Flats 1 and 20190806 Williams Flats) have higher overall nHCHO loss rates than production rates (Table S4). This shows that fire-to-fire variability in the overall nHCHO trend relates to the balance between loss (via photolysis) and production (via VOC oxidation). HCHO loss by photolysis can be either higher or lower than the loss by reaction with OH, but on average photolysis is faster. HCHO loss via photolysis accounts for $63 \pm 27\%$ of the total HCHO loss in

- daytime plumes. The average HCHO lifetime by photolysis was $8.2 (\pm 8.8)$ h for the 11 daytime plumes, shorter than
- 327 the average HCHO lifetime by OH oxidation of 23.5 (\pm 31.3) h. For some plume transects, there was significant
- 328 variability in HCHO photolysis frequencies over iWAS averaging intervals due to the aerosol radiative effects.
- 329 Applying filters to only analyze the data with relatively homogeneous in-plume HCHO photolysis rates does not alter
- 330 our conclusions. Plume-average OH is not well correlated with the HCHO photolysis frequency (Fig. S9), likely due
- 331 to inter-fire variability of OH sources and sinks.
- 332

Besides the variability among different plumes, nHCHO production and loss also vary within a plume across physical age. In all analyzed plumes, nHCHO slope shifts from positive to neutral or negative within the first 2-6 h (Fig. 2). Figure S10 shows the age progression of nHCHO production, loss, and net change for the 12 plumes. In general, both production and loss decrease with age. Decreases in both are expected due to declining solar radiation, which results from the typical late-afternoon FIREX-AQ sampling strategy. Reduced production with increasing age may also

- reflect the decay of reactive VOC and oxidant precursors (e.g., HONO).
- 339

340 3.3 Controls on secondary HCHO formation

341 The secondary HCHO production rate is determined by a mass balance approach with loss, production, and dilution 342 terms, as discussed in Sect. 2.5. The average secondary nHCHO production rate correlates with the average OH 343 concentration ($r^2 = 0.69$, Fig. 3a). The secondary production rates of nHCHO were calculated from the trends of observed nHCHO ($\frac{dnHCHO}{dt}$), photolysis loss rate and OH (Eq. 6). Although OH concentrations are used to calculate 344 345 secondary nHCHO production rates, the nHCHO loss term (k[OH]nHCHO) due to OH only accounts for 2-35% of 346 all the terms on the righthand side of Eq. (6), which is used to calculate secondary nHCHO production rate for the 347 plumes. This indicates that the good correlation between secondary nHCHO production rate and OH is not due to the 348 inclusion of OH in nHCHO production rate calculation. The uncertainty in nHCHO secondary production rates for 349 each plume is estimated from the standard deviation of the calculated nHCHO secondary production rates along the 350 physical age of the plume. The uncertainty in estimated OH is determined by the propagated uncertainties of OH from 351 trans-2-butene to propene ratios and cis-2-butene to propene ratios. The nHCHO secondary production rates also 352 correlate with the HCHO photolysis ($r^2 = 0.53$ uncertainty weighted linear regression), which is not unexpected as OH 353 and J_{HCHO} positively correlate as well. The correlation between nHCHO secondary production rates with oxidant ozone 354 is poor $(r^2 = 0.1$ from bivariate regression as uncertainty weighted linear regression does not yield a reasonable fit). 355 The good correlations ($r^2 = 0.69$) between the secondary production rate of nHCHO and average OH indicate that the 356 variability in OH is a key driver of the secondary production rate of nHCHO. Although there is only one eastern US 357 wildfire plume sampled during FIREX-AQ, it has high VOCs, nHCHO, nHCHO production rate, and OH, and the 358 inclusion of the eastern US wildfire increase the coefficient of determination (r^2 from 0.54 to 0.69) and the slope (m 359 from 0.30 to 0.33) of nHCHO secondary production rates vs. OH. More wildfire sampling is needed to understand the 360 difference between western and eastern US wildfires. 361

- 362 Figure 3a is color-coded with normalized OH-VOC reactivity calculated from measured VOCs (Sect. 2.7). Plume-363 average normalized OH-VOC reactivity ranges from 11 to 31 s⁻¹ (ppm CO)⁻¹, which is about 20% lower than 364 normalized total OH reactivity across the analyzed plumes. nHCHO production rates vs. normalized OH-VOC 365 reactivity (Fig. S11a) shows a lower coefficient of determination (r^2) and a higher p value than Fig.3a. Because 366 uncertainty weighted linear regression does not yield a meaningful fit for Fig. S11a, unweighted (or equally weighted) 367 bivariate linear regression is used. P-values in Fig. 3 show the correlation between nHCHO production rate vs. OH (p 368 = 0.004) or vs. OH× normalized OH-VOC reactivity (p = 0.003) is statistically significant (p < 0.05). Because the 369 vield of HCHO from VOC oxidation is calculated in the study, normalized OH-VOC reactivity instead of normalized 370 total OH reactivity is mainly used. A plot of nHCHO production rate vs. normalized total OH reactivity color coded 371 with OH is shown in Fig. S11b. Similar to Fig. S11a, the correlation between nHCHO production rate with normalized 372 total OH reactivity is also not significant. Because nHCHO trend, OH concentration, and normalized OH-VOC
- reactivity all depend on physical age, in addition to the different properties of the plumes, the difference in physical
- age among these plumes also has an impact on the average values.
- 375

Figure 3b shows nHCHO production vs. the product of OH and dilution-normalized observed OH-VOC reactivity (averaged for each plume). The latter is a lower limit for the total average OH loss/production rate as observations do not include all OH sinks. The correlation is slightly higher than that in Fig. 3a because variability in normalized OH-VOC reactivity plays a smaller role than OH in affecting P_{nHCHO} . The slope of this relationship, 0.33 ± 0.05 , is a metric for the effective yield of HCHO from OH-initiated VOC oxidation. Assuming that reaction of OH with a VOC is the rate-limiting step and ignoring non-OH sources, integrated HCHO production can be written as in Eq. (7).

(7)

- 382 $P_{\text{HCHO}} = \sum \alpha_i k_i [OH] [X_i] = \alpha_{eff} k'_{OH} [OH]$
- 383 Where α_i is the yield of HCHO from OH oxidation of any VOC reactant X_i and depends on both the structure of X 384 and the fate of reactive intermediates like peroxy radicals, k_i is the reaction rate coefficient for VOC_i + OH, k'_{OH} 385 represents OH-VOC reactivity, and α_{eff} is the effective yield weighted over OH-VOC reactions. If all OH reactivity 386 (including reactions with CO and NO₂) instead of OH-VOC reactivity is considered, α_{eff} will be about 20% smaller. 387 As discussed by Valin et al. (2016), α_{eff} from all OH reactivity is expected to range from 0.2 to 0.4 depending on the 388 magnitude of NO_x and the magnitude and speciation of VOC. The yield reported here (0.28 for all OH reactivity) is 389 on the low end of this range, implying that HCHO production in the plumes is not very efficient due to the nature of 390 the emitted VOC and/or the balance of RO₂ reactions with NO, HO₂, and other RO₂. High α_{eff} values reported by 391 Valin et al. (2016) occur in high isoprene emission regions, implying the emitted VOCs in wildfires are not as 392 efficient as isoprene in producing HCHO. Our α_{eff} of 0.28, when considering all OH reactivity, is higher than the 393 value of $0.20 (\pm 0.01)$ derived by Wolfe et al. (2019) for total-column HCHO in the remote troposphere, where
- 394 methane oxidation is the primary HCHO source. The potential low bias in observed HCHO could lead to a
- 395 proportional (27%) low bias in α_{eff} . Species that are highly reactive and present in large quantities such as CH₃CHO
- 396 are important for OH-VOC reactivity and α_{eff} calculation. We use PTRMS CH₃CHO data in OH-VOC reactivity
- 397 calculation because they are more easily integrated over the iWAS sampling time than TOGA CH₃CHO. This

- 398 indicates that besides the potential missing VOCs, the uncertainties in measured VOCs concentrations and different
- sampling time resolutions can also contribute to the uncertainties in OH reactivity and α_{eff} . The α_{eff} for the one
- 400 eastern US wildfire plume is higher than that of the western US wildfire plumes but more sampling of eastern
- 401 wildfire plumes is needed to determine if there is a statistical difference in α_{eff} . Higher NO_x/VOC ratio in the eastern
- 402 than western US wildfire plumes may contribute to the higher α_{eff} because more NO_x generally means more radical
- 403 turnover and a larger fraction of $RO_2 + NO$, both of which favor HCHO production.
- 404

405 **3.4 Implications for interpretation of satellite observations**

406 The quantification of the evolution of HCHO in wildfire plumes can be leveraged to enhance interpretations of satellite 407 remote sensing observations. The good correlation of dilution-corrected secondary HCHO production and oxidant 408 levels suggests the use of satellite HCHO data to estimate oxidant levels in biomass burning plumes. Similar to the 409 studies of NO₂ lifetime from satellite NO₂ data (e.g., Laughner and Cohen, 2019; Liu et al., 2016), with parameterized 410 production rates of HCHO as a function of OH from this study, the effective lifetime of HCHO and OH concentrations 411 in the wildfire plumes could potentially be derived from remote sensing HCHO and CO data if the photolysis rates 412 can be properly parameterized. Satellite HCHO retrievals in biomass burning plumes remain challenging, and 413 information about vertical distributions of trace gases and aerosols from airborne measurements are likely needed to 414 improve satellite retrievals in biomass burning plumes. The effective yield of HCHO from this analysis indicates that 415 the biomass burning VOCs could be less efficient than isoprene in producing HCHO, although other factors such as 416 balance of RO₂ reactions with NO, HO₂, and other RO₂ can play a role. This information may be useful for estimating 417 VOC emissions from satellite HCHO data.

418

419 4. Conclusions

420 We studied the chemical evolution of HCHO in wildfire plumes during FIREX-AQ. Twelve well-developed plumes 421 with consistent chemical and physical age 1-6 h downwind were selected among 26 wildfire plumes sampled. During 422 plume transport and aging, dilution-corrected HCHO increased in smoke from nine wildfires and decreased in three, 423 depending on the balance of HCHO production and loss processes. Secondary nHCHO production tracks average OH 424 concentrations, indicating that the variability in OH rather than the variability in the reactive VOC pool drives the 425 production of nHCHO in these wildfire plumes. The effective HCHO yield from OH-initiated VOC oxidation is 426 estimated to be 0.33 (\pm 0.05), which is about in the middle of previous studies of isoprene-rich, urban VOC-dominated 427 and remote atmospheric background regions.

429	Change of HCHO concentration with time can be obtained from mass balance equation (Eq. A1)	
430	$\frac{d \text{ HCHO}}{dt} = P - L - D$	(A1)
431	where P is the HCHO chemical production term; L is the HCHO chemical loss term	; and D is the dilution term.
432	Considering the HCHO normalized excess mixing ratio (nHCHO = $\frac{\text{HCHO-HCHO}_{bkg}}{\text{co-co}_{bkg}}$) a	and assuming that the HCHO
433	background change is relatively small $\left(\frac{d \text{ HCHO bkg}}{dt} \approx 0\right), \frac{d \text{ HCHO}}{dt}$ can be written as	
434	$\frac{d \text{ HCHO}}{dt} = \Delta \text{ CO} \frac{d \text{ nHCHO}}{dt} + \text{ nHCHO} \frac{d \Delta \text{CO}}{dt}.$	(A2)
435	Because L, D and P terms are as	
436	$L = (J_{HCHO} + k_{HCHO} [OH])HCHO.$	(A3)
437	$\mathbf{D} = -k_{dil}(\mathbf{HCHO} - HCHO_{bkg}) = -\frac{1}{\Delta CO} \frac{\mathrm{d} \Delta CO}{\mathrm{dt}} \mathbf{HCHO} .$	
438		(A4)
439	$P = \frac{d \text{ HCHO}}{dt} + L + D = \Delta \text{ CO} \frac{d \text{ nHCHO}}{dt} + \text{ nHCHO} \frac{d \triangle \text{CO}}{dt} + (J_{\text{HCHO}} + k_{\text{HCHO}} \text{ [OH]}) \text{HCHO}$	$-\frac{1}{\Delta CO}\frac{d \Delta CO}{dt}$ HCHO.
440	(A5)	
441	By assuming HCHO >> HCHO _{bkg} , $\frac{P}{\Delta CO}$ can be written as	
4.40	P dnHCHO (c) [c] c] c] c] c] c] c] c] c] c	(,

Appendix A. Derivation of secondary nHCHO production rate from mass balance equation

442 $\frac{r}{\Delta CO} = \frac{annend}{dt} + (J_{HCHO} + k_{HCHO}[OH])nHCHO.$ (A6) 443 Where $\frac{d nHCHO}{dt}$ can be derived from measured HCHO and CO vs physical age; J_{HCHO} is the HCHO photolysis 444 coefficient, derived from in-situ actinic flux measurements; OH is calculated from VOCs ratios (Sect.2.4); k_{HCHO} is 445 the reaction rate coefficient of HCHO and OH. 446

447

428

448 Data and code availability:

449 Data are publicly available at https://www-air.larc.nasa.gov/missions/firex-aq/index.html with a dataset doi: Https://www-air.larc.nasa.gov/missions/firex-aq/index.html with a dataset doi: https://www-air.larc.nasa.gov/missions/firex-aq/index.html with a dataset doi:

450 AQ DOI: 10.5067/SUBORBITAL/FIREXAQ2019/DATA001. F0AM is available at

- 451 <u>https://github.com/AirChem/F0AM</u>. Model setup scripts for this study are available from the contact author upon
- 452 request.
- 453

454 Author contribution:

455 GMW and TFH directed the research direction. JL analyzed the data and discussed the results with GMW. JL wrote

the manuscript. TFH, GMW, JMS, JL, and RAH made ISAF HCHO measurements. JBG, AL, and VS made iWAS

457 measurements. GSD, JBN, HSH, JPG made DACOM CO measurements. SRH and KU made CAFS photolysis

- 458 frequencies measurements. CDH, CHF, and AA provided the trajectories-based plume physical age. HSH provided
- 459 MCE calculation. TBR, JP, and IB made O₃ measurements. CW, MMC, GIG, and KS made PTR-ToF-MS VOC

460 measurements. AF, DR, and PW made CAMS HCHO measurements. ECA and RSH made TOGA VOC

461 measurements. SSB, CCW, MAR, and RAW made ACES measurements. PRV and JAN made CIMS measurements.

- 462 All authors reviewed and commented on the manuscript.
- 463

464 Acknowledgements:

465 We gratefully acknowledge the crew, logistical personnel, science team and science leadership who facilitated the 466 FIREX-AQ mission. We also thank Gao Chen and Ali Aknan for the merged DC8 dataset used in this study. JL, 467 GMW, RAH, JMS, and TFH acknowledge support from the NASA Tropospheric Composition Program and NOAA 468 Climate Program Office's Atmospheric Chemistry, Carbon Cycle and Climate (AC4) program (NA17OAR4310004). 469 SRH and KU were funded by the NASA Tropospheric Composition Program (80NSSC18K0638). This material is 470 based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by 471 the National Science Foundation under Cooperative Agreement No. 1852977. KS acknowledges the support from the 472 fund a Grant-in-Aid for Scientific Research (C) (18K05179) from the Ministry of Education, Culture, Sports, Science 473 and Technology of Japan.

- 474
- 475
- 476
- 477

478 **References**

- 479 Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P.
- 480 O.: Emission Factors for Open and Domestic Biomass Burning for Use in Atmospheric Models, Atmos. Chem.
- 481 Phys., 11, 4039-4072, doi:10.5194/acp-11-4039-2011, 2011.
- 482 Alvarado, L. M. A., Richter, A., Vrekoussis, M., Hilboll, A., Kalisz Hedegaard, A. B., Schneising, O., and Burrows,
- 483 J. P.: Unexpected long-range transport of glyoxal and formaldehyde observed from the Copernicus Sentinel-5
- 484 Precursor satellite during the 2018 Canadian wildfires, Atmos. Chem. Phys., 20(4), 2057–2072, doi:10.5194/acp-20-
- 485 2057-2020, 2020.
- 486 Alvarado, M. J., Logan, J. A., Mao, J., Apel, E., Riemer, D., Blake, D., Cohen, R. C., Min, K. E., Perring, A. E.,
- 487 Browne, E. C., Wooldridge, P. J., Diskin, G. S., Sachse, G. W., Fuelberg, H., Sessions, W. R., Harrigan, D. L.,
- 488 Huey, G., Liao, J., Case-Hanks, A., Jimenez, J. L., Cubison, M. J., Vay, S. A., Weinheimer, A. J., Knapp, D. J.,
- 489 Montzka, D. D., Flocke, F. M., Pollack, I. B., Wennberg, P. O., Kurten, A., Crounse, J., St. Clair, J. M., Wisthaler,
- 490 A., Mikoviny, T., Yantosca, R. M., Carouge, C. C., and Le Sager, P.: Nitrogen oxides and PAN in plumes from
- 491 boreal fires during ARCTAS-B and their impact on ozone: An integrated analysis of aircraft and satellite
- 492 observations, Atmos. Chem. Phys., 10(20), 9739–9760, doi:10.5194/acp-10-9739-2010, 2010.
- 493 Apel, E. C., Hornbrook, R. S., Hills, A. J., Blake, N. J., Barth, M. C., Weinheimer, A., Cantrell, C., Rutledge, S. A.,
- 494 Basarab, B., Crawford, J., Diskin, G., Homeyer, C. R., Campos, T., Flocke, F., Fried, A., Blake, D. R., Brune, W.,
- 495 Pollack, I., Peischl, J., Ryerson, T., Wennberg, P. O., Crounse, J. D., Wisthaler, A., Mikoviny, T., Huey, G., Heikes,
- 496 B., Sullivan, D. O., and Riemer, D. D.: J. Geophys. Res. Atmos., 120, 2505–2523,
- 497 doi:10.1002/2014JD022121.Received, 2015.
- 498 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J.,
- 499 Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume
- 500 II gas phase reactions of organic species, Atmos. Chem. Phys, 6, 3625–4055, doi:https://doi.org/10.5194/acp-6-
- 501 3625-2006, 2006.
- 502 Bourgeois, I., Peischl, J., Thompson, C. R., Aikin, K. C., Campos, T., Clark, H., Commane, R., Daube, B., Diskin,
- 503 G. W., Elkins, J. W., Gao, R. S., Gaudel, A., Hintsa, E. J., Johnson, B. J., Kivi, R., McKain, K., Moore, F. L.,
- 504 Parrish, D. D., Querel, R., Ray, E., Sánchez, R., Sweeney, C., Tarasick, D. W., Thompson, A. M., Thouret, V.,
- 505 Witte, J. C., Wofsy, S. C., and Ryerson, T. B.: Global-scale distribution of ozone in the remote troposphere from the
- 506 ATom and HIPPO airborne field missions, Atmos. Chem. Phys., 20(17), 10611–10635, doi:10.5194/acp-20-10611-
- 507 2020, 2020.
- 508 Cazorla, M., Wolfe, G. M., Bailey, S. A., Swanson, A. K., Arkinson, H. L., and Hanisco, T. F.: A new airborne
- 509 laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower
- 510 stratosphere, Atmos. Meas. Tech., 8(2), 541–552, doi:10.5194/amt-8-541-2015, 2015.
- 511 Coggon, M. M., Lim, C. Y., Koss, A. R., Sekimoto, K., Yuan, B., Gilman, J. B., Hagan, D. H., Selimovic, V.,
- 512 Zarzana, K. J., Brown, S. S., M Roberts, J., Müller, M., Yokelson, R., Wisthaler, A., Krechmer, J. E., Jimenez, J. L.,
- 513 Cappa, C., Kroll, J. H., de Gouw, J., and Warneke, C.: OH chemistry of non-methane organic gases (NMOGs)
- 514 emitted from laboratory and ambient biomass burning smoke: Evaluating the influence of furans and oxygenated

- aromatics on ozone and secondary NMOG formation, Atmos. Chem. Phys., 19(23), 14875–14899, doi:10.5194/acp-
- 516 19-14875-2019, 2019.
- 517 Decker, Z. C. J., Zarzana, K. J., Coggon, M., Min, K. E., Pollack, I., Ryerson, T. B., Peischl, J., Edwards, P., Dubé,
- 518 W. P., Markovic, M. Z., Roberts, J. M., Veres, P. R., Graus, M., Warneke, C., de Gouw, J., Hatch, L. E., Barsanti,
- 519 K. C., and Brown, S. S.: Nighttime Chemical Transformation in Biomass Burning Plumes: A Box Model Analysis
- 520 Initialized with Aircraft Observations, Environ. Sci. Technol., 53(5), 2529–2538, doi:10.1021/acs.est.8b05359,
- 521 2019.
- 522 Derek, Y.: Least-squares fitting of a straight line, Can. J. Phys., 46(16), 1845–1847, doi:10.1139/p68-523, 1968.
- 523 Fu, T. M., Jacob, D. J., Palmer, P. I., Chance, K., Wang, Y. X., Barletta, B., Blake, D. R., Stanton, J. C., and Pilling,
- 524 M. J.: Space-based formaldehyde measurements as constrains on volatile organic compound emissions in east and
- 525 south Asia and implications for ozone, J. Geophys. Res. Atmos., 112(6), 1–15, doi:10.1029/2006JD007853, 2007.
- 526 Garofalo, L. A., Pothier, M. A., Levin, E. J. T., Campos, T., Kreidenweis, S. M., and Farmer, D. K.: Emission and
- 527 Evolution of Submicron Organic Aerosol in Smoke from Wildfires in the Western United States, ACS Earth Space
- 528 Chem., 3(7), 1237–1247, doi:10.1021/acsearthspacechem.9b00125, 2019.
- 529 Gilman, J. B., Lerner, B. M., Kuster, W. C., Goldan, P. D., Warneke, C., Veres, P. R., Roberts, J. M., de Gouw, J.
- 530 A., Burling, I. R., and Yokelson, R. J.: Biomass burning emissions and potential air quality impacts of volatile
- organic compounds and other trace gases from fuels common in the US, Atmos. Chem. Phys., 15(24), 13915–13938,
- 532 doi:10.5194/acp-15-13915-2015, 2015.
- 533 Hall, S. R., Ullmann, K., Prather, M. J., Flynn, C. M., Murray, L. T., Fiore, A. M., Correa, G., Strode, S. A.,
- 534 Steenrod, S. D., Lamarque, J. F., Guth, J., Josse, B., Flemming, J., Huijnen, V., Luke Abraham, N., and Archibald,
- A. T.: Cloud impacts on photochemistry: Building a climatology of photolysis rates from the Atmospheric
- 536 Tomography mission, Atmos. Chem. Phys., 18(22), 16809–16828, doi:10.5194/acp-18-16809-2018, 2018.
- 537 Jaffe, D. A. and Wigder, N. L.: Ozone production from wildfires: A critical review, Atmos. Environ., 51, 1–10,
- 538 doi:10.1016/j.atmosenv.2011.11.063, 2012.
- Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem.
- 540 Phys., 15(20), 11433–11459, doi:10.5194/acp-15-11433-2015, 2015.
- 541 Kaiser, J., Jacob, D. J., Zhu, L., Travis, K. R., Fisher, J. A., González Abad, G., Zhang, L., Zhang, X., Fried, A.,
- 542 Crounse, J. D., Clair, J. M. S., and Wisthaler, A.: High-resolution inversion of OMI formaldehyde columns to
- 543 quantify isoprene emission on ecosystem-relevant scales: Application to the southeast US, Atmos. Chem. Phys.,
- 544 18(8), 5483–5497, doi:10.5194/acp-18-5483-2018, 2018.
- 545 Koss, A. R., Sekimoto, K., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B., Lerner, B. M.,
- 546 Brown, S. S., Jimenez, J. L., Krechmer, J., Roberts, J. M., Warneke, C., Yokelson, R. J., and de Gouw, J.: Non-
- 547 methane organic gas emissions from biomass burning: Identification, quantification, and emission factors from PTR-
- 548 ToF during the FIREX 2016 laboratory experiment, Atmos. Chem. Phys., 18(5), 3299–3319, doi:10.5194/acp-18-
- 549 3299-2018, 2018.
- 550 Laughner, J. and Cohen, R. C.: Direct observation of changing NOx lifetime in North American cities, Science
- 551 366(6466), 723–727, 2019.

- 552 Lerner, B. M., Gilman, J. B., Aikin, K. C., Atlas, E. L., Goldan, P. D., Graus, M., Hendershot, R., Isaacman-
- 553 Vanwertz, G. A., Koss, A., Kuster, W. C., Lueb, R. A., Mclaughlin, R. J., Peischl, J., Sueper, D., Ryerson, T. B.,
- 554 Tokarek, T. W., Warneke, C., Yuan, B., and de Gouw, J. A.: An improved, automated whole air sampler and gas
- 555 chromatography mass spectrometry analysis system for volatile organic compounds in the atmosphere, Atmos.
- 556 Meas. Tech., 10(1), 291–313, doi:10.5194/amt-10-291-2017, 2017.
- Liao, J., Hanisco, T. F., Wolfe, G. M., St. Clair, J., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A., Fried, A.,
- 558 Marais, E. A., Gonzalez Abad, G., Chance, K., Jethva, H. T., Ryerson, T. B., Warneke, C., and Wisthaler, A.:
- 559 Towards a satellite formaldehyde in situ hybrid estimate for organic aerosol abundance, Atmos. Chem. Phys., 19,
- 560 2765-2785, doi:10.5194/acp-2018-651, 2019.
- 561 Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., and Wagner, T.: NOx lifetimes and emissions of cities and power
- 562 plants in polluted background estimated by satellite observations, Atmos. Chem. Phys., 16(8), 5283–5298,
- 563 doi:10.5194/acp-16-5283-2016, 2016.
- Liu, X., Huey, L. G., Yokelson, R. J., Selimovic, V., Simpson, I. J., Müller, M., Jimenez, J. L., Campuzano-Jost, P.,
- 565 Beyersdorf, A. J., Blake, D. R., Butterfield, Z., Choi, Y., Crounse, J. D., Day, D. A., Diskin, G. S., Dubey, M. K.,
- 566 Fortner, E., Hanisco, T. F., Hu, W., King, L. E., Kleinman, L., Meinardi, S., Mikoviny, T., Onasch, T. B., Palm, B.
- 567 B., Peischl, J., Pollack, I. B., Ryerson, T. B., Sachse, G. W., Sedlacek, A. J., Shilling, J. E., Springston, S., St. Clair,
- 568 J. M., Tanner, D. J., Teng, A. P., Wennberg, P. O., Wisthaler, A., and Wolfe, G. M.: Airborne measurements of
- 569 western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications, J. Geophys. Res.
- 570 Atmos., 122(11), 6108–6129, doi:10.1002/2016JD026315, 2017.
- 571 Majdi, M., Sartelet, K., Maria Lanzafame, G., Couvidat, F., Kim, Y., Chrit, M., and Turquety, S.: Precursors and
- 572 formation of secondary organic aerosols from wildfires in the Euro-Mediterranean region, Atmos. Chem. Phys.,
- 573 19(8), 5543–5569, doi:10.5194/acp-19-5543-2019, 2019.
- 574 Marais, E. A., Jacob, D. J., Guenther, A., Chance, K., Kurosu, T. P., Murphy, J. G., Reeves, C. E., and Pye, H. O. T.:
- 575 Improved model of isoprene emissions in Africa using Ozone Monitoring Instrument (OMI) satellite observations of
- 576 formaldehyde: Implications for oxidants and particulate matter, Atmos. Chem. Phys., 14(15), 7693–7703,
- 577 doi:10.5194/acp-14-7693-2014, 2014.
- 578 Mauzerall, D. L., Logan, J. A., Jacob, D. J., Anderson, B. E., Blake, D. R., Bradshaw, J. D., Heikes, B., Sachse, G.
- 579 W., Singh, H., and Talbot, B.: Photochemistry in biomass burning plumes and implications for tropospheric ozone
- 580 over the tropical South Atlantic, J. Geophys. Res. Atmos., 103(D7), 8401–8423, doi:10.1029/97JD02612, 1998.
- 581 Meller, R. and Moortgat, G. K.: Temperature dependence of the absorption cross sections of formaldehyde between
- 582 223 and 323 K in the wavelength range 225-375 nm, J. Geophys. Res. Atmos., 105(D6), 7089–7101,
- 583 doi:10.1029/1999JD901074, 2000.
- 584 Millet, D. B., Jacob, D. J., Boersma, K. F., Fu, T. M., Kurosu, T. P., Chance, K., Heald, C. L., and Guenther, A.:
- 585 Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by
- 586 the OMI satellite sensor, J. Geophys. Res. Atmos., 113(2), 1–18, doi:10.1029/2007JD008950, 2008.
- 587 Min, K. E., Washenfelder, R. A., Dubé, W. P., Langford, A. O., Edwards, P. M., Zarzana, K. J., Stutz, J., Lu, K.,
- 588 Rohrer, F., Zhang, Y., and Brown, S. S.: A broadband cavity enhanced absorption spectrometer for aircraft

- 589 measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor, Atmos. Meas. Tech., 9(2),
- 590 423-440, doi:10.5194/amt-9-423-2016, 2016.
- 591 Müller, M., Anderson, B. E., Beyersdorf, A. J., Crawford, J. H., Diskin, G. S., Eichler, P., Fried, A., Keutsch, F. N.,
- 592 Mikoviny, T., Thornhill, K. L., Walega, J. G., Weinheimer, A. J., Yang, M., Yokelson, R. J., and Wisthaler, A.: In
- 593 situ measurements and modeling of reactive trace gases in a small biomass burning plume, Atmos. Chem. Phys.,
- 594 16(6), 3813–3824, doi:10.5194/acp-16-3813-2016, 2016.
- 595 Palm, B. B., Peng, Q., Fredrickson, C. D., Lee, B. H., Garofalo, L. A., Pothier, M. A, Kreidenweis, S. M., Farmer,
- 596 D. K., Pokhrel, R. P., Shen, Y., Murphy, S. M., Permar, W. Hu, L., Campos, T. L., Hall, S. R., Ullmann, K. Zhang,
- 597 X., Flocke, F., Fischer, E. V., and Thornton, J. A.: Quantification of organic aerosol and brown carbon evolution in
- 598 fresh wildfire plumes, P. Natl. Acad. Sci. USA, 117 (47) 29469–29477, doi:10.1073/pnas.2012218117, 2020.
- 599 Yokelson, R. J., Goode, J. G., Ward, D. E., Susott, R. A., Babbitt, R. E., Wade, D. D., Bertschi, I., Griffith, D. W.
- 600 T., and Hao, W. M: Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in
- 601 North Carolina measured by airborne Fourier transform infrared spectroscopy, J. Geophys. Res. Atmos., 104(D23),
- 602 30109–30125, doi:10.1029/1999JD900817, 1999.
- 603 Richter, D., Weibring, P., Walega, J. G., Fried, A., Spuler, S. M., and Taubman, M. S.: CAMS Compact
- atmospheric multi-species spectrometer, Conf. Lasers Electro-Optics Eur. Tech. Dig., 2015-Augus, 5–6,
- 605 doi:10.1364/CLEO_AT.2015.ATu4J.5, 2015.
- 606 Sachse, G. W., Collins, Jr., J. E., Hill, G. F., Wade, L. O., Burney, L. G., and Ritter, J. A.: Airborne tunable diode
- 607 laser sensor for high-precision concentration and flux measurements of carbon monoxide and methane, Meas.
- 608 Atmos. Gases, 1433(May 1991), 157, doi:10.1117/12.46162, 1991.
- 609 Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E.,
- 610 Kurylo, M. J., Moortgat, G. K., Orkin, V. L., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in
- 611 Atmospheric Studies Evaluation Number 17, JPL Publ. 10-6, Jet Propul [online] Available from:
- 612 http://jpldataeval.jpl.nasa.gov/, 2011.
- 613 Selimovic, V., Yokelson, R. J., McMeeking, G. R., and Coefield, S.: In-situ measurements of trace gases, PM, and
- 614 aerosol optical properties during the 2017 NW US wildfire smoke event, Atmos. Chem. Phys., 19, 3905-3926,
- 615 doi:10.5194/acp-19-3905-2019, 2019, 2019.
- 616 Simpson, I. J., Akagi, S. K., Barletta, B., Blake, N. J., Choi, Y., Diskin, G. S., Fried, A., Fuelberg, H. E., Meinardi,
- 617 S., Rowland, F. S., Vay, S. A., Weinheimer, A. J., Wennberg, P. O., Wiebring, P., Wisthaler, A., Yang, M.,
- 618 Yokelson, R. J., and Blake, D. R.: Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile
- 619 organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN, Atmos. Chem. Phys., 11(13), 6445–6463,
- 620 doi:10.5194/acp-11-6445-2011, 2011.
- 621 De Smedt, I., Theys, N., Yu, H., Danckaert, T., Lerot, C., Compernolle, S., Van Roozendael, M., Richter, A.,
- Hilboll, A., Peters, E., Pedergnana, M., Loyola, D., Beirle, S., Wagner, T., Eskes, H., Van Geffen, J., Folkert
- 623 Boersma, K., and Veefkind, P.: Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and
- 624 from the QA4ECV project, Atmos. Meas. Tech., 11(4), 2395–2426, doi:10.5194/amt-11-2395-2018, 2018.
- 625 Stavrakou, T., Müller, J. F., De Smedt, I., Van Roozendael, M., Van Der Werf, G. R., Giglio, L., and Guenther, A.:

- 626 Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through 2003-
- 627 2006, Atmos. Chem. Phys., 9(11), 3663–3679, doi:10.5194/acp-9-3663-2009, 2009.
- Trentmann, J., Yokelson, R. J., Hobbs, P. V., Winterrath, T., Christian, T. J., Andreae, M. O., and Mason, S. A.: An
- 629 analysis of the chemical processes in the smoke plume from a savanna fire, J. Geophys. Res. D Atmos., 110(12), 1–
- 630 20, doi:10.1029/2004JD005628, 2005.
- 631 Valin, L. C., Fiore, A. M., Chance, K., and Abad, G. G.: The role of OH production in interpreting the variability of
- 632 CH₂O columns in the southeast U.S., J. Geophys. Res. Atmos., 121, 478–493, doi:10.1038/175238c0, 2016.
- 633 Veres, P. R., Andrew Neuman, J., Bertram, T. H., Assaf, E., Wolfe, G. M., Williamson, C. J., Weinzierl, B., Tilmes,
- 634 S., Thompson, C. R., Thames, A. B., Schroder, J. C., Saiz-Lopez, A., Rollins, A. W., Roberts, J. M., Price, D.,
- 635 Peischl, J., Nault, B. A., Møller, K. H., Miller, D. O., Meinardi, S., Li, Q., Lamarque, J. F., Kupc, A., Kjaergaard, H.
- 636 G., Kinnison, D., Jimenez, J. L., Jernigan, C. M., Hornbrook, R. S., Hills, A., Dollner, M., Day, D. A., Cuevas, C.
- A., Campuzano-Jost, P., Burkholder, J., Paul Bui, T., Brune, W. H., Brown, S. S., Brock, C. A., Bourgeois, I., Blake,
- D. R., Apel, E. C., and Ryerson, T. B.: Global airborne sampling reveals a previously unobserved dimethyl sulfide
- oxidation mechanism in the marine atmosphere, Proc. Natl. Acad. Sci. U. S. A., 117(9), 4505–4510,
- 640 doi:10.1073/pnas.1919344117, 2020.
- 641 Warneke, C., McKeen, S. A., de Gouw, J. A., Goldan, P. D., Kuster, W. C., Holloway, J. S., Williams, E. J., Lerner,
- B. M., Parrish, D. D., Trainer, M., Fehsenfeld, F. C., Kato, S., Atlas, E. L., Baker, A., and Blake, D. R.:
- 643 Determination of urban volatile organic compound emission ratios and comparison with an emissions database, J.
- 644 Geophys. Res. Atmos., 112(10), doi:10.1029/2006JD007930, 2007.
- 645 Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming and earlier spring increase Western
- 646 U.S. forest wildfire activity, Science (80-.)., 313(5789), 940–943, doi:10.1126/science.1128834, 2006.
- 647 Wiggins, E. B., Soja, A. J., Gargulinski, E., Halliday, H. S., Pierce, R. B., Schmidt, C. C., Nowak, J. B., DiGangi, J.
- 648 P., Diskin, G. S., Katich, J. M., Perring, A. E., Schwarz, J. P., Anderson, B. E., Chen, G., Crosbie, E. C., Jordan, C.,
- 649 Robinson, C. E., Sanchez, K. J., Shingler, T. J., Shook, M., Thornhill, K. L., Winstead, E. L., Ziemba, L. D., and
- 650 Moore, R. H.: High Temporal Resolution Satellite Observations of Fire Radiative Power Reveal Link Between Fire
- Behavior and Aerosol and Gas Emissions, Geophys. Res. Lett., 47(23), doi:10.1029/2020GL090707, 2020.
- Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., and Liao, J.: The framework for 0-D atmospheric
- 653 modeling (F0AM) v3.1, Geosci. Model Dev., 9(9), 3309–3319, doi:10.5194/gmd-9-3309-2016, 2016.
- Wolfe, G. M., Nicely, J. M., Clair, J. M. S., Hanisco, T. F., Liao, J., Oman, L. D., Brune, W. B., Miller, D., Thames,
- A., Abad, G. G., Ryerson, T. B., Thompson, C. R., Peischl, J., McKain, K., Sweeney, C., Wennberg, P. O., Kim, M.,
- 656 Crounse, J. D., Hall, S. R., Ullmann, K., Diskin, G., Bui, P., Chang, C., and Dean-Day, J.: Mapping hydroxyl
- 657 variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde
- 658 observations, Proc. Natl. Acad. Sci. USA., 116(23), 11171-11180, doi:10.1073/pnas.1908931116, 2019.
- 659 Wotawa, G. and Trainer, M.: The influence of Canadian forest fires on pollutant concentrations in the United States,
- 660 Science (80-.)., 288(5464), 324–328, doi:10.1126/science.288.5464.324, 2000.
- 661 Yuan, B., Koss, A., Warneke, C., Gilman, J. B., Lerner, B. M., Stark, H., and de Gouw, J. A.: A high-resolution
- time-of-flight chemical ionization mass spectrometer utilizing hydronium ions (H3O+ ToF-CIMS) for

- 663 measurements of volatile organic compounds in the atmosphere, Atmos. Meas. Tech., 9(6), 2735–2752,
- 664 doi:10.5194/amt-9-2735-2016, 2016.

667 Figures:

668

669 Figure 1. Estimated average OH concentrations for the plumes analyzed from the decay of trans-2-butene – propene

670 (black) and the decay of cis-2-butene – propene (red). The error bars represent the propagated uncertainties from the

671 slopes of butenes – propene decay and ozone variability within the plume.

Figure 2. Observed nHCHO (HCHO to CO NEMR) trends (red circle), quadratic polynomial fit (pink curve), and
calculated decay of nHCHO trend without secondary production (blue curve) using measured photolysis rates along
plume physical age for the 12 wildfire plumes. The state of fire location for each fire plume is listed.

- 679 Figure 3. (a) Average secondary nHCHO production rate vs. average OH concentration, color-coded by normalized
- 680 OH-VOC reactivity, for the 12 plumes including 11 western US wildfire plumes (circles) and 1 eastern US wildfire
- 681 plume (square). An uncertainty weighted linear York regression (Derek, 1968) yields a slope = $1.4 (\pm 0.2) \times 10^{-6}$ and
- $r^2 = 0.69 (\pm 0.16)$ for the 12 wildfire plumes. (b) Average secondary nHCHO production rate vs. the average product
- 683 of OH and OH-VOC reactivity normalized to CO (OH× OH-VOC reactivity/CO) for each plume. An uncertainty
- 684 weighted linear York regression yields a slope = $0.33 (\pm 0.05)$ and $r^2 = 0.71 (\pm 0.19)$. The slope represents the
- estimated effective yield α_{eff} of HCHO per VOC molecule oxidized by OH for the US wildfires. The uncertainties in
- r^2 are from bootstrap analysis. The *p*-value in each panel is to evaluate if linear correlation is statistically significant
- 687 (p < 0.05).