Formation of condensable organic vapors from anthropogenic and biogenic VOCs is strongly perturbed by NOx in eastern China

Yuliang Liu1,2, Wei Nie1,2*, Yuanyuan Li1,2, Dafeng Ge1,2, Chong Liu1,2, Zhengning Xu1,2,5, Liangduo Chen1,2, Tianyi Wang1,2,10, Lei Wang1,2, Peng Sun1,2, Ximeng Qi1,2, Jiaping Wang1,2, Zheng Xu1,2, Jian Yuan1,2, Chao Yan3, Yanjun Zhang3,9, Dandan Huang4, Zhe Wang6, Neil M. Donahue7, Douglas Worsnop8, Xuguang Chi1,2, Mikael Ehn3, and Aijun Ding1,2

1 Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu Province, China
2 Collaborative Innovation Center of Climate Change, Jiangsu Province, China
3 Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
4 State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, China
5 College of Environmental & Resource Sciences, Zhejiang University, Zhejiang, China
6 Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hong Kong SAR
7 Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA
8 Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, MA, USA
9 Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626, Villeurbanne, France
10 Meteorological Service Center of Hubei Province, Wuhan, 430074

Abstract

Oxygenated organic molecules (OOMs) are the crucial intermediates linking volatile organic compounds (VOCs) to secondary organic aerosol (SOA) in the atmosphere, but understandings on the characteristics of OOMs and their formations from VOCs are very limited. Ambient observations of OOMs using recently developed mass spectrometry techniques are still limited, especially in polluted urban atmosphere where VOCs and oxidants are extremely variable and complex. Here, we investigate OOMs, measured by a nitrate-ion-based chemical ionization mass spectrometer at Nanjing in eastern China, through performing positive matrix factorization on binned mass spectra (binPMF). The binPMF analysis reveals three factors about anthropogenic VOCs (AVOCs) daytime chemistry, three isoprene-related factors, three factors about biogenic VOCs (BVOCs) nighttime chemistry, and three factors about nitrated phenols. All factors are influenced by NOx in different ways and to different extents. Over 1000 non-nitro molecules have been identified and then reconstructed from the selected solution.
of binPMF, and about 72% of the total signals are contributed by nitrogen-containing OOMs, mostly regarded as organic nitrates formed through peroxy radicals terminated by nitric oxide or nitrate-radical-initiated oxidations. Moreover, multi-nitrates account for about 24% of the total signals, indicating the significant presence of multiple generations, especially for isoprene (e.g., C₅H₁₀O₈N₂ and C₅H₉O₁₀N₃). Additionally, the distribution of OOMs concentration on carbon number confirm their precursors driven by AVOCs mixed with enhanced BVOCs during summer. Our results highlight the decisive role of NOx on OOMs formation in densely populated areas, and encourage more studies on the dramatic interactions between anthropogenic and biogenic emissions.

1 Introduction

Secondary organic aerosol (SOA), as an important and complex component of submicron particles (Zhang et al., 2007; Jimenez et al., 2009; Huang et al., 2014), is fully involved in affecting climate (Intergovernmental Panel on Climate, 2014) and causing health risks (Nel, 2005; Lim et al., 2012). Volatile organic compounds (VOCs) are ubiquitous in the atmosphere and are recognized as main precursors of SOA (Hallquist et al., 2009; Ziemann and Atkinson, 2012). However, the missing intermediate processes from VOCs to SOA are yet to be elucidated (Hallquist et al., 2009; Ehn et al., 2014).

Benefitting from the state-of-the-art measurement technics (Bertram et al., 2011; Jokinen et al., 2012; Lee et al., 2014), many previously unreported oxygenated organic molecules (OOMs), as intermediates from VOCs to SOA (Ziemann and Atkinson, 2012), have been discovered. Among OOMs, highly oxygenated organic molecules (HOMs), first observed in the gas phase at a boreal forest site (Ehn et al., 2010; Ehn et al., 2012) and have been reviewed by Bianchi et al. (2019), are so functionalized and low volatile that they can participate at the beginning of new particle formation (NPF) by stabilizing sulfuric acid (Kulmala et al., 2013; Riccobono et al., 2014) or through clustering alone (Kirkby et al., 2016; Bianchi et al., 2016), and condense on existing particles to be responsible for a large fraction of SOA (Ehn et al., 2014). In addition to conventional VOCs-to-OOMs mechanisms summarized in the Master Chemical Mechanism (MCM) (http://mcm.york.ac.uk/, last access: 09 February 2021), recent studies have proposed new pathways, such as autoxidation (Crounse et al., 2013; Jokinen et al., 2014) and multigenerational oxidation (Rollins et al., 2012; Wang et al., 2020b), to form condensable vapors by adding oxygen atoms efficiently. The productions of OOMs, especially HOMs, from precursors such as monoterpenes (Ehn et al., 2014; Jokinen et al., 2015; Kirkby et al., 2016; Berndt et al., 2016), sesquiterpenes (Richters et al., 2016), isoprene (Jokinen et al., 2015; Zhao et al., 2020), aromatics (Wang et al., 2017; Molteni et al., 2018; Garmash et al., 2020), and alkanes (Wang et al., 2021) have been investigated in laboratories by using the chemical ionization atmospheric pressure interface time-of-flight mass spectrometer with nitrate reagent ions (nitrate CI-APi-TOF).
New insights and a general understanding about OOMs have been attained, yet many critical details about OOMs formation and properties need to be addressed. First, the current kinetic descriptions of OOMs obtained from experiments are still limited, such as the lack of individual H-shift rates for autoxidation and of reaction rates of multi-generational products with oxidants. Furthermore, the complexity of the real atmosphere makes it more difficult to apply experimental results to ambient environments. The precursors compete for oxidants and vice versa, and their products will interact mechanistically in mixtures of atmospheric vapors (McFiggans et al., 2019; Heinritzi et al., 2020). However, in the laboratory we usually study simple systems with a single precursor and a single oxidant. Moreover, most experiments are carried out for environments dominated by biogenic VOCs (BVOCs), while anthropogenic emissions receive less attention. In addition to classic anthropogenic VOCs (AVOCs), large amounts of primary emissions of oxygenated VOCs are also present in urban areas (Karl et al., 2018). The effect of NOx on OOMs is another key issue. NOx can terminate peroxy radicals (RO2), outcompeting autoxidation propagation reactions and other bimolecular reactions (RO2 + RO2, RO2 + HO2), and change the products distribution, and consequently, size-dependently modulate the growth rates of organic aerosol particles (Yan et al., 2020). Additionally, NOx contributes non-linearly to atmospheric oxidants, which also influence the productions of OOMs (Pye et al., 2019). It is anticipated that NOx plays a varied role in the formations of OOMs as well as SOA in different environments.

Therefore, more extensive OOMs observations are needed to validate the atmospheric implications of experiments, to couple with the global or regional model, and finally to comprehensively understand the fate of OOMs in the atmosphere. Until now, only a few ambient observations of OOMs using nitrate CI-API-TOF have been reported (Bianchi et al., 2019), and almost all of them focus on rural or forested or remote atmospheres (Yan et al., 2016; Massoli et al., 2018; Zhang et al., 2020; Beck et al., 2021).

The Yangtze River delta (YRD) is one of the most developed regions in eastern China. Fine particulate matter, with an aerodynamic diameter smaller than 2.5 μm (PM2.5), has been significantly reduced in eastern China after the implementation of “Action Plan for Air Pollution Prevention and Control” since 2013 (Ding et al., 2019), while (secondary) organic aerosol are still much more abundant than in clean areas (Zhang et al., 2017; Sun et al., 2020). Here we investigated condensable oxygenated organic vapors observed by nitrate CI-API-TOF in August-September 2019 at the Station for Observing Regional Processes and the Earth System (SORPES) in the western part of the YRD, an anthropogenic-emissions-dominated environment (Fu et al., 2013; Xu et al., 2017) mixed with enhanced biogenic emissions during summer (Wang et al., 2020a; Xu et al., 2021). A variety of oxidants (Liu et al., 2019; Li et al., 2020; Xia et al., 2020) with numerous precursors (VOCs) suggest very complicated atmospheric oxidation processes and thousands of products (OOMs). Thereby, positive matrix factorization (PMF) (Paatero and Tapper, 1994) was applied to time-resolved mass spectra which had been pre-divided into small bins (binPMF, Zhang et al., 2019), to
separate various sources or processes of OOMs. Combined with summarizing the
ensemble chemical characteristics of OOMs, some interesting inspirations about the
conversion of VOCs to OOMs were obtained.

2 Methodology

2.1 Study site

The SORPES station (32°07′14″ N, 118°57′10″ E; 62 m a.s.l.) is located at Nanjing in
the western part of YRD, one of the most developed regions in eastern China. Due to
its unique location, this site can be influenced by air masses from different source
regions of anthropogenic emissions, biomass burning, dust and biogenic emissions
(Ding et al., 2013; Ding et al., 2016). Detailed descriptions for the station can be found
in previous studies (Nie et al., 2015; Xie et al., 2015; Xu et al., 2018; Wang et al.,
2018a; Sun et al., 2018; Shen et al., 2018).

2.2 Instrumentation

The nitrate CI-API-TOF (Aerodyne Research Inc. and Tofwerk AG), combining a
chemical ionization source (CI) and an atmospheric pressure interface time-of-flight
mass spectrometer (APi-TOF) equipped with a long-TOF model (LTOF) with mass
resolution of 8000-12000 Th/Th, was deployed to detect the ambient sulfuric acid and
OOMs. The ambient air was pulled into a laminar flow reactor, where the sample flow
(10 L min⁻¹) is surrounded by a purified airflow serving as the sheath flow (25 L min⁻¹),
through a stainless-steel tube (a 100 cm long, 3/4 in. diameter). Nitrate reagent ions
were generated in the sheath flow by exposing air containing nitric acid to a
Photolonizer X-Ray (Model L9491, Hamamatsu, Japan). Detailed description of the
instrument has been described elsewhere (Junninen et al., 2010; Jokinen et al., 2012).
The data were acquired at 1 Hz time resolution and analyzed with a tofTools package
(version 6.11) based on MATLAB (MathWorks Inc.). The quantification of OOMs was
derived via Eq. (1).

\[
[\text{OOM} _{i}] = \ln \left(1 + \frac{\sum_{i}^{} \text{OOM}_{i} \cdot (\text{HNO}_{3})_{n} \cdot \text{NO}_{3}^{n} \cdot \text{OOM}_{1} \cdot \text{H}^{-} \cdot \text{NO}_{3}^{n}}{\sum_{i}^{} \text{HNO}_{3} \cdot \text{NO}_{3}^{n}} \right) \times C \times T_{i}
\] (1)

Here \([\text{OOM} _{i}]\) is the concentration (molecules cm⁻³) of the OOM molecule. On the right
side of the equation, the numerator in the parenthesis is the observed total signals (ions/s)
of OOM ions charged in different way, the denominator is the sum of all reagent ion
signals (ions/s). First, a H₂SO₄-based calibration factor C (4.2×10⁹ molecules cm⁻³) was
inferred from a calibration using H₂SO₄ (Kuerten et al., 2012) proceeding taking into
account the diffusion loss in the sampling line, by assuming that all detected OOMs
have the same ionization efficiency as H₂SO₄ and that the (OOM·NO₃⁻) clusters are
very stable without dissociation during their residence time of detection. Second, a mass
dependent transmission efficiency \(T_{i}\) of APi-TOF was inferred in a separate experiment
by depleting the reagent ions with several perfluorinated acids (Heinritzi et al., 2016).
VOCs precursors were measured by a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS, Ionicon Analytik, Innsbruck, Austria, TOF 1000 ultra). PM$_{2.5}$ was measured with a combined technique of light scattering photometry and beta radiation attenuation (Thermo Scientific SHARP Monitor Model 5030). The chemical compositions of PM$_{2.5}$ was determined on-line using time-of-flight aerosol chemical speciation monitor (TOF-ACSM, Aerodyne Research Inc.). PMF analysis was further used to separate the organic aerosol (OA) to primary and secondary organic aerosols (POA and SOA). The number concentrations of particles were measured by the scanning mobility particle sizer (SMPS) with nano DMA (4.0 to 63.8 nm) and long DMA (41.4 to 495.8 nm) and the aerodynamic particle sizer (APS) (0.5 to 18.0 μm).

NO and NO$_2$ were measured using a chemiluminescence analyzer equipped with a blue-light converter (TEI, Model 421-TL); O$_3$, SO$_2$, and CO were measured using the ultraviolet photometry, pulsed-UV fluorescence, and IR (infrared) photometry techniques (TEI, Model 49I, 43C, and 48C), respectively. Zero and span calibrations for trace gases were performed weekly during the campaign. Meteorological measurements including relative humidity (RH), wind speed, wind direction, and air temperature were recorded by Automatic Weather Station (CAMPEEL co., AG1000).

$J(\text{O}^1\text{D})$ was measured by ultra-fast CCD-detector spectrometer, UVB enhanced (Meteorologieconsult Gmbh, Germany).

2.3 Hydroxy radical (OH) estimate

The OH concentration was calculated by applying the Eq. (2), based on the assumption that gaseous sulfuric acid (SA) is mostly produced from the oxidation of SO$_2$ by OH and primarily loss by condensing onto particles, denoted as condensation sink (CS). It has been proved that

$$\frac{k_{\text{OH}+\text{SO}_2}[\text{SO}_2]}{\text{CS}}[\text{OH}]$$

is a very reliable proxy for SA during the day (Lu et al., 2019). The ozonolysis of alkenes can form stabilized Criegee intermediates (SCIs) in addition to OH, and SCIs can also oxidize SO$_2$ to form SA (Mauldin III et al., 2012; Guo et al., 2021). A previous study on SA proxy in this site has revealed that the reactions of SO$_2$ with products from the ozonolysis of alkenes generate a moderate amount of nighttime sulfuric acid, with little effect on daytime sulfuric acid (Yang et al., 2021). Thus, OH may be overestimated during nighttime. In this study, OH was used to calculate the production rates of RO$_2$ (Fig. 4), the error of OH do not change the relative distribution of RO$_2$ from different precursors. And OH is mainly used when analyzing daytime data.

$$\text{[OH]} = \frac{\text{SA-CS}}{k_{\text{OH}+\text{SO}_2}[\text{SO}_2]} \quad (2)$$

2.4 binPMF
binPMF has been used to analyze the measured HR mass spectrometry data. Briefly, the raw spectra with were divided into narrow bins with a width of 0.006 Th after mass calibration. The data matrix and error matrix were prepared according to the methods described by Zhang et al. (2019) for the PMF model inputs (Section S1 in the supplement). Different from the traditional PMF such as using unit mass resolution (UMR) or HR data as input, binPMF still retains HR information as much as possible, avoids the uncertainty of HR peak fitting influencing the results of PMF, and separate the complex overlapping peaks for fitting. The PMF analysis in this work uses the IGOR based analyzing interface SoFi (solution finder, version 6.8) and ME-2 as described in (Canonaco et al., 2013). After select the PMF solution, we fitted the HR peaks in each factor through toftool.

3 Results and Discussions

Figure 1 shows temporal variation of OOMs and related parameters at the SORPES station in the northeastern suburb of Nanjing from August 02 to September 06, 2019. During the observation period, 22 of 35 days had maximum hourly temperatures above 30 degrees Celsius, and 29 days had maximum hourly \(\text{J(O}_1\text{D}) > 2 \times 10^{-5} \text{ s}^{-1} \). High temperature and solar radiation indicate strong photochemistry, producing a large amount of ozone, with concentration often exceeding 80 ppb. Even at night, the concentration of ozone is rarely lower than 10 ppb, resulting from the weak titration of low NO. At the same time, the reaction between ozone and high concentration of NO\(_2\) can provide sufficient NO\(_3\) radicals, dominating nocturnal degradation of certain volatile organic compounds (VOCs) (Wayne et al., 1991). The elevated mixing level of total aromatic hydrocarbons is one of the main characteristics of the atmosphere in densely populated areas, in addition to which there should be many alkanes and alkenes which cannot be observed by PTR-ToF-MS (Fu et al., 2013; Xu et al., 2017). In the daytime with strong photochemical reaction (\(\text{J(O}_1\text{D}) > 1 \times 10^{-5} \text{ s}^{-1} \)), we instead observed higher concentrations of isoprene than total aromatics (\([\text{isoprene}]_{\text{median}} = 1.3 \text{ ppb,} \ [\text{aromatics}]_{\text{median}} = 1.1 \text{ ppb}\)). The complex mixtures of anthropogenic and biogenic VOCs can be oxidized through a variety of pathways to produce OOMs, of which some low volatile components will condense into particles, forming organic aerosol. The concentrations of OOMs with mass-to-charge ratio (m/z) below 360 Th are usually higher than \(10^6 \) molecules cm\(^{-3}\), and some can even reach up to \(10^7-10^8 \) molecules cm\(^{-3}\). Clustered peaks on the spectra of OOMs and their clear daily variations imply a lot of chemical and physical dynamics information (Fig. 1(d), see Fig. S1(a) for normalized spectra), which is the main aspect we want to explore in this work.
Figure 1. Overview of the observation. Time series of (a) temperature (Temp) and the photolysis frequency of O_3 (JO0D), (b) O_3 and NOx (NO+NO$_2$), (c) total aromatics (benzene + toluene + C_8 aromatics + C_9 aromatics + C_{10} aromatics + styrene), isoprene, and OA, and (d) mass spectra of nitrate Cl-API-TOF with m/z in the range of 202-404 Th.

The binPMF analysis was performed to characterize the sources or processes of OOMs. A 14-factor solution was selected to interpret the data set, including 3 factors about AVOCs daytime chemistry, 3 isoprene-related factors, 3 factors about BVOCs nighttime chemistry, 3 factors about nitrated phenols (NP), and 2 factors excluded from the following discussion. One of these two disregarded factors is mainly composed of fluorinated contaminations (F-contaminations), and the other is mainly a mixture of nitrated phenols and fluorinated contaminations (Mixed contaminations). When naming these factors, we prioritize the description of dominated species or their precursors, but if the precursors are complex mixtures, our naming highlights the characteristics of the chemical processes that drive certain factors. Although this may not be the optimal PMF solution, it still separates a lot of useful information. We also stress that the urban OOMs mix is unlikely to be a perfect combination of independent, unchanging factors, which is an underlying assumption in the PMF algorithm. As such, there will be no solution which is complete and perfect, but we chose a solution from which we were able to provide us with interesting insights. Details of the PMF diagnostics is provided in section S1 in the supplement. For the convenience of
discussions, we have grouped these factors. The factors in each group follow a similar but not entirely exact pattern.

Table 1. Summary of molecular characteristics of 9 discussed non-nitrated-phenols factors. The calculation of the relevant parameters is given in section S2 in the supplement. Major peaks of each factor are summarized in section S3 in the supplement.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Average concentration (cm$^{-3}$)</th>
<th>Effective formulae</th>
<th>MW (g mol$^{-1}$)</th>
<th>OSc</th>
<th>O:C</th>
<th>N:C</th>
<th>DBE</th>
<th>$\log_{10}(C^* (\mu g \text{m}^{-3}))$ in 300K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aro-OOMs</td>
<td>1.86E+07</td>
<td>C${3}$H${14.7}$O${6.1}$N${0.6}$</td>
<td>230.2</td>
<td>-0.52</td>
<td>0.73</td>
<td>0.08</td>
<td>2.6</td>
<td>-1.7</td>
</tr>
<tr>
<td>Temp-related</td>
<td>4.50E+07</td>
<td>C${6}$H${10.2}$O${6.0}$N${0.5}$</td>
<td>195.8</td>
<td>-0.02</td>
<td>0.95</td>
<td>0.08</td>
<td>2.5</td>
<td>-1.4</td>
</tr>
<tr>
<td>Aliph-OOMs</td>
<td>2.11E+07</td>
<td>C${7.3}$H${12.2}$O${6.2}$N${1.2}$</td>
<td>225.7</td>
<td>-0.55</td>
<td>0.96</td>
<td>0.17</td>
<td>1.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Photo-related</td>
<td>4.77E+07</td>
<td>C${6.6}$H${11.0}$O${7.2}$N${1.2}$</td>
<td>228.3</td>
<td>-0.28</td>
<td>1.18</td>
<td>0.20</td>
<td>1.8</td>
<td>-1.1</td>
</tr>
<tr>
<td>O$_x$ & SOA-related</td>
<td>2.59E+07</td>
<td>C${6.6}$H${9.8}$O${8.8}$N${1.1}$</td>
<td>214.2</td>
<td>-0.24</td>
<td>1.11</td>
<td>0.19</td>
<td>2.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>Isop-OOMs</td>
<td>2.83E+07</td>
<td>C${2.3}$H${9.6}$O${6.6}$N${1.4}$</td>
<td>205.8</td>
<td>-0.51</td>
<td>1.34</td>
<td>0.28</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>BVOCs-OOMs I</td>
<td>1.68E+07</td>
<td>C${7.2}$H${11.5}$O${7.7}$N${1.2}$</td>
<td>224.1</td>
<td>-0.26</td>
<td>1.06</td>
<td>0.16</td>
<td>2.0</td>
<td>-1.4</td>
</tr>
<tr>
<td>BVOCs-OOMs II</td>
<td>9.05E+06</td>
<td>C${2.2}$H${14.0}$O${7.1}$N${0.9}$</td>
<td>251.3</td>
<td>-0.45</td>
<td>0.83</td>
<td>0.11</td>
<td>2.5</td>
<td>-2.8</td>
</tr>
<tr>
<td>BVOCs-OOMs III</td>
<td>1.57E+07</td>
<td>C${6.6}$H${13.5}$O${6.6}$N${1.2}$</td>
<td>243.3</td>
<td>-0.64</td>
<td>0.87</td>
<td>0.16</td>
<td>2.1</td>
<td>-0.7</td>
</tr>
</tbody>
</table>

Note: MW is the molecular weight, OSc is the carbon oxidation state, O:C is the oxygen to carbon ratio, N:C is the nitrogen to carbon ratio, DBE is the double bond equivalent, C^* the saturation concentration and $\log_{10}(C^*)$ is the volatility.

3.1 AVOCs daytime chemistry

The following daytime factors are characterized by C$_6$-C$_9$ OOMs (Fig. 2(a)), considered to be derived from the oxidation of anthropogenic VOCs in this urban atmosphere, while we cannot completely exclude the presence of BVOCs-derived OOMs, such as C$_5$ and C$_{10}$ OOMs.
Figure 2. The distributions of observed non-nitro OOMs grouped by (a) the number of carbon atoms (nC), (b) DBE, and (c) the number of nitrogen atoms (nN) in 9 factors. Since the signals of RO\textsubscript{2} are very weak, RO\textsubscript{2} from BVOCs OOMs I and BVOCs OOMs II are excluded in (b) to keep the integer value of DBE.

Aro-OOMs factor

The effective DBE of this factor is the largest among all factors (Table 1), with main signals come from compounds with DBE > 2 (Fig. 2(b)) and consistent with the nature of the oxidation products of aromatics (Fig. 3(a)). Combined with the correlation with the production rates of OH-initiated primary peroxy radicals (RO\textsubscript{2}) from aromatics calculated by Eq. (3) (Fig. 4), this factor is supposedly dominated by aromatics-derived OOMs (Aro-OOMs). The Aro-OOMs factor increases from 5:00 LT with a maximum at 10:00 LT and a sub peak around 16:00 LT (Fig. 3(e)), following the diurnal variations of P\textsubscript{RO2} of C\textsubscript{7}-C\textsubscript{10} aromatics (Fig. 4(b-d)) but poorly correlated with P\textsubscript{RO2} of benzene (Fig. 4(a)). Furthermore, OOMs with 8 carbon atoms have the highest signal in this factor (Fig. 2(a)), derived from the most abundant C8-aromatics + styrene RO\textsubscript{2} (Fig. 4(f)). Both of these can be explained by the fact that substituted aromatics have higher OH reactivity (Bloss et al., 2005) and higher HOM yields (Wang et al., 2017; Molteni...
et al., 2018) than their homologues with less carbon atoms. In terms of molecular formula, the aromatics-derived OOMs have an overlap with monoterpenes-derived OOMs (Mehra et al., 2020). Monoterpenes can contribute more C\textsubscript{10} OOMs than aromatics (\(P_{\text{MT-RO}_2} > P_{\text{C}_{10} \text{ Aro-RO}_2}\)), but aromatics play a more important role in total in this factor since they provide more \(\text{RO}_2\) in the urban atmosphere (Fig. 3(f)).

\[R_{\text{RO}_2} = k_{\text{OH-VOC}} \cdot [\text{OH}] \cdot [\text{VOC}] \]

(3)

Figure 3. Mass spectra of (a) the Aro-OOMs factor, (b) the Temp-related factor, (c) the Aliph-OOMs factor, and the elemental formulas of major peaks are labeled above them. Peaks are color-coded by \(n_N\) as indicated at the top right of the figure, and the fractions of peaks grouped by \(n_N\) are reported in (d) the pie chart. The gray sticks are fluorinated contaminations, or non-identified compounds. The nitratated phenols are drawn separately with black peaks in (a), (b) and (c), and were not included in (d). So \(n_N\) can more reliably represent the number of nitrate groups in each molecule. Diurnal patterns (Beijing time) of these three factors are shown in (e), the bold solid lines are the median values, shaded areas represent percentiles of 75 % and 25 % and solid circles represent mean values.

The main molecules of the Aro-OOMs factor are summarized in Table S2. The C\textsubscript{9}H\textsubscript{2x}-\(\text{O}_{6}N\) (x=6-12, of which C\textsubscript{9}H\textsubscript{11}O\textsubscript{6}N is the most intense) series can be produced by the reaction (R1a) of NO with the bicyclic peroxy radicals (HO-Ar-(O\textsubscript{2})), the key intermediates for aromatics oxidation proposed in the MCM (Bloss et al., 2005; Birdsall and Elrod, 2011). And here dihydroxy nitro-BTEX (C\textsubscript{x}H\textsubscript{2x}-\(\text{O}_{4}N\), x=6-8) can be treated...
as indicators of aromatics oxidation. In addition to the conventional products, C9H13O7-337N from the CxH2xOxN (x=7-13) series are also significant in the OH-initiated and NOx-influenced oxidation experiments of 1,2,4-trimethylbenzene (Zaytsev et al., 2019) and of 1,3,5-trimethylbenzene (Tsiligiannis et al., 2019). More oxygenated compounds may come from auto-oxidation and multigenerational OH attacks. However, the effective OSc of this factor (Table 1) is lower than that of oxidation products of aromatics in recent laboratories (Zaytsev et al., 2019;Tsili giannis et al., 2019;Garmash et al., 2020;Wang et al., 2020c). We speculate that the abundances of NOx relative to oxidants and precursors in these experiments are not sufficient to reproduce the atmospheric conditions during our observation, or that HOMs are more concentrated in aerosols due to the large condensation sink on this site (Qi et al., 2015). Although species with DBE < 3 (Fig. 2(b)) in this factor are most likely produced from multiple OH attacks in aromatics oxidation, we can't rule out the contribution of alkanes co-emitted with aromatics, such as the series CxH2xO6N (x=5-14).

Figure 4. Correlations of the Aro-OOMs dominated factor with production rate of RO2 from OH-initiated oxidation of (a) benzene (Pc6 Aro−RO2), (b) toluene (Pc7 Aro−RO2), (c) Cs aromatics (Pc8 Aro−RO2), (d) C10 aromatics (Pc10 Aro−RO2), and (e) Monoterpenes.
(\(\text{PMT-R0}_2\)). All the scatters are colored by \(J(O^1D)\), to show the difference between day and night. The median diurnal patterns of this factor and related parameters are plotted in (f).

Temp-related factor

This factor is named due to good correlation with temperature (Fig. 5), and shows maximum intensity in the afternoon around 15:00 (Fig. 3(e)). The Temp-related factor is the only one dominated by non-nitrogenous organics (Fig. 3(b) and (d)), and has the highest effective OSc (Table 1) among all the factors. The \(\text{C}_x\text{H}_{2x-4}\text{O}_x\) (\(x=5-11\), summarized in Table S3), \(\text{C}_x\text{H}_{2x+2}\text{O}_5\) (\(x=5-10\), \(\text{C}_x\text{H}_{2x+6}\text{O}_5\) (\(x=5-11\)), and \(\text{C}_x\text{H}_{2x+4}\text{O}_6\) (\(x=5-10\)) series are possibly products from \(\text{RO}_2\) terminated by HO2 (R2a), or closed-shell products from RO in reactions R3a or R3b. Temperature starts to rise at 6:00 LT (Fig. 12(b)), but this factor does not accumulate significantly until after about 10:00 LT (Fig. 3(e)), when the mixed level of NO is reduced to 1 ppb (Fig. 4(f)). This phenomenon suggests a probability of HO2-driven chemistry of this factor under low NO conditions, since that NO can consume HO2 and compete with HO2 for \(\text{RO}_2\). Such low-NO atmospheric oxidation pathways have been suggested to be non-negligible in the afternoon in central Beijing (Newland et al., 2021).

A factor caused by similar chemical processes called isoprene afternoon was discovered in the nitrate CI-API-TOF data collected at a forest site in Centreville, Alabama, USA (Massoli et al., 2018), correlated well with HO2, O3, and temperature. We also observed a number of isoprene oxidation products in the Temp-related factor (nC = 4, 5 in Fig. 2(a)). Many of the \(\text{C}_x\text{H}_{2x-1}\text{O}_x\text{N}\) (\(x=3-7\)) and \(\text{C}_x\text{H}_{2x-3}\text{O}_x\text{N}\) (\(x=4-9\)) series were also present in the light HOMs factor which was supposed to be fragments from the oxidation of larger VOCs (e.g., monoterpenes) in Hyytiälä, Finland (Yan et al., 2016). While at the SORPES station, the \(\text{C}_x\text{C}_y\) ions should mainly come from the oxidation of anthropogenic VOCs. At lower temperatures, the propensity of condensable organic molecules to condense into aerosol makes the concentration measured using nitrate CI-API-TOF lower. Thus, the total concentration of the Temp-related factor in the gas and aerosol phases was calculated based on gas-particle equilibrium (section S4 in the supplement), and was found to be still temperature dependent (Fig. S6), illustrating the temperature-influenced chemical process controlling the factor. For instance, Unimolecular reaction rates like \(\text{RO}_2\) H-shifts increase qualitatively with temperature (Bianchi et al., 2019; Frege et al., 2018).

\[
\begin{align*}
\text{RO}_2 \cdot + \text{NO} & \rightarrow \text{RONO}_2 \quad \text{(R1a)} \\
\text{RO}_2 \cdot + \text{NO} & \rightarrow \text{RO} \cdot + \text{NO}_2 \quad \text{(R1b)} \\
\text{RO}_2 \cdot + \text{HO}_2 \cdot & \rightarrow \text{ROOH} + \text{O}_2 \quad \text{(R2a)} \\
\text{RO}_2 \cdot + \text{HO}_2 \cdot & \rightarrow \text{RO} \cdot + \text{OH} + \text{O}_2 \quad \text{(R2b)} \\
\text{RO} \cdot + \text{O}_2 & \rightarrow \text{RC} = \text{O} + \text{HO}_2 \cdot \quad \text{(R3a)} \\
\text{RO} \cdot + \text{O}_2 & \rightarrow \text{fragments} \quad \text{(R3b)}
\end{align*}
\]
Figure 5. Correlations of PMF factors with external gas-phase and particulate tracers from other instruments deployed at the SOPRES station, with the color representing the Pearson correlation coefficients. From left to right, the tracers are gas-phase species (NO, NO$_2$, NO$_x$, O$_3$, CO, SO$_2$), meteorological data (temperature (Temp), relative humidity (RH), photolysis constants ($J(O^1D)$)), nitrate Cl-API-TOF data (OH, nitrophenol, nitrocresol, dinitrophenol), PTR-ToF-MS data (isoprene, methyl vinyl ketone/methacrolein (MVK/MACR)), monoterpenes, sesquiterpenes, benzene, toluene, Cs aromatics, Cs aromatics, C$_{10}$ aromatics), PM$_{2.5}$, and ACSM data (ammonium, sulfate, nitrate, POA, SOA).

Aliph-OOMs factor

This factor is dominated by organic nitrates (Fig. 3(c) and (d)), and contains the bulk of anthropogenic di-nitrates and tri-nitrates. The C$_{x}$H$_{2x+2}$O$_x$N$_2$ (x=4-13, summarized in Table S3) and C$_{x}$H$_{2x}$O$_x$N$_2$ (x=4-9) series have not been reported in aromatics oxidation experiments under high NO$_x$ conditions (Tsiligiannis et al., 2019; Wang et al., 2020c), and nor in the forest or rural environments (Yan et al., 2016; Massoli et al., 2018). A reasonable assumption is that these saturated or nearly saturated compounds are the products of aliphatics (including alkanes, alkenes, aliphatic alcohol, etc.) during their oxidation affected intensively by NO$_x$ in the urban atmosphere. The Aliph-OOMs factor has a broad afternoon peak lasting from 14:00 to 19:00 LT (Fig. 3(e)), suggesting that the formation of multi-nitrate requires enough OH exposure time.

Considering a simple scenario of alkane photo-oxidation under high NO$_x$ conditions:
the RO$_2$ generated from OH attack is completely terminated by NO (Fig. 6(a)). The chain-retaining products are C$_n$H$_{2n}$O (one more carbonyl group than the precursor) and C$_{n+1}$H$_{2n}$O$_3$N (one more nitrate group than the precursor), and the re-oxidation of these products is a repetition of the above process which is defined as the basic reaction scheme. The multiple (1st to 3rd) generation products of alkanes summarized in Fig. 6(b) are regarded as reference compounds, which we compare OOMs with to investigate other mechanisms that differ from those shown in Fig. 6(a). Specifically, this comparison is performed between the reference molecule and OOMs with the same numbers of carbon, hydrogen and nitrogen atoms, but different numbers of oxygen atoms. The number of extra oxygen ($n_{O_{extra}}$) from each aliphatic OOM over its corresponding reference molecule was calculated by Eq. (4), that is, subtracting carbonyl and nitrate oxygens from the molecule. Thus, the $n_{O_{extra}}$ can represent the additional oxygenated moieties such as hydroxyl group (-OH), peroxy group (-OOH), and possibly ether group. These functional groups may come from RO isomerization (Orlando et al., 2003), the addition of OH to alkenes, or pre-existing moieties in the precursor, RO$_2$ autoxidation or specific RO$_2$ bimolecular termination reactions (RO$_2$+RO$_2$, RO$_2$+HO$_2$).

$$n_{O_{extra}} = n_O - DBE - 3 \times n_N$$ \hspace{1cm} (4)

As showed in Fig. 6(c), aliphatic OOMs in this factor are mainly the third-generation products followed by the second-generation products, and both of which have one or two oxygen-containing functional groups in addition to the carbonyls and nitrates. It should be noted that the first-generation (Fig. 6(a)) and basic products (Fig. 6(b)) here are underestimated due to the low sensitivity of nitrate CI-API-TOF to these compounds. The multifunctional products of aliphatics are condensable to form SOA (correlation coefficients with SOA showed in Fig. 5). Recent work has showed that autoxidation is more common than previously thought (Wang et al., 2021), and more studies are needed to explore the oxidation mechanisms of anthropogenic aliphatics and to evaluate their contribution to SOA.
Figure 6. (a) Simplified oxidation mechanism for alkanes attacked by OH once under NOx-controlled conditions. (b) summarizes the changes in molecular formula of the 1st to 3rd generation products of alkanes, based on the basic reaction scheme in (a). (c) shows the fraction of potential alkanes-derived compounds in the Aliph-OOMs factor. The compounds listed in (c) are grouped according to the molecular formulas in (b), i.e., the same number of carbon, hydrogen and nitrogen atoms, but different numbers of oxygen atoms. The bars in (c) are colored with nOextra. Please see text for details about nOextra.

3.2 Isoprene-related chemistry

The following factors are characterized by C₅ OOMs (Fig. 2(a)), of which an isoprene dihydroxyl dinitrate C₅H₁₀O₈N₂ (charged by NO₃⁻ at m/z 288 Th) is the fingerprint molecule (Fig. 7). Apart from isoprene-derived compounds, OOMs formed from other precursors undergoing the similar chemical processes are also allocated to these three factors.

Photo-related factor

This factor is defined based on its correlation with J(O¹D) (Fig. 5), having an apparent diurnal cycle with a peak at 12:00 LT (Fig. 7(e)). The major peak of the Photo-related factor is C₅H₁₀O₈N₂ (Fig. 7(a)), most probably generating from double OH attack proceed with double RO₂+NO termination (Jenkin et al., 2015). C₅H₁₀O₈N₂ can be also produced in NO₃⁺ isoprene system (Ng et al., 2008; Zhao et al., 2020), whereas in this study, the nocturnal C₅H₁₀O₈N₂ is principally from the Isop-OOMs factor (Fig. 8(b)) which will be discussed later. Other peaks with nC≤5, like C₄H₇O¹N, C₄H₇O₂N, C₃H₇O₂N, are also likely to be the isoprene products. The total signal of compounds with nC > 5 is not low, although their respective proportions are not as prominent as C₅ species (Fig. 7(d)), implying the contribution of other precursors together with isoprene. In addition, the relationship of this factor with isoprene and J(O¹D) together (Fig. 5) reveals the effect of light-dependent emission of isoprene on it.

O₅ and SOA-related factor

The atmospheric oxidation of VOCs produces low-volatile compounds, forming SOA through gas-particle partitioning, and concurrently promotes ozone formation (Atkinson, 2000). Both SOA and O₅ have long lifetimes (>12 h), and their correlations have been extensively investigated (Herndon et al., 2008; Wood et al., 2010; Hu et al., 2016). The OOMs factor related to ozone and SOA together (Fig. 5), having slightly elevated concentrations during daytime (Fig. 7(e)), is considered to be generated from this photochemical aging process. Apart from C₅H₁₀O₈N₂, other isoprene multi-nitrates are also present in this factor. C₅H₉O₁₀N₃, an isoprene hydroxyl trinitrate requiring at
least two steps of oxidation found in the experimental study on isoprene oxidation by
NO₃ (Zhao et al., 2020), naturally does not appear in the photo-related factor at all, but
is mostly apportioned into the Oₓ & SOA-related factor and the Isop-OOMs factor (Fig.
8(c) and 8(d)). Like the photo-related factor, isoprene is a significant but not the only
precursor of this factor (Fig. 2 and 7). The biggest peak of the Oₓ & SOA-related factor
is an ion at m/z 264 with formula C₆H₅O₃N (HNO₃NO₃), identified as an adduct of
nitrophenol (C₆H₅O₃N) with nitrate dimmer (HNO₃NO₃). The time variation of
C₆H₅O₃N (HNO₃NO₃) is influenced by the reagent ions in addition to the atmospheric
nitrophenol. So far, we don’t know why this compound share the same processes with
others, but we did a test that removing the bins with unit m/z = 264 from the input
matrix and still got this factor from PMF model.

Figure 7. Mass spectra of (a) the Photo-related factor, (b) the Oₓ & SOA-related factor,
(c) the Isop-OOMs factor, and the elemental formulas of major peaks are labeled above
them. Peaks are color-coded by nc as indicated at the top of the figure, and the fractions
of peaks grouped by nc are reported in (d) the pie chart. The gray sticks are fluorinated
contaminations, or non-identified compounds. The nitrated phenols are drawn
separately with black peaks in (a), (b) and (c). The molecules represented by the gray
and black sticks were not included in (d). Diurnal patterns of the three factors are shown
in (e), the bold solid lines are the median values, shaded areas represent percentiles of
75 % and 25 % and solid circles represent mean values.

Isop-OOMs factor
The mass spectra of the Isop-OOMs factor, as its name implies, is exclusively contributed by isoprene-derived compounds (Fig. 7(e)). C₅H₁₀N₂O₄ contributes about 30% of the intensity of this factor, and the dominance of C₅H₁₀N₂O₄ was also found in the isoprene nitrates type I factor in Centreville (Massoli et al., 2018). In addition to multi-nitrates (C₅H₁₀O₇N₂, C₅H₉O₆N₂ and C₅H₆O₉N₃ summarized in Table S6), several mononitrate series (C₄H₇O₅N, C₅H₉O₄N, C₅H₈O₃N, and C₅H₁₁O₅N) of this factor are also abundant in the isoprene nitrates type II factor in Centreville (Massoli et al., 2018). Many of isoprene nitrates here have been specially investigated in our previous observations in the YRD (Xu et al., 2021), and have been discovered in other filed measurements (Lee et al., 2016; Massoli et al., 2018) and in many laboratories (Ng et al., 2008; Lambe et al., 2017). Generally, these compounds are second- and third-generation OH oxidation products of isoprene under high-NOₓ conditions (Wennberg et al., 2018).

The diurnal pattern of the Isop-OOMs factor is relatively unclear (Fig. 7(e)), with obvious differences between mean and median values usually caused by plume events. This indicates that isoprene chemistry, usually varying evidently from day (OH-initiated) to night (NO₃-initiated), is not the driver of this factor. This factor correlates positively with MVK / MACR and SOA (r>0.50, showed in Fig. 5), but not with isoprene and OH. It seems that these isoprene OOMs are produced elsewhere and then transported due to their longer lifetime determined by their relatively high volatility (Table 1). The Isop-OOMs factor in the continental air masses are more intensive than those in the coastal and YRD air masses (Fig. S7), consistent with the spatial distribution of isoprene emissions (Sindelarova et al., 2014). An archetypal episode affected by continental air masses (August 13 to August 17, 2019) is showed in Fig. 8. During this period, C₅H₆O₁₀N₃ was almost entirely transported, while C₅H₁₀O₃N₂ has strong in situ photochemical generation, in addition to the source of transport.
Figure 8. Stacked (a) time series and (b) mean diurnal pattern of isoprene dihydroxyl dinitrate (C$_5$H$_{10}$O$_8$N$_2$). Stacked (c) time series and (d) mean diurnal pattern of isoprene hydroxyl trinitrate (C$_5$H$_9$O$_{10}$N$_3$). The contribution ratios of each PMF factor to these two compounds are reported in the pie chart respectively. The light green shaded area represents a typical episode influenced by transported continental air masses (August 13 to August 17, 2019).

3.3 BVOCs nighttime chemistry

The following nighttime factors are characterized by C$_{10}$ OOMs (Fig. 2(a)), which are identified as the oxidation products of monoterpenes. Except for the BVOCs-OOMs I factor (Fig. 9(a)), the contribution of isoprene-derived OOMs was much lower in these factors. Compared to the above isoprene-related factors, C$_{10}$H$_{10}$O$_2$N$_2$ and C$_5$H$_9$O$_{10}$N$_3$ was no longer significantly present in the following factors.

BVOCs-OOMs I factor

The first nighttime factor has its maximum concentration at around 20:00 LT, and decreases to very low value during the day. It is moderately correlated with the production rate of NO$_3$ radical (P$_{NO3}$ derived from Eq. 5) at night, and reaches high intensity only under conditions of NO below 1 ppb (Fig. 10(a)), indicating a chemical
process of NO$_3$ radical. The concentration of this factor is mainly from C$_5$ peaks, followed by C$_6$-C$_{10}$ peaks (Fig. 9(d)), about 80% of which are ONs (Fig. 2(c)), designating the oxidations of isoprene and monoterpenes by NO$_3$ (BVOCs-OOMs I). In the case of isoprene oxidation, the nitrate groups of C$_5$H$_9$O$_4$N, C$_5$H$_7$O$_5$N and C$_6$H$_{10}$O$_{10}$N series (summarized in Table S8) are likely to come from the addition of NO$_3$. Next, the C$_6$H$_{10}$O$_{8}$N$_2$ and C$_5$H$_8$O$_{7}$N$_2$ series are probably second-generation products. These compounds derived from isoprene+NO$_3$ system have been discussed in previous laboratory (Kwan et al., 2012; Zhao et al., 2020) and ambient data sets (Ayres et al., 2015; Xiong et al., 2015). Additionally, The C$_6$-C$_{10}$ species are potentially the products of monoterpenes degraded by NO$_3$.

$$P_{NO_3} = k_{NO_2+O_3} \cdot [NO_2] \cdot [O_3]$$

Figure 9. Mass spectra of (a) the BVOCs-OOMs I factor, (b) the BVOCs-OOMs II factor, (c) the BVOCs-OOMs III factor, and the elemental formulas of major peaks are labeled above them. Peaks are color-coded by n_C as indicated at the top of the figure, and the fractions of peaks grouped by n_C are reported in (d) the pie chart. The gray sticks are fluorinated contaminations, or non-identified compounds. The nitrated phenols are drawn separately with black peaks in (a), (b) and (c). The molecules represented by the gray and black sticks were not included in (d). Diurnal patterns of these three factors are shown in (e), the bold solid lines are the median values, shaded areas represent percentiles of 75% and 25% and solid circles represent mean values.
BVOCs-OOMs II factor

The second nighttime factor are intense at night and over five times lower during the day. Like the BVOCs-OOMs I factor, this factor has high concentrations when NO is reduced leading to increased NO$_3$ availability (Fig. 10(b)), and about 80% of compounds in this factor are ONs (Fig. 2 (c)). Accordingly, this may also be a factor strongly influenced by NO$_3$. It is dominated by C$_6$-C$_{10}$ OOMs, among which the highest intensity is at C$_{10}$ (Fig. 9(d)), coherent with the nature of monoterpene products (BVOCs-OOMs II). This factor has weaker signals at C$_{15}$ which are plausibly the products of sesquiterpenes but could also be dimmers formed from R4 (monoterpene + isoprene or monoterpene + C$_3$ monoterpene fragments). Compared to the BVOCs OOMs I factor (Fig. 9(d)), this factor has more large mass molecules (C$_{10}$) and fewer small mass molecules (C$_5$), resulting in an effective volatility over one order of magnitude lower. A NO$_3$-initiated factor, called the nighttime type-2 factor, has also been discovered in Hyytiälä, Finland (Yan et al., 2016), but the similar factor we found has a higher proportion of organic nitrates, due to the more abundant NO$_3$ here.

$$RO_2 \cdot + R'O_2 \cdot \rightarrow ROOR' + O_2$$ \hspace{1cm} (R4)

$$C_{16}H_{16} + NO_3 \cdot \rightarrow C_{10}H_{16}NO_5 \cdot \xrightarrow{H-\text{shift}+O_2} C_{10}H_{16}NO_7 \cdot$$
$$\xrightarrow{H-\text{shift}+O_2} C_{10}H_{16}NO_9 \cdot \xrightarrow{H-\text{shift}+O_2} C_{10}H_{16}NO_{11} \cdot$$

$$\text{(R5a)}$$

$$C_{10}H_{16} + NO_3 \cdot \rightarrow C_{10}H_{16}NO_5 \cdot \rightarrow C_{10}H_{16}NO_4 \cdot \text{(Alkoxy)}$$

$$\xrightarrow{H-\text{shift}+O_2} C_{10}H_{16}NO_6 \cdot \xrightarrow{H-\text{shift}+O_2} C_{10}H_{16}NO_8 \cdot$$

$$\text{(R5b)}$$

In terms of fingerprint molecules of this factor (summarized in Table S9), The C$_{10}$H$_{13}$O$_{5}$-\cdotN series are carbonyl products from precursor RO$_2$ or RO terminations, while the C$_{10}$H$_{17}$O$_{3}$-\cdotN series are alcohol or hydroperoxide products from precursor RO$_2$ terminations. The C$_{7}$H$_{9}$O$_{6}$-\cdotN, C$_{9}$H$_{15}$O$_{6}$-\cdotN, C$_{9}$H$_{13}$O$_{7}$-\cdotN, and C$_{9}$H$_{15}$O$_{7}$-\cdotN series are expected to be fragments. The closed-shell compounds mentioned above have been reported in the experiments of monoterpene + NO$_3$ system (Nah et al., 2016; Faxon et al., 2018; Takeuchi and Ng, 2019).

It is noteworthy that a set of nitrogen-containing radicals, C$_{10}$H$_{16}$O$_{6}$-\cdotN (peak fitting are shown in Fig. S8), is present in the BVOCs-OOMs II factor. Starting from a generic monoterpene molecule with the formula C$_{10}$H$_{16}$, the NO$_3$ addition with fast O$_2$ addition results in a peroxy radical with the formula C$_{10}$H$_{16}$O$^\cdot$N, If the initial intermediate RO$_2$
is capable to proceed via autoxidation by the formal addition of O\textsubscript{2}, we expect radicals, \(\text{C}_{10}\text{H}_{16}\text{O}_{5+2x}\text{N}\) (\(x\) denotes times of autoxidation performed) with an odd oxygen number, to be formed (R5a). In addition, peroxy radicals with an even oxygen number, \(\text{C}_{10}\text{H}_{16}\text{O}_{6+2x}\text{N}\), are likely produced via reaction chain 5b: (1) RO\textsubscript{2} is propagated to RO through bimolecular reactions, and (2) RO isomerize to an alcohol by internal H abstraction forming a carbon-centered radical (Orlando et al., 2003; Orlando and Tyndall, 2012), (3) the carbon-centered radical can again take up an oxygen molecule and follow the autoxidation route. The \(\text{C}_{10}\text{H}_{16}\text{O}_{6+11}\text{N}\) radicals are also reported in the CLOUD chamber (Yan et al., 2020). In addition to \(\text{C}_{10}\) radicals, a \(\text{C}_{5}\) radical, \(\text{C}_{5}\text{H}_{8}\text{O}_{5}\text{N}\) (peak fitting are shown in Fig. S8), is also found in the BVOCs-OOMs II factor. \(\text{C}_{5}\text{H}_{8}\text{O}_{5}\text{N}\) are possibly derived from the oxidation of isoprene initiated by NO\textsubscript{3}, as observed in the laboratory (Zhao et al., 2020). Another hypothesis is that \(\text{C}_{5}\text{H}_{8}\text{O}_{5}\text{N}\) is formed from the fragmentation process of monoterpenes.

Figure 10. Scatter plots of the BVOCs-OOMs I factor with (a) \(P_{\text{NO}_3}\), (b) NO, and (c) nopinone (\(\text{C}_9\text{H}_{14}\text{O}\)). Scatter plots of the BVOCs-OOMs II factor with (d) \(P_{\text{NO}_3}\), (e) NO, and (f) nopinone (\(\text{C}_9\text{H}_{14}\text{O}\)). Scatter plots of the BVOCs-OOMs III factor with (g) \(P_{\text{NO}_3}\), (h) NO, and (i) nopinone (\(\text{C}_9\text{H}_{14}\text{O}\)).
(h) NO, and (i) nopinone (C$_9$H$_{14}$O). All the scatters are colored by J(O$_{1D}$), to show the difference between day and night. Pearson correlation coefficient showed in (a) is calculated for nighttime, but the correlation coefficients in (c) are only for daytime.

BVOCs-OOMs III factor

The third nighttime factor (BVOCs-OOMs III) is dominated by nitrogen-containing species with a contribution ratio about 90%, among which dinitrates account for more than 20% (Fig. 2(c)). When grouped by carbon numbers, C$_{10}$ OOMs have the strongest signal. Unlike the above two NO$_3$-related factors, this factor shows no correlation with P$_{NO3}$, but has positive correlation with NO, especially during the daytime (Fig. 10(c)). C$_8$H$_{14}$O, a typical product of NO-affected monoterpenes oxidation (Calogirou et al., 1999), is found to be correlated with this factor (Fig. 10(c)). It is reasonable to infer that these organic nitrates may come from terminations of monoterpenes-RO$_2$ by NO. In addition to the elevated intensity during the nighttime, this factor still remains at a relatively high concentration in the morning, which is much higher than that of the two NO$_3$-related factors (Figure 9(e)). Owing to the suppression of NO to RO$_2$ autodissociation and the relatively insufficient oxidant in dark environment, the effective OSc of the BVOCs-OOMs III factor is lower than other factors. Apart from the mononitrates summarized in Table S10, the C$_{10}$H$_{16}$O$_7$N$_2$ (dinitrates) and C$_{10}$H$_{17}$O$_{10}$N$_3$ (a trinitrate charged by NO$_3^-$ at m/z 401) are most likely the result of multiple-generation processes involving OH or NO$_3$ oxidation of monoterpenes proceeding RO$_2$ + NO terminations. A similar factor, called terpene nitrates, has also been reported in Centreville, USA (Massoli et al., 2018), while in Hyytiä lä , Finland (Yan et al., 2016), it’s that the daytime type-1 factor is related to NO.

3.4 Nitrate phenols factors

Nitrate phenols are of concern, because of their phytotoxicity (Rippen et al., 1987) and as an important chromophores of brown carbon in aerosol (Desyaterik et al., 2013; Mohr et al., 2013). The sources of these highly volatile compounds are attributed to biomass burning, vehicle exhausts, and secondary gas or aqueous phase production (Harrison et al., 2005). Here we identified three factors about NP, including the NP I factor dominated by nitrophenol, the NP II factor dominated by substituted nitrophenols, and the NP III factor dominated by dinitrophens. Although the mass spectrum of the NP III factor is less pure than the NP I & II factors (Fig. 11), its time series follows well with C$_6$H$_4$O$_3$N$_2$ (Fig. 11(f)), implying that this factor is driven by di-nitrophenol chemistry. Since nitrated phenols have been broadly investigated and relatively clearly recognized (Harrison et al., 2005; Yuan et al., 2016; Wang et al., 2018b; Cheng et al., 2021), they are not discussed too much here. It seems that the chemistry of nitrated phenols is distinctive to other OOMs.
Figure 11. Mass spectra of (a) the NP I factor, (b) the NP II factor, and (c) the NP III factor, and the elemental formulas of major peaicks are labeled above them. The gray sticks are fluorinated contaminations, or non-identified compounds. The nitrated phenols are drawn separately with black peaks in (a), (b) and (c), while other OOMs are plotted as red peaks. The molecules represented by the gray were not included in (d). Diurnal patterns of these three factors are shown in (e), the bold solid lines are the median values, shaded areas represent percentiles of 75 % and 25 % and solid circles represent mean values. (f) Time series of PMF factors and tracers.

3.5 Ensemble chemical properties

After performing PMF analysis, over 1000 non-nitro molecules have been identified through HR peaks fitting in each factor. The mean concentration of total non-nitro OOMs reconstructed from the selected PMF solution is about 2.1×10⁸ molecules cm⁻³. Ensemble chemical properties of these non-nitro OOMs are summarized in Fig. 12. The
number of carbon atoms implies the precursor information of OOMs. C5 OOMs, which
principally consist of isoprene products benefited from the high reactivity and intensive
emissions of isoprene in summer, are the most abundant (Fig. 12(c)). While C6-C9
OOMs are mostly likely formed from the oxidation of A VOCs such as aromatics and
aliphatic series in the urban and suburban atmosphere, and as we expected, these
A VOCs-derived OOMs account for about 50% of the total signal (Fig. 12(c)). The
intensity of OOMs decreases from C7 to C9 determined by the concentration distribution
of precursors, but becomes a plateau at C10 (Fig. 12(c)), indicating another source of
C10 OOMs, such as monoterpenes oxidation. These results underscore the formation of
SOA precursors from a mixture of anthropogenic and biogenic emissions, under
ongoing forest cover increases (Wang et al., 2020a) in highly urbanized eastern China.

In addition to the anthropogenic VOCs, another human-induced perturbation on the
formation of OOMs is the NOx-affected chemistry of VOCs, i.e., RO2 + NO
terminations or NO3-initiated oxidations. As showed in Fig. 12(c), about 70% of OOMs
are nitrogen-bearing compounds, regarded as organic nitrates within the allowed range
of uncertainty. If isoprene nitrates are not included, organic nitrates peak at C7 as do the
nitrogen-free species, showing the significant production of organic nitrates through the
A VOCs + NOx pathways. The NOx effect on A VOCs-derived OOMs, typified by the
Aro-OOMs factor and the Aliph-OOMs factor, are not showed in previous ambient
measurements (Yan et al., 2016; Lee et al., 2016; Massoli et al., 2018).

OOMs grouped by carbon numbers or nitrogen numbers consistently have absolute
high concentrations in the daytime (Fig. 12(a) and (b)), revealing the crucial role of
photochemical progress, involving RO2 + NO termination reactions, on OOMs. In
addition, The C5-C10 OOMs are enhanced again during 19:00-22:00 LT, and the
nighttime peak of C10 OOMs is even higher than its daytime peak (Fig. 12(a)). The
nocturnal C10 OOMs are more intense than C9 OOMs (Fig. 12(a)), and there are more
C10 nitrates than C9 nitrates (Fig. 12(c)). These results show the fate of VOCs degraded
by NO3 during the nighttime, which are more important to monoterpenes. In contrast to
nitrogen-free OOMs, organic nitrates are enriched through the reactions of BVOCs with
NO3 in the early evening (Fig. 12(b)), as indicated by three BVOCs nighttime chemistry
factors.

Apart from reflecting the influence of NOx, multi-nitrates also imply the multiple
generations of VOCs oxidation, which is evident in the products of isoprene (e.g.,
C5H10O9N2 and C5H9O10N3) due to its two carbon-carbon double bonds. As products of
mononitrates, multi-nitrates follow mononitrates in diurnal variation, with double peaks
initiated by OH and NO3 respectively (Fig. 12(b)). Considering that the formation of
organic nitrate is only a small branch of RO2 + NO termination, the contribution of
multi-step oxidation should be larger than that shown in Fig. 12(c).
Figure 12. Ensemble chemical properties of non-nitro OOMs reconstructed from the selected PMF solution. (a) Median diurnal cycles of total compounds with carbon number of 5-10 respectively. (b) Median diurnal cycles of total compounds with \(n_N \) of 0-3 respectively. (c) The distributions of total observed OOMs at different \(n_C \). OOMs on each carbon number is grouped by nitrogen number, and the total concentration fractions of each groups are reported in the pie chart. Since we selected peaks in the \(m/z \) range of 202-404 Th, OOMs with \(n_C < 5 \) or \(n_C > 10 \) detected by nitrate CI-API-TOF are underestimated.

4 Conclusions

We have investigated the sources and characteristics of gas-phase OOMs observed using a nitrate CI-API-TOF at the SORPES station in the YRD of eastern China, an environment dominated by anthropogenic emissions with enhanced biogenic emissions during summer.

The binPMF analysis, which avoids the uncertainty introduced by high-resolution peak fitting to the input data matrix, was applied to deconvolve the complexity of the data set, and it resolved 14 factors, among which 12 factors have been discussed in detail.
morning factor (Aro-OOMs), correlated with the production rates of RO2 from aromatics, is characterized by unsaturated products of aromatics such as C_{x}H_{2x-7}O_{x-9}N (x=6-12). An afternoon factor (Aliph-OOMs), containing the bulk of C_{x}-C_{9} dinitrates and trinitrates such as C_{x}H_{2x-2}O_{x}N_{2} (x=4-13) and C_{x}H_{2x}O_{x}N_{2} (x=4-8), is assumed to be derived from aliphatics oxidation. A transported factor (Isop-OOMs), correlates with MVK / MACR and SOA, is exclusively dominated by isoprene nitrates (e.g., C_{x}H_{10}O_{x}N_{2} and C_{x}H_{10}O_{x}N_{3}). A nighttime factor (BVOCs-OOMs III), related to NO, is dominated by terpenes nitrates such as C_{10}H_{15}O_{x}N, C_{10}H_{15}O_{7-10}N_{2} and C_{10}H_{15}O_{10}N_{3}. In addition to the factors distinguished by precursors, several factors are driven by chemistry. A factor following the J(01D) (Photo-related), consisting of isoprene products mixed with others, is thought to be produced by in situ photochemistry. An afternoon factor (Temp-related), having the most abundant nitrogen-free OOMs such as C_{x}H_{2x-4}O_{x-6} (x=5-10), C_{x}H_{2x-3}O_{5} (x=5-10), and C_{x}H_{2x-6}O_{4} (x=5-10), is generated involving temperature-influenced chemistry. A daytime factor (O_{x} & SOA-related), correlated well with O_{x} and SOA, indicates the photochemical aging process. Two nighttime factors (BVOCs-OOMs I & II), benefiting from NO_{x} and suppressed by NO_{x}, are considered to be produced from NO_{x}-initiated oxidation of BVOCs, and both of them have the fingerprint molecule, C_{10}H_{16}O_{x}N. The remaining three factors are governed by nitrated phenols.

All of these factors from various precursors are influenced in different ways by NO_{x}. Over 1000 non-nitro molecules have been identified and then reconstructed from selected solution of binPMF, and about 72% of the total signal are contributed by nitrogen-containing OOMs, almost regarded as organic nitrates formed through RO_{2} + NO terminations or NO_{x}-initiated oxidations. Moreover, multi-nitrates have a contribution ratio of about 23% to total concentration, indicating the significant presence of multiple oxidation generations, especially for isoprene (e.g., C_{x}H_{10}O_{x}N_{2} and C_{x}H_{10}O_{x}N_{3}). The nitrate CI-APi-TOF data set presented here highlight the decisive role of NO_{x} chemistry on OOMs formation in densely populated areas. In summary, our findings highlight the dramatic interactions between anthropogenic and biogenic emissions, and encourage more investigations from a mechanistic point of view.

The differences in OOMs observed in different environments are clear, and the underlying causes are well worth considering. The precursors, oxidants, and formation pathways of OOMs change when moving from urbanized areas to pristine regions, as AVOCs and NOx concentrations decrease and BVOCs concentrations increase. This process can also occur under the trend of global warming and anthropogenic emissions mitigation, but we still know very little about it. Clarifying the variations of composition, properties, and formation efficiency of OOMs will help to understand the evolution of SOA production during this process.
Appendix A. The selected solution of binPMF analysis on nitrate CI-API-TOF data

Figure A1. The selected solution for binPMF analysis of nitrate CI-API-TOF data, showing (a) mass profile and (b) diurnal cycle of different factor.
Figure A2. The selected solution for binPMF analysis of nitrate CI-APi-TOF, showing (a) time series of and (b) contribution to total signal reconstructed by PMF of each factor.

Data availability. Measurement data at the SORPES station, including OOMs data and relevant trace gases and aerosol data as well as meteorological data, are available upon
request from the corresponding author before the SORPES database is open to the public.

Author contributions.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We thank colleagues and students at the School of Atmospheric Sciences at Nanjing University for their contributions to the maintenance of the measurements. We thank the tofTools team for providing tools for mass spectrometry analysis.

Financial support. This work was mainly funded by the National Key R&D Program of China (2016YFC0202000 and 2016YFC0200500), the National Natural Science Foundation of China (NSFC) project (41875175, 42075101 and 92044301), the Shanghai Rising-Star Program (19QB1402900), and Jiangsu Province Key R&D Program Major Technology Demonstration (BE 2019704).

Reference

J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A., Onasch, T. B.,
Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F.,
Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R.,
Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M.,
Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.
Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger,
U., and Worsnop, D. R.: Evolution of organic aerosols in the atmosphere, Science,
326, 1525-1529, 10.1126/science.1180353, 2009.

Jokinen, T., Sipila, M., Junninen, H., Ehn, M., Lonn, G., Hakala, J., Petaja, T., Mauldin,
R. L., III, Kulmala, M., and Worsnop, D. R.: Atmospheric sulphuric acid and
neutral cluster measurements using CI-API-TOF, Atmospheric Chemistry and
Physics, 12, 4117-4125, 10.5194/acp-12-4117-2012, 2012.

Jokinen, T., Sipila, M., Richters, S., Kerminen, V. M., Paasonen, P., Stratmann, F.,
Worsnop, D., Kulmala, M., Ehn, M., Herrmann, H., and Berndt, T.: Rapid
autoxidation forms highly oxidized RO₂ radicals in the atmosphere, Angew.

Jokinen, T., Berndt, T., Makkonen, R., Kerminen, V. M., Junninen, H., Paasonen, P.,
Stratmann, F., Herrmann, H., Guenther, A. B., Worsnop, D. R., Kulmala, M., Ehn,
M., and Sipila, M.: Production of extremely low volatile organic compounds from
biogenic emissions: Measured yields and atmospheric implications, Proc Natl

Junninen, H., Ehn, M., Petaja, T., Luosujarvi, L., Kotiaho, T., Kostiainen, R., Rohner,
mass spectrometer to measure atmospheric ion composition, Atmospheric

measurements reveal a large pool of oxygenated volatile organic compound
emissions, Proceedings of the National Academy of Sciences, 115, 1186,

Kirkby, J., Duplissy, J., Sengupta, K., Frege, C., Gordon, H., Williamson, C., Heinritzi,
M., Simon, M., Yan, C., Almeida, J., Trostl, J., Nieminen, T., Ortega, I. K., Wagner,
R., Adamov, A., Amorim, A., Bernhammer, A. K., Bianchi, F., Breitenlechner, M.,
Briolke, S., Chen, X. M., Craven, J., Dias, A., Ehrhart, S., Flagan, R. C., Franchin,
A., Fuchs, C., Guida, R., Hakala, J., Hoyle, C. R., Jokinen, T., Junninen, H.,
Kangasluoma, J., Kim, J., Krapf, M., Kurten, A., Laaksonen, A., Lehtipalo, K.,
Makhrutov, V., Mathot, S., Molteni, U., Onnela, A., Perakyla, O., Piel, F., Petaja,
T., Praplan, A. P., Pringle, K., Rap, A., Richards, N. A. D., Riipinen, I., Rissman,
M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld, J. H., Sipila,
M., Steiner, G., Stozhkov, Y., Stratmann, F., Tome, A., Virtanen, A., Vogel, A. L.,
Wagner, A. C., Wagner, P. E., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P.
L., Zhang, X., Hansel, A., Dommen, J., Donahue, N. M., Worsnop, D. R.,
Baltensperger, U., Kulmala, M., Carslaw, K. S., and Curtius, J.: Ion-induced
nucleation of pure biogenic particles, Nature, 533, 521+, 10.1038/nature17953,

Richters, S., Herrmann, H., and Berndt, T.: Highly oxidized RO$_2$ radicals and consecutive products from the ozonolysis of three sesquiterpenes, Environmental Science & Technology, 50, 2354-2362, 10.1021/acs.est.5b05321, 2016.

Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J. F., Kuhn, U., Stefani, P., and Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years, Atmospheric Chemistry and Physics, 14, 9317-9341, 10.5194/acp-14-9317-2014, 2014.

Wood, E. C., Canagaratna, M. R., Herndon, S. C., Onasch, T. B., Kolb, C. E., Worsnop,

