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Abstract. Local short-term temperature variations at the surface are mainly dominated by small-scale processes coupled 

through the surface energy balance terms, which are well known but whose specific contribution and importance on the hourly 

scale still need to be further analyzed. A method to determine each of these terms based almost exclusively on observations is 

presented in this paper, with the main objective to estimate their importance in hourly near-surface temperature variations at 10 

the SIRTA observatory, near Paris. Almost all terms are estimated from the multi-year dataset SIRTA-ReOBS, following a 

few parametrizations. The four main terms acting on temperature variations are radiative forcing (separated into clear sky and 

cloudy sky radiation), atmospheric heat exchange, ground heat exchange, and advection. Compared to direct measurements of 

hourly temperature variations, it is shown that the sum of the four terms gives a good estimate of the hourly temperature 

variations, allowing a better assessment of the contribution of each term to the variation, with an accurate diurnal and annual 15 

cycles representation, especially for the radiative terms. A random forest analysis shows that whatever the season, clouds are 

the main modulator of the clear sky radiation for 1-hour temperature variations during the day, and mainly drive these 1-hour 

temperature variations during the night. Then, the specific role of clouds is analyzed exclusively in cloudy conditions 

considering the behavior of some classical meteorological variables along with lidar profiles. Cloud radiative effect in 

shortwave and longwave and lidar profiles show a consistent seasonality during the daytime, with a dominance of mid- and 20 

high-level clouds detected at the SIRTA observatory, which also affects near-surface temperatures and upward sensible heat 

flux. During the nighttime, despite cloudy conditions and having a strong cloud longwave radiative effect, temperatures are 

the lowest and are therefore mostly controlled by larger-scale processes at this time.  

1 Introduction    

Regional climate variability is to the first order driven by large-scale atmospheric conditions. In Western Europe, the North 25 

Atlantic Oscillation (NAO; Trigo et al., 2002), which is associated with the locations and intensities of the centers of the 

Iceland low and the Açores high, controls the air mass advection over western Europe and explains a large part of weather 
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variability. Temperature and pressure conditions are then modulated by the complex terrain (Mediterranean sea, topography, 

surface heterogeneities): extreme events and temperature anomalies are generally not exclusively explained by the presence 

of these large-scale air mass circulations (Vautard and Yiou, 2009). Indeed, synoptic and meso-scale atmospheric processes 30 

have been previously studied to explain interannual temperature changes in some parts of Europe (Efthymiadis et al., 2011; 

Xoplaki et al., 2003), or even precipitation occurrence (Xoplaki et al., 2004; Bartolini et al., 2009). It is, therefore, necessary 

to consider small-scale processes such as surface-atmosphere interactions and cloud feedbacks to better explain near-surface 

temperature variations (e.g. Chiriaco et al., 2014).  

Temperature variations at the surface are related to the Surface Energy Balance (SEB) following surface-atmosphere 35 

interactions and solar radiation (Wang and Dickinson, 2013) that are separated into different components: latent and sensible 

heat fluxes (Flat and Fsens, respectively), ground heat flux, temperature advection, and atmosphere radiation. Studies have 

been made to parametrize these terms when direct measurements are not available (Miller et al. 2017; Arnold et al. 1996) but 

their exact contribution is uncertain. Depending on the time-scale considered, the importance of each SEB term on temperature 

variations will change (Bastin et al. 2018; Ionita et al. 2015).    40 

The first objective of the current paper is to quantify the specific local contribution of the primary SEB terms acting on short-

term (i.e. hourly) temperature variations in a Western European location and to determine their importance and the conditions 

when a certain term predominates over the others, based on a simple linear model. The current study is inspired by Bennartz 

et al. (2013) who implemented a temperature variation model to study the influence of low-level liquid clouds over the Arctic 

on the ice surface melt period in July 2012, by estimating all of these SEB terms for a case study. Here, the same approach is 45 

used for a different location (mid-latitude) and on a long-time period to get robust statistics. To do so, the study is based on 

direct measurements from the SIRTA-ReOBS dataset (Chiriaco et al., 2018), which includes many variables collected since 

2002 at SIRTA (Site Instrumental de Recherche en Télédetection Active; Haeffelin et al. 2005), an observatory located in a 

semi-urban area in the Southwest of Paris, France. This dataset is well suited to the current study objective because: (i) it 

allows the use of a multi-variable synergistic compilation to study and compare different characteristics of the atmosphere or 50 

the surface (e.g. Bastin et al. 2018; Dione et al. 2017; Cheruy et al. 2013, Chiriaco et al., 2014), (ii) it is located in Western 

Europe and allows access to the hourly time scale, i.e. the scales of the local processes of the current study. The SIRTA-ReOBS 

dataset, along with some variables retrieved from ERA5 Reanalysis, enables the development of a model to estimate all the 

terms involved in the near-surface temperature variations using predominantly real observations. The use of the model 

developed in the current study considers all the variables acting within the ABL and controlling surface temperature variations, 55 

all of them estimated almost exclusively from surface-based observations. Thus, it allows to study separately the influence of 

each SEB term in a local scale. This indeed allows to have a realistic and reliable estimation of the contribution of each term 

(radiative fluxes, turbulent heat fluxes, etc.) on hourly temperature variations, and it would be possible to have that at different 

sites since each term will present a different behavior and importance. These estimations could help improving the 

parametrizations already existing of the SEB terms and better understanding their spatial evolution as a function of local 60 

conditions. Furthermore, a comparison between multi-model regional climate simulations and these estimations can be 
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performed to evaluate if the simulations are able to well reproduce these behaviors, in particular in a warming climate where 

these processes are expected to change. The weight of each term of the SEB on hourly temperature variations is analyzed using 

a powerful random forest analysis, whose one of its attributes is its capacity to handle up to thousands of input variables and 

identify the most significant ones.  65 

Clouds are well known to modify directly near-surface temperatures and other near-surface variables in multiple time-scales 

(Parding et al., 2014; Broeke et al., 2006; Kauppinen et al., 2014). Hence the second objective of the current study is to 

understand the specific role of clouds and their associated characteristics on hourly temperature variations. Indeed, the 

influence of clouds on the temperature at the surface can vary depending on their physical properties and the altitude where 

they are formed (Hartmann et al., 1992; Chen et al., 2000). In general, low-level clouds tend to cool the surface, whereas high-70 

level clouds, such as cirrus clouds, tend to warm it by absorbing a significant amount of Earth’s outgoing radiation. The average 

contribution of clouds is to decrease the near-surface temperature, combined with the damping effects of soil moisture, from 

a global point of view, by reflecting the solar radiation to space. But their damping effects vary depending on the season and 

by time of day. For instance, the reduction in near-surface temperature is the highest in fall in northern mid-latitudes for specific 

cases when precipitation is not significant (Dai et al. 1999). The local contribution of clouds to temperature variations is thus 75 

an important topic to assess how this intake affects local climate variability and extreme local events, such as the extreme 

heatwave and drought during summer in EU in 2006 (Chiriaco et al., 2014; Rebetez et al., 2009) or the sudden melt of the ice 

sheet in Greenland on July 2012 (Bennartz et al., 2013). Several studies were made primarily focusing on the large scale effects 

of clouds on the radiative energy balance on a global scale, either at the top of the atmosphere (Arkin and Meisner, 1987; 

Raschke et al., 2005; Dewitte and Clerbaux, 2017; Willson et al., 1981; Allan et al., 2014; Cherviakov, 2016) or at the surface 80 

(Wild et al., 2015; Hakuba et al., 2013; Wild, 2017) or both at the same time (Hartmann, 1993; Kato et al., 2012; Li and 

Leighton, 1993), but a lack of studies investigating their impact on a smaller scale is noted due to limited reliable ground-based 

measurement availability. In this study, to understand how clouds influence the one-hour temperature variations, cases with a 

particular cloud effect on temperature variations are deeper analyzed using lidar profiles.  

To achieve these two objectives, the current paper is organized as follows: the dataset is presented in Section 2. Section 3 (and 85 

Appendix A) describes how the different terms acting on hourly temperature variations are estimated and evaluating how well 

the model fits the hourly observations based on statistics. Section 4 presents an assessment to determine which term dominates 

at different times by performing a random forest analysis firstly for day and night cases, and then separated in a diurnal cycle 

perspective, along with a mean monthly-hourly and annual cycles analysis of the contribution of each term. Section 5 focuses 

on a discussion to study the specific role of clouds and the atmospheric conditions under which they develop by assessing only 90 

the cloudy cases, which gives an overview of the type of clouds and surface conditions damping or enhancing near-surface 

temperature for both day and nighttime. Section 6 draws conclusions and provides perspectives opened by this work.      
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2 Data 

2.1 Data used for the temperature variations estimation model  95 

This study is mainly based on the SIRTA-ReOBS dataset analysis. The SIRTA observatory (Haeffelin et al. 2005) is located 

in a semi-urban area 20-km southwest of Paris (48.71° N, 2.2° E) and has collected long-term meteorological variables since 

2002. The ReOBS project aims to synthesize all observations available at a single observatory at an hourly time scale with an 

exhaustive data-quality control, calibration, and rigorous treatment, into a single NetCDF file. The SIRTA-ReOBS dataset 

(Chiriaco et al. 2018, https://doi.org/10.5194/essd-10-919-2018) contains more than 60 variables.  100 

All the necessary hourly variables requested by the current study are available for the period going from January 2009 to 

February 2014 and are listed in Table 1, allowing the performance of a multi-year analysis. Some variables that were retrieved 

from measurements at the SIRTA observatory sometimes present gaps due to instrumental issues (Chiriaco et al. 2018; Pal 

and Haeffelin 2015). In particular Flat and Fsens variables are limited (with only 5% and 73% availability, respectively): Sect. 

3 and Appendix A show how this issue is handled.   105 

Figure 1 shows the complete dataset availability in the SIRTA-ReOBS dataset for the five-year study period. The availability 

of data is quasi-homogeneous around 60% for all hours (Figure 1a).  Gaps are most of the time due to the absence of the 

Mixing Layer Depth (MLD) variable for some complete days, extended sometimes for more than two months (not shown), 

restricting 71% of MLD data availability. Other gaps are caused by the absence of radiative variables (9% of missing data, see 

Table 1). Summer is the season with the best data coverage (70%) and winter with the least data coverage (56% - Figure 1b), 110 

whose absences are due precisely to gaps in the MLD variable. 

To complete this dataset, ERA5-Land hourly Reanalysis (horizontal resolution of 0.1 ° x 0.1 °,  Copernicus Climate Change 

Service, 2019) is used to estimate the horizontal wind at 10 and the temperature near the surface T2m, as required for the 

advection term (see Section 3 and Appendix A). Furthermore, the temperature at the mixing layer depth (𝑇𝑀𝐿𝐷) is also retrieved 

from the ERA5 Reanalysis (spatial resolution of 31 km and 137 levels up to 1 hPa; ERA5: Fifth generation of ECMWF 115 

atmospheric reanalyses of the global climate, 2020).  

2.2 Variables used for the cloud contribution analysis 

In order to get vertical information about clouds (see Section 5), SIRTA-ReOBS lidar profiles are also used, retrieved from a 

LNA lidar (532 and 1064 nm) whose vertical resolution is 15 m (for further details, see Chiriaco et al., 2018), and their analyzed 

is based on hourly lidar Scattering Ratio altitude-intensity histograms, calculated as follows: 120 

𝑆𝑅(𝑧) =
𝐴𝑇𝐵(𝑧)

𝐴𝑇𝐵(𝑧)𝑚𝑜𝑙
                                                                                                                                                                               (1) 

Where ATB(z) is defined as the total attenuated backscatter lidar signal and ATB(z)mol is the signal in clear-sky conditions. 

These altitude-intensity histograms are used to estimate the mean cloud fraction percentage at a given altitude level z. The 

intensity axis which contains SR(z) thresholds as well as the three vertical atmospheric layers (i.e. low, middle and high-level 
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layers) for cloud detection and characterization are defined in(Chepfer et al. (2010). The value of SR(z) = -999 corresponds to 125 

non-normalized profiles, the value -777 represents the profiles that cannot be normalized due to the presence of a very low 

opaque cloud and the value of -666 is set as invalid data. Then, bins located in the range 0.01<SR(z)<1 are for clear-sky 

conditions, 1.2<SR(z)<5 is defined as unclassified data, and for cloud detection, a threshold of SR(z)>5 is set. Details are given 

in Chiriaco et al. (2018). Even though the instrument does not operate uninterrupted (it does not operate when it is raining, 

when it’s nighttime, and on the weekends), it is very powerful to get information on the vertical structure of the atmosphere.  130 

3 Estimation of the terms acting on near-surface temperature variations 

The exchange of energy between the surface and the overlying atmosphere involves four terms: radiation, heat exchange with 

ground, heat exchange with the free atmosphere, and advection. In this section, a model which estimates these four terms is 

presented, based on several meteorological observations retrieved from the SIRTA-ReOBS dataset. Each term involved in this 

model is described (further descriptions are presented in Appendix), and then a statistical evaluation is performed to assess 135 

how well the model follows the real observations of temperature variations. Finally, the mean monthly-hourly and annual 

cycles of the averaged contribution of each term and the same for temperature 1-hour variations (
𝜕𝑇2𝑚

𝜕𝑡 𝑜𝑏𝑠
) are presented (split 

into day and night).  

3.1 Model description 

The temperature variation at the surface is estimated from the sum of four terms:  140 

𝜕𝑇2𝑚

𝜕𝑡
= 𝑅 + 𝐻𝐺 + 𝐻𝐴 + 𝐴𝑑𝑣                                                                                                                              (2) 

Where R is the net radiative flux at the surface, HG is the ground heat exchange, HA is the atmospheric heat exchange, and 

Adv is the air advection. These four terms control the changes in temperature over the surface, but depending on the temporal 

scale, one will dominate over the others (Ionita et al., 2012). Following the Appendix and partly based on(Bennartz et al. 

(2013),)these four terms are expressed as: 145 

𝑅 =
𝛼+1

𝜌𝑐𝑝𝑀𝐿𝐷
∆𝐹𝑁𝐸𝑇                            (3)       

𝐻𝐺 =
𝑇𝑠−𝑇2𝑚

𝜏𝑠
                                       (4) 

𝐻𝐴 =
𝑇𝑀𝐿𝐷−𝑇2𝑚

𝜏𝑎
                                     (5) 

𝐴𝑑𝑣 = (𝑢10
𝜕𝑇2𝑚

𝜕𝑥
+ 𝑣10

𝜕𝑇2𝑚

𝜕𝑦
)                                   (6) 

Then:    150 

𝜕𝑇2𝑚

𝜕𝑡
=

𝛼+1

𝜌𝑐𝑝𝑀𝐿𝐷
∆𝐹𝑁𝐸𝑇 +

𝑇𝑠−𝑇2𝑚

𝜏𝑠
+

𝑇𝑀𝐿𝐷−𝑇2𝑚

𝜏𝑎
+ (𝑢10

𝜕𝑇2𝑚

𝜕𝑥
+ 𝑣10

𝜕𝑇2𝑚

𝜕𝑦
)             (7) 
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Where 𝑇2𝑚 is the near-surface temperature, 𝑡 is the time (in hours), 𝛼 is a coefficient characterizing the form of the temperature 

vertical profile in the boundary layer, 𝜌 is the average air density of the boundary layer, 𝑐𝑝 is the specific heat of air, MLD is 

the mixing layer depth, ∆𝐹𝑁𝐸𝑇  is the net radiative flux at the surface, 𝑇𝑠 is the temperature in the ground at 20 cm depth, 𝑇𝑀𝐿𝐷  

is the temperature at the top of the boundary layer (or mixed layer depth), 𝑢10 and 𝑣10 are the zonal and meridional wind 155 

components respectively at 10 m above the ground, x is the zonal wind component towards the east and y is the meridional 

component wind towards the nord,  and 𝜏𝑠 and 𝜏𝑎 are defined as relaxation timescales for heat exchange processes in the 

ground and the atmosphere, respectively.   

If the model is realistic, then the sum of the four terms in the left side of Eq. (2), denoted as 
𝜕𝑇2𝑚

𝜕𝑡 𝑚𝑜𝑑
, is as close as possible to 

the observed temperature variations denoted as 
𝜕𝑇2𝑚

𝜕𝑡 𝑜𝑏𝑠
. 160 

The net radiative flux at the surface is calculated as the difference between the radiative longwave (LW) and shortwave (SW) 

fluxes leaving and arriving at the surface as follows: 

∆𝐹𝑁𝐸𝑇 = 𝐹𝑆𝑊
↓ − 𝐹𝑆𝑊

↑ + 𝐹𝐿𝑊
↓ − 𝐹𝐿𝑊

↑                                       (8) 

Where the upward and downward arrows represent the upwelling and downwelling radiation, respectively. It is possible to add 

and subtract the clear-sky (CS) downwelling radiation fluxes to Eq. (8), to obtain the flux radiative components in CS and 165 

cloudy (CL) conditions (i.e. the specific contribution of clouds), as follows: 

∆𝐹𝑁𝐸𝑇 = 𝐹𝑆𝑊
↓ − 𝐹𝑆𝑊

↑ + 𝐹𝐿𝑊
↓ − 𝐹𝐿𝑊

↑ + 𝐹𝑆𝑊,𝐶𝑆
↓ − 𝐹𝑆𝑊,𝐶𝑆

↓ + 𝐹𝐿𝑊,𝐶𝑆
↓ − 𝐹𝐿𝑊,𝐶𝑆

↓      

∆𝐹𝑁𝐸𝑇 = 𝐹𝑆𝑊
↓ − 𝐹𝑆𝑊,𝐶𝑆

↓ + 𝐹𝐿𝑊
↓ − 𝐹𝐿𝑊,𝐶𝑆

↓ + 𝐹𝑆𝑊,𝐶𝑆
↓ − 𝐹𝑆𝑊

↑ + 𝐹𝐿𝑊,𝐶𝑆
↓ − 𝐹𝐿𝑊

↑                                           (9)          

 

         170 

Here, the 𝐹𝐿𝑊
↑  flux is the same for clear-sky and cloudy conditions, because it mostly depends on the near-surface temperature 

(i.e. the Stefan-Boltzmann law, 𝐹↑ = 𝜎𝑇2𝑚
4 , where 𝜎 is the Stefan-Boltzmann constant), but note that in an annual global mean, 

𝐹𝐿𝑊
↑ > 𝐹𝐿𝑊,𝐶𝑆

↑  (around 0.5 W m-2; Allan 2011) due to the increase in longwave radiation emitted toward the surface by clouds, 

where a small proportion of this radiation is reflected by the surface.  

Hence Eq. (2) becomes: 175 

𝜕𝑇2𝑚

𝜕𝑡
= 𝑅𝐶𝐿 + 𝑅𝐶𝑆 + 𝐻𝐺 + 𝐻𝐴 + 𝐴𝑑𝑣                                (10)                      

With 𝑅𝐶𝐿 =
𝛼+1

𝜌𝑐𝑝𝑀𝐿𝐷
∆𝐹𝑁𝐸𝑇,𝐶𝐿 and 𝑅𝐶𝑆 =

𝛼+1

𝜌𝑐𝑝𝑀𝐿𝐷
∆𝐹𝑁𝐸𝑇,𝐶𝑆                  

This formulation specifically allows estimation of the role of clouds (RCL) in temperature variations, compared to the other 

terms. Details on how each term is estimated along with the assumptions that have been made are stated in the Appendix. 

As shown by Eq. (3) to Eq. (6) and in the Appendix, temperature variations are estimated from variables described in Section 180 

2, i.e. predominantly based on observations retrieved from the SIRTA-ReOBS, but also on ERA5 datasets. 

∆𝐹𝑁𝐸𝑇,𝐶𝐿  ∆𝐹𝑁𝐸𝑇,𝐶𝑆 
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Concerning the advection term, the computation of this term requires the extraction of the temperature at 2 m (𝑇2𝑚) and 

northward (𝑣10𝑚) and eastward (𝑢10𝑚) wind components at 10 m, at the SIRTA grid point and the surrounding grid points. 

The temperature at the mixing layer depth 𝑇𝑀𝐿𝐷  is retrieved using SIRTA-ReOBS combined with ERA5 datasets. First, 

radiosoundings available in SIRTA-ReOBS (twice a day) are used to get the pressure at the MLD level and then 𝑇𝑀𝐿𝐷  is 185 

retrieved from the vertical temperature profile in ERA5 at the nearest grid box from SIRTA Observatory (48.7° N and 2.2° E) 

and at this pressure level but at the closest time. Note that uncertainty remains in 𝑇𝑀𝐿𝐷  because it is the temperature at a certain 

pressure level, which is only available twice a day.  

3.2 Statistical evaluation of the model 

Statistics are considered to assess how close the total model (
𝜕𝑇2𝑚

𝜕𝑡 𝑚𝑜𝑑
) is to the observed temperature variations (

𝜕𝑇2𝑚

𝜕𝑡 𝑜𝑏𝑠
). 190 

The PDFs of each term in Eq. (2) are shown in Figure 2a. Firstly, the radiative term R is dominating and contributes the most 

in the temperature variations at an hourly scale since its distribution presents different significant peaks for negative and 

positive values of temperature variations. In clear-sky conditions, the radiative term contributes the most to warm the surface 

whereas the radiative effect of clouds has an opposite effect. A negative significant contribution by the HA term is also 

observed (light brown line), meaning that the mixing with an atmosphere of higher levels contributes to decrease surface 195 

temperature variations, even if surface temperatures continue increasing along the day. The two other terms (HG and Adv) 

have a similar but weak impact on the temperature variation model at this time scale. In addition, the PDF of the 
𝜕𝑇2𝑚

𝜕𝑡 𝑚𝑜𝑑
 is 

compared to 
𝜕𝑇2𝑚

𝜕𝑡 𝑜𝑏𝑠
 in one hour in Fig. 2b: differences occur for cases where the temperature decreases during the hour, but 

differences occur for cases where the temperature decreases during the hour, but this difference corresponds to some cases 

where the model presents more negative values than the observations, around -1 °C h-1. The modeled PDF fits very well with 200 

the observed PDF for cases where temperature increases during the hour (a smaller number of cases as shown by the PDFs).  

Figure 2c shows the scatter plot of the observations versus the model. The correlation between the two datasets is good (0.79) 

and the bias remains small (-0.20 °C h
-1

). However, the model has difficulties in reproducing the extremes of temperature 

change within an hour, e.g. -6 °C h
-1

 which corresponds to the 5th of July 2011 at 20:00 UTC, or -8 °C h
-1 which corresponds 

to the 2nd of July 2010 at 15:00 UTC. This high decrease of temperature could be associated with a cold pool event, which is 205 

more detectable in summer thanks to higher near-surface temperatures than those in winter, and bring along with it storms and 

heavy precipitations, as detected for these two cases (not shown). The hourly values in the observations (as well as in ERA5) 

do not allow the capture of this cold pool event properly in the model developed, since it is related to rapid cloud formation 

(<1 h) that is not well captured by the RCL term. However since this type of event is rare and ephemeral on a local scale (Llasat 

and Puigcerver, 1990; Conangla et al., 2018), its presence does not bias significantly the general performance of the model.  210 

These statistics are estimated for each season as presented in Table 2. Correlation is high (0.82) and bias is low in summer. 

Nevertheless, the standard deviation remains high for this season, probably due to the higher values of temperature variation 
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and the contribution of all terms involved for the summer in comparison to other seasons. For the spring and fall seasons, the 

correlation coefficient is still high (0.80).  However, in winter the correlation coefficient is the lowest (0.67) with a higher bias 

(-0.31 °C h
-1

). Removing the extreme values of the observations and the model (i.e. taking the values that are within the 5th 215 

and 95th percentile) gives better statistics (values in brackets in Table 2), confirming that the model encounters difficulties in 

reproducing these extreme events.  

Figure 2d presents the hourly evolution of the five terms on the right side of Eq. (10), their sum (i.e. 
𝜕𝑇2𝑚

𝜕𝑡 𝑚𝑜𝑑
 in blue solid line) 

and 
𝜕𝑇2𝑚

𝜕𝑡 𝑜𝑏𝑠
 (pink solid line) for the first days of September 2010. As expected, a diurnal cycle is identified for the radiative 

(both cloud and clear-sky terms) and the heat atmosphere exchange terms. For the radiative terms, it is quite expected to have 220 

a positive (negative) contribution during daytime (nighttime) due to the presence (absence) of solar radiation. In addition, there 

are some days when RCL (dotted red lines) plays an important modulating role in temperature variations, noticed during the 

day on September 6th and 8th, when clouds manage to provide a maximum cooling effect of -2.9 °C h
-1

. 

Evaporation and thermal conduction at the surface increase as the day goes on and the larger these terms are the more they 

will prevent the increase in temperature linked to the sensible and latent turbulent fluxes. But overall the temperature increases 225 

during the day when these fluxes increase. However, the atmospheric heat exchange term (HA) is on average a negative 

contribution to temperature variations in one hour when Flat and Fsens increase in the afternoons. This negative contribution 

could be mostly associated with the mixing of masses of air at the top of MLD, where depending on the state of temperature 

inversion, 𝑇𝑀𝐿𝐷  is likely to be very negative and this cold air could cool the surface. When RCL  presents an important 

contribution, HA becomes weaker and its diurnal cycle is attenuated due to the absence of solar radiation and hence fewer 230 

surface fluxes are developed. The ground heat exchange and the advection terms play a minor role at this time scale and 

contribute negligibly to the model without a significant diurnal cycle detected.  

Finally, the model follows well the observations, with a better agreement for daytime than for night-time, and with a better 

correlation for the first case (not shown). Reasons that may explain the bias are 1) the limited availability of 𝑇𝑀𝐿𝐷  data which 

is estimated using only two radiosoundings per day and not hourly continuous values and 2) the hypothesis and assumptions 235 

in some variables and atmospheric conditions outlined in the Appendix. Further, the temperature variations at night might be 

hard to quantify accurately due to the minor contribution of each of the non-radiative terms, for which contributions are close 

to zero, especially for the HA term, and where Flat and Fsens are most of the time very low (Section 3.3).  

3.3 Annual- and Monthly-hourly cycles of the different terms 

The mean contributions of each term are averaged monthly for both day and night (Fig. 3), whereas Figure 4 presents the 240 

magnitudes of the monthly-hourly mean values from January 2009 to February 2014 of each term of the model. A residual 

term is calculated on these figures, which is calculated as the difference between the model (sum of all terms) and the 

observations (i.e.  
𝜕𝑇2𝑚

𝜕𝑡 𝑚𝑜𝑑
−

𝜕𝑇2𝑚

𝜕𝑡 𝑜𝑏𝑠
).  
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According to Figure 3b and 4b for nighttime, the clear sky and cloud radiative forcing terms dominate in magnitude the hourly 

temperature variations at the surface and the other terms remain close to zero.  Still during the night, 
𝜕𝑇2𝑚

𝜕𝑡 𝑜𝑏𝑠
 monthly mean is 245 

negative throughout the entire year, with higher negative values during warm months than during winter. Indeed, RCL is always 

positive during the night, and has an annual cycle more pronounced than the other terms, having a stronger effect in the cold 

months, due to the increase in cloud cover, especially low-level clouds which enhance an increase of the downwards flux of 

LW radiation and whose effect gets weaker while approaching summer, due to the modification of the radiative effect of clouds 

for this season. This decrease of RCL in summer explains the 
𝜕𝑇2𝑚

𝜕𝑡 𝑜𝑏𝑠
 annual cycle during night.   250 

A diurnal cycle is pronounced for all the terms (Figure 4). RCS contributes the most in magnitude to local temperature variations 

during daytime (Figure 3a), and the other terms damp its effect by providing a negative contribution. Furthermore, all the terms 

are mainly driven by the solar radiation intensity during the day. The diurnal and annual cycles of the RCS (RCL) term are 

important, by having a positive (negative) contribution during the day, mostly dominating the temperature variations at this 

scale (as stated in(Gaevskaya, 1962). The contribution of RCL on 
𝜕𝑇2𝑚

𝜕𝑡 𝑜𝑏𝑠
 during daytime is more important during May and 255 

June, and finds its minimum for December and January, when the solar radiation is weak, thus preventing clouds to strongly 

reduce it. Further, a maximum negative (positive) contribution to temperature variations of RCL (RCS) is found during the late 

mornings for all the months, cooling (warming) the surface with a maximum mean value of -1.3 °C h−1
 (3.2 °C h

-1
) in May 

and June at 10:00 UTC and 11:00 UTC.  

In addition, the HA term plays an important role in temperature variations for spring and fall seasons, when there is an increase 260 

in hourly solar radiation (Fig. 3a and 4d). These two seasons are characterized by an important contribution of this term in the 

late morning and the afternoon, especially during spring, with an hourly maximum averaged contribution of -1.1 °C h
-1

. The 

difference between day and night for the HA term is the largest during these months when the MLD can reach high values in 

the afternoon due to increased turbulence. For winter, its contribution is minimal due to the low development of the MLD. 

This result is in contrast with the negative (and very low) contribution of the HG term, which is maximal in summer in the 265 

afternoon with an average smaller value of -0.25 °C h
-1

 when the near-surface temperature is the highest and thus strengthens 

its cooling action during daytime. An opposite effect is found in winter when the ground is usually warmer than the surface, 

yielding to a positive contribution (Fig. 3a and 4c). The advection term does not present a strong monthly-hourly cycle 

compared to the other terms, although one can distinguish a mean negative action (still very low) to local temperature variations 

at all seasons with a mean minimum in July in the afternoon of -0.12 °C h-1, as shown in Figure 4e.  270 

Lastly, the residual, defined as the difference between the model (sum of all terms) and the observations (i.e.  
𝜕𝑇2𝑚

𝜕𝑡 𝑚𝑜𝑑
−

𝜕𝑇2𝑚

𝜕𝑡 𝑜𝑏𝑠
), also has a seasonal variability and is mainly negative, but a minimum difference of -0.45 °C h

-1
 between the two 

datasets is found in April between 07:00 and 09:00 UTC, which is partly related to the negative increase of the HA term at that 

time. This is due to the important absence of latent heat flux data especially for this month, which implies an increase in the 
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bias when 𝜏𝑎 is estimated (see Table 1 and Appendix A). Nevertheless, during the months when solar radiation is strong, the 275 

residual reaches positive values (with a maximum value around 0.4 °C h
-1

 in June in late morning) but remains a low 

overestimation. These values for the residual are low compared to the magnitudes of RCS, but it remains almost at the same 

order of magnitude as the RCL and HA terms and a good correlation in a diurnal cycle approach is found. Generally, this hourly 

mean residual could also be due to the simplifications and assumptions made in the model, under-sampling and energy 

imbalance.  280 

Focusing on the transition periods (sunrise and sunset, black lines in Fig. 4), the residual presents low values at these times. 

Indeed, there is a slight underestimation of the model of about -0.13 °C h-1 for some months (e.g. February) at sunrise hours, 

whereas a low overestimation with close-to-zero residual mean values are found for May and June. For the sunset, a similar 

behavior is found (with very similar values for the residual term). Therefore, a good agreement is found between the model 

and the observations for these specific hours. 285 

4 Weight of the different terms acting on temperature variations: the random forest method 

In this section, a random forest (RF) evaluation (James et al., 2013; Manish, 2016; Brownlee, 2016; Loh, 2002) is carried out 

at different time-scales to estimate the relative weight (i.e. importance) of each term in temperature changes according to the 

hour, month or seasons. This machine learning method consists of bootstrapped-aggregated decision trees, a method that 

combines and gathers together the results of these trees to construct more powerful prediction models. 290 

 

One of the most impressive features of RF is here used, which consists on the ability to provide a fully nonparametric estimation 

of the importance of each term (or predictor) on the model. One of the main advantages of this method is that it allows covering 

not only the impact of each term individually in the model but also the multivariate interactions with other predictors. Here, 

the model (i.e. 
∂T2m

∂t mod
 ) has been already developed and defined as the sum of five terms. Therefore, to determine the 295 

importance of each term, the input data (the five terms) in the RF method are trained to predict the modeled temperature 

changes (
∂T2m

∂t mod
), and so here the output of the RF method is still 

∂T2m

∂t mod
 . To know more on how the hyperparameters are 

tuned, how is the data split up into training and testing, and further information on the RF method, please refer to Appendix 

B. 

Other approaches to estimate the predictor importance (e.g. simple squared marginal correlations method, squared standardized 300 

coefficients) do not give reliable results when the problem involves correlated predictors (Grömping, 2007). Additionally, this 

method is used as a result of the nonlinear relationship between each separated term and the model (not shown), which does 

not yield to an estimation and quantification on how each process at the surface affects the temperature variations, an approach 

suggested and used by Miller et al. (2017) who estimated the response and importance of some surface processes (such as Flat 

and Fsens) to the forcing radiative terms in Summit, Greenland.  305 
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4.1 General behavior of the weight of the different terms 

Firstly, the random forest method is used to establish which term dominates the temperature changes in the model (
𝜕𝑇2𝑚

𝜕𝑡 𝑚𝑜𝑑
) 

during day and nighttime. The predictor importance estimate value is defined as the sum of the mean square error (MSE) of 

each term averaged over all decision trees used and normalized by the standard deviation taken over the trees. This principle 310 

consists of permuting the values of a term – predictor – in the decision trees where this term was left out-of-bag and assess 

how much worse the MSE becomes after the permutation (James et al. 2013, Chapter 8). Thus, the larger this value, the more 

important the term. This importance estimation feature from the random forest method has been previously used to calculate 

the variable importance in different datasets for many applied problems in sciences or health fields for both regression and 

classification studies (e.g. Archer et Kimes 2008; Genuer, Poggi, et Tuleau-Malot 2012; Strobl et al. 2007). 315 

Figure 5a and b present the predictor (i.e. each term involved in 
𝜕𝑇2𝑚

𝜕𝑡 𝑚𝑜𝑑
, see Eq. (2)) importance estimate value for daytime 

and nighttime respectively. Figure 5a corroborates that RCS is the most important term, followed by 𝑅𝐶𝐿 and then HA, whereas 

HG is the least important term in the model developed for the timescale considered. Next, Figure 5b illustrates that 𝑅𝐶𝐿 

dominates hourly temperature variations during nighttime, followed by HG and 𝑅𝐶𝑆. These results agree with(Kukla and Karl 

(1993),)who suggested that the key regulator of nighttime warming temperatures is downward thermal radiation when cloudy 320 

cases are presented, an effect that is damped most of the time by the radiative cooling effect of the ground.  

4.2 Diurnal cycle of the weights  

The importance estimation previously calculated for both day and nighttime periods considers all the processes occurring 

during each case and thus gives a global importance estimation. In order to separate the influence of each term on hourly 

temperature variations, an importance estimation value is performed for each hour independently. Figure 6 presents the results 325 

of this method for each season. This diurnal cycle is estimated by applying the random forest to each hour separately. . As 

expected (and previously exposed), for all the seasons 𝑅𝐶𝐿 is the term dominating during nighttime, just after sunset, and before 

sunrise (indicated by vertical dashed lines in black).  

After sunrise, the surface heating produced by the sun in the early morning enhances a high growth rate in the temperature 

variations, whose effect makes RCS the dominant term driving 
𝜕𝑇2𝑚

𝜕𝑡 𝑚𝑜𝑑
 at those hours of the day for all seasons, except for 330 

winter. For this latter season (Figure 6a), the growth rate of RCS is almost the same as that of RCL and thus it does not expose 

an important estimation value. This effect is due to the weak mean solar zenith angle (SZA) for this season, and the surface 

heating by the sun in clear-sky conditions is not strong enough to dominate temperature variations. On the contrary, RCL 

importance reaches its minimum just after sunrise and before sunset, where, depending on the season, either 𝑅𝐶𝑆 or HA are the 

main terms controlling temperature variations. 335 
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A shift in importance between RCL and RCS occurs during the rest of the day for the four seasons of the year. This effect is 

explained by the variation of the data for these two terms: RCS standard deviation for a given hour/season is weak, and thus its 

influence to explain the difference between one day to another at a specific hour remains minimal and it is not a strong predictor 

at diurnal cycle scale, especially in the summer and spring (Figure 6b and c, respectively) when other variables will modulate 

temperature variations. On the other hand, RCL turns into the main modulator of 
𝜕𝑇2𝑚

𝜕𝑡 𝑚𝑜𝑑
 for all the seasons due to its strong 340 

standard deviation for a given hour/season, reaching its maximum importance in summer (Figure 6c). Therefore, the hourly 

temperature variations are more sensitive to cloud changes rather than solar radiation which does not vary significantly for a 

specific hour from day to day.  

Concerning the other terms, HA importance grows along the day. Its variation is greater than that of the other terms making it 

the second most important modulator most of the time (except for autumn, Figure 6d). Its contribution is weak in winter due 345 

to the lack of solar radiation and vegetation whose absence will diminish the turbulent heat fluxes measured at the surface, 

along with a weak MLD. Note that it becomes sometimes the most important term in the late afternoon just before sunset. This 

is explained by an increase in instability of the ABL enhanced by a large boundary layer and near-surface temperature gradient 

(i.e. the difference between 𝑇𝑀𝐿𝐷 − 𝑇2𝑚  reaches its maximum, see the third term of the right-side of Eq. (7)) in the late 

afternoon (not shown) which is generated by the increase in turbulence fluxes near the surface. 350 

 Regarding the Adv term, it shows an important weight in some hours in the late afternoon in winter, which makes it the term 

controlling on average hourly temperature variations at that time (then it is HA who becomes more important). In summer 

(Fig. 6c), it presents an important increase as the day goes on similar to HA after 10:00 UTC, but HA is even more important 

thanks to a development of turbulent heat fluxes at the surface in the late afternoon. Adv becomes the second most important 

modulator during nighttime before sunrise for all seasons except summer; probably a thermally-induced circulation linked to 355 

the urban heat island which is set up in Paris is at the origin of this importance: this circulation is likely to create a greater 

variation of temperature some nights when cooler air from rural areas is advected to warmer zones towards the city center. The 

SIRTA observatory, located in a suburban area at 20 km from the center of Paris could be indeed regularly affected by this 

modulation of circulation. Indeed, in this area the two predominant winds come from S-E regime (the Siberian High) bringing 

mostly cold air temperatures, and S-W regime (air masses coming from the Atlantic Ocean) with warmer and more humid air 360 

(not shown). 

Figure 6 supports a clear and reliable estimation of the importance of each term split into seasons for every hour of the day, 

which is not seen by estimating the diurnal and annual cycle contribution of each term to temperature variations (cf. Section 

3). Indeed, depending on the hour of the day (and thus the state of the atmosphere), one term will become important over the 

rest and temperature variations will be more sensitive to its change even if its contribution in terms of magnitude remains 365 

smaller compared to other terms. For instance, RCS absolute contribution during nighttime is higher than that due to RCL (Fig. 

3b), and yet the latter is more important during nighttime due to its seasonal and hourly (not shown) contribution variability to 

𝜕𝑇2𝑚

𝜕𝑡 𝑜𝑏𝑠
.  
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4.3 Validation of the random forest method 370 

However, this machine learning method is generally used in other studies to train and to have better estimations of a particular 

model. In order to validate the random forest method skill on predicting new observed temperature variations, the method is 

used to predict 
∂T2m

∂t obs
 (rather than 

∂T2m

∂t mod
as it is done to estimate the weight of each term in Section 4.1). The output for 

this case is called 
∂T2m

∂t obs,RF
. A comparison between 

∂T2m

∂t mod
 (i.e. the linear sum of the five terms) and the new 

∂T2m

∂t obs,RF
 is 

done, the results of this validation are shown in Fig. 7. Indeed, the scatterplot before performing the random forest method 375 

(
∂T2m

∂t mod
)   shows the distribution of values between the observations and the model (i.e. 

∂T2m

∂t obs
vs 

∂T2m

∂t mod
, blue points) as 

found in Fig. 2c. Then, when the random forest method is performed and the data are trained based on 
∂T2m

∂t obs
 (instead of 

∂T2m

∂t mod
), better predictions are obtained between 

∂T2m

∂t obs
 and 

∂T2m

∂t obs,RF
 (orange points) and the correlation coefficient has a 

higher value (0.94). In such case, the RF method gives better estimations of temperature variations but the retrieve of the 

function used to have these results is not available. Nevertheless, this result validates the fact of considering temperature 380 

variations as the sum of the five terms to estimate their importance using the RF method (when it is used to predict the modeled 

temperature variations).  

  

5 Discussion on the specific role of clouds on temperature variations 

Section 4 shows that clouds are the main modulator of solar radiation on hourly temperature variations during the day (and the 385 

main contributor during the night). Knowing how and in what measure each term contributes to temperature variations, a 

deeper analysis is performed in this section in order to better understand the role of clouds. This analysis is performed by 

considering other variables available in the SIRTA-ReOBS dataset to characterize both the atmosphere and the clouds.   

In the following, only cloudy cases are considered. These cases are identified based on a criterion on the absolute value of 

CRE that must be higher than 5 W m-2 in SW and LW (Chiriaco et al., 2018) during daytime, whereas for nighttime only LW 390 

is considered for this criterion. The SWCRE (and LWCRE) is calculating following Eq. (11):  

𝑆𝑊𝐶𝑅𝐸 = 𝐹𝑆𝑊
↓ − 𝐹𝑆𝑊,𝐶𝑆

↓                                                          (11) 

According to this threshold, cloudy conditions correspond to 82% of the total cases from January 2009 to February 2014, and 

unique-clear-sky conditions represent the remaining 18%.  



14 

 

5.1 Daytime analysis 395 

Since the RCS term dominates during daytime, the ratio of  
𝜕𝑇2𝑚

𝜕𝑡 𝑜𝑏𝑠
 divided by RCS is created to estimate how much these two 

terms are driven by the solar radiation: when this ratio is close to 1, it means that the variations of temperature are the ones 

that would be expected in clear-sky conditions with no other modulators, and when this ratio deviates from 1 it means that the 

temperature variations are damped or enhanced by the other terms. The RCL/RCS  ratio is also estimated, of which the 

distribution (not shown) has two peaks, one between -0.5 and -1 and one slightly negative with a tail in positive values. Thus, 400 

three bins are created from the highest cooling effect to the warming effect: (i) −1.0 ≤
𝑅𝐶𝐿

𝑅𝐶𝑆
< −0.5 (bin 1),  (ii) −0.5 ≤

𝑅𝐶𝐿

𝑅𝐶𝑆
<

0 (bin 2) and (iii)  0 <
𝑅𝐶𝐿

𝑅𝐶𝑆
≤ 0.5 (bin 3). The cases with negatives or very close-to-zero values of RCS (10% of the cases), 

which occurred in early mornings and late afternoons, are excluded since they affect the sign of the distribution or give 

divergent values. This histogram, along with the one used in Section 5.2, are presented in Appendix C.   

Figure 8a shows the values of the observed temperature variations divided by RCS  and Figure 9 shows the distribution 405 

(represented as box-and-whiskers) of different relevant meteorological observations available in the SIRTA-ReOBS dataset, 

for each bin created, split into seasons for daytime. To add cloud information, lidar data are also considered but because they 

are not available all the time, and in particular when it is raining (see Sect. 2.2), they are presented as additional boxplots (light 

color ones) that correspond to the lidar sampling (whereas the dark color boxplots are for the total cloudy sampling). This 

difference of sampling mostly affects the first two bins when clouds have a cooling effect, for which both the occurrence and 410 

the amount of precipitations are the highest (not shown). Lidar SR(z) histograms presented in Figure 10 are estimated by 

cumulating all lidar SR(z) observations available for one bin and one season in particular. The red horizontal lines on each 

histogram correspond to low- (P > 680 hPa), mid- (440 < P < 680 hPa), and high-level (P ≥ 440 hPa) clouds limits (Chepfer 

et al. 2010; Chiriaco et al. 2018).  Note that a Noise bin is presented here, which is simply the sum of the -999 and -777 bins 

that correspond to noisy and non-normalized profiles (cf. Section 2.2).   415 

5.1.1 Case with strong cloud cooling effect - bin 1 

Figure 8a shows that the values of temperature variations (normalized by RCS) are the lowest for clouds having the most 

cooling effect (bin 1 in blue) for all the seasons. In winter this ratio stays mostly positive (temperature increase in one hour) 

but less than 0.5 (less than half the increase that could be reached if the sky was clear) and it can become negative during 

summer and fall, i.e. the warming induced by RCS can be counterbalanced by the clouds in these seasons. Besides, the cloud 420 

cover is almost total and the radiative effects are strong, as seen in Figures 9d, e and f. In addition, the seasonal variability of 

SWCRE is directly related to the seasonal variability of 𝐹𝑆𝑊,𝐶𝑆
↓ , and not (or only slightly) to the seasonal variability of cloud 

properties, since the ratio 𝑆𝑊𝐶𝑅𝐸
𝐹𝑆𝑊,𝐶𝑆

↓⁄  remains almost constant during the entire year (not shown) and cloud cover presents 

the highest mean values (Fig. 9d).     
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The light blue bin is the same as the dark one except for lidar sampling, i.e. for non-rainy cases exclusively. Indeed, lower RH 425 

values (Fig. 9b) favor lower precipitation occurrence (not shown), higher amount of Fsens  (Fig. 9c), and higher (i.e. less 

negative) values of SW CRE (Fig. 9e) for the lidar sampling compared to the total one. Logically, lower LWCRE is found for 

the lidar sampling. As expected, temperatures are higher for the lidar sampling for all the seasons except summer, as shown in 

Fig. 8a, along with a more frequent negative temperature variation (Fig. 8a). For this sampling that excludes rainy cases, both 

higher and lower values of SWCRE are found for spring rather than for summer (Fig. 9e): the minimal value is around ~ −430 

600 W m-2 for spring whereas for summer it is ~ − 500 W m-2 (a situation not captured by the total sampling where summer 

has a lower value of SWCRE than spring). Figure 10b shows that low- and high-level clouds are more frequent for spring than 

for summer (Fig. 10c) and thus stronger negative values of SWCRE are found for spring. Then, the important presence of mid-

level clouds with a high value of lidar SR(z) (> 80) spotted in summer in Fig. 10c are potentially at the origin of the strong 

negative values of SWCRE despite the very low presence of other clouds. These strong and negative SWCRE could be 435 

associate with a presence of nimbostratus clouds, due to the high SR detected for lidar, clouds which are more likely to form 

in summer because of the strong convective systems developed during that time due to higher surface temperatures. In addition, 

despite the strong negative values of SWCRE for this bin for all seasons, near-surface temperatures are not so low (Fig. 9a), 

partly due to the high LWCRE values (Fig. 9f) that slightly dampen the strong SWCRE. 

Some differences in cloud presence can be detected in Figures 10a-d for the first bin. For the fall season, the SR(z) histogram 440 

in Fig. 10c exhibits an important presence of high-level thin clouds (especially above 8 km), along with mid-level thick clouds. 

Figure 10b also presents an important presence of high-level clouds in spring but within a smaller vertical range (7 < z < 10 

km) compared to fall. Indeed, one reason explaining the presence of these high-level clouds at these two transition seasons 

could be the meet of a warm air with a cold air mass (which occur more often at spring and fall), where the lighter warm air 

rises up to several km from the ground and could form some cirrus clouds. In addition, spring exhibits high amounts of low-445 

level thick clouds (SR>40) that are not detected the rest of the year, which could correspond to the moments just before a storm 

is set. Indeed, the highest amount of precipitation rates are found for this season (not shown) and the cloud cover minima in 

Fig. 9d for the lidar sample is 90% (the highest among the other seasons) and less clear-sky conditions are found (0.01 < SR(z) 

< 1.2).  

5.1.2 Cases with weak cloud radiative effect: cooling or warming 450 

When RCS  becomes dominant with respect to RCL  (bins 2 and 3), temperature variations are most of the time positive, 

especially in winter (Fig. 8a). In comparison with the first bin, the air becomes drier (higher sensitive heat flux and lower RH, 

Figure 9b and c), which agrees with less cloud cover (Fig. 9d), and lower LWCRE and less negative SWCRE (Fig. 9e and f). 

Figure 10 shows fewer differences between bin 1 and bin 2 (RCL < 0) than between bin 2 and bin 3 (RCL > 0) because this 

figure only considers non-rainy situations and in section 5.1.1. it is noted the important differences between the two samplings 455 

(total and non-rainy) for bin 1 for most of the variables. This difference between the two samplings is weaker for bins 2 and 3, 
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despite its existence in winter and fall. Figure 10 is thus more representative of the full sampling for these two bins than it is 

for the first bin.  

For the lidar sampling, LWCRE in winter and fall is slightly higher than for the two other seasons for the second bin (Fig. 9f). 

This is partly due to the presence of high-level thin clouds (5 > SR(z) > 20), such as cirrus, detected in the histograms of SR(z) 460 

for this bin in Fig. 10e and h for these two seasons, which is slightly more than for spring and summer.   

In bin 3, the absence of mid-level clouds and the lower occurrence of high clouds compared to bin 2 is obvious, while the 

difference for low-level clouds is not clear. This is consistent with lower LWCRE (Fig. 9f) but not necessarily with the very 

low values (i.e. close to zero) of SWCRE observed for bin 3 (Fig. 9e). The SWCRE values close to zero are explained by the 

fact that most of the hours corresponding to this bin 3 coincide just after sunrise (not shown), when solar radiation is still weak, 465 

thus explaining that 𝐹𝑆𝑊
↓ ≈ 𝐹𝑆𝑊,𝐶𝑆

↓ . These low SW and LWCRE values for the lidar sampling also correspond to low mean 

cloud cover (Fig. 9d) and thus a lower amount of clouds are detected by the SR(z) histograms (Figure 10i-l).  Note that some 

of the SWCRE values are even positive, revealing that 𝐹𝑆𝑊
↓ > 𝐹𝑆𝑊,𝐶𝑆

↓ , an effect observed when the direct part of solar radiation 

is not fully attenuated and when some diffuse radiation reaches the surface in addition to the direct flux, radiation which is 

strengthened by scattering processes in clouds and atmospheric particles. This effect thus increases observed radiation beyond 470 

a respective clear-sky scenario, and it mostly happens in winter (but could occur the rest of the year) in early mornings and/or 

late afternoons hours when the solar elevation angle is weak (Stapf et al., 2020; Wendisch et al., 2019). This distribution 

towards early morning hours explains that despite the high values of the ratio between temperature variations and 𝑅𝐶𝑆 (Fig. 

8a) and lower cloud cover and cloud effects, near-surface temperatures are not always maximal for this bin (these maximal 

temperatures happen only for spring and fall). 475 

5.2 Nighttime analysis 

During nighttime, a similar procedure is followed to analyze and characterize different meteorological variables under different 

cloudy conditions. Since RCL  is the term dominating and controlling temperature variations (Section 4) and since RCS  is 

constant, it is not necessary to divide it by RCS. Thus, two bins are created from the PDF of 𝑅𝐶𝐿: 0 < RCL < 0.75 °C h−1 and 

0.75 ≤ RCL ≤ 1.5 °C h−1. During nighttime there is no SW radiation so clouds always have a warming effect on near-surface 480 

temperature. The distribution of 
𝜕𝑇2𝑚

𝜕𝑡 𝑜𝑏𝑠
 for the two bins created for all the seasons is presented in Fig. 8b. Figure 11 shows 

the same meteorological variables shown in Fig. 9 but for nighttime cases. Cloud fraction profiles are not shown because the 

lidar does not operate during nighttime. 

Figure 8b shows that the temperature variations are generally stronger for the first bin than for the second bin, i.e. the negative 

temperature variations induced by longwave cooling during nighttime are damped when the effect of clouds is stronger. This 485 

agrees with what is expected since, at hourly time scales, clouds are the most important factor in modulation of temperature 

variations during nighttime (see section 4). As expected, the second bin has stronger LWCRE values (Fig. 11e).  The effect of 
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clouds seems enhanced when cool and moist air is present over SIRTA (Fig. 11a, b). More details for each bin are given in the 

following subsection. 

5.2.1 Case with weak cloud warming effect 490 

For the first bin (0 < RCL < 0.75 °C h−1), LWCRE presents a wide range of values going from 5 W m-2 up to 75 W m-2 with 

no seasonal variability detected (Fig. 11d), and yet temperatures are the highest for this bin (Fig. 11a) except in winter. As 

expected, upward sensible heat flux is most of the time negative due to surface cooling, as values of 
𝜕𝑇2𝑚

𝜕𝑡 𝑜𝑏𝑠
 are predominantly 

negative (Fig. 11c and 7b, respectively), with drier air conditions since RH has the lowest values for all the seasons (Fig. 11b).  

5.2.2 Case with strong cloud warming effect 495 

The temperature distribution has the lowest values for all seasons (except spring) for the category of clouds that have the 

strongest warming effects (second bin, in purple on Fig. 11a). This category of clouds is tightly linked to strong LWCRE 

ranging from 55 W m-2 up to 90 W m-2  (Fig. 11d). These low temperatures could be associated with situations when the 

incoming air masses are colder, which is linked to large-scale situations (Pinardi and Masetti, 2000; Wang et al., 2005). Note 

that here hourly temperature variations are studied, and indeed on multi-day time scales, it is the large-scale atmospheric 500 

processes that determine on the first order the daily temperature value.  

Finally, the distribution of sensible heat flux is positive in winter with values reaching up to 40 W m-2 (purple box plot, Fig. 

11c). These unusual and positives values during nighttime are explained by the presence of a strong stable atmospheric layer, 

where near-surface temperatures are the lowest except for spring (Fig. 11a) and the atmosphere is warmer at higher altitudes 

since clouds contribute to warming the most at this time, and therefore a positive upward sensible heat flux develops. Similar 505 

behavior was previously found by Miao et al. (2012) in Beijing also during nighttime in cloudy conditions, where sensible and 

latent heat fluxes were close to zero due to the presence of a stable atmospheric layer, especially in winter when the sensible 

heat flux is found to be slightly greater than the latent heat flux. Indeed, almost half of temperature variation values are found 

to be positive for this season, as illustrated in Fig. 8b, and along with the positive upward sensible heat flux found, higher 

temperatures are found for this bin which is not seen in the other seasons where the sensible heat flux is close to zero or mostly 510 

negative and temperatures are higher for the first bin (cloud with a low warming effect). 

6 Conclusions 

The European climate and most temperature anomalies are affected not only by the circulation of large-scale air masses (such 

as the NAO or blocking regimes) but also by smaller-scale processes such as cloud radiation and surface-atmosphere 

interactions located within the atmospheric boundary layer. In this paper, a method is developed and evaluated to quantify 515 

each process that affects hourly 2 m-temperature variations on a local scale (near Paris), based almost exclusively on 
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observations. The method exhibits good accuracy and is able to quantify well the realistic diurnal and monthly-hourly cycles 

of each term involved, especially in summer where statistics are the best. The clear-sky radiative term represents the biggest 

positive (negative) contribution during daytime (nighttime) with values reaching up to 4 ° h-1 (-1.7 ° h-1), whereas clouds cool 

(warm) up to -3.7 ° h-1 (1.4 ° h-1). The atmospheric heat exchange becomes predominant in the late afternoons when turbulent 520 

fluxes develop due to the increase in atmospheric instability. Some of the biases found are due to the difficulty of the model 

to well reproduce smaller-scale processes such as the cold pool events.  

The use of a random forest analysis makes it possible to identify which term dominates over the others. Clear-sky radiation 

most influences the 1-hour temperature variations during the day, whereas it is the cloud radiation during the night followed 

by the ground heat exchange term. Nevertheless, separating the dataset into hours and seasons shows that the cloud radiation 525 

effect becomes predominant in several hours for all the seasons because it presents a greater variation of its hourly values than 

the clear sky radiative effect, especially in spring and summer during daytime when more local cloud cover variability occurs. 

This cloud dominance is still found despite the fact that the clear-sky radiation magnitudes are the highest on a monthly-hourly 

scale. Temperature variation is then more sensitive to cloud changes within an hour rather than the large contribution of clear-

sky radiation which mostly dominates the early mornings when surface heat fluxes are not yet developed. The other terms 530 

remain important as there are times when some of them modulate temperature variations, especially the turbulent heat fluxes 

in the late afternoons. These terms also remain necessary to obtain the best coefficient estimator between the directly measured 

observations and the method developed.  

To better understand the importance of clouds on temperature variations at this scale, a deeper analysis is performed partly 

based on lidar profile observations. The atmosphere presents a high amount of cloud fraction detected by both the lidar and 535 

the sky imager during daytime which correlates well with the strong cooling contribution found for the cases when clouds have 

a strong cooling effect. Indeed, an important presence of mid-level thin and thick clouds is spotted for all the seasons (except 

spring) for these cases. These thick clouds could correspond to nimbostratus which are very opaque and often produce 

continuous moderate rain, but the lidar detects them just before the rain starts. Indeed, temperatures at this time are very low, 

which contributes to these clouds forming since they usually form ahead of a warm front. On the contrary, a weak cooling 540 

effect is predominantly associated with low- and high-level thin clouds for all seasons. Situations with daytime positive cloud 

radiative effect occur when the atmosphere is close to clear-sky conditions and corresponds to low- and high-level thin clouds 

mostly in early mornings and late afternoons. In addition, situations with weak cloud effect (either negative or positive) 

coincide with an important amount of high-level thick clouds for all the seasons (except winter) whose LWCRE is high, but 

SW clear sky radiation controls temperature variations (Fig. 8a, bins 2 and 3). These high-level clouds are more present in 545 

weak cloud cooling and warming effects (bins 2 and 3) than the times of strong cooling effect (bin 1). Overall, a dominance 

of mid- and high-level clouds at the SIRTA observatory is detected for all cases. The dominant presence of this specific type 

of cloud is linked to the geographical position of the SIRTA observatory since it is located in a zone where warm and wet air 

coming from the Atlantic Ocean can nudge against the cold and dry masses of air coming from the Siberian region. This 

encounter of air masses (whether it is the warm air that encounters cold air or the opposite) tends to form mostly high-level 550 
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clouds. Similar behavior has been found by Chakroun et al. (2018) during nighttime and Mariotti et al. (2015) over the Euro-

Mediterranean area where the variability of cloud fraction (CF) is driven mostly by the encounter of two different air masses 

coming from Northern Europe and Southern Africa. During nighttime, even when clouds have a positive important radiative 

effect, temperatures are low and they are more controlled by large-scale processes since surface turbulent fluxes are most of 

the time low and there is no shortwave radiation. Since neither cloud fraction variable nor lidar data are available during 555 

nighttime, no information about the percentage of cloud presence can be known, yet variability on LWCRE is still found 

between clouds whose warming effect is weak and those whose warming effect is strong. This LWCRE variation is on the 

first-order controlled by the presence of clouds, but it could also be due to the sensitivity of LW radiation arriving at the surface 

to the presence of atmospheric gases and aerosols and not only to cloud radiative properties, as shown previously by Dufresne 

et al. (2002); Satheesh and Krishna Moorthy (2005); Kushta et al. (2014). Besides, the strong stability of the atmosphere at 560 

night creates positive sensible heat flux when clouds have the warmest effect on temperature variations.   

The approach developed in this study is innovative because it is predominantly based on observations. It opens several 

perspectives on the possibility for continuing work: (i) use of the approach in combination with weather regimes to better relate 

the small-scale processes to the large-scale atmospheric dynamics; (ii) application of the approach to other locations to 

understand the spatial variability of the results and specific local conditions affect each of the terms involved in near-surface 565 

temperature variations; (iii) identification of the moments when one term becomes predominant over the rest by integrating 

the time into larger scales (such as weekly and monthly); and (iv) estimation of how well these estimations are represented in 

the present and future climate simulations to evaluate models and/or understand the evolution of the different terms in a 

warming climate. Further, the ground heat exchange contribution is very site-dependent (more than the other surface terms), 

with different behavior in an urban environment, therefore it will be interesting to study its impact in the 570 

attenuation/amplification of maximum near-surface temperatures in periods of heatwaves. 
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 780 

Figure 1: Histograms of (a) hourly and (b) seasonal available data in the SIRTA ReOBS dataset, considering all the variables needed 

for the period of study 2009-2014 for the temperature variation model.  

 

 

 785 
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Figure 2: PDFs of (a) radiation (red line), radiative clear sky (red dashed line), radiative cloud (red dotted line), heat ground (dark 

brown line) and heat atmospheric (light brown line) exchange, and advection (cyan line) terms, and (b) 
𝝏𝑻𝟐𝒎

𝝏𝒕 𝒐𝒃𝒔
 (pink line) and the  

𝝏𝑻𝟐𝒎

𝝏𝒕 𝒎𝒐𝒅
 (blue line). (c) is the scatter plot of  

𝝏𝑻𝟐𝒎

𝝏𝒕 𝒐𝒃𝒔
vs  

𝝏𝑻𝟐𝒎

𝝏𝒕 𝒎𝒐𝒅
. The sloping solid line represents the 1:1 line and the dashed one 

correspond to the least-square best fit linear regression line between the two datasets. The correlation coefficient “r” and the linear 790 
equation fitting the best for the two datasets are also indicated. (d) Hourly evolution for September 2010 of the temperature variation 

for the different terms, the observations, and the model (same colors as in (a) and (b)).  
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Figure 3: Mean annual cycle averaged monthly from 2009 to 2014 of the five terms of the model, the observations, and the residual 

(dashed gray lines) for (a) day and (b) night. Same colors as in Fig. 2a and b. The shaded gray area in each of the subfigures 795 

represents the standard deviation of  
𝝏𝑻𝟐𝒎

𝝏𝒕 𝒐𝒃𝒔
. 
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Figure 4: Monthly-hourly mean values for (a) 𝑹𝑪𝑺, (b) 𝑹𝑪𝑳, (c) HG, (d) HA, (e) Adv and (f) the residual (i.e. difference between the 800 
model and the observations). Units on the color bars are all in °𝐂 𝐡−𝟏, and their scale is different for each subfigure. The black 

contour line on each figure corresponds to sunrise (bottom line) and sunset (top line) approximative hours. 
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 805 

Figure 5: Predictor importance estimates obtained by the random forest method for (a) day and (b) night. The abscissa in both cases 

represents each predictor (or term) of the model, and the y-axis their importance (unitless) defined as the sum of their mean square 

error when permutation in the decision trees is done. 
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Figure 6: Diurnal cycle of the predictor importance estimate for each term of the model, for (a) winter, (b) spring, (c) summer and 810 
(d) fall. Same colors as in Fig. 2a and b. Vertical dashed black lines are for sunrise and sunset mean hours. 
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Figure 7: Scatter plot of 
𝝏𝑻𝟐𝒎

𝝏𝒕 𝒐𝒃𝒔
 as a function of the developed model 

𝝏𝑻𝟐𝒎

𝝏𝒕 𝒎𝒐𝒅
  before applying the random forest method (blue 

circles) and 
𝝏𝑻𝟐𝒎

𝝏𝒕 𝒐𝒃𝒔
 as a function of the model trained after the RF method is applied (orange circles).  

 

 820 
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Figure 8: (a)  
𝝏𝑻𝟐𝒎/𝝏𝒕𝒐𝒃𝒔

𝑹𝑪𝑺
 daytime values for the four seasons for three 𝑹𝑪𝑳/𝑹𝑪𝑺  bins: −𝟏. 𝟎 ≤

𝑹𝑪𝑳

𝑹𝑪𝑺
< −𝟎. 𝟓 in blue, −𝟎. 𝟓 ≤

𝑹𝑪𝑳

𝑹𝑪𝑺
< 𝟎 in 825 

green and 𝟎 <
𝑹𝑪𝑳

𝑹𝑪𝑺
≤ 𝟎. 𝟓 in red. Dark-colors box plots with the mean represented as ‘*’ correspond to cases when all meteorological 

variables are available at the same time (without considering lidar availability), whereas light-colors box plots with ‘o’ as their mean 

value represent the sample when both all meteorological variables and Lidar profiles are available simultaneously. (b) 𝝏𝑻𝟐𝒎/𝝏𝒕𝒐𝒃𝒔 

nighttime values for two 𝑹𝑪𝑳 bins: 𝟎° 𝒉−𝟏 < 𝑹𝑪𝑳 < 𝟎. 𝟕𝟓° 𝒉−𝟏 in maroon and 𝟎. 𝟕𝟓 ≤ 𝑹𝑪𝑳 ≤ 𝟏. 𝟓 °𝑪 𝒉−𝟏 in purple. Distributions are 

represented by box-and-whiskers plots, where the boxes indicate the 25th and the 75th data percentiles, the whiskers indicate 5th and 830 
95th percentiles, the middle line represents the median, and the * or o is the mean. Negative and close-to-zero values are removed (see 

text for further information). 
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 835 

 

Figure 9: Daytime values for (a) temperature, (b) relative humidity, (c) upward sensible heat flux at 2m, (d) cloud cover retrieved 

from a sky imager, (e) shortwave and (f) longwave cloud radiative effect. Colors and boxplots follow the same definition as in Fig. 

8a.   

 840 
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Figure 10: Lidar scattering ratio (SR(z)) histogram obtained by cumulating all lidar observations during daytime for bin 1 (a)–(d), 

bin 2 (e)–(h) and bin 3 (i)–(l) for winter (first column), spring (second column), summer (third column) and fall (fourth column). 

The color bar is the logarithm of the percentage of occurrence (the sum of one level is equal to 𝒍𝒐𝒈𝟏𝟎 𝟏𝟎𝟎 %); lidar data showed in 845 
each subplot start above the instrument’s recovery altitude (z = 1 km); the red horizontal lines represent the limits of low-, mid- and 

high-level clouds; and the white vertical line shows the threshold of clouds detection (SR(z) = 5).   



36 

 

 

Figure 11: Nighttime values for (a) temperature, (b) relative humidity, (c) upward sensible heat flux at 2 m, and (d) longwave cloud 

radiative effect. Colors and boxplots follow the same definition as in Fig. 8b.    850 
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Variable, unit Notation SIRTA-ReOBS available 

data from 2009 to 2014, in % 

2 m air temperature, K T2m 97 

Soil temperature below the ground, K Ts 99 

Temperature at the mixing layer height*, K TMLD 71 

Surface downwelling LW radiation, W m-2 FLW
↓  100 

Surface downwelling SW radiation, W m-2 FSW
↓  100 

Surface upwelling LW radiation, W m-2 FLW
↑  91 

Surface upwelling SW radiation, W m-2 FSW
↑  94 

Surface downwelling LW radiation for clear sky, W m-2 FLW,CS
↓  97 

Surface downwelling SW radiation for clear sky, W m-2 FSW,CS
↓  97 

Surface upward sensible heat flux, W m-2 Fsens 73 

Surface upward latent heat flux, W m-2 Flat 5 

Mixing layer depth, m MLD              71 

 

Table 1: Variables available in the SIRTA-ReOBS dataset used as inputs in the temperature variation model. 865 
* 𝐓𝐌𝐋𝐃 is also estimated using the ERA5 Reanalysis dataset. 

 

Season Correlation 

coefficient 

Bias (°C h-1) Standard deviation ( °C 

h-1) 

Winter 0.67 (0.68) -0.31 (-0.23) 0.43 (0.40) 

Spring 0.80 (0.81) -0.15 (-0.11) 0.52 (0.45) 

Summer 0.82 (0.85) -0.18 (-0.10) 0.55 (0.46) 

Fall 0.79 (0.80) -0.21 (-0.10) 0.46 (0.41) 

 

Table 2: Statistics values between  
𝝏𝑻𝟐𝒎

𝝏𝒕 𝒐𝒃𝒔
 and  

𝝏𝑻𝟐𝒎

𝝏𝒕 𝒎𝒐𝒅
 for the four seasons of the year. The values in brackets correspond to the 

statistics within the 5th and 95th percentiles. 870 
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Appendix A: Detailed description of each term of the prognostic variations’ temperature model at SIRTA observatory 

The prognostic model used to study the temperature change at the surface, considering all the components driving the surface 875 

energy balance, can be simply written as the sum of four processes: 

𝜕𝑇2𝑚

𝜕𝑡
= 𝑅 + 𝐻𝐺 + 𝐻𝐴 + 𝐴𝑑𝑣                          (A1) 

Where R is defined as the radiative forcing term, HG as ground heat exchange term, HA as atmospheric heat exchange term, 

and Adv as advection. Each of these terms represents a process involved in the variation of near-surface temperature 
𝜕𝑇2𝑚

𝜕𝑡
, and 

can be calculated, using different measured and available variables as follows: 880 

𝜕𝑇2𝑚

𝜕𝑡
=

𝛼+1

𝜌𝑐𝑝𝑀𝐿𝐻
∆𝐹𝑁𝐸𝑇 +

𝑇𝑠−𝑇2𝑚

𝜏𝑠
+

𝑇𝑀𝐿𝐷−𝑇2𝑚

𝜏𝑎
+ (𝑢10

𝜕𝑇2𝑚

𝜕𝑥
+ 𝑣10

𝜕𝑇2𝑚

𝜕𝑦
)                        (A2) 

Where 𝑇2𝑚 is the near-surface temperature, 𝑡 is the time, 𝛼 is a coefficient characterizing the form of the temperature profile 

in the boundary layer, 𝜌 is the average air density of the boundary layer, 𝑐𝑝 is the specific heat of air, MLD is the height of the 

boundary layer, ∆𝐹𝑁𝐸𝑇  is the net radiative flux at the surface, 𝑇𝑠 is the temperature in the ground at 20 cm depth, 𝑇𝑀𝐿𝐷  is the 

temperature at the top of the boundary layer, 𝑢10 and 𝑣10 are the zonal and meridional wind components, respectively, at 10m 885 

above the ground, x is the zonal wind component towards the east and y is the meridional component wind towards the nord, 

and 𝜏𝑠 and 𝜏𝑎 are defined as relaxation timescales for heat exchange processes in the ground and the atmosphere, respectively.  

Before explaining how each term is estimated, considerations are necessary about the stability of the atmosphere and related 

temperature profiles. Note that these assumptions will not affect the physical behavior of the developed method; they are made 

in order to have a more quantitative treatment of the study.  890 

Temperature near the surface and its behavior in lower layers are mostly driven by the quantity of net radiative flux arriving 

on it, which also depends on what moment of the day the temperature is observed; thus, it is important to differentiate day and 

night. During the first case mentioned, radiative flux is significant as a result of solar incoming flux radiation (shortwave 

radiation), and the vertical temperature profile will depend on the amount of this radiative flux (among other components). In 

the absence of any incoming shortwave radiation, which corresponds to nighttime, clouds and other processes control 895 

temperature variations at the surface and its vertical profile.     

Figure A1 confirms that the Planetary Boundary Layer (PBL) is on average unstable during daytime and stable during 

nighttime in the area of study. This figure is built from twice-daily radiosoundings (at 11:00 and 23:00 local time) observations 

available in the SIRTA-ReOBS file from a METEO-France station located in Trappes (48.77° N, 2.01° E), 16 km away from 

the SIRTA observatory, to retrieve (every 15 m) the temperature and pressure up to 15 km above the ground. Figure A1a and 900 

b provide an overview of temperature profiles retrieved from these radiosoundings at 11:00 and 23:00 LT, respectively, for 

July of 2011 (each color represents a day of the month). Then, the monthly mean temperature profiles from 2003 to 2017, each 

month represented as one color, are plotted in Fig. A1c and A1d. As expected, the temperature is decreasing from the surface 
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to the atmosphere in both daytimes’ subfigures (Fig. A1a and A1c), and a temperature inversion occurs at lower layers in 

nighttime for the night cases (Fig. A1b and A1d) of the monthly mean. 905 

This said, a daytime and a nighttime equation is used to parametrize the temperature profile in the surface layer (SFL).  

For the daytime approach, a linear temperature profile is established as follows: 

𝑇(𝑧) = 𝑇2𝑚 + 𝛽 ∗ 𝑧                                                       (A3) 

Where 𝛽 is the temperature gradient, negative during day.  

For the nighttime stable case, the temperature profile can be defined by a polynomial approach (Stull, 1988): 910 

𝑇(𝑧) = 𝑇𝑀𝐿𝐷 − (1 −
𝑧

𝑀𝐿𝐷
)

𝛼
(𝑇𝑀𝐿𝐷 − 𝑇2𝑚)                             (A4) 

A shape parameter 𝛼 = 1.5 shows a quasi-linear behavior of the temperature profile with a weak positive gradient near the 

surface, fitting well with the profiles in Fig. A1c and A1d (not shown).  

The assumption of working with an ideal gas in an isobar environment, and applying the second law of thermodynamics, yield 

to an expression of the enthalpy as described below (Malardel, 2009; Wallace and Hobbs, 2006):   915 

ℎ = 𝑐𝑝𝑇                                           (A5) 

Knowing the vertical temperature profile, Eq. (A5) can be integrated all over the MLD to find the total enthalpy per square 

meter at a given level (assuming that the density of the air is approximately constant at lower layers).  

It is found that for a nighttime case, the total enthalpy can be expressed as: 

ℎ𝑡𝑜𝑡 = 𝜌𝑐𝑝𝑀𝐿𝐷 [
𝛼

𝛼+1
𝑇𝑀𝐿𝐷 +

1

𝛼+1
𝑇2𝑚]                                 (A6) 920 

By deriving this equation by the near- surface temperature and total enthalpy, the ability to assess the change in near-surface 

temperature per unit change in enthalpy is estimated as: 

𝜕𝑇2𝑚

𝜕ℎ𝑡𝑜𝑡
=

𝛼+1

𝜌𝑐𝑝𝑀𝐿𝐷
                      (A7) 

For the daytime, proceeding as above, it is found the same equation for the nighttime with the only exception that 𝛼 = 0. 

As explained before, distinguishing between night and daytime is very important for the study due to the differences in the 925 

radiative flux arriving at the surface, which condition the behavior of the PBL (i.e. MLD) and SEB terms.   

A1.1 Radiative term 

This term is calculated as: 

𝑅 =
𝛼+1

𝜌𝑐𝑝𝑀𝐿𝐷
∆𝐹𝑁𝐸𝑇                                   (A8) 

The contribution of the radiative forcing on the temperature variations at SIRTA can be estimated by using the second law of 930 

thermodynamics, which states that the only energy a particle exchanges with its surroundings is heat. That said, it is assumed 

that the only heat exchanged for a particle of air in the low atmosphere with its surrounding is the net radiative flux divergence, 

yielding to: 
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𝜕ℎ𝑡𝑜𝑡

𝜕𝑡
= 𝐹↓ − 𝐹↑                                      (A9)  

Where 𝐹↓ − 𝐹↑ is the only source of energy of the particle. By replacing 𝜕ℎ𝑡𝑜𝑡 in Eq. (A7) by (A9), it is found that: 935 

𝜕𝑇2𝑚

𝜕𝑡
=

𝛼+1

𝜌𝑐𝑝𝑀𝐿𝐷
(𝐹↓ − 𝐹↑)                                     (A10) 

𝜕𝑇2𝑚

𝜕𝑡
=

1

𝜌𝑐𝑝𝑀𝐿𝐷
(𝐹↓ − 𝐹↑)                                      (A11) 

With Eq. (A10) and (A11) corresponding to night and daytime cases, respectively. These two equations described above will 

allow estimating the first term of the temperature variations model at SIRTA, the radiative term. MLD is a scale of height 

corresponding here to the height of the PBL retrieved from SIRTA-ReOBS. This value is set at this threshold because all the 940 

turbulent processes affecting the temperature variations are found within this layer.  The PBL thickness varies depending, 

among other processes, on the amount of solar radiation, which enhances thermal and turbulent processes, making this 

thickness ranges from tens of meters to 2 km or more. Thus, an average PBL thickness value (i.e. MLD) in an hourly and 

monthly scale is set (an assumption that doesn’t affect the physical behavior of the model), as seen in Fig. A1c. Since during 

nighttime the boundary layer depth is difficult to estimate because of the weak turbulence due to the absence of solar radiation 945 

and its very complex dynamical system (Shi et al., 2005; Walters et al., 2007; McNider, 2011), a fixed value of 350 m is set 

(Fig. A1d). Figure A2b shows the behavior of the radiative term calculated by using Eq. (A8) assuming 𝜌 = 1 kg m-3 and 𝑐𝑝 = 

1006 J kg
-1

 K-1.  A seasonal cycle is marked for this term, where during summers a peak of maximum contribution is found, 

whereas in winter its impact on temperature variations decreases significantly.   

A1.2 Atmospheric heat exchange term 950 

This term is estimated as:  

𝐻𝐴 =
𝑇𝑀𝐿𝐷−𝑇2𝑚

𝜏𝑎
                                          (A12) 

In this equation, 𝜏𝑎 can be calculated at equilibrium by setting the left side of the Eq. (A2) to zero and neglecting the ground 

heat exchange and advection terms (i.e. for the temperature not to vary, a balance between these two latter terms must be set), 

leading to: 955 

𝜏𝑎 =
𝜌𝑐𝑝𝑀𝐿𝐷

(𝛼+1)
∗

(𝑇𝑀𝐿𝐷−𝑇2𝑚)

∆𝐹𝑁𝐸𝑇
                                     (A13) 

For the atmospheric heat exchange, ∆𝐹𝑁𝐸𝑇 = 𝐹𝑙𝑎𝑡 + 𝐹𝑠𝑒𝑛𝑠. However, Flat has lots of missing values in SIRTA-ReOBS dataset 

(material defection), and therefore does not allow performing a complete analysis for the five years of study. Hence, an hourly 

and monthly look-up table (LUT) is created to have an estimation of 𝜏𝑎. Moreover, 𝑇𝑀𝐿𝐷  is not directly available in the SIRTA-

ReOBS dataset. To retrieve that temperature, the mixing layer depth is first retrieved from the SIRTA-ReOBS dataset, by 960 

looking for the nearest radiosounding in time (two per day) and founding the pressure corresponding to this altitude, then it is 

possible to have the temperature at that pressure levels by looking them in the ERA5 reanalysis dataset. Figure A3 shows an 

average 𝜏𝑎 for all the months of the year. During night, the relaxation time scale shows a higher month-to-month variability 
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mainly due to the absence and gaps of the latent and sensible heat fluxes, which does not allow to reflect a marked tendency 

of 𝜏𝑎, whereas for daytime a more clearly behavior of 𝜏𝑎 is spotted for all the months thanks to an increase of the availability 965 

of the data for these hours (not shown). Sometimes during nighttime, this relaxation time exceeds 30 h, probably because the 

turbulence is so weak at that time that the heat does not reach completely the surface boundary layer (SBL) established. Stull 

(1988) suggested that for the night cases, values of 𝜏𝑎 are on the order of 7 to 30 h, depending on the state of the SBL. Thus, 

values are limited to 30 h. For daytime, 𝜏𝑎 remains smaller because the turbulence is stronger thanks to convection occurring 

near the surface, leading to a faster communication of surface information across the lower layers.  970 

The atmospheric heat exchange term hourly values are shown in Fig. A2d.  Most of the values are negative, indicating that 

this term will modulate the positive contribution made by the radiative forcing term. 

A1.3 Ground heat exchange term 

The ground heat exchange term is defined as the energy lost by heat conduction through the lower boundary. This term can be 

then determined as follows: 975 

𝐻𝐺 =
𝑇𝑠−𝑇2𝑚

𝜏𝑠
                                       (A14) 

On average, the near-surface temperature during daytime (nighttime) is higher (lower) than that at low depth, as it’s been 

shown previously (Al-Hinti et al., 2017; Popiel and Wojtkowiak, 2013). Hence, the assumption that the vertical profile of 

temperature within the ground at low depths follows approximatively the same behavior as the atmospheric temperature profile 

can be established, and therefore the approach adopted for the atmospheric heat exchange term (c.f. A1.2) can be here 980 

implemented, to evaluate the relaxation time scale for the ground heat exchange at a depth of 𝐻𝑠 = 0.2 m below the ground. It 

is considered the surface to be warmer than the temperature at 20 cm below the ground during the day thanks to the solar 

radiation arriving. The opposite happens during night, when the ground losses important longwave radiation and it gets cold 

faster than 𝑇𝑠. Knowing the temperatures at the top of the ground (𝑇2𝑚) and at 20 cm below it (𝑇𝑠), the relaxation time scale 

results in: 985 

𝜏𝑠 =
𝜌𝑠𝑐𝑝,𝑠𝐻𝑠

(𝛼+1)
∗

(𝑇𝑠−𝑇2𝑚)

∆𝐹𝑁𝐸𝑇
                                         (A15) 

The soil type at the SIRTA observatory is a mix of clay and limestone (obtainable from a regional predominant type of soil 

map in France; Wulf et al., 2015). The approximative values for ground density 𝜌𝑠 and heat capacity 𝑐𝑝,𝑠 for this type of soil 

are then:  

𝜌𝑠 = 1300 kg m-3 990 

𝑐𝑝,𝑠 = 1140 J kg
-1

 K-1  

A mean value of 𝜏𝑠 = 20 h for the day and night cases is found. Figure A2c presents the contribution of this term to the 

temperature variations, which is very minor but remains important to have a better agreement between the developed model 
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and the directly measured observations, by the fact that adding or removing some units could make a difference in estimating 

the correlation between the two datasets.   995 

A1.4 Advection term 

𝐴𝑑𝑣 = (𝑢10
𝜕𝑇2𝑚

𝜕𝑥
+ 𝑣10

𝜕𝑇2𝑚

𝜕𝑦
)                                   (A16)                  

The advection term is estimated as presented in Eq. (A16) using ERA5 Reanalysis dataset of horizontal wind components at 

10 m and temperature at 2 m above the ground. The purpose of using this dataset is to have another point in each horizontal 

axis to calculate the transport of the mass of air in zonal and meridional directions, between the SIRTA observatory and the 1000 

immediately following grid box. For the period and time scale considered, the advection term plays in the majority a minor 

role, as shown in Fig. A2e, compared to the other terms.   

A1.5 Observed hourly temperature variations term 

The left side of Eq. (A2) is defined as: 

𝜕𝑇2𝑚

𝜕𝑡
=

𝑇ℎ−𝑇ℎ−1

ℎ
                                           (A17) 1005 

Where 𝑇ℎ is the temperature at 2 m above the surface at hour h and 𝑇ℎ−1 is the temperature at the previously considered hour.  

Figure A2a presents the evolution of this term, denoting, as expected, a seasonal cycle. Temperature variations have stronger 

negative than positive values, reaching few times a rate of -6 °C h
-1

 or even -8 °C h
-1

 for someday in summer 2010.  

The sum of all terms on the right side of Eq. (A2) is hereafter called 
𝜕𝑇2𝑚

𝜕𝑡 𝑚𝑜𝑑
.  

 1010 

 

Appendix B: Basic settings on random forest method to study the weight of each term 

 

In Section 4, the random forest method is used to determine the importance of the predictors (terms) on the near-surface 

temperature variations. Detailed information on how this method works is given here. 1015 

The training algorithm for random forests applies the general technique of bagging, where the key to bagging is that trees are 

repeatedly fit to bootstrapped subsets of the observations. The bootstrapped term refers here to the fact of choosing randomly 

data that can be chosen several times to build decision trees (no selection restrictions). A training dataset is chosen randomly 

with replacement (bootstrapping) from the original dataset to create a decision tree. In regression techniques, the training 

dataset correspond to ~2/3 of the total of the sample. The ~1/3 remaining data not used to train that decision tree is used later 1020 

as testing data but also to determine the importance of a specific term (James et al., 2013). This procedure is repeated for all 

the decision trees used in the random forest. Finally, it is not necessary to have a validation dataset in this study because the 
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main interest of using this machine learning is to determine the importance of the terms on the model developed, as it is known 

that random forest protect against overfitting by constructing training samples through bootstrapping. 

Some hyperparameters are tuned in order to optimize the analysis: 1025 

• The random forest method is set to have 150 decision trees, because at that number the error converges to a small 

value, as seen in the Fig.B-1 (converging value of 0.25 during daytime, 0.12 during nighttime).  

• For the split criteria, since our model is a simple one-degree regression, the method is set to use the mean square error 

(MSE) to do the split at each leaf.   

The number of random features to consider at each split and the number of bootstrapped dataset used to train each decision 1030 

tree in the random forest method is approximatively to be 2/3 of the total of predictors and 2/3 of the total of sample, 

respectively (James et al., 2013). 

 

Appendix C: Histograms for creation of the bins  

 1035 

In Section 5, different bins are created to analyze the specific contribution of clouds for both day and nighttime. Figure D1a 

shows the distribution of the ratio RCL/RCS for daytime hours, where two peaks can be easily identified: one between -0.5 and 

-1 and one slightly negative with a tail in positive values. From this distribution, three different bins can be created in order to 

separate the effect of clouds on observed near-surface temperature variations, going from the highest cooling effect to the 

warming effect (rectangular semi-transparent brown boxes in Fig. C1a): (i) −1.0 ≤
𝑅𝐶𝐿

𝑅𝐶𝑆
< −0.5 (bin 1),  (ii) −0.5 ≤

𝑅𝐶𝐿

𝑅𝐶𝑆
< 0 1040 

(bin 2) and (iii)  0 <
𝑅𝐶𝐿

𝑅𝐶𝑆
≤ 0.5 (bin 3).   

As for nighttime cases, bins are created only considering the distribution of RCL, which is presented in Fig. C1b. Two peaks 

are spotted in this figure when RCL > 0 and thus the following two bins are created: 0 < RCL < 0.75 °C h−1 and 0.75 ≤ RCL ≤

1.5 °C h−1. During nighttime there is no SW radiation so clouds always have a warming effect on near-surface temperature.   

 1045 
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 1050 

Figure A1: Temperature profiles at 11:00 (a) and 23:00 (b) LT for July of 2011, and monthly averaged temperature profiles from 

2003 to 2017 at 11:00 (c) and 23:00 (d) LT in Trappes. The temperatures at each altitude are retrieved from radiosoundings launched 

twice a day at the mentioned hours. The horizontal dashed line represents the altitude above sea level where the Trappes observatory 

is located, which is 160 m. 
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Figure A2: Hourly evolution of observations (a), R term (b), the HG term (c), the HA term (d) and Adv term (e). Gaps in (d) are 

caused by the absence of MLD data at that moment. 
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Figure A3: Mean-hourly 𝝉𝒂 value for each month of the year. 1060 
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Figure B1: Out-of-bag error over the number of grown regression trees for day (blue line) and night (orange line) 
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 1080 

Figure C1: (a) Daytime histogram of 
𝐑𝐂𝐋

𝐑𝐂𝐒
 and (b) nighttime histogram of RCL. The red line in both figures represents the PDF and 

the rectangular semi-transparent brown boxes the different bins created to analyze clouds influence. These histograms are built by 

considering only cloudy hours. Negative and close-to-zero values are removed for daytime hours (see text for further information).      
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