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Abstract. Biomass burning emits an estimated 25% of global annual nitrogen oxides (NOx), an important constituent that 

participates in the oxidative chemistry of the atmosphere. Estimates of NOx emission factors, representing the amount of NOx 

per mass burned, are primarily based on field or laboratory case studies, but the sporadic and transient nature of wildfires 10 

makes it challenging to verify whether these case studies represent the behavior of the global fires that occur on earth. Satellite 

remote sensing provides a unique view of the earth, allowing the study of emission and downwind evolution of NOx from a 

large number of fires. We describe direct estimates of NOx emissions and lifetimes for fires using an exponentially modified 

Gaussian analysis of daily TROPOspheric Monitoring Instrument (TROPOMI) retrievals of NO2 tropospheric columns. We 

update the a priori profile of NO2 with a fine-resolution (0.25˚) global model simulation from NASA’s GEOS Composition 15 

Forecasting System (GEOS-CF), which largely enhances NO2 columns over fire plumes. We derive representative NOx 

emission factors for six fuel types globally by linking TROPOMI derived NOx emissions with observations of fire radiative 

power from Moderate Resolution Imaging Spectroradiometer (MODIS). Satellite-derived NOx emission factors are largely 

consistent with those derived from in-situ measurements. We observe decreasing NOx lifetime with fire intensity, which we 

infer is due to the increase in both NOx abundance and hydroxyl radical production. Our findings suggest promise for applying 20 

space-based observations to track the emissions and chemical evolution of reactive nitrogen from wildfires. 

1 Introduction 

Biomass burning emissions affect global radiative forcing, the hydrological cycle, ecosystem and air quality (e.g., Crutzen and 

Andreae, 1990; Penner et al., 1992; Johnston et al., 2012; Liu et al., 2014). Biomass burning emits an estimated 25% of global 

annual nitrogen oxides (NOx = NO + NO2), an important constituent that participates in the oxidative chemistry of the 25 

atmosphere, leading to the formation of tropospheric ozone (O3) and secondary aerosols that affect air quality, ecosystem 

health and climate. Unlike other NOx sources such as power plants that are persistent and relatively static, the sporadic and 

transient nature of wildfires makes it challenging to estimate emissions experimentally over wide spatial and temporal scales 

(Ichoku and Ellison, 2014). Biomass burning emissions inventories used in models are subject to uncertainties in estimates or 

measurements of the burned area, fuel loadings, combustion efficiency, and also the compound-specific emission factors that 30 
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relate the mass of a chemical species emitted to fuel consumption (e.g., Petrenko et al., 2012; Liu et al., 2020; Carter et al., 

2020). Current estimates of NOx emission factors are primarily based on field measurements that sample a few fires over a 

small region (Yokelson et al., 2007; Alvarado et al., 2010; Lindaas et al., 2021), or laboratory studies that measure fire 

emissions under controlled conditions (McMeeking et al., 2009; Roberts et al., 2020). These previous studies report large 

variations of NOx emission factors, even in a similar ecosystem, which could be due to variation in individual fire conditions, 35 

nitrogen content of the fuel burned, or differences in sampling techniques and analysis methods (Andreae, 2019). The NOx 

emission factors used in global biomass burning emission inventories also vary (Wiedinmyer et al., 2011; Kaiser et al., 2012; 

Darmenov and Silva, 2015; van der Werf et al., 2017). These varying perspectives raise the question of how well we understand 

how to extrapolate the emission factors derived from individual fires to the large number of fires that occur annually on the 

globe, each with distinct fire conditions, intensity, and fuel type. 40 

Satellite remote sensing provides a unique view of the earth, which offers the opportunity to study a large number of fires 

globally. Satellite-based products such as fire radiative power (FRP) and burned area have been widely used in the fire 

detection (Wiedinmyer et al., 2011; van der Werf et al., 2017). The launch of GOME-1 in 1995 set the milestone for monitoring 

NOx from space (Richter et al., 2005). The Ozone Monitoring Instrument (OMI) onboard Aura satellite has a finer spatial 

resolution with 13 ×24 km2 at nadir, which is widely used to detect NOx emissions from anthropogenic sources (Beirle et al., 45 

2011; Lu et al., 2015; Duncan et al., 2016; Liu et al., 2016). These studies typically rely on aggregation of multiple observations 

to reduce the noise of satellite retrievals or improve spatial resolutions via oversampling, tools which cannot be used to study 

the rapidly varying NOx from fires. In October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) launched to 

space (Veefkind et al., 2012). The finer spatial resolution (~7 × 3.5 km2), and the improved signal-to-noise ratio of TROPOMI 

compared to OMI offer new opportunities to more reliably interpret observations of individual plumes (Veefkind et al., 2012; 50 

Judd et al., 2019; van Geffen et al., 2020).  

The accuracy of satellite retrieval of NO2 columns largely depends on the a priori knowledge of NO2 vertical profile shape 

needed for calculating air mass factor (e.g., Boersma et al., 2018; Verhoelst et al., 2021). The impacts of the a priori profile 

are especially evident for fire plumes with intense emissions and varying plume dynamics (Bousserez, 2014). Previous studies 

that use satellite observations to derive NOx EFs from fires all show lower EFs than in situ measurements, which could be due 55 

to inaccurate a priori profiles (Mebust et al., 2011; Mebust and Cohen, 2014; Schreier et al., 2015). Replacing the a priori 

vertical profile from a fine-resolution regional model can enhance the spatial gradient and correct the low bias of satellite 

retrieved NO2 over polluted regions (e.g., Russell et al., 2011; Valin et al., 2011; Goldberg et al., 2017; Ialongo et al., 2020; 

Judd et al., 2020; Tack et al., 2021). However, conducting fine-resolution simulations for fires distributed globally is currently 

too computationally expensive for routine analysis. The GEOS Composition Forecasting System (GEOS-CF) produced by 60 

NASA Global Modeling and Assimilation Office (GMAO) provides real-time global simulations of atmospheric composition 

at a fine resolution of 0.25˚ resolution (Keller et al., 2021). The GEOS-CF has provided an opportunity for capturing fine-scale 

features relevant to biomass burning plumes. Here we apply GEOS-CF simulated NO2 as the a priori profile to re-calculate 

AMFs for TROPOMI NO2 columns near fires, and we show updating the a priori profile could resolve the underestimate of 
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satellite-based NOx emission factors suggested in previous studies (Mebust et al., 2011; Mebust and Cohen, 2014; Schreier et 65 

al., 2015).  

Satellite instruments observe fire NOx plumes as a mixture of fresh and aged smoke. NOx is a short-lived species, and its 

concentration will decay in the plume due to the formation of nitric acid (HNO3), peroxyacetyl nitrate (PAN) and organic 

nitrates (RONO2). The relationship between satellite observed NOx concentration and emissions depends on the loss rate of 

NOx. The chemical processes governing the lifetime of NOx in the fire plumes are poorly understood (Alvarado et al., 2010). 70 

Previous studies assume a constant chemical NOx lifetime of 2 hours (Mebust et al., 2011; Mebust and Cohen, 2014). Laughner 

and Cohen (2019) provide space-based evidence of changing NOx lifetimes over U.S. cities as NOx emissions decline. As fire 

intensity varies by several orders of magnitude, assuming constant NOx lifetime for all fires will likely introduce errors in the 

derived NOx emissions (De Foy et al., 2014). The improved spatial resolution of TROPOMI allows direct measurements of 

the length scale of NO2 decay. By analyzing the plume evolution downwind, we derive an effective NOx lifetime. Beirle et al. 75 

(2011) first proposed an exponentially modified Gaussian (EMG) approach to directly estimate NOx emissions and lifetimes 

from satellite observations, which has been widely used to derive NOx emissions from anthropogenic sources (Beirle et al., 

2011; Lu et al., 2015; Goldberg et al., 2019; Laughner and Cohen, 2019). Our study is the first to apply the EMG approach to 

simultaneously estimate NOx emissions and lifetimes from biomass burning plumes. The resulting emission estimates provide 

a large ensemble with which to evaluate current emission models and also provide detailed constraints on the chemical 80 

evolution of NOx. The resulting lifetimes provide insights into hydroxyl radical abundances in the plume and thus constraints 

on the lifetime of other chemicals emitted from fires.  

2 Datasets 

TROPOMI is a nadir-viewing hyperspectral spectrometer launched on October 13, 2017 by the European Space Agency (ESA) 

for the European Union’s Copernicus Sentinel 5 Precursor (S5p) satellite mission. TROPOMI provides afternoon (~ 1:30 PM 85 

local time) global observations in the UV−visible−near infrared−shortwave spectra with a fine spatial resolution of 7 × 3.5 

km2 at nadir (increased to 5.5 × 3.5 km2 since August 2019). We obtain the daily Level-2 TROPOMI retrievals of NO2 

tropospheric column density data from April 2018 to June 2020 from NASA Goddard Earth Sciences (GES) Data and 

Information Services Center (DISC). The retrieval of the NO2 tropospheric vertical column includes three steps (van Geffen 

et al., 2019): (1) retrieval of the total slant column density along the optical path using differential optical absorption 90 

spectroscopy (Boersma et al., 2011).; (2) subtraction of the total slant column density from stratospheric NO2 slant column 

based on information from a data assimilation system (Boersma et al., 2018); (3) conversion of the tropospheric slant column 

density to vertical column density using air mass factors (AMFs), which are obtained from radiative transfer calculations that 

account for the viewing geometry, cloud fraction, surface properties, and the a priori vertical profile of NO2 (Boersma et al., 

2018). We include TROPOMI observations with the quality assurance value higher than 0.5, which filter out problematic 95 

retrievals but still keep good quality retrievals over cloud (or aerosols). In addition to NO2, we obtain TROPOMI aerosol layer 
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height (ALH) or pressure (ALP) data, which provides height information of aerosol layer in the troposphere. Retrieval of ALH 

or ALP is based on the O2 absorption band at near-infrared wavelengths between 759 and 770 nm (Graaf et al., 2019). Details 

of the aerosol layer retrieval algorithms can be found at Graaf et al., (2019) and Nanda et al. (2019). 

We use the Moderate Resolution Imaging Spectroradiometer (MODIS) Active Fire products (Collection 6) to provide 100 

information on the intensity and location of fires (Giglio et al., 2016), which are available from NASA’s Fire Information for 

Resource Management System (FIRMS). We include daytime MODIS measurements from the Aqua satellite to match with 

the overpass of TROPOMI. Fire detection from MODIS is performed using a contextual algorithm that measures the infrared 

radiation from fires (Giglio et al., 2016). Each hotspot is recorded as the center of a ~1 × 1 km2 pixel that contains one or more 

fires, and the FRP is estimated via an empirical relationship using the 4µm band brightness temperatures (Kaufman et al., 105 

1998). We group fire pixels whose distances are within 20 km as a single fire event, and the center of the fire is calculated as 

the mean of fire pixel locations weighted by pixel FRP. To assess the sensitivity to the choice of FRP product, we also process 

the daytime Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) observations of active fire accessed from NASA’s 

FIRMS. VIIRS fire product uses a similar algorithm as MODIS for fire detection (Schroeder et al., 2014). To assess potential 

effects of aerosol from plumes on satellite retrieval of NO2, we acquire the Multi-angle Implementation of Atmospheric 110 

Correction (MAIAC) Aerosol Optical Depth (AOD) Level-2 1-km daily gridded product (MCD19A2) from NASA’s Earth 

Observing System Data and Information System (EOSDIS). Details of the retrieval of AOD can be found at Lyapustin et al. 

(2012, 2018).  

The fire episodes are classified based on MODIS detected fire location following the fuel classification in the Global Fire 

Emission Database (GFED), which is estimated using the MODIS land cover type product and University of Maryland 115 

classification scheme (Friedl et al., 2010; van der Werf et al., 2017). We assign the fuel type to grid cells with mixed fuel types 

based on the dominant fuel type. We follow the definition of GFED, grouping savanna, grassland and shrubland fires as a 

single herbaceous fuel type. To assess if the NOx EF varies among these three herbaceous types, we use the 500-m yearly 

MODIS land cover product (v5) to classify the herbaceous fires based on the dominant land cover type (Friedl et al., 2010). 

We use wind fields from the hourly ERA-5 reanalysis data developed by the European Center for Medium-range Weather 120 

Forecast (ECMWF), which provides meteorological variables at 0.25˚ × 0.25˚resolution with 37 pressure levels from 1000 

hPa to 1 hPa from 1979 to present (Hersbach et al., 2020). We sample ERA-5 wind data closest to the center of each fire 

episode at the TROPOMI overpass time (~1 PM local time).   

3 Methods 

3.1 An improved fire a priori for TROPOMI NO2 125 

The a priori vertical profiles of NO2 used in the standard TROPOMI products are obtained from global daily model simulations 

(TM5) with coarse resolution (1˚) and monthly average biomass burning emissions (Williams et al., 2017). Fires are 

intrinsically episodic and occur over land areas that are often as small as a few kilometers. Here we re-compute the tropospheric 
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AMFs using the vertical NO2 profiles provided by the NASA GEOS-CF simulations with 0.25˚ resolution. GEOS-CF system 

combines GEOS weather analysis and forecasting system with GEOS-Chem chemistry scheme version 12.0.1 (Bey et al., 130 

2001; Keller et al., 2014, 2021; Long et al., 2015). GEOS-CF includes detailed gas-phase and aerosol chemistry (Knowland et 

al., 2020; Keller et al., 2021). The near-real-time satellite-based Quick Fire Emission Database (QFED v2.5) is used to provide 

daily biomass burning emissions (Darmenov and Silva, 2015). In the GEOS-CF system, 65% of biomass burning emissions 

are distributed within the boundary layer, and the other 35% is distributed evenly between 3.5 and 5.5 km (Fischer et al., 2014). 

GEOS-CF provides hourly global vertical profiles of NO2 at 23 pressure levels from 1000 hPa to 10 hPa since 2018.  135 

We sample GEOS-CF products at the time and location of all fire episodes identified. For each episode, we spatially interpolate 

the GEOS-CF simulated NO2 profiles to match the resolution of TROPOMI products. The AMF (AMFGC, clear) for clear sky 

conditions can be calculated following Eq. (1): 

𝐴𝑀𝐹!",$%&'( =	
∑ *!×,"#,!
%&'(
)*&+

∑ ,"#,!
%&'(
)*&+

                  (1) 

where ml is scattering weight, which is a function of satellite viewing geometry, surface pressure and reflectivity etc.; xGC,l is 140 

the GEOS-CF sub-column for layer l. We acquire averaging kernels (AK) from TROPOMI Level-2 products, and we 

interpolate GEOS-CF vertical profiles to the 34 vertical layers that provide information on AKs. AK is equal to the ratio of the 

scattering weight to the tropospheric AMFs computed from the a priori profile (AMFa) (Eskes and Boersma, 2003):  

𝐴𝐾% =	
*!

-./,
                       (2) 

Combining Eq. (1) and Eq. (2) gives Eq. (3): 145 

                                                      𝐴𝑀𝐹!",$%&'( =	
-./,×∑ -0!×,"#,!

%&'(
)*&+

∑ ,"#,!
%&'(
)*&+

                        (3) 

Given that AMFa is the ratio of slant columns to vertical columns, we can relate the vertical columns with GEOS-CF simulated 

profile (ΩGC, clear) to the originally retrieved vertical columns (Ωa) as Eq. (4): 

                                                               𝛺!",$%&'( = 𝛺' ×
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                                                                 (4) 

For partly cloudy scenes, the air mass factor can be written as a linear combination of a clear and cloudy air mass factor 150 

(Boersma et al., 2004): 

                                          𝐴𝑀𝐹!" = 𝑓$%123𝐴𝑀𝐹!",$%123 + (1 − 𝑓$%123)𝐴𝑀𝐹!",$%&'(                                      (5) 

where fcloud is radiance weighed cloud fraction, and AMFGC, cloud is essentially the above-cloud component of Eq. (3) (Laughner 

et al., 2018). Therefore, we revise Eq. (4) for the partly cloudy scene as Eq. (6): 
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3.2 Estimation of emissions and lifetimes of wildfires 

We apply an EMG approach to estimate NOx emissions and lifetime from each fire episode. For each fire episode, we first 

rotate TROPOMI NO2 swath data along the wind direction in the range of 200 km around the fire centre, and map the rotated 

TROPOMI NO2 column to a regular grid with 0.05˚ resolution by calculating area-weighted average as described in Jin et al. 

(2020). Next, we integrate the TROPOMI NO2 columns in the across-wind direction within ±100 km, which gives reduced 160 

one-dimensional line densities. The NO2 line densities (L) are then fitted with an EMG model, which is a convolution of a 

gaussian shaped emission and an exponential decay function (Beirle et al., 2011; Lu et al., 2015; Laughner and Cohen, 2019) 

following Eq. (7):  

                                                     𝑳(𝒙|𝒂, 𝒙𝟎, µ𝒙, 𝝈𝒙, 𝑩) =
𝒂
𝒙𝟎
𝒆𝒙𝒑;7𝒙

𝒙𝟎
+ 𝝈𝒙𝟐

𝟐𝒙𝟎𝟐
− 𝒙

𝒙𝟎
<𝝓;𝒙:7𝒙

𝝈𝒙
− 𝝈𝒙

𝒙𝟎
< + 𝑩                                    (7) 

where x0 is the e-folding distance that represents the length scale of the NO2 decay; μx is the location of the apparent source 165 

relative to the fire centre; σx represents the Gaussian smoothing length scale; 𝛷 is a cumulative distribution function; a is a 

scale factor that represents the observed total number of NO2 molecules in the fire plumes, and B represents the background 

NO2. We use the best guesses for initial values following Laughner and Cohen (2019). The effective NO2 lifetime (𝝉EMG) and 

the estimated NOx emissions (EEMG) can be calculated from the fitted x0 and a following Eq. (8) and Eq. (9): 

                                                                                      𝝉𝑬𝑴𝑮 =
𝒙𝟎
𝒘

                                                                       (8) 170 

                                  𝑬𝑬𝑴𝑮 = 𝛄 × 𝒂
𝝉𝑬𝑴𝑮

                                                                 (9) 

where w is the wind speed, and 𝛾 is the ratio of NOx to NO2. The effective lifetime should represent chemical lifetime of NOx 

if the transport speed is uniform, the direction is constant and deposition is negligible (De Foy et al., 2014). Previous studies 

either use the averaged wind of the first several layers (Beirle et al., 2011; Lu et al., 2015) or choose a constant layer such as 

900 hPa (Mebust et al., 2011), but injection height of wildfires varies significantly, especially for large fires which inject 175 

emissions into high altitudes (Val Martin et al., 2010). To account for varying injection height, we use TROPOMI ALH as an 

approximation of the fire injection height instead of assuming a constant layer. We vertically interpolate ERA-5 wind data to 

the pressure level of aerosol layer. For the fires without valid ALH (~36% of the selected fires), we use 900hPa, as the ALP 

level for the majority of selected fires is near 900 hPa (see Sect. 4.1). 𝛾 is assumed to be 1.32, which is in between measured 

mean NOx/NO2 ratio of 1.50 reported in Akagi et al. (2012) and 1.24 in Juncosa Clahorrano et al. (2021). We assume a constant 180 

𝛾 because O3 and the photolysis rate of NO2 varies little in the plume, and the time scale for NO and NO2 to reach steady state 

is of order 100s (Alvarado and Prinn, 2009). Juncosa Clahorrano et al. (2021) shows the NOx/NO2 ranges from 1.15 to 1.50 

near the fire centre before 3PM LST, but the median NOx/NO2 varies little from centre to plume edge. Mebust et al. (2011) 

suggest the uncertainty of NOx/NO2 is ~20%.  
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3.3 Idealized plume model 185 

To understand the factors that control the NOx lifetime, we employ a one-dimensional (1-D) multi-box plume model based on 

the Python Editable Chemical Atmospheric Numerical Solver (PECANS; Laughner 2019; Laughner and Cohen, 2019;). 

PECANS is a flexible idealized atmospheric chemistry modelling framework that allows for one box to three-dimensional 

multi-box simulations of atmospheric chemistry with idealized transport. In this study, we set the model to be 1-D with 600 

km domain size and 2.5 km resolution, which is analogous to the integrated 1-D NO2 line density along wind direction. The 190 

wind speed is fixed at 5 m/s, and the diffusion coefficients are also fixed at 100 m2/s following Laughner and Cohen (2019). 

We assume a simplified set of reactions to represent a chemical condition within the NOx plume including: (1) the permanent 

removal of NOx through the formation of HNO3 and RONO2; (2) the temporary removal and releases of NOx by PAN; (3) the 

instantaneous steady-state relationship between NO and NOx; and (4) the transport of NOx along the wind direction. The 

modelled VOC are lumped into two groups; the first group (hereafter RVOC) do not contribute PAN formation; the second 195 

group is modelled as an immediate PAN precursor (hereafter OVOC), specifically acetaldehyde. We include a Gaussian shaped 

NOx emission source (expressed in NO) at x=200 km with 6 km in half width. The concentrations for O3, hydroxyl radical 

production rate P(HOx), VOC reactivities, and alkyl nitrate branching ratio are given as model input. The O3 concentration is 

fixed at 65 ppbv, which is close to observed mean O3 concentration near fire plumes (Alvarado and Prinn, 2009; Alvarado et 

al., 2014). A fixed branching ratio to form RONO2 in RO2 + NO reaction of 0.05 is used following Laughner and Cohen 200 

(2019). We run PECANS repeatedly with varying NOx emissions, P(HOx), RVOC, and OVOC. Each model run outputs the 

concentration of NOx and its major sinks along the wind direction, which are then used to calculate both EMG fitted and 

chemical NOx lifetime.  

3.4 Selection of wildfires 

Since not all fire plumes are detectable from space, and the EMG approach works best for single sources with clear plume 205 

patterns, we apply the following four criteria to select candidate fires from fire plumes identified from MODIS FRP 

observations (see Fig. S1 for a flowchart of the selection procedure): 

First, fires should be large enough so that an apparent enhancement of NO2 is observed from TROPOMI. Considering the 

detection limit of TROPOMI NO2 and the greater uncertainty of MODIS FRP for small fires (Kaufman et al., 1998), fire 

episodes with MODIS FRP higher than 200 MW are selected. We then select fires where TROPOMI NO2 tropospheric columns 210 

on the fire day are at least one standard deviation higher than the mean TROPOMI NO2 columns 30 days before and after the 

fire day (excluding the nearest four days as fires may last for several days, defined as ΩNO2_B). We only include fires in which 

TROPOMI NO2 line densities peak near the fire centre, meaning that fires with monotonically increasing or decreasing line 

densities within the region are excluded. 

Second, nearby fire plumes should not contribute to the NO2 line density of the selected fires. A major challenge of applying 215 

the EMG approach is that it only applies to single source, but isolated wildfires are rare in nature. To reduce the influence of 
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nearby plumes, we develop an algorithm that automatically detects and filters out the surrounding plumes (Fig. S2). We first 

identify plume-affected grid cells defined as ΩNO2 higher than background NO2 (ΩNO2_B, Fig. S2(b)). Next, pixels are grouped 

to separate plumes based on their connections with surrounding pixels, assuming that plume pixels belonging to the same fire 

event should be connected. We then exclude the plumes that do not belong to the centre fire plumes (Fig. S2(c)). The filtered 220 

areas are filled with background ΩNO2_B (Fig. S2(d)). The ability of clustering depends on the choice of ΩNO2_B: high ΩNO2_B 

may truncate plumes as edges are counted as background, while low ΩNO2_B may lead to background being counted as fire 

plumes, so that nearby plumes are connected with centre plumes. To optimize the performance, we repeat the clustering and 

filtering steps with different ΩNO2_B, and select the ΩNO2_B that maximizes the filtered size of nearby plumes while retains the 

centre plume. This filtering algorithm, however, does not apply to the case where fire plumes are overlapped. Therefore, we 225 

further exclude the fire plumes where comparable or larger fires are detected (i.e., total FRP of the nearby plumes is greater 

than one-third of the selected fire) over the region after applying the filtering.  

Third, the fire plumes should align with the wind direction. We define a rotation bias as the angle between the wind direction 

and the observed apparent plume direction. From previous step, we obtain an approximate region of fire plumes, whose 

coordinates in x and y directions can be fitted with a line using linear regression, where the slope of the line can be converted 230 

to degrees (Fig. S3). We only select fire episodes with rotation biases between -30˚ and 30˚.  

Fourth, the fire plumes should give good fitting statistics that satisfy the following criteria: 1) R2 > 0.5; 2) σx < x0, meaning 

that emission width is smaller than the e-folding distance, which could prevent the case in which emission shape confounds 

with lifetime; 3) |μx| < 50 km, meaning that the apparent source centre is not too far from the fire centre. Fires with more than 

50% missing TROPOMI NO2 values are excluded. The outcome of EMG function is sensitive to the initial condition of each 235 

fitting parameter. To test the sensitivity of the fitting results to initial conditions, we repeat the fitting with varying initial 

values for each parameter 50 times, and we exclude fires where the standard deviation of resulting emissions is more than 50% 

of the emissions. After excluding the fires sensitive to initial conditions, the uncertainty of the emission due to initial conditions 

is ~5%.  
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Figure 1 (a) Map of the distribution of selected fire events and corresponding fuel type. Histograms of the distribution of (b) MODIS 
FRP, (c) TROPOMI ALP, (d) MAIAC AOD for the selected fire events. The number of fire events (y-axis) is on a log scale.  

4 Results 

4.1 Characteristics of selected fires 245 

Applying above selection criteria, we identified 3248 fire episodes globally between April 2018 and June 2020 suitable for the 

EMG approach (Fig. 1a). The majority of the fires (77%) occur in the savanna, grassland and shrubland ecosystems. We 

identified 573 (18%) forest fires, including 227 over the boreal forest, 153 over temperate forest and 193 over the tropical 

forest fires. Twenty fire episodes are classified as peatland, which occurred in equatorial Asia. We also identified 158 fires 

(5%) due to agriculture waste burning distributed across different regions. Figures 1b to 1d show the distributions of MODIS 250 

FRP, TROPOMI ALP and MAIAC AOD of the selected fire episodes. The MODIS FRP is below 10,000 MW for 95% of the 

selected fires, and 34 fires have FRP larger than 20,000 MW. The mean TROPOMI ALP is 828 hPa (or 1836 m for ALH), 

with 1σ standard deviation being 118 hPa (or 1751 m). Assuming TROPOMI ALH is indicative of fire injection height, more 

than 80% of selected fires inject fire emissions to a pressure level between 700 and 950 hPa. About 83% of the fire episodes 



 

10 
 

show MAIAC AOD less than 0.3 near the fire centre, and only 64 (3%) fire episodes have AOD higher than 1.0. In summary, 255 

most of our selected fires can be characterized as median to large fires with relatively low injection height and small AOD.  

4.2 Emission and lifetime estimates with an example fire  

We estimate emissions and lifetime for each selected fire episode. As an example, Figure 2 illustrates four major steps to 

estimate NOx emissions with an fire event occurred in western Australia (27.98 ˚S, 125.90 ˚E) on October 21, 2018. Several 

NO2 plumes are detected by TROPOMI on this day, which outperforms OMI observation on the same day which detects less 260 

smaller fires, shows less spatial gradients and larger data gap (Fig. S4). For the fire event selected, we first rotate TROPOMI 

observations along wind direction (Fig. 2a). Second, we update the a priori profile of NO2 to improve the estimate of NO2 

column (Sect. 3.1), which leads to an enhancement of NO2 gradient near the fire centre (Fig. 2b). Third, we filter two nearby 

fire plumes, and the nearby plumes are filled with background NO2 (Fig. 2c). Fourth, we integrate across the wind direction to 

obtain a 1-D line density and fit with the EMG function (Fig. 2d and Eqs. (7) to (9)). The EMG model captures the variation 265 

of the line density (R2 = 0.98). The lifetime is estimated to be 1.6 hours, and the total NOx emissions are estimated as 7870 g/s.  

 
Figure 2 An example fire event illustrating four steps to estimate NOx emissions and lifetime using the EMG approach: (a) original 
TROPOMI retrieved NO2 tropospheric vertical column density rotated to align with the wind direction; (b) retrieved NO2 column 
density after replacing the a priori vertical profile of NO2 from NASA GEOS-CF simulation; (c) central fire plume after filtering the 270 
nearby fire plumes; (d) NO2 line density calculated by integrating NO2 column density across the wind direction. The red line in (d) 
shows the fitted line density using the EMG function (Eq. (7)). The lifetime is estimated from Eq. (8), and the total NOx emissions 
are estimated using Eq. (9). FRP is calculated as the sum of the FPR of all fire pixels detected by MODIS shown on (c).  

4.3 Satellite-derived fire NOx emissions  

Deriving NOx emissions for the large ensemble of fires, we investigate what drives the variation of NOx emissions and lifetimes 275 

among these fires. MODIS FRP, which represents the radiant energy released by fires, has been used to approximate the 

biomass burned consumption in top-down emission inventories such as Global Fire Assimilation System (GFAS; Kaiser et al., 

2012). We define the emission coefficient (EC) as the mass of pollutant emitted per unit of radiative energy (i.e., 

Emissions/FRP), which has been used to derive the emissions of chemical species from fires (Ichoku and Kaufman, 2005; 

Mebust et al., 2011; Mebust and Cohen, 2014). Figure 3 shows the relationship between TROPOMI derived NOx emissions 280 

with MODIS FRP for six different fuel types. Overall, we find TROPOMI derived fire NOx emissions are positively correlated 
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with MODIS FRP. We assess an overall EC by fitting a line with intercept fixed at zero. FRP explains 39% to 78% variance 

in emissions with the highest R2 for tropical forest fires and lowest for agricultural fires. The variability not accounted for may 

be related to the uncertainty of satellite retrieval of NO2, errors with the EMG approach, uncertainties with FRP (see Sect. 5), 

and/or true differences in NOx ECs for different fires in similar ecosystems. We compute the uncertainty of EC as 95% 285 

confidence interval (CI) of the fitted EC based on the Student’s t-distribution test. Comparing different forest types, EC is 

largest for tropical forests (1.30 [1.20, 1.40] g/MJ), followed by boreal forests (0.70 [0.60, 0.80] g/MJ) and temperate forests 

(0.56 [0.47, 0.65] g/MJ). Aggregating all grassland, savanna, and shrubland fires as a single fuel type, we obtain an overall EC 

of 1.02 [0.98, 1.06] g/MJ. Separating the fires to individual fuel types based on MODIS land cover classification lead to slightly 

improved R2 for savanna and grassland, but the derived EC is similar: 1.00 [0.93, 1.07] g/MJ for grassland, 1.13[1.06, 1.19] 290 

g/MJ for savanna and 0.89 [0.78, 1.01] g/MJ for shrubland (Fig. S5). Only 20 fires are classified as peatland fires, and we find 

a relatively good correlation between NOx emissions and FRP with R2=0.62 and EC = 0.75 [0.47, 1.03] g/MJ. For agricultural 

fires, there is a large scatter between NOx emissions and FRP with R2 = 0.39, and the estimated EC is 1.10 [0.88, 1.31] g/MJ. 

Updating the a priori profile of NO2 enhances the spatial gradient of NO2 (Fig. 2b), allowing for better estimates of fire NOx 

emissions. Indeed, we find that using TROPOMI standard products gives a weaker correlation between FRP and NOx 295 

emissions, and the ECs decrease by 46% on average (Fig. S6).    

 
Figure 3 Scatter plots between TROPOMI derived NOx emissions (g/s) and MODIS FRP (MW) for six fuel types: (a) boreal forest, 
(b) temperate forest, (c) tropical forest, (d) herbaceous fuel type that combines grassland, savanna and shrubland together, (e) 
peatland, and (e) agricultural fires. The colours represent the TROPOMI ALP of the corresponding fire events. Fire events without 300 
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valid ALP are shown as black circles. The black line indicates the regression line estimated from ordinary least squares with the 
intercept fixed at zero. The shadow represents the 95% CI of the fitted line, calculated based on the Student’s t-distribution test. R2 
is the coefficient of the determination of the linear fit. N is the number of fire events, and the number of fires with valid TROPOMI 
ALH is in the parenthesis. Emissions and FRP are on log scales.   

4.4 Comparison with previous studies 305 

To compare with previous studies, we convert the ECs to emission factors (EFs) assuming a constant ratio of fuel consumption 

to FRP, Kr = 0.41 kg MJ-1 (Vermote et al., 2009; Mebust et al., 2011; Mebust and Cohen, 2014). Figure 4 shows the TROPOMI 

derived NOx EFs and the associated uncertainties (95% CI) compared to previous studies. We find that satellite-derived NOx 

EFs (hereafter EFssat) are largely consistent with the mean reported in the Andreae (2019, hereafter EFsandreae), which represent 

an up-to-date compilation of field and laboratory measurements over the last two decades. In most fuel types except for 310 

temperate forest, EFssat are largely consistent with EFsandreae to within 30% difference. Our derived NOx EFsat for tropical forest 

(3.17 g/kg) is nearly twice as large as that in the boreal forest (1.70 g/kg), consistent with Andreae (2019), which also shows 

larger NOx EFs over the tropical forest (2.81 g/kg) than boreal forest (1.18 g/kg). However, for the temperate forest, the derived 

NOx EFsat (1.36 g/kg) is less than half of EFandreae (3.02 g/kg). There is a large spread of NOx EFs for the temperate forests in 

literature, ranging from 0.49 g/kg (Liu et al., 2017) to 7.44 g/kg (Yokelson et al., 2007). Our derived NOx EFsat, however, is 315 

close to the in-situ estimates of NOx EFs (1.56 g/kg) from the recent aircraft campaign (i.e., WE-CAN) over the western US 

during summer 2018 (Lindaas et al., 2021). In non-forest fuel types, we find the smallest NOx EFsat (1.83 g/kg) over peatland, 

followed by grassland (2.49 g/kg), and agriculture (2.68 g/kg), which are close to EFandreae. Using the standard TROPOMI NO2 

products without updating the a priori profile, the derived NOx EFs are 44 to 66% of EFsat, and 26 to 68% of EFsandreae. 

Assessment of TROPOMI NO2 with in situ measurements also suggest TROPOMI NO2 is biased low over polluted regions, 320 

and replacing the coarse-resolution a priori profile with fine-resolution simulations could largely reduce the low biases (Judd 

et al., 2020; Tack et al., 2021). Our derived NOx EFs are nearly 3 times larger than a previous study based on OMI observations, 

which suggest NOx EFs are lower than 1g/kg in all fuel types (Mebust and Cohen, 2014). Besides the differences in satellite 

instruments and methods, the discrepancy is partially due to less accurate representation of biomass burning emissions in the 

a priori profile of NO2 in Mebust and Cohen (2014). Using the standard TROPOMI NO2 products without updating the a 325 

priori profile, the derived NOx EFs are similar to those developed by Mebust and Cohen (2014) for boreal and temperate forest 

fires, but still higher over other fuel types.  
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Figure 4 Comparison of the TROPOMI-derived NOx emission factors with previous studies and those used in global biomass burning 
emission inventories. We include two estimates of NOx emission factors: one using the original TROPOMI NO2 (purple); the other 330 
with updated the a priori profile for AMF calculation (black). The error bars of TROPOMI NOx EFs represent 95% CI calculated 
based on Student’s t-distribution test. The red dots show the mean NOx EFs reported in previous studies compiled by Andreae 
(2019), and the error bars represent the standard deviation. The error bars of Mebust and Cohen (2014) are calculated using 
nonparametric bootstrap resampling. The error bars of Lindaas et al. (2021) indicate the overall uncertainty of measurements.  

As the development of biomass burning emission inventories is done by separate groups with different approaches, NOx EFs 335 

used in these inventories also differ. We compare our derived NOx EFs with those used in four commonly used global biomass 

burning emission inventories (Fig. 4), including: (1) Global Fire Emissions Database (GFED; van der Werf et al., 2017), (2) 

Fire Inventory from NCAR (FINN; Wiedinmyer et al., 2011), (3) GFAS (Kaiser et al., 2012), and (4) QFED (Darmenov and 

Silva, 2015). We find that satellite-derived EFssat best agree with those used in FINN for forest and grassland in terms of 

absolute magnitude and variations among fuel types. GFED and FINN use smaller EFs over boreal (0.9 g/kg and 1.8 g/kg) and 340 

temperate (1.9 g/kg and 1.3 g/kg) forest than tropical forest (2.6 k/kg), which is contrary to GFAS and QFED that use higher 

NOx EFs of 3.4 g/kg and 3.0 g/kg for the boreal and temperate forest than that for tropical forest (2.3 and 1.6 g/kg respectively). 

Our derived NOx EFsat for tropical forest fires is larger than those used in emission inventories. For grassland, our derived NOx 

EFsat of 2.49 g/kg is closest to that used in FINN (2.8 g/kg) and GFAS (2.1 g/kg), and smaller than that used in GFED and 

QFED (3.9 g/kg). For peatland fires, both GFED and GFAS use EF of 1.0 g/kg, which is smaller than our estimated EF of 1.83 345 

g/kg, but we acknowledge a large uncertainty in our derived EF for peatland given the small number of samples. For 

agricultural fires, our derived NOx EFsat (2.68 g/kg) is slightly higher than that used in GFAS (2.3 g/kg), but smaller than that 

used in GFED (3.11 g/kg) and FINN (3.5 g/kg).  
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4.5 Satellite-derived NOx lifetime and its driven factors 

We find a large variation of NOx lifetimes in fire plumes. Figure 5 shows the variation of mean NOx lifetime as a function of 350 

NOx emissions at different wind speeds. We find an overall negative relationship between NOx lifetime and emissions: NOx 

lifetime decreases from over 5 hours for fires with emissions less than 500 g/s to less than 2 hours for fires higher than 5000 

g/s (Fig. 5). We find similar NOx lifetime using original TROPOMI NO2 data (Fig. S7), largely because the derived NOx 

lifetime is determined by the shape of fire plumes that are not affected by the a priori. The varying lifetime with emissions 

suggests that the assumption of constant lifetime used in previous studies leads to an overestimate in emissions for small fires, 355 

while an underestimate of emissions for big fires. At low emission levels (< 2000 g/s), NOx lifetime tends to decrease with 

increasing wind speed, which is due to the vertical and horizontal diffusion effects that dilute the concentration of NOx and 

thus alters the rate of NOx removal due to the feedback on OH and the rate of NOx removal (Valin et al., 2013). However, as 

NOx emissions further increase (> 2000 g/s), the chemical removal becomes fast compared to dilution, and NOx lifetime no 

longer depends on wind speed (Fig. 5). We note that the EMG derived NOx emissions depend on both NOx abundance and 360 

lifetime (Eq. (9)), and thus the observed negative emission-lifetime relationship may partially reflect that emissions are 

estimated from derived NOx lifetime. However, we find a similar negative relationship between NOx lifetime and TROPOMI 

NO2 column density near the fire centre (Fig. S8), indicating that chemical feedback of NOx is the primary driver of the derived 

NOx lifetime.  

 365 
Figure 5 The mean and standard deviation of TROPOMI derived NOx lifetimes from fires at different emissions (colour) and wind 
speeds. Fire episodes with less than 2 m/s wind speed are not shown. 

The NOx chemical lifetime, in theory, is determined by its loss to HNO3 and RONO2. We use the 1-D PECANS model to 

simulate NOx evolution downwind fire plumes and calculate a lifetime by fitting model simulated NOx concentration with the 

EMG function (Eq. (7)). Figure 6 shows the dependence of the EMG fitted NOx lifetime on NOx emissions rate and P(HOx). 370 

At low NOx emissions, the NOx lifetime decreases rapidly with increasing NOx emissions, while almost independent of P(HOx), 
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indicating a NOx-limited regime. At the NOx-limited regime, increasing NOx facilitates the conversion from HO2 to OH, and 

thus faster loss of NOx through formation of HNO3 (e.g., Valin et al., 2014; Romer et al., 2020). The loss of NOx through 

formation of RONO2 also increases with NOx emissions (e.g., Romer et al., 2020). As NOx emissions further increase, the NOx 

lifetime shows a strong dependence on P(HOx), and the NOx lifetime increases slightly with NO emissions, indicating a NOx-375 

saturated regime. In the NOx-saturated regime, as the loss of NOx through the formation of HNO3 consumes both NOx and 

OH, increasing NOx leads to decreasing oxidative capacity and thus a longer NOx lifetime. If the NOx lifetime is driven entirely 

by changes in NOx concentration, the derived NOx lifetime should first decrease and then increase with NOx emissions, which 

is not found from the observed lifetime-emission relationship. Therefore, we infer that it is likely that P(HOx) increases with 

fire intensity in fire plumes, which combined with increasing NOx abundances, leads to an overall decrease of NOx lifetime 380 

with NOx emissions. If we assume VOC reactivities and branching ratio 𝛼 are fixed, we could use TROPOMI retrieved NOx 

emissions and lifetimes to infer an approximate level of P(HOx). Figure 6 labels the satellite retrieved mean NOx lifetime at a 

given emission level, and the corresponding P(HOx). To match the observed negative lifetime-emission relationship, P(HOx) 

should also increase by near a factor of 4 from 15 × 106 molec/cm3 for fires with lifetime longer than 4 hours to 60 × 106 

molec/cm3 for fires with lifetime smaller than 1 hour. The increase in P(HOx) may be related to increasing emissions of HONO 385 

that generate OH. A recent study suggests that previously underestimated HONO emissions from fires are responsible for two-

thirds of the HOx production from fresh fire plumes (Theys et al., 2020). The changes of P(HOx), however, should be of 

secondary importance compared to NOx emissions in driving the observed variations in NOx lifetime, which can be evidenced 

from the slower rate of the increase in inferred P(HOx) and small changes of the NOx lifetime at high NOx emissions (Fig. 5).  

 390 
Figure 6 Isopleth showing the NOx lifetime dependence on NOx emissions versus P(HOx). We run the PECANS 1-D model with 
varying NOx emissions and P(HOx). The lifetime is estimated by fitting the modelled NOx concentration along the wind direction 
with the EMG function (Eq. (7) and (8)). We run the model at a constant wind speed of 5 m/s, and the VOC reactivity is set constant 
at 4.8 s-1 for both groups (RVOC and OVOC). The black stars show the TROPOMI observed mean NOx emissions and lifetime at 
wind speed between 4 to 6 m/s, where the P(HOx) value is estimated as the level that gives the closest NOx lifetime as observations at 395 
given NOx emissions. The dashed line represents the fitted regression line.  
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In addition to NOx emissions and P(HOx), VOC reactivity is the third factor that affects the fitted NOx lifetime. At low NOx 

emissions, increasing RVOC reactivity leads to a shorter NOx lifetime, but its impacts become smaller and reverse with 

increasing NOx emissions (Fig. 7a). At low NOx emissions, increasing RVOC reactivity facilitates the loss of NOx through the 

formation of RONO2. At high NOx emissions, as both RVOC and NOx consumes OH, increasing VOC leads to a longer NOx 400 

lifetime. The formation of PAN acts as a temporal reservoir of NOx, which also affects the evolution of NOx. The formation 

of PAN depends on the concentration of OVOCs, OH level and temperature. Figure 7b shows the dependence of EMG fitted 

NOx lifetime as a function of NOx emission rate and the reactivity of PAN’s immediate precursor (OVOC). We find that 

increasing PAN formation through increasing OVOC reactivity will lead to an overall increase in EMG fitted NOx lifetime. 

The impact of OVOC is especially evident at low levels of NOx emissions (Fig. 7b). Without PAN formation, the fitted NOx 405 

lifetime will be shorter than that derived from TROPOMI observations, suggesting that PAN formation plays a non-negligible 

role in determining the evolution of NOx and also the effective lifetime of NOx.   

 
Figure 7 Same as Fig. 6 but showing the NOx lifetime dependence on NOx emissions versus the reactivities of (a) RVOC and (b) 
OVOC. We run the model at a constant wind speed of 5 m/s, and the P(HOx) is set constant at 50 × 106 molecules/cm3. 410 

5 Discussions on uncertainties 

5.1 Uncertainties of satellite retrieved NO2 columns 

Satellite retrievals of NO2 columns are subject to uncertainties with spectral fitting, and uncertainties from the a priori NO2 

profile shape and scattering weights needed for calculating AMFs and stratospheric NO2 columns. Boersma et al. (2018) 

suggest an overall uncertainty of 35% to 45% for single-pixel OMI NO2 retrieval, which should be smaller for TROPOMI NO2 415 

given its improved signal-to-noise ratio (van Geffen et al., 2020; Verhoelst et al., 2021). Due to the sporadic nature of fires, 

there is no validation of TROPOMI NO2 columns with fire NOx with ground-based measurements. Validation with ground-

based Differential Optical Absorption Spectroscopy (DOAS) and Pandora measurements in urban stations show an overall 
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good agreement between TROPOMI retrieved and ground-based NO2 columns, and an overall negative bias is reported, but 

the biases vary with stations (Lambert et al., 2020; Verhoelst et al., 2021).  420 

Over polluted regions, the uncertainty and bias of single-pixel satellite retrieval of NO2 columns is dominated by uncertainties 

of the AMF (Boersma et al., 2018). We replace the a priori profile shape of NO2 using NASA GEOS-CF simulations that 

include daily biomass burning emissions, which leads to higher NOx emissions factors that are more consistent with in situ 

measurements. Bousserez (2014) similarly suggests that using a fire-specific NO2 profile shape can lead to a near 60% 

reduction in AMF. In the NASA GEOS-CF, 65% biomass burning emissions are distributed within the boundary layer, which 425 

will lead to negative biases in AMF for large fires with plumes that rise well above the boundary layer. In our study, since the 

ALH is below 2000m for the majority of fires, model uncertainties of the injection height should have small impacts on the 

retrieval of NO2 columns. However, we notice that fire events with low ALP (< 700 hPa) tend to show higher NOx emissions 

per FRP, and most outliers in Fig. 3 are associated with high aerosol layers. Since satellite instruments are more sensitive to 

NO2 at higher altitudes, the inaccurate assumption of NO2 concentrated within the boundary layer will lead to an underestimate 430 

of the AMF and thus an overestimate of the retrieved vertical NO2 columns if the majority of NO2 is injected to the free 

troposphere. 

In addition, the large amounts of aerosols emitted from wildfires may also impact the retrieval of NO2 columns from space. 

The impacts of aerosols depend on the magnitude, location, and optical properties (absorbing vs. scattering) of aerosols 

(Bousserez, 2014; Lin et al., 2015). In the TROPOMI NO2 retrieval algorithm, the effects of aerosols are implicitly accounted 435 

for through modifying the cloud properties (Boersma et al., 2011). Bousserez (2014) suggests an explicit correction is needed 

in the presence of clouds and scattering aerosols, and the effects of aerosol correction can be as large as 100% when cloud 

fraction is 30% and AOD is higher than 1. In our study, the mean cloud fraction of the selected fire plumes is 9%, and the 

mean AOD is 0.22, corresponding to a small uncertainty of less than 20% based on Bousserez (2014).  

5.2 Uncertainties of MODIS FRP 440 

Since we derive NOx EFs from the linear regression between TROPOMI NOx emissions and MODIS FRP, uncertainties in 

MODIS FRP should also contribute to uncertainties of the satellite derived NOx EFs. Detection of MODIS FRP may be 

obscured by cloud, aerosols or canopy cover. The uncertainty of FRP, however, is lower than 5% for fires that aggregate 30 

or more active fire pixels together (Freeborn et al., 2014). Our selected fire events are aggregated by 37 active fire pixels on 

average (SD = 31). To evaluate if our results are robust with the choice of FRP data, we conduct similar analysis with FRP 445 

measurements from Suomi NPP VIIRS sensors. In general, MODIS and VIIRS FRP are in good agreement (R2 = 0.72, Fig. 

S9). VIIRS FRP is lower than MODIS FRP by 5.8% on average. Deriving NOx emission factors using VIIRS FRP, we find a 

slight increase of NOx EFs for forest and agricultural fires, but a decrease for peatland (Fig. S10). For herbaceous fires, where 

a large number of fires are sampled, the derived NOx EF remains almost unchanged, suggesting that the difference in MODIS 

and VIIRS FRP should diminish as we increase the sample size. The overall relationship between NOx emissions and FRP is 450 

similar for both VIIRS and MODIS, though stronger correlation is found for MODIS FRP. Overall, we estimate the difference 
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in NOx EFs using MODIS versus VIIRS FRP is ~20%. Here we assume linear relationship between emission rate and FRP. 

While the validity of the relationship has been verified in laboratory (Wooster et al., 2005; Freeborn et al., 2008), field 

experiments (Wiggins et al., 2020) and satellite observations (Ichoku and Kaufman, 2005), the choice of the mass-to-energy 

conversion factor (Kr) slightly differ in Wooster et al. (2005, 0.368 g/MJ) and in Freeborn et al. (2008, 0.453g/MJ), suggesting 455 

an uncertainty of order 10% for the value of Kr.  

5.3 Uncertainties in the EMG approach 

The first step of the EMG approach is to rotate TROPOMI observations along the wind direction. The derived NOx lifetimes 

and emissions are therefore subject to uncertainties of the wind direction and speed due to uncertain plume heights that cross 

wind shear, or the plume thermodynamics that are not captured by ERA5 wind data. In the case the fire plume does not align 460 

with wind direction, calculating line density along the wind direction should lead to an underestimate of the e-folding distance. 

In this study, we only select fires with less than 30˚ rotation bias, and the mean rotation bias is 10˚, which corresponds to less 

than 2% underestimate of the e-folding distance. Uncertainty and variance of the wind speed, however, should lead to errors 

in the derived NOx lifetimes. Here we determine the wind speed by interpolating the wind profile to TROPOMI derived aerosol 

layer. Comparison of TROPOMI ALH with plume height from the Cloud-Aerosol LIdar with Orthogonal Polarization 465 

(CALIOP) and the Multi-angle Imaging SpectroRadiometer (MISR) measurements suggest that TROPOMI ALH is overall 

500 m lower (Griffin et al., 2020; Nanda et al., 2020). We estimate that an increase of 500 m ALH corresponds to ~22% 

increase of the wind speed on average, meaning that NOx lifetime will decrease by ~18%.  

Here we use the EMG approach to derive an effective NOx lifetime of the entire fire plume. Chemical nonlinearities can result 

in an effective chemical lifetime that is averaged over the plume where at each point in the plume evolution a different chemical 470 

lifetime occurs. Besides, the effective lifetime in practice will be confounded by the mixing such as those plume movement in 

different directions that reduces the line density. To assess if EMG fitted effective NOx lifetime is indicative of the chemical 

lifetime, we use the PECANS model to calculate an EMG fitted lifetime and a chemical lifetime of NOx from two permanent 

losses of NOx through the formation of HNO3 and RONO2 over downwind region (i.e., mean NOx concentration divided by 

the mean chemical loss of NOx). The chemical lifetime of NOx varies with location (Fig. 8a), which reaches a minimum near 475 

the source centre at low NOx emissions (NOx-limited regime), but shows maximum at high NOx emissions (NOx-saturated 

regime). The effect of varying lifetime on the emission estimates is not considered with the EMG approach, which instead 

gives an overall effective NOx-lifetime of the plume. At low NOx, the EMG fitted lifetime is higher than the chemical lifetime 

at the fire centre, but the reverse occurs at high NOx (Fig. 8a). We notice that the EMG fitted lifetime is overall more consistent 

with the chemical lifetime around 40 to 50 km downwind from the fire centre, which should vary depending on the model 480 

input. Figure 8b compares the EMG fitted lifetime with overall chemical lifetime over downwind regions under different NOx 

emissions, P(HOx) and VOC reactivities. We find a moderate correlation between EMG fitted lifetime and chemical lifetime 

(R2 = 0.37). If PAN formation is not included, a nearly perfect correlation is found between the EMG fitted and chemical 

lifetime (R2 = 0.93). In the lower troposphere, PAN is generally considered as a sink of NOx near the fire, but a source of NOx 
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over downwind region, which deepens the gradient of NO2 near the source but flattens the gradient downwind (Valin et al., 485 

2013). For those large biomass burning events that inject PAN into upper troposphere, PAN acts as a stable reservoir of NOx, 

leading to long-range transport of NOx (Tereszchuk et al., 2013). The EMG approach is unable to capture the effects of PAN 

formation on the evolution of NOx as it assumes NOx decays exponentially. In the presence of PAN formation, we find the 

EMG approach tends to overestimate NOx lifetime at low NOx emission (< 5000 g/s), in which the flattening effect of PAN is 

more evident, while underestimating NOx lifetime at high NOx emissions and low P(HOx), in which the deepening effect of 490 

PAN takes over. Overall, we assess that the overestimate at low NOx emissions (< 5000 g/s) cause around 33% negative biases 

to the derived emissions, while 18% positive biases at high NOx emissions (> 5000 g/s). In-situ measurements show rapid 

formation of PAN in young smoke within 4 hours of aging, and PAN contributes about 25% of the total reactive nitrogen 

(Alvarado et al., 2010; Juncosa Calahorrano et al., 2021), suggesting a non-negligible role of PAN as a sink of NOx near fire 

source.  495 

 
Figure 8 (a) Illustration of the variation of NOx chemical lifetime with distance from fire centre at both low (red) and high NOx 
emissions (blue). The EMG fitted effective lifetime is shown as horizontal dash lines. The vertical line indicates the distance where 
chemical lifetime and EMG fitted lifetime agree. (b) Scatter plot between EMG fitted versus overall chemical NOx lifetime downwind 
calculated using varying NOx emissions, P(HOx) and VOC reactivities, where the colours represent different emission levels, and the 500 
symbols represent different levels of P(HOx). The chemical lifetime is calculated as the mean NOx concentration divided by the mean 
chemical loss of NOx through the formation of HNO3 and RONO2 over downwind region. We define the regional mean as the region 
between fire centre and the downwind area where NOx concentration is higher than background, where background value is 
estimated from the EMG function (B in Eq. (7)).  

6 Conclusions 505 

We estimate NOx emissions and lifetimes from over 3000 fires globally using daily TROPOMI retrievals of NO2 tropospheric 

columns, and derive NOx emission factors by linking TROPOMI derived NOx emissions with MODIS FRP. The overall 

derived NOx emissions factors are 1.70 g/kg, 1.36 g/kg and 3.17 g/kg for the boreal, temperate and tropical forest, 2.49 g/kg 
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for herbaceous (grassland, savannas and shrubland combined) fires, 1.83 g/kg for peatland, and 2.67 g/kg for agricultural 

burning. Satellite-derived NOx emission factors are largely consistent with the mean NOx emission factors reported by previous 510 

field studies (Andreae, 2019). By studying a large number of fires globally, we provide more representative NOx emission 

factors. These top-down emission estimates of NOx could be used to assess biomass burning emission inventories in terms of 

both emission factors and fuel consumption, which could help diagnose the causes of discrepancies among different emission 

inventories.  

Our study features three improvements over previous studies that use satellite measurements to derive NOx emissions (Mebust 515 

et al., 2011; Mebust and Cohen, 2014; Schreier et al., 2015). First, we use observations from the newly launched TROPOMI 

with finer spatial resolution and improved signal-to-noise ratio. Second, we relax the assumptions of constant NOx lifetime by 

directly estimating lifetime through fitting the evolution of NOx downwind with the EMG approach. Third, we replace the a 

priori profile of TROPOMI NO2 retrieval with a high-resolution global model simulation from NASA GEOS-CF simulations 

to calculate AMF. This update result in steeper gradients between the plumes and the background, and more accurate 520 

description of NO2 vertical shape, reducing the discrepancy between satellite and in-situ derived estimates of NOx emission 

factors. The resolution of current global model simulation, however, is not sufficient to resolve the fine-scale chemical 

evolution of fire plumes, and better treatment of the fire injection is needed (Paugam et al., 2016). Assessment of the satellite 

retrieval uncertainty will benefit from high-resolution regional simulations combined with in situ measurements that sample 

individual fire smokes from the point of emission to downwind regions (Juncosa Clahorrano et al., 2021; Lindaas et al., 2020).    525 

We observe decreasing NOx lifetime with increasing fire NOx emissions, which is indicative of NOx-limited chemistry, where 

increasing NOx emissions makes the chemical loss of NOx more efficient. However, for the largest fires with high NOx, a 

regime transition from a NOx-limited to NOx-saturated regime is expected, where increasing NOx emissions leads to a longer 

NOx lifetime. Using a 1-D idealized plume model to interpret the factors affecting the NOx lifetime, we infer that P(HOx) must 

also increase with fire intensity, consistent with observations that indicate a large source of HONO in fires (Theys et al., 2020; 530 

Peng et al., 2020). The formation of PAN also impacts the NOx lifetime, but the evolution of NOx due to the formation of PAN 

and its thermal decomposition over downwind areas is not well captured by the EMG approach that assumes exponential decay 

with NOx downwind. Future studies will benefit from the integrative analysis of satellite retrievals of NO2, HONO and PAN 

to more completely describe the chemical evolution of reactive nitrogen from wildfires, thus allowing for better prediction of 

the air quality impacts of fires. TROPOMI is limited to single overpass per day, which cannot resolve the short-term evolution 535 

of fire plumes observed by in situ measurements (e.g., Juncosa Calahorrano et al., 2021). The newly launched or upcoming 

geostationary satellite instruments such as GEMS and TEMPO will offer an unprecedented opportunity to continuously 

observe the emissions and chemical evolution of NOx from fires that will no longer be limited to a single snapshot (Chance et 

al., 2013; Kim et al., 2019). 
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Data and code availability: 540 

TROPOMI NO2 data (doi:10.5270/S5P-s4ljg54) and TROPOMI ALH (doi:10.5270/S5P-j7aj4gr) are available from NASA 

Goddard Earth Sciences (GES) Data and Information Services Center (DISC, https://disc.gsfc.nasa.gov/datasets/). MODIS 

and VIIRS FRP data are available from NASA Earth Data Fire Information for Resource Management Systems 

(https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms).  MAIAC AOD data are available from NASA's Land 

Processes Distributed Active Archive Center (LP DAAC) located at the USGS Earth Resources Observation and Science 545 

(EROS) Center (https://e4ftl01.cr.usgs.gov/MOTA/MCD19A2.006/). ERA5 hourly wind data are available from the 

Copernicus Climate Service (C3S) Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-

pressure-levels). GEOS-CF simulations are available from NASA Global Modeling and Assimilation Office 

(https://gmao.gsfc.nasa.gov/weather_prediction/GEOS-CF/data_access/). PECANS code is available from 

https://github.com/joshua-laughner/PECANS . 550 
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