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Abstract. We investigate the potential for aircraft-based top-down emission rate retrieval over- and under-estimation using a re-

gional chemical transport model, the Global Environmental Multiscale-Modeling Air-Quality and CHemistry (GEM-MACH).

In our investigations we consider the application of the mass-balance approach in the Top-down Emission Rate Retrieval Algo-

rithm (TERRA). Aircraft-based mass-balance retrieval methodologies such as TERRA require relatively constant meteorolog-

ical conditions and source emission rates to reliably estimate emission rates from aircraft observations. Avoiding cases where5

meteorology and emission rates change significantly is one means of reducing emissions retrieval uncertainty, and quantitative

metrics that may be used for retrieval accuracy estimation are therefore desirable. Using these metrics has the potential to

greatly improve emission rate retrieval accuracy. Here, we investigate the impact of meteorological variability on mass-balance

emission rate retrieval accuracy by using model simulated fields as a proxy for real world chemical and meteorological fields,

in which virtual aircraft sampling of the GEM-MACH output was used for top-down mass balance estimates. We also explore10

the impact of upwind emissions from nearby sources on the accuracy of the retrieved emission rates. This approach allows

the state of the atmosphere used for top-down estimates to be characterized in time and 3D space; the input meteorology and

emissions are “known”, and thus potential means for improving emission rate retrievals and determining the factors affecting

retrieval accuracy may be investigated. We found that emissions retrieval accuracy is correlated with three key quantitative

criteria, evaluated a priori from forecasts and/or from observations during the sampling period: (1) changes to the atmospheric15

stability (described as the change in gradient Richardson number), (2) variations in the direction of transport, as a result of

plume vertical motion and in the presence of vertical wind shear, and (3) the combined effect of the upwind to downwind con-

centration ratio and the upwind to downwind concentration standard deviations. We show here that cases where these criteria

indicate high temporal variability and/or high upwind emissions can result in “Storage-and-Release” events within the sampled

region (control volume), which decrease emission rate retrieval accuracy. Storage-and-release events may contribute the bulk20

of mass-balance emission rate retrieval under- and over-estimates, ranging in the tests carried out here from -25% to 24%

of the known (input) emissions, with a median of -2%. Our analysis also includes two cases with unsuitable meteorological

conditions and/or significant upwind emissions to demonstrate conditions which may result in severe storage, which in turn

cause emission rate underestimates by the mass-balance approach. We also introduce a sampling strategy whereby the emission
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rate retrieval under- and over-estimates associated with storage-and-release are greatly reduced (to -14% to +5% respectively,25

relative to the magnitude of the known emissions). We recommend repeat flights over a given facility and/or time-consecutive

upwind and downwind (remote) vertical-profiling of relevant fields (e.g. tracer concentrations) in order to measure and account

for the factors associated with storage-and-release events, estimate the temporal trends in the evolution of the system during

the flight/sampling time, and partially correct for the effects of meteorological variability and upwind emissions.

1 Introduction30

Aircraft-based measurements of air pollutants provide an effective top-down approach for estimating total integrated emissions

of sources ranging from individual stacks to large industrial complexes and cities. These top-down estimates are commonly

employed for the evaluation of bottom-up emissions reported to inventories and can provide insights on air quality and health

impacts of anthropogenic emissions. Top-down estimates can also be used to provide highly resolved emissions data for input

into air quality models. Several studies have utilized aircraft-based top-down emission rate retrievals in the past (Kalthoff35

et al., 2002; Mays et al., 2009; Turnbull et al., 2011; Karion et al., 2013, 2015; Cambaliza et al., 2014; Gordon et al., 2015;

Nathan et al., 2015; Tadić et al., 2017; Conley et al., 2017; Ryoo et al., 2019). Flight patterns from these studies include

single-height transects, single-screen flights and box flights. Box flights, which expand upon "single-leg" (mainly downwind)

flights, refers to flight patterns with enclosed shapes (polygonal, cylindrical) and is accomplished by flying in closed paths

(loops) at multiple altitudes around the emission source while making measurements of meteorological fields and pollutant40

concentrations (Gordon et al., 2015; Tadić et al., 2017). The mass-balance technique and Gauss’s divergence theorem — where

the net mass flux of the species of interest exiting a control volume is equated to the within-volume source emission rates

of that species — can be employed to infer point and area source emission rates from aircraft measured data. Kalthoff et al.

(2002) used aircraft measured data to estimate CO and NOx emissions of the city of Augsburg in southern Germany, using

data from two research aircrafts at several altitudes (polygonal box) around the boundaries of the city during the EVA project45

(Slemr et al., 2002). Emission rate estimations were made using a mass-balance approach applied to aircraft measurements, and

estimates were used in improving emissions input data for an air quality model (KAMM/DRAIS). Through air-quality model

(KAMM/DRAIS) simulations, Panitz et al. (2002) analyzed the validity of the assumptions made by Kalthoff et al. (2002)

and also studied the contributions of all relevant processes (advective fluxes, deposition, turbulent transports, and chemical

transformations) to the mass budget of chemical species (e.g. CO and NOx). They concluded that, in an aircraft-based mass-50

balance approach, 85% and 95% of source emissions can be determined from the advective fluxes. Gordon et al. (2015) assessed

uncertainties in the top-down aircraft-based emission rate retrievals using polygonal (e.g. rectangular) box flights measuring

SO2 and CH4 around individual oil sands facilities in Alberta, Canada. This study also involved development of a methodology

for extrapolation of aircraft measured data below the lowest flight level based on various assumptions and the analysis of the

associated uncertainties. Gordon et al. (2015) estimated uncertainty in aircraft-based estimates as 2%-30%, with the source55

of this uncertainty attributed mainly to extrapolation of aircraft measurements below the lowest flight track (20%). Conley

et al. (2017) and Ryoo et al. (2019) made aircraft-based emission estimations by flying cylindrical box flights around different
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point/area emission sources. The study by Conley et al. (2017) also involved evaluation and optimization of the sampling

strategy (e.g. optimized circling radius) in order to minimize the uncertainties due to data extrapolation below the lowest flight

level, through tracer controlled release and large eddy simulations (LES).60

The potential for measurement error to affect retrieval accuracy has been discussed in the literature. Turnbull et al. (2011)

noted that observation errors in wind-speed and planetary boundary layer height led to a factor of two estimated error in

CO2 emissions retrievals. Ryoo et al. (2019) suggested that errors associated with wind speed errors and assumptions about

background concentrations for greenhouse gases for city-scale emissions sources could contribute emissions retrieval errors

for a factor of 1.5 to 7. However, Ryoo et al. (2019) also noted that these errors stem largely from the use of flight patterns65

consisting of downwind screens, and that flight patterns which enclose the sources, (closed shape flight patterns) such as

the box flights used in our current work, greatly reduce these errors. Tadić et al. (2017) noted that cylindrical flight patterns

around facilities (similar to “box” flights described in Gordon et al., 2015) provide superior retrieval performance relative to

downwind screens. The strategy for determining the maximum height of aircraft flights also varies between references, some

recommending sampling up to the PBL height. However, Tadić et al. (2017) and Gordon et al. (2015) integrate over the entire70

vertical extent of the plume (as in the work described here) rather than limit the analysis to below the planetary boundary

layer height. Tadić et al. (2017) estimated the uncertainties in retrievals, calculated from flight patterns using these procedures,

associated with different factors: interpolation uncertainties accounted for 21% of the determined emissions value, while wind

speed errors of 0.1 m/s were attributed to -1.2% to +1.5% of the retrieval error, respectively. The latter suggests that the impact

of wind speed error when box or cylinder flight patterns such as we use in our current work are relatively small.75

These and other similar studies, employed either mass transfer (e.g., the single-screen flight approach where the horizontal

mass flux through a downwind vertical plane is equated to the upwind source emission rates) or a mass-balance approach

(box flights) to infer point and area source emission rates from aircraft measured data. Aircraft-based estimates are generally

(and where possible) compared to bottom-up inventory reported emission data (e.g., Gordon et al., 2015; Li et al., 2017; Baray

et al., 2018; Liggio et al., 2019; Cheng et al., 2020), and may also be evaluated using Continuous Emissions Monitoring System80

(CEMS) data (when these data are available). These comparisons and their conclusions are dependent in part on the magnitude

of the uncertainty levels associated with the estimates. The algorithms for emission rate retrieval require steady-state meteo-

rological and emissions data. Cases where these conditions are not met have been avoided through the application of a priori

criteria in flight planning, and post-flight retrieval decision making. For example, pre-flight decision criteria such as relatively

invariant forecast wind speed, wind direction, and planetary boundary layer height, were used to determine “fly/no fly” deci-85

sions in past studies (e.g., Li et al., 2017; Liggio et al., 2019). We refine these concepts here to create quantitative metrics for

assessing retrieval success which may also be used in forecasting flight conditions or during flights. We also investigate the

potential causes of emissions retrieval uncertainty, using a variety of cases, including unsuitable cases which would usually not

be used for retrievals, as tests of our criteria. Therefore, it is important to further refine the methodology used to predict uncer-

tainties in retrievals, as well as suggest revised methodologies which may reduce emissions retrieval uncertainty. Uncertainties90

in aircraft-based top-down retrievals may arise from various sources (e.g. measurements, data interpolation and extrapolation),

most of which have been studied in the past (e.g., Cambaliza et al., 2014; Gordon et al., 2015; Angevine et al., 2020). Prior
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studies have also noted the potential contribution of temporal trends in tracer mass budget to mass-balance retrievals (e.g. Con-

ley et al., 2017), but mainly relied on the assumption of steady-state conditions. Here we focus on investigating the underlying

assumption of time-invariant meteorological conditions (during observation time), which is shared among most (if not all)95

top-down retrieval methodologies, in particular the impact of localized variations in meteorology (e.g. change in atmospheric

stability or direction of the transport) on the application of the mass-balance technique in box flight emission rate retrievals.

Under time-invariant and spatially uniform conditions, a mass-balance approach based on the Gauss’s divergence theorem

equates the rate of emissions from sources within a control volume (box flight) to the net mass flux through the boundaries (box

walls) by assuming the net rate of accumulation of mass within the volume to be negligible. When conditions (e.g. meteorology,100

emissions) deviate from steady state and/or localized inhomogeneity is developed in tracer concentration and meteorological

fields, the rate of mass accumulation/release within the control volume may become significant enough to affect the accuracy of

the estimates based on the mass balance approach. Herein, we refer to these circumstances as “Storage-and-Release” events.

To our knowledge, all mass-balance techniques to date assume steady-state conditions. Here we investigate the uncertainty

associated with that assumption and we introduce the term storage-release (used interchangeably with storage-and-release105

throughout the paper) events for transient non-steady-state conditions. This term is chosen to emphasize the cyclical nature of

the events, during which material within the control volume accumulated and is then subsequently released.

Numerical dispersion modelling has been proven useful in assessing the uncertainties in top-down retrievals in the past (e.g.,

Panitz et al., 2002) and more recently (e.g., Karion et al., 2019; Angevine et al., 2020). Here, the numerical modelling system

(a regional chemical transport model) we use is Environment and Climate Change Canada’s (ECCC) air-quality model, Global110

Environmental Multiscale-Modeling Air-Quality and CHemistry (GEM-MACH). Through the use of GEM-MACH model 4D

fields (known meteorology and input emissions), we have eliminated all other sources of uncertainty in the input information

used to retrieve emissions (e.g. measurement error, interpolation) and have extensively explored the impact of storage-and-

release events on aircraft-based top-down emission rate retrievals. We investigate the potential magnitude and the causes

of emissions over- and under-estimates, using GEM-MACH model’s input emissions and output concentrations as a proxy115

for aircraft observations. This approach allows us to more precisely examine the root causes of potential emissions retrieval

over/underestimates, through making use of ancillary information provided by the model, which may not be available from past

aircraft studies. Throughout this paper, as an example method, we refer to (and adopt schemes from) the aircraft-based retrieval

methodology developed by ECCC and described in Gordon et al. (2015), the Top-down Emission Rate Retrieval Algorithm

(TERRA). The concepts explored here are not specific to TERRA and are applicable to all top-down retrieval methodologies120

that use the mass-balance approach.

2 Methods

During an aircraft campaign conducted in August and September of 2013 as part of the Joint Canada Alberta implementation

plan for Oil Sands Monitoring (JOSM), the National Research Council of Canada Flight Research Laboratory (NRC-FRL) Con-

vair 580 research aircraft was used to make air-quality measurements over the Athabasca oil sands region (Alberta, Canada).125
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Air quality forecasts created using ECCC’s air-quality model GEM-MACH, provided advice on flight planning for the JOSM

2013 campaign (Makar et al., 2016). For this purpose, and for the post-study simulations conducted here, the GEM-MACH

system was configured to create high-resolution nested air-quality forecasts with a fine resolution domain (2.5km) over the

Canadian provinces of Alberta and Saskatchewan, including the Athabasca oil sands region (Figure 1a). From 10 August to 10

September 2013 a total of 22 flights were conducted around and downwind of oil sands facilities; 13 of which were emission130

estimation (box) flights where the aircraft was flown around individual facilities at multiple altitudes, approximating a rectan-

gular/polygonal shaped box (control volume), while making meteorological and air-quality measurements (JOSM, 2011). We

chose our model input test cases from the same times and locations as JOSM 2013 box flights, to sample conditions (meteorol-

ogy and emissions) similar to the range existing within the real atmosphere which might be considered for retrievals. Nine box

cases over three oil sands facilities with significant SO2 emissions (Syncrude, CNRL and Suncor; see Fig. 1b) were chosen135

because: (1) SO2 is emitted from stack sources, but has low background levels (Gordon et al., 2015), reducing uncertainties

in emission rate retrievals based on the mass-balance approach and (2) hourly SO2 emissions and stack parameter data are

available from the CEMS reports (Zhang et al., 2018) thereby ensuring the GEM-MACH inputs are realistic: CEMS-derived

input emissions in GEM-MACH resulted in improved model plume rise and transport representation (model-simulated plume

heights were evaluated in Akingunola et al., 2018). Output data from GEM-MACH model simulations for the period of the140

nine cases were analyzed and mass-balance estimates of model SO2 input emissions were made. Model configuration and

set-up, and simulations scenarios for this work are described in section 2.1. Section 2.2 describes the methodologies that were

developed here for direct and virtual aircraft-based retrievals of model input emissions using the GEM-MACH model output

fields, as well as suggested improvements for flight planning.

2.1 Model Description and Simulations145

ECCC’s air quality model, GEM-MACH, is a fully coupled online air-quality and chemical transport model. The GEM-MACH

modelling system resides within the Global Environmental Multiscale (GEM) numerical weather prediction model (Côté et al.,

1998b,a; Girard et al., 2014) and includes an atmospheric chemistry module (Moran et al., 2010) with gas and particle process

representation. The details of the GEM-MACH configuration used here appear in Table A1, Appendix A. We note that this

work is not intended as an evaluation of the GEM meteorological model and its components, which have been extensively150

evaluated elsewhere in the literature (e.g. Côté et al., 1998b; Bélair et al., 2003b,a; Li and Barker, 2005; Milbrandt and Yau,

2005a,b; Fillion et al., 2010; Girard et al., 2014; Milbrandt and Morrison, 2016). A recent detailed evaluation of GEM-MACH’s

meteorological performance is also provided in Makar et al. (2021). Rather, we use the model as a proxy for observations since

it can provide instantaneous 3D values for chemical concentrations and meteorological variables, which in turn allow us to

construct parameters that can be used to predict storage-and-release events in observation-based applications.155

For this work, a series of retrospective high-resolution nested air-quality simulations were made for the period of the JOSM

summer 2013 aircraft intensive campaign (JOSM, 2011). The GEM-MACH model grid configuration consisted of a coarse

parent domain with a horizontal resolution of 10km covering North America, and a nested 2.5km high resolution domain

including Canadian provinces of Alberta and Saskatchewan (see Fig. 1a). To prevent the model high-resolution meteorology
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Figure 1. (a) GEM-MACH model horizontal grid structure with nested domains: the dark blue region shows the parent domain over North

America at 10km horizontal grid resolution. Output from GEM-MACH 10km simulations provided initial and boundary conditions for

the nested high-resolution GEM-MACH 2.5km domain (red). The high-resolution domain was configured over the Canadian provinces of

Alberta and Saskatchewan including the Alberta Athabasca oil sands region, shown as a dark shaded area. (b) ©Google Earth map of the

region with three oil sands facilities labeled. JOSM 2013 flight tracks on August 14, 20 and 28 are drawn with white curves. Model 4D fields

were extracted for nine JOSM 2013 box flight cases over these three facilities, examples are shown as overlay SO2 concentration maps.

from drifting chaotically from observed meteorology, the GEM-MACH 10km simulations were updated every 24 hours at 6160

UT (local mid-night). Most of the JOSM 2013 cases examined here take place during the late mornings and early afternoons in

local time (LT); by choosing to update the driving meteorology in the model at 6 UT sudden shifts in the model meteorological

fields were avoided during the local daytime, and more than sufficient spin-up time (6h time-frame) was provided for model

meteorological fields (in particular the cloud microphysics fields) to reach equilibrium before local noon.

Flux box data, including meteorological fields and SO2 concentrations, were extracted from the model output database for165

the period of nine JOSM 2013 flights over three different facilities (Fig. 1b). The mass-balance approach was employed to

retrieve model input emissions using the extracted flux box data. Earlier work (Fathi, 2017) suggests that there are three main

considerations which should be taken into account when using regional air-quality models as proxies for observations:
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1. Air-quality models usually require the use of some form of “mass conservation” correction for their advection algorithms

(de Grandpré et al., 2016), which can otherwise create spurious negative concentrations. However, mass conservation170

algorithms which conserve mass over the entire model domain, but do not conserve mass locally, effectively include

spurious mass transport – in turn affecting emissions retrievals using model output. A local mass correction algorithm (3

shell ILMC approach, Sørensen et al., 2013) was therefore used in the GEM-MACH simulations carried out here. Model

resolution also impacts mass conservation and needs to be sufficiently high that the sources may be resolved.

2. Regional air-quality models provide instantaneous output at every grid cell on a fixed (2 min) time-step – however, if175

these are interpolated to a finer time resolution (e.g. along an aircraft flight track), errors in interpolation may affect the

use of the model output in retrieval algorithms. Values of model variables at 3-D grid-points, in the vertical columns

making up the emissions “box”, were therefore used in the analysis which follows to avoid these (temporal and spatial)

interpolation errors in the use of model output as a proxy for observations.

3. In aircraft-based sampling (both in real world aircraft measurements and in extraction of emissions retrieval algorithm180

inputs from 4D air-quality model predicted output), temporal lag between data points collected along flight tracks may

represent an additional source of error. This may introduce additional errors if the “static atmosphere” assumption is

not met. Here, instantaneous model output at each time-step (2min) was used for mass-balance estimates, to avoid the

potential for interpolation from the model resolution (2.5km) and time-step to influence the retrievals generated here.

For this purpose, GEM-MACH model four-dimensional data (3D space, 1D time) were extracted at every 2 min model chem-185

istry time-step for the flux boxes over individual oil sands facilities for our nine case studies. Aircraft-based mass-balance

retrievals were simulated by employing the divergence theorem in analyzing the model extracted data. The estimated emis-

sion rate time-series and flight-time (1.5-2.5 hours) averages were then compared to model input emissions (MIE), to evaluate

top-down mass balance retrievals.

2.2 Divergence Theorem, the Mass-balance technique and Emission Rate Retrievals190

During an actual aircraft campaign, measurements are made along a flight trajectory on the lateral walls of a flux box (control

volume); measured data on a single 2D screen (closed surface) comprised of box lateral walls is all that is available for emission

rate retrievals based on mass flux and mass balance calculations. Here we use instantaneous model values along lateral box

walls as our 2D screen (“TR” approach, section 2.2.2).

The temporal evolution of the system can be studied by increasing the number of flights around the same facility. Here, this195

approach is explored with GEM-MACH simulated fields by analyzing multiple 2D screens at consecutive model time-steps

(3D fields) and generating mass balance estimates (“TR*” approach, section 2.2.3).

A truly comprehensive analysis of the tracer mass budget within the flux box is only possible with 3D-volumetric data over

the entire extent of the box and over time (4D fields). However, collection of 4D (volumetric time-series) data is not practically

feasible during aircraft measurements as the aircraft cannot sample the entire volume of the box even with increased flights200

during a time window of only a few (e.g. 2-3) hours. One advantage of the use of a model such as GEM-MACH as a proxy
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for observations is that 4D forecast fields can be generated, to provide complementary information for mass balance retrieval

investigation. Here we use GEM-MACH model 4D chemical and meteorological fields to conduct a comprehensive analysis

of the transport of the emitted mass from sources within the control volume and to further investigate uncertainties associated

with storage-and-release events in top-down mass balance retrievals (“DR” approach, section 2.2.1).205

The Gauss’s divergence theorem states that the total integrated divergence of a vector field (e.g. fluid flow) F in a region of

space (control volume) V equals to the total flux of F through the enclosing boundary (surface) S,∫∫∫
V

∇·FdV =

∫∫
S

F ·dS (1)

A mass-balance approach (conservation of mass) based on the divergence theorem can be employed to estimate chemical

(pollutant) emission rates by sources (e.g. stack emissions) within a control volume V where atmospheric dispersion and210

transport takes place. In order for mass to be conserved, the inflow of mass of species C into V (EC,in) plus the rate of

generation/emission of mass (EC) within V , must equal the rate of mass removal from the control volume (EC,out) by the

outgoing flux and processes such as surface deposition and the rate at which mass is accumulated/stored within the volume of

the box (EC,S); written in a format linked to the divergence theorem (Eq. 1),

EC = (EC,out−EC,in) +EC,S (2)215

Note that the left hand side and the terms in brackets on the right hand side of Eq. (2), comprise the implementation of

the divergence theorem in the mass-balance equation. In steady state conditions, i.e., under the assumption of time-invariant

meteorology and input emissions, the net accumulation (rate) of mass can be assumed zero and therefore the divergence

theorem can be utilized to equate EC to the net flux through the boundaries of the box (EC,out−EC,in). The divergence

theorem is commonly utilized in aircraft-based studies with flight paths approximating flux boxes of polygonal (e.g., Gordon220

et al., 2015; Liggio et al., 2019) and/or cylindrical (e.g., Ryoo et al., 2019) shapes, where aircraft observations along flight

tracks are projected (and interpolated) onto a 2D screen comprised of box lateral walls surrounding the emitting facility. A

mass-balance technique is then employed to estimate point/area source (e.g. stack, tailing ponds) emission rates by calculating

the net mass flux through the screen (e.g. TERRA).

We start with a comprehensive analysis of GEM-MACH 4D data for direct retrieval of model input emissions, where we225

explore all the processes (including storage-and-release) contributing to change in tracer mass within the flux box and over

time (Sect. 2.2.1). We then simulate aircraft-based retrievals by limiting our analysis to 2D data on box lateral walls (Sect.

2.2.2). Finally, we combine the information from time-consecutive screens (3D) to explore the temporal trends in chemical and

meteorological fields and introduce potential means for improving top-down estimates (Sect. 2.2.3).

2.2.1 Direct Retrieval (DR); Using GEM-MACH 4D Fields230

Here we apply the divergence theorem to the GEM-MACH model four-dimensional (volumetric time-series) output data to

estimate model input emissions. Data from volumes corresponding to the nine JOSM 2013 cases were extracted from the

GEM-MACH model output at every 2min model time-step (no interpolation), creating nine sets of 4D metadata with variables
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(including wind speed and direction, air density, temperature, species mixing ratio, ground surface deposition). Model-extracted

4D flux box metadata, spanning model vertical levels from the surface up to ∼ 2000 m above ground (average JOSM 2013235

box flight top height), were analyzed using the mass balance approach to estimate the model input emissions. We note that this

approach incorporates information not available for aircraft observation-based retrievals (i.e. volumetric time-series data), but

may be used to analyze the importance of storage-release, and as a standard against which the other methods which follow may

be evaluated and compared.

The total mass of compound C within the control volume V (BC(t,V )) is calculated at each model time-step (∆t) by240

integrating over the entire volume of the box. The rate of change in mass can then be calculated by taking the time derivative

of BC(t,V ) and following the chain rule,

∂

∂t
BC(t,V ) =

∂

∂t

[
MR

∫∫∫
χC(t,V )ρair(t,V )dV

]
=MR

∫∫∫ [
∂χC
∂t

ρair +χC
∂ρair
∂t

]
dV (3)

where MR is the ratio of the compound molar mass (e.g. 64.07 g/mol for SO2) to the molar mass of air (28.97 g/mol), χC(t,V )

and ρair(t,V ) are compound mixing ratio and air density at each model grid point and time-step, respectively; with the 3D245

integrand volume element dV = dxdydz. The first integral on the right hand side of Eq. (3) represents the rate of change in

compound mass within V characterized as variations in compound mixing ratio χC(t,V ) independent of the changing air

density,

EC,S(t) =MR

∫∫∫
∂χC
∂t

ρairdV (4)

The second integral represents the apparent change in compound mass (which is calculated as a product of air density and250

compound mixing ratio) due to temporal variations in air density ρair(t,V ), caused by meteorological processes, and does not

represent an actual change in compound mass within the control volume,

EC,M (t) =−MR

∫∫∫
χC

∂ρair
∂t

dV (5)

The minus sign signifies that this is an apparent change in compound mass, which is accounted for in the mass balance equation.

In applying the mass balance technique, we set the net rate of change of Eq. (3) as equal to the sum of all flux and chemical255

terms changing the compound mass (emissions, horizontal and vertical advection, vertical diffusion and chemical production).

Solving forEC,S , the processes contributing to the net change in compound mass within the control volume V can be described

with the following expression:

EC,S = EC −EC,H −EC,V −EC,V D +EC,M +EC,X (6)

where EC represents the emission rate of compound C from sources within the control volume. EC,H and EC,V represent the260

net horizontal and vertical fluxes through the lateral and top walls of the flux box, respectively (derivations appear in Appendix

B, Eqs. B1-B3). EC,V D represents the surface deposition rate, which is available as an output variable from GEM-MACH.

Change in compound mixing ratio due to variations in air density can be accounted for by calculating EC,M from Eq. (5).

EC,X represents the rate of change (i.e. the formation rate of C) due to chemical processes, and can be assumed negligible for
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a tracer compound such as SO2 relative to the emission rates for these facilities since it has a lifetime on the order of days.265

In the context of emissions estimation using observed concentrations and winds along an aircraft trajectory, Eq. (4) can’t be

estimated directly, since it requires a volume integral over the box enclosing the emission source; data that are not available

along the flight path. However, when a regional air-quality model is used as a proxy for observations, and/or a strategy of repeat

flights are used (see Sect. 2.2.3), EC,M and EC,S can be estimated directly. When model values are used these terms may be

generated from equations (4) and (5). For exampleEC,S is estimated using the mixing ratio rate of change (∂χC/∂t) multiplied270

by the air density (ρair) at each model grid point and integrating over the volume of the emissions enclosure box, with a similar

approach used for EC,M . EC,S represents the net rate of increase/decrease of tracer mass within the box; a residual rate of

change associated with the difference given in Eq. (6). We therefore refer to it as a “storage” term for tracer mass. Observation-

based emission rate estimate studies (e.g. TERRA) assume EC,S = 0, while in reality a non-zero EC,S term is incorporated

in the EC term; here we examine the potential magnitude of EC,S using the GEM-MACH model’s concentration predictions275

as a proxy for aircraft observations, and use the combination of mass-balance approach and GEM-MACH to fully investigate

the potential impacts of storage of tracer mass on emission rates retrieval over/underestimates. We also use this combination of

retrieval algorithm and regional air-quality model to generate meteorological forecast model variables which predict conditions

in which the storage term may be of concern, reducing its influence on future emissions analysis (Sect. 4), and to demonstrate

flight procedures which may be adopted a priori to reduce its influence on emissions retrievals (Sect. 2.2.3). Rearranging Eq.280

(6) and neglecting EC,X as being insignificant over the short distances (5-20km) between source and emissions box wall,

compound emission rates can be estimated based on the other terms as,

EC = EC,H +EC,V +EC,V D −EC,M +EC,S (7)

Eq. (7) equates the total integrated emission rate, originating from sources (point and/or area) within the box (control volume),

to the flux leaving the box through the top and lateral walls EC,V and EC,H , the surface deposition rate EC,V D, and the285

volumetric storage rate EC,S , while accounting for the effects of changing air density (EC,M ). Note that in our GEM-MACH

driven analysis,EC,H ,EC,V andEC,V D are derived from GEM-MACH 2D fields (screens, box-top, ground surface deposition)

at each time-step, while EC,M and EC,S are temporal gradient terms estimated from model 4D fields (volumetric time-series)

and employing a second order central Finite Difference (FD) scheme (i.e. ∂χC/∂t∼= (χC(t+ ∆t)−χC(t−∆t))/2∆t); the

choice of FD scheme was made based on optimized performance and accuracy in our computations and it was determined that290

higher order schemes did not provide further advantages in terms of accuracy. A similar set of equations, lacking sources, sinks

and a separate storage term, can be written for the air mass changes within the emissions box (see Appendix B), which lead to

the mass balance expression for air

Eair,M =−Eair,H −Eair,V (8)

Eqs. (4), (5) and (7) (with other terms in Appendix B) were utilized in analyzing GEM-MACH model 4D flux box data for the295

nine cases, and DR method estimates were compared to the model input emissions (MIE). Results are discussed in Sect. 3.1.
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Figure 2. SO2 mixing ratio screen around CNRL extracted from the GEM-MACH model output at the start of case 4 on 20 August 2013

at 16:30 UT (10:30 LT). (a) mixing ratio data (2D) on the lateral walls of the flux box, along with the flight tracks plotted as dark dots.

The additional graphics (arrows and plumes) on (a) represent processes contributing to change in tracer mass within the box volume: source

emission rate (EC ), horizontal flux (EC,H ), vertical flux (EC,V ), surface deposition (EC,V D) and storage rate (EC,S). The extracted fields

around the box are unwrapped onto a 2D screen comprised of box lateral walls (East, North, West and South) and shown in (b) the normal air

flux (positive outwards), (c) SO2 mixing ratio and (d) SO2 mass flux through the screen. Note that the net flux on box corners is the vector

sum of the fluxes in west-east (U ) and south-north (V ) directions.

2.2.2 TERRA Retrieval (TR) approximation; Using GEM-MACH 2D Fields

Aircraft-based retrieval methods such as TERRA rely on measured data along the lateral walls of the box. In observation-based

retrievals, the horizontal flux EC,H can be calculated (directly) from aircraft collected data and the other terms need to be

estimated based on several assumptions about the atmospheric conditions and source properties (Gordon et al., 2015). Here,300

we explore the use of regional (GEM-MACH) model output in a similar fashion as aircraft observations, restricting our analysis

to model output sampled along the lateral walls of a box enclosing an emitting facility within the model domain (GEM-MACH

2D fields). Figure 2a shows model simulated SO2 concentrations (normalized to the maximum concentration) on the lateral

walls of the flux box surrounding the CNRL facility (case 4). Flight tracks on 20 August 2013 (JOSM) are also plotted as dark

dots around the facility, for reference. For emissions retrieval applications using aircraft observations, the sampled observations305

must be interpolated (e.g. Kriging) between successive circuits around the box and extrapolated to the ground surface in order

for emissions to be estimated. Surface deposition rate EC,V D is also estimated using the extrapolated species mixing ratio

data at the ground level. Gordon et al. (2015) estimated the uncertainty due to extrapolation of aircraft data to the ground

surface as 0.4 and 12% in TERRA estimates for SO2 plumes. Here we avoid the uncertainties arising from such assumptions

by extracting model data along box lateral walls from the ground surface up to the box top, and by using GEM-MACH model310

surface deposition (EC,V D) values in our calculations. For this portion of our analysis, in which we limit the inputs to mass-
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balance estimations to the information available on the box lateral walls in analogy to aircraft observations, instantaneous 2D

screens of relevant fields (e.g. SO2 concentrations) covering the entire area comprised of box lateral walls (as shown in Fig. 2)

were extracted/generated from the GEM-MACH model output at every model time-step. Such screens were also generated from

GEM-MACH output for air flux, based on the extracted air density ρair, the calculated normal wind U⊥(positive outwards),315

and SO2 mass flux, based on concentration and air flux screens (Figures 2b, c and d). The integrated horizontal flux through the

screenEC,H was then calculated using Eq. (B1). In observation-based applications, TERRA estimates the changes in mass due

to variations in air density over flight time, Eair,M and EC,M , based on observed meteorological trends in air density ( ∂∂tρair)

from nearby weather stations (towers) and average species mixing ratios (χC) around the box. Here, we substituted the weather

data with a single column (GEM-MACH predicted) air density temporal rate of change ∂
∂tρair(t,z) at point (xo,yo) located320

at the horizontal center of the box for each of the nine studied cases. Here, single column ∂
∂tρair(t,xo,yo,z) is assumed to

represent the spatial average rate of change in air density over the region of interest through the assumption of horizontal

homogeneity, as in observational TERRA applications. Our comparisons between the GEM-MACH box average and the single

column rate of change in air density indicate < 5% difference between the two trends for the time periods of our studied cases.

This gives325

Etrair,M (t) =A

∫
∂

∂t
ρair(t,xo,yo,z) dz (9)

EtrC,M (t) =−AMR

∫
χC(t,z)

∂

∂t
ρair(t,xo,yo,z) dz (10)

where A is the base area of the box. χC(t,z) is the average GEM-MACH predicted species mixing ratio around the box along

the flight path (s) at height z, which is the same as in aircraft-based applications of TERRA.

Furthermore, due to lack of measurements at the box top, the vertical fluxEC,V in TERRA in observation-based applications330

is estimated in two steps: (a) the vertical air mass flux (EC,V ) is estimated based on the other terms by rearranging the mass

balance expression for air (Eq. 8), and (b) the species mixing ratio (e.g. SO2) at the box top is assumed to be uniform and

equal to the average (along flight path s) screen top mixing ratio (χC,top) (Gordon et al., 2015). Here, the same procedure was

employed in deriving the vertical flux through box top using GEM-MACH output fields,

EtrC,V (t) =AMR χC,top(t) Eair,V (t) (11)335

As there are no volumetric data available in aircraft measurement applications of TERRA, the storage rate within the box

cannot be inferred directly. Emission rate estimations in aircraft-based methods such as TERRA are made with the underlying

assumption of steady state conditions and therefore EC,S is assumed to be negligible, effectively incorporating it into EtrC (the

superscript tr referrers to TR method estimates). Thus, for aircraft-observation TERRA applications, mimicked here, Eq. (7)

is reduced to,340

EtrC = EC,H +EtrC,V +EC,V D −EtrC,M (12)

Estimations of emission rates were made for each model time-step (using instantaneous 2D screens) during the time periods

of the nine studied JOSM cases by using GEM-MACH output to approximate the input data for TERRA retrievals (TR) as
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described above. Note that the TR method, as described in this section, makes use of GEM-MACH 2D data at each time t to

generate an estimate (one estimate at each time-step t during the entire sampling period ) while making approximate estimations345

of the temporal gradient terms (Eqs. 9 and 10) at time t by following procedures similar to aircraft-based applications of

TERRA. Flight-time averaged estimates are then compared to the flight-time averaged model input emissions (MIE), Sect. 3.2.

2.2.3 Revised TERRA Retrieval (TR*); Using GEM-MACH 3D Fields

Utilizing time-consecutive instantaneous screens around an emission source, the temporal evolution of the system and its

impact on mass-balance estimates can be studied in more detail, as discussed at the beginning of this section (Sect. 2.2). By350

using air density screens at every 2 min model time-step (2D space, 1D time), as opposed to using a single column (vertical)

profile in the TR method, estimations of Eair,M and EC,M can be improved (by 1-3%, determined through comparisons with

GEM-MACH box averaged temporal trends):

Etr∗air,M (t) =A

∫
∂ρair(t,z)

∂t
dz (13)

Etr∗C,M (t) =−AMR

∫
χC(t,z)

∂ρair(t,z)

∂t
dz (14)355

where ρair(t,z) and χC(t,z) are the average GEM-MACH predicted air density and species mixing ratio around the box (along

s) at height z. A similar procedure (using time-consecutive screens) can be used for estimating the storage termEC,S . The main

difference between DR (Eq. 7) and TR (Eq. 12) retrievals is that the former explicitly accounts for and calculates the storage

term EC,S . As discussed later in Sect. 3.3, the results from the Direct Retrieval (DR) method demonstrate the potentially

significant contribution of the storage termEC,S to the total integrated estimated emission rates EC (Eq. 7). Ignoring this term,360

as in Eq. (12), could result in substantial over/underestimates, if retrievals are attempted for conditions where the underlying

assumption of time-invariant meteorology is not met and/or when significant upwind emissions (from other sources) enter

the flux box. As noted in the Introduction, a priori metrics may be used to avoid these conditions. The key information for

calculatingEC,S , is the estimate of the temporal gradient in species mixing ratio (∂χC/∂t) as in Eq. (4). This is achieved in the

DR method by utilizing GEM-MACH model 4D data (volumetric time-series) and integration over the entire volume of the box365

at each model time-step. These 4D data are not available for aircraft applications of retrieval algorithms, since instantaneous

datasets cannot be created from flight information, and collection of volumetric data may not be operationally feasible in

aircraft campaigns, where flight durations may be limited to a few hours. However, data from time-consecutive 2D screens

may be used to approximate EC,S , leading to improved estimates of emission rates – by providing ancillary information for

the study of temporal trends in chemical and meteorological fields. As we show later in Sect. 3.3, estimates of the storage term370

from time-consecutive 2D screens (Etr∗C,S) are strongly correlated (Pr = 0.9) with the corresponding DR estimates of EC,S

using volumetric (3D) time-series. This high correlation suggests that EC,S can be approximated using ∂χC/∂t generated

from time-consecutive 2D screens (3D fields) as representative of the rate of change in mass within the volume of the box. The

approximation of EC,S using screen data alone is given by,

Etr∗C,S(t) =AMR

∫
ρair(t,z)

∂χC(t,z)

∂t
dz (15)375
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where, same as in Eq. (14), ρair(t,z) and χC(t,z) are the average GEM-MACH predicted air density and species mixing ratio

along s (around the box) at height z. Note that the key difference between Eq. (4) and Eq. (15) is that the former integrates over

the volume, using consecutive time steps of chemical transport model output, while the latter integrates over average values

along s at each height level z on the screen walls using consecutive time steps, and multiplies the result by the box horizontal

area. However, Eq. (15) may also be generated from observations, something which is not possible for Eq. (4). For the case of380

aircraft observations, a repeat flight would be required: rather than just a single flight path starting near the surface and working

upwards along the box boundary, the aircraft would execute (at least) two consecutive box flights around the same facility.

A better approach would be the use of two (multiple) aircrafts, or UAVs as they are becoming more popular for air quality

measurements (e.g., Elston et al., 2015; Mölders et al., 2015; Barchyn et al., 2018; Li et al., 2018), flying in tandem following

the same flight path in order to reduce time lag between samplings (in turn reducing the chance for meteorological variability385

to be a concern). Differencing between the fields obtained from consecutive flights would be used to estimate the value of

Etr∗C,S . As we discuss below, the use of either ground-based or airborne remote sensing is another potential means to estimate

Etr∗C,S . The correlation between EC,S and Etr∗C,S also indicates that the latter may be used to estimate, from repeat flight aircraft

observations and/or remote sensing, the extent to which within-box mass storage may influence emission rate retrievals.

Considering the potentially prohibitive operational cost of conducting repeat flights and the fact that few (e.g. 2-3) time-390

consecutive measurements may not provide enough information for the estimate of temporal trends in within-box tracer mass

budget, the following alternative is proposed. As we discuss later in Sect. 3.3, observed temporal trends of tracer concentrations

(∂χC/∂t) downwind of the emission source are also in similar strong correlation (Pr = 0.9) with the corresponding DR

estimates (using volumetric time-series). Furthermore, our studied cases suggest that downwind vertical-profiling of tracer

concentrations can provide similar estimates of the temporal tends required for the estimate of the storage rate Etr∗C,S and395

can be substituted in Eq. (15) for ∂χC(t,z)/∂t. In observational applications, this can be achieved through ground-based or,

preferably, aircraft-based vertical profiling remote measurements (e.g. LIDAR measurements, Aggarwal et al., 2018), where

the sampling aircraft with a remote measurement setup would collect column data while flying around or downwind of the

emission source. The use of an aircraft-based vertical profiling instrument for a small number of chemical fields, along with

a repeated, single-loop flight path around a facility (10-15 min) would generate fields similar to those generated by the air-400

quality model used here, in turn allowing highly time-resolved estimates of the storage term. This alternative approach can be

more cost (operational) efficient compared to the strategy of repeat flights (which would require a second aircraft traveling in

tandem behind the first to achieve the same time resolution), while providing more time-consecutive data points for the study

of the temporal trends in the tracer mass budget, and further reducing the relatively small emissions biases associated with

extrapolation to the ground of observed fields.405

We note that the correlation betweenEC,S andEtr∗C,S was deduced here through GEM-MACH model simulations with model

grid point resolution (in the horizontal) of 2.5km. This correlation (and the corresponding time/length scales) can be further

investigated through model simulations at higher resolutions (e.g. 50m-250m) and/or field observations (e.g. controlled tracer
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release). Eqs. (14) and (15) along with the other terms in Eq. (12), give the revised TERRA Retrieval (TR*) method,

Etr∗C = EC,H +EtrC,V +EC,V D −Etr∗C,M +Etr∗C,S (16)410

Using the consecutive screens at every model time-step (extracted from GEM-MACH model output fields), estimations

of Etr∗C,S and Etr∗C,M were made for the period of the nine JOSM 2013 cases around Syncrude, CNRL and Suncor facilities.

Retrieved emissions by the TR* method Etr∗C (where tr∗ refers to TR* and tr to TR method estimates) were compared to the

Model Input Emissions (MIE), as well as to the estimations made with the DR and TR methods (EC and EtrC respectively).

Table 1 summarizes the main features of the three retrieval methods (DR, TR and TR*), along with possible practi-415

cal/observational applications for each. Meta-data-set types, terms for estimating the source emission rates, descriptions for

each method, and their relevant equation numbers are also noted on the Table. The horizontal flux and deposition terms EC,H ,

EC,V D are shared among all three methods, with the other terms approximated for the TR and TR* methods. Note that here

EC,V D is "directly" extracted from the model output, but in observational methods this term is also approximated based on the

other measured fields (Table 1). Results and discussions follow.420

3 Results and Discussion

Figure 3 summarizes the retrieved emissions by the three methods (DR, TR and TR*) and their performance against the model

input emissions (MIE); vertical lines represent the over/underestimates by TR method due to the exclusion of the storage term

(EC,S) in Eq. (12), for each case. Also shown in Fig. 3 for reference are the ±50%, 30% and 20% error limits, with ±30%

corresponding to the maximum estimated uncertainty for TERRA applications in Gordon et al. (2015). Estimates for most425

of the flight cases studied here using GEM-MACH output fell within ±30% of MIE, exceptions being cases on August 26th

and 28th (cases 5 and 8). The latter two flights were not analyzed in past work due to unfavorable conditions for reliable

application of TERRA, namely, light variable winds (case 5) and high upwind emissions (case 8). However, they have been

included here using GEM-MACH predictions in mass-balance estimates, as extreme cases in which storage-and-release events

have a significant influence on resulting retrievals. We herein refer to cases 5 and 8 as the rejected cases. Using the DR method,430

we were able to determine the relative contribution of the different terms to the net estimate of EC (Fig. 4).

3.1 Direct Retrieval (DR)

DR estimations were made by analyzing model 4D data for flux boxes approximating the nine cases. The numerical integration

expressions for calculating each term, using model data, are described in Table B1. Estimates of EC for SO2 emission rates for

the three oil sands facilities (Syncrude, CNRL and Suncor) were made by substituting the calculated terms from Table B1 in435

Eq. (7). Figure 4 demonstrates the contribution of each of the terms in Eq. (7) to the total integrated emission rate EC by direct

retrieval (DR) from the GEM-MACH model 4D data for the nine flight cases. As shown in Fig. 4 the main contribution came

from two terms, the net integrated horizontal flux EC,H and the storage term EC,S , together contributing > 97% of the net

change in mass. For 7 out of 9 studied cases, EC,H accounted for> 80% of the total emissions (EC). This is in agreement with
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Table 1. Summary of the three retrieval methods: Direct Retrieval (DR), TERRA Retrieval (TR) approximation and Revised TERRA Re-

trieval (TR*). See Eqs. (4 –15) and equations in Appendix B for descriptions of each term.

Method
Meta

data

Directly

derived terms

Approx.

terms

Equation

numbers

Model-based applications

(methods developed here)

Potential observational

applications

Direct Retrieval

(DR): EC
4D

EC,H , EC,V ,

EC,V D ,

EC,M ,EC,S

—

(B1), (B3),

(4), (5),

(7)

Comprehensive mass-balance

analysis using model output

volumetric time-series data.

Aircraft-based retrievals

with air-quality model

estimates of temporal

trends and the impact

of storage-release.

TERRA approx.

(TR): EtrC
2D EC,H , EC,V D

EtrC,V ,

EtrC,M

(B1), (10),

(11), (12)

Simulating observation-based

mass-balancing by limiting the

analysis to data along box walls

(screens), no estimate of storage.

Aircraft measurements

(standard methods).

Revised TERRA

(TR*): Etr∗C
3D EC,H , EC,V D

EtrC,V ,

Etr∗C,M ,

Etr∗C,S

(B1), (14),

(15), (16)

Improving upon the TR method

by estimating the storage term

from time-consecutive screen data.

Aircraft measurements

with estimate of storage

via (a) repeat flights (e.g.

in tandem aircrafts), (b)

remote vertical profiling

(e.g. lidar).

another model based study by Panitz et al. (2002), where the contribution of advective fluxes (EC,H and EC,V ) were estimated440

as 85% and 95% with no estimation of the storage term. The combined contribution of the other terms (EC,V , EC,V D and

EC,M ) were < 1% for all cases except for cases 6 and 8 (August 26th and 28th) were it was 1.2% and 2.9%, respectively.

For 2 out of 9 studied cases, the contribution of the storage term (EC,S) was > 30%, the maximum estimated uncertainty for

cases analyzed in Gordon et al. (2015). As discussed earlier, these flights were not analyzed in past work – but they have been

included here as good examples of cases in which time-variant meteorology and/or high upwind emissions result in significant445

over/underestimates due to storage-and-release events. We also show later in Sect. 3.3 how these estimates may be improved.

DR method estimates were compared to the model input emissions (MIE), as shown in Figs. 3 and 5 and Table 3. Estimates

were within 1-23% of MIE for the nine studied cases. We note that in some cases (4, 6 and 9), negative EC,S values reduced

the net EC estimate. Rejected cases 5 and 8 were the two cases with the largest storage term (EC,S) contributions of 43%

and 156% (averaged over flight time) of the total estimated emissions (EC), respectively. Once corrected for storage (i.e. DR450

method), estimates for these two cases were within 12% and 23% of MIE. Cases 3 and 4 had the lowest storage rates (2% and

-3%) where storage-corrected estimates were within 1% and 2% of MIE, respectively.
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Figure 3. Emission rates determined by the three methods (DR, TR and TR*) are plotted against model input emissions (MIE). The dark

solid curve is the 1:1 MIE line, estimates below and above this line represent under and overestimation by the three methods. Case IDs are

noted for each set. The vertical lines represent the error associated with storage-release events (EC,S) in TR estimates relative to MIE. Also

shown on the figure are the ±50%, 30% and 20% error limits (dashed lines) for reference.

For the majority of our studied cases, our results indicate that the storage term (if not accounted for) contributes the bulk of

emission rate over/underestimates for the variables investigated here, hence methods to predict and/or reduce its influence are

desirable for aircraft retrieval algorithms. We note that the impact of storage on emission retrieval estimates will depend on the455

relative magnitude of the estimated emissions themselves in comparison to other sources of uncertainty. That is, an emissions

estimate double that of previous estimates, which has a ±30% over or underestimate associated with storage, may still be

concluded as being significantly higher than the previous estimates (i.e. the emissions change is greater than the uncertainty

associated with the retrieval itself). However, the storage term as defined here has been shown to be the main contributor to

emissions over/underestimates, and will therefore be examined in more detail in the analysis which follows. We also note that460

the impact of EC,S is sometimes negative; a net release of mass from the box. Note that net releases of stored mass from the

box would result in emissions overestimates; net storage of mass within the box would result in emissions underestimates.

Storage-and-release events occur when mass is accumulated within the volume of the box and released at a later time through

box lateral walls, see the detailed discussions in Sect. 4. Such events can be detected on the box walls by comparing the temporal

variation in the net horizontal flux, EC,H with EC,S . Figures 7c and 7d (Sect. 4.1) show time series of the horizontal flux EC,H465

and the storage rate EC,S for case 4 on 20 August 2013 (CNRL). Storage-and-release events are represented by peaks and
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Figure 4. Contribution (%) of different terms in Eq. (7) to the total retrieved emissions (EC ), for the nine JOSM 2013 cases. The 100%

contribution level is marked with a (purple) dot-dashed line, ±30% and 50% levels are also marked with (red) dashed lines on the figure.

The main contributing terms were EC,H and EC,S (> 97%). The other terms contributed < 3%, combined.

troughs in the EC,S curve, which coincide with troughs and peaks in the EC,H curve. EC,H and EC,S are anti-correlated

(with Pearson correlation coefficient of Pr =−0.95) for case 4. Pr values between EC,H and EC,S were in the range -0.68

to -0.98 for the nine cases, indicating strong anti-correlations for all the studied cases. Positive values of EC,S correspond

to storage, which result in decreased net flux exiting through the box walls; negative values correspond to release, which470

results in increased net flux exiting through the box walls. Therefore, temporal variations in EC,H over the period of a flight

around an emission source with relatively constant emission rates, can be attributed to mass storage/release. This provides a

potential practical means for detecting storage-release events in aircraft-based retrieval methods as the horizontal flux (EC,H )

can be calculated directly using airborne measurements along the box lateral walls, if ancillary information is available, such as

from repeated flights. Changes to the calculated EC,H can indicate the potential presence of storage-and-release events within475

emissions observation data collection time periods.

3.2 TERRA Retrieval (TR) approximations

By limiting the analysis to the extracted model data along box lateral walls (Fig. 2), TR estimates of model input emissions

(MIE) were made. Terms in Eq. (12) were solved numerically using model data, with EC,H calculated as described in Table

B1; numerical expressions for calculating the rest of the terms are described in Table B2. Model surface deposition rates for480
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the base area of the box (A) were used in TR estimations, similar to the DR method, the main difference between these two

methods is that, unlike Eq. (7), Eq. (12) does not account for the storage term. TR estimates of SO2 emission rates were within

4-39% of MIE for 8 out of 9 studied cases, see Table 3. For cases 3 and 4, the two cases with the lowest net storage, results

were within 4-6% of MIE. For rejected case 8 with the extreme storage event, the TR method underestimated the model input

emissions by -166%; during the sampling period of this case, on average ∼1.5 times more SO2 mass entered the flux box485

through the upwind wall than left through the downwind wall.

Comparing the performance of the two methods (DR and TR) against model input emissions (MIE), reveals the significance

of the storage term (EC,S) in emission rate retrievals. Figure 5 shows the time-series of retrieved emissions using the DR and

TR methods for the nine cases, with model time-step temporal resolution (∆t= 2min). MIE time-series are also plotted for

SO2 emissions from all the sources within each facility. Note that in aircraft-based applications of TERRA, a single emission490

rate estimate (temporal average) is generated based on the observations during the entire flight-time (∼2 hours). Here, where

we approximated the TERRA retrievals by the TR method (see Sect. 2.2.2), instantaneous 2D screen fields (extracted from

the GEM-MACH model output) were used to generate an emission rate estimate at each time-step using the TR method. The

flight-time average estimates by DR and TR methods were compared to the flight-time average MIE; Normalized Root Mean

Square (NRMS) error scores are noted for each method on Fig. 5.495

By combining the information from Figures 4 and 5, TR estimates for the nine cases can be categorized in three groups:

(a) net positive storage (resulting in emission rates underestimation), (b) net negative storage (i.e. release of stored mass from

the box during the time period studied, resulting in emission rates overestimation), (c) low storage amounts; best emission rate

estimates. The first group (a) includes cases 1, 2, 5, 7 and 8. For these cases the net storage was positive, where 13-156% of the

emitted SO2 mass was accumulated within the box volume and was not released through box walls during the sampling time.500

The stored mass was accumulated within the box either before or during the sampling time, which in turn resulted in decreased

flux through box walls and the consequent underestimation in TR estimations. Cases 6 and 9 fall into group (b) where the

previously stored mass was released (-29% and -27%) though the box walls along with the SO2 mass from emission sources

during the flight time, resulting in TR method overestimation. Group (c) include the ideal cases 3 and 4 where TR estimates

were within 4% and 6% of MIE, respectively. These two cases captured consecutive storage-release pairs over the sampling505

period (see Sect. 4.1, Fig. 7c and d for case 4) that canceled each other out and therefor resulted in relatively low (sampling

time average) storage rates (EC,S) of 2% and -3%, respectively.

3.3 Revised TERRA (TR*) Retrieval

Here we show that change in tracer mass within the flux box can also be observed on box lateral walls over time (using

time-consecutive screens), as described in Sect. 2.2.3. Figure 6 demonstrates the correlation between the 4D (volume) and510

3D (screens) estimates of the temporal change in species mixing ratio (∂χC/∂t) for all the data points (2 min resolution)

corresponding to the period of the nine studied cases. The side plots show the range (and distribution) of the estimated ∂χC/∂t

by 3D (horizontal axis) and 4D (vertical axis) calculations. The ∂χC/∂t range is slightly higher for 4D estimates (2.52 ppbv/hr)

than for 3D estimates (2.17 ppbv/hr), and the two variables are strongly correlated. The correlation coefficient Pr = 0.7 (with
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Figure 5. Time-series of the estimates by DR, TR and TR* methods, plotted along with model input emissions (MIE). Normalized-root-

mean-square (NRMS) error for the three methods are noted on the plot for each of the nine JOSM 2013 cases. JOSM 2013 flights on August

24th (case 2) and September 2nd (case 6) included two consecutive box flights around the same facility, shown as shaded areas on their

respective time-series plots. Note that the DR and TR* methods, unlike TR method, account for the storage rate (EC,S and Etr∗C,S).

slope m= 1.36 and b= 0.09 intercept for the least-square fit line), indicates strong correlation between 4D and 3D estimates.515

An exception is rejected case 8, where the correlation is low due to relatively high upwind emissions during the time period

of this case (on August 28th). Excluding case 8 from this analysis, increases the correlation between 3D and 4D estimates to

Pr = 0.9 (with m= 1.07 and b= 0.03). As discussed earlier, the lack of information about the storage rate was the primary

source of under/overestimates in TR method estimates for the majority of our studied cases. Here we demonstrate the use of

an estimate of the storage term (Etr∗C,S , see Sect. 2.2.3) in a revised retrieval approach. We note that this term may be estimated520

from consecutive screens (Eq. 15) or tandem aircraft samples for ambient atmosphere applications. As discussed in Sect. 2.2.3,

an alternative to multiple aircraft-based measurements is to estimate the temporal trends in tracer concentrations (∂χC/∂t)

through remote vertical-profiling (e.g. LIDAR measurements). Our analysis of different flight cases show that downwind

trends are also in strong correlation with DR method volumetric time-series estimates with the same correlation coefficient

of Pr = 0.9 (with different m= 0.57 and b= 0.03). The advantage of remote (downwind and upwind) vertical-profiling over525
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Figure 6. This three-panel graph demonstrates the correlation between estimates of ∂χC/∂t by analyzing 4D (box) and 3D (consecutive

screens) data sets. The vertical side plot shows the range and distribution of ∂χC/∂t estimates for the period of nine studied flights by 4D

analysis, the horizontal side plot shows the same for 3D analysis. The main panel demonstrates the correlation between the two methods of

estimation. Pearson correlation coefficient (Pr = 0.74) shows the strength of this relation. The least-squares fit line has slope m= 1.36 and

intercept b=0.09. Note that case 8 estimates are in low correlation due to relatively high upwind emissions during the time of that particular

flight case (August 28th), rendering the 3D estimates less representative of the 4D estimates. Excluding case 8 from this analysis, results in

Pr = 0.88, m= 1.07 and b= 0.03. Etr∗C,S can be estimated from multiple consecutive 2D screens, by assuming 3D estimations of ∂χC/∂t

as representative of the rate of change in species mass within the flux box. The same can also be estimated from downwind vertical profiling

of tracer concentrations over the sampling time.

multiple aircraft or UAV measurements, in addition to operational cost efficiency, would be the collection of more temporal

measurements over the sampling time, which in turn can result in improved estimates of ∂χC/∂t and the storage term (Etr∗C,S);

as opposed to estimates based on few time-consecutive measurements (e.g. 2-3) via multiple or in tandem aircrafts. Data

from time-consecutive screens/measurements can then be used to numerically solve Eqs. (14) and (15) (see Table B3 for
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discrete integral expressions). For GEM-MACH-driven retrievals as used here, these time-consecutive screens originate from530

consecutive model output times. Here, we show the effect of the Etr∗C,S estimate on the resulting TR* emission rate estimates

(Etr∗C ) using GEM-MACH fields for top-down retrievals. Improved/revised TERRA Retrievals (TR*) can be made by plugging

in Etr∗C,M and Etr∗C,S in Eq. (16). TR* method estimates are compared to the model input emissions (MIE) in Figs. 3 and 5 and

Table 3. For 8 out of 9 cases, TR* estimates were within 2% to 34% of MIE. TR* estimates showed improvement over the TR

method for all the cases (including the rejected case 8) by 2-52% of MIE, see Table 3. TR* estimations rely on the availability535

of temporal data for estimating change in tracer concentrations (∂χC/∂t) along the box lateral walls (or only on the downwind

wall) for each emission rate retrieval case, which in our analysis with simulated fields were readily available with the GEM-

MACH model data at each time-step. Again, for observational applications: (1) a repeat box flight procedure can be used, where

an aircraft carries out a second box flight immediately after the first flight, or two aircraft (or UAVs) follow the same flight path

in tandem, one positioned a fixed distance behind the other, or (2) remote vertical-profiling (e.g. remote LIDAR measurements)540

on a single aircraft can be employed to collect time-consecutive measurements of relevant fields, in the column, around the

emitting facility.

4 Three Quantitative Predictors of Storage and Release Events

The main processes contributing to the change in SO2 mass within the volume of the box are illustrated in Fig. 2a (EC , EC,S ,

EC,H , EC,V and EC,V D). An SO2 emission source continuously adds mass to the box at emission rate EC . Most of the mass545

is advected out of the box through the top and lateral walls (EC,V and EC,H ), and some is deposited to the ground surface

(EC,V D). All the while, mass is continuously stored within the volume of the box and may later be released at net storage

rate EC,S (positive to negative). Under time-invariant conditions (e.g. wind field, atmospheric stability, emission rate), the rate

of generation of mass (EC) is at net (mass) balance with the other mass-removing processes (EC,H , EC,V and EC,V D) and

the total accumulated mass within the box volume (BC) remains relatively constant over time, and the storage rate negligible550

(EC,S ' 0). The mass-balance approach based on the divergence theorem (Eq. 12) can therefore accurately equate the source

emission rate to the net integrated flux leaving the box through the enclosing surfaces. However, localized (spatial) variations

in meteorological fields (e.g. atmospheric stability, wind) and chemical fields (e.g. temporal changes in source emission rate

(EC) and/or significant incoming upwind emissions) during the retrieval time, can shift the mass balance towards EC,S 6= 0

(Eq. 7) - i.e. storage-and-release events. The scale and duration of the storage-and-release events contribute to over- and under-555

predictions in estimated emissions based on the mass-balance approach. Using GEM-MACH model 4D data we carried out

extensive analysis of the storage-release events during our studied cases and devised three quantitative predictors for the severity

of these events. In the following subsections, using results from DR, TR and TR* estimates, we discuss these parameters and

their correlation with over- and under-estimates in top-down mass balance emission rate retrievals due to storage-and-release

events.560
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4.1 Gradient Richardson number (Ri) and changing atmospheric stability

Aircraft-based emission retrieval methods such as TERRA, utilize the mass-balance approach with the underlying assumption

of mean steady-state conditions over the region of study (∼ 100× 100 km2) during the flight time (∼2-3 hours). However,

localized and transient variations in atmospheric stability at the vicinity of the stack/source location can impact the pollutant

plume rise and transport within the box and result in storage-release events. Horizontal wind velocity usually increases log-565

arithmically with height. The height the plumes reach in the atmosphere depend on the stack parameters (exit velocity, exit

temperature, stack height) and on the local stability conditions (temperature and wind profile near the stack location). Thus

plume height may change with varying stack parameters and stability conditions during the course of a retrieval. This in turn

would move the mass to a different flow regime – e.g. higher horizontal velocities if the plume height has increased, and lower

horizontal velocities if the plume height has decreased. These changes in plume height, in response to changes in atmospheric570

stability, may thus lead to a change in the rate at which emitted mass is transported out of the box. Stability changes are thus a

good predictor of the possibility for mass storage and release. A measure of the change in dynamic stability is therefore desir-

able as a predictor for conditions under which this aspect of the “static meteorology” condition, required for reliable top-down

emission rate retrievals, is not met.

Atmospheric dynamic stability can be described in terms of the gradient Richardson number (Ri), which is a dimensionless575

ratio, related to static stability and the shear induced turbulence (American Meteorological Society - AMS, 2021a),

Ri=

g
Tv

∂θv
∂z(

∂U
∂z

)2
+
(
∂V
∂z

)2 (17)

where θv and Tv are virtual potential temperature and virtual absolute temperature, respectively, g is the gravitational constant

and U and V are the horizontal wind components. The sign of Ri is determined by the static instability term (∂θv/∂z) in

Eq. (17); the denominator is always positive. In the presence of a strong wind shear Ri approaches 0. The critical gradient580

Richardson number (Ric) is about 0.25, below this value the atmosphere is dynamically unstable. The atmospheric Physics

module within the GEM model includes the estimation of atmospheric stability and calculations of the gradient Richardson

number, Ri (Mailhot and Benoit, 1982), which is also used as a parameter (in addition to emission stack/source information

such as temperature, exit velocity) to calculate plume rise height (Akingunola et al., 2018). Changes in Ri with respect to time

are thus an indicator of the potential for the plume to change height during an aircraft emission rates retrieval; Ri may be585

predicted using a weather forecast model as part of pre-flight planning.

For our analysis, 4D fields of Ri were extracted from the model output dataset for each of the nine studied cases. Figure 7

shows the case for the JOSM flight on 20 August (case 4) with vertical profile time-series at the location of the emitting stack,

and comparesRi in (a), with the SO2 mixing ratio in (b), the net horizontal fluxEC,H in (c) and the storage rateEC,S in (d). As

shown in Fig. 7a, the region of unstable air (blue) was gradually increasing in height during the sampling time, resulting in an590

increase in the vertical extent of the mixing layer. Note that the color-scale is symmetric around the critical gradient Richardson

numberRiC = 0.25 in Fig. 7a. The increase in the vertical extent of the mixing layer during the period of case 4, resulted in the

SO2 plume mixing into heights with higher wind speeds (Fig. 7b). The incremental plume rise resulted in a sequence of fast-
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Figure 7. This schematic demonstrates (qualitatively) the correlation between change in atmospheric stability represented by the gradient

Richardson number (Ri), plume vertical motion and storage-release events for the period of case 4. (a) Ri vertical profiles at stack location

over the flight time, with the color-scale symmetric around the critical gradient Richardson number RiC = 0.25). (b) SO2 mixing ratio

vertical profiles at stack location. (c) Time-series of net horizontal flux (EC,H ) and (d) the storage rate (EC,S), over sampling time. Note

the level of anti-correlation between EC,H and EC,S (Pr =−0.95); oscillations in storage and release are occurring: changes in EC,S are

matched by opposite changes in EC,H . Wind speed and direction are shown as barb plots with units m/s (half =5, full=10). For every

incremental rise in plume height, a corresponding release event occurs. As the plume ascends into regions with faster wind speeds, more

mass is released (EC,S < 0) through the lateral walls resulting in an increase in EC,H as can be seen in (c).

release events, that is, the simulated plume was moved into a faster (higher level) horizontal flow, and SO2 mass was carried

to the boundaries of the box faster – the net rate of mass loss through the downwind walls thus increased during the sampling595

time period ( ∂∂t (EC,H)> 0, Fig. 7c; ∂
∂t (EC,S)< 0, Fig. 7d). Note the anti-correlation between EC,S and EC,H in Fig. 7c,

d. We also note that although faster moving flow can result in more mixing and the subsequent plume dilution, the decrease

in compound mixing ratio is not necessarily enough to compensate for the increased exiting flux. If emissions retrievals are

calculated under these conditions without accounting for the storage term (negative in this case), emissions estimates will

be biased high (overestimation). These fast-release events temporarily disturb the required balance between the addition of600

mass to the box volume by source emissions (EC) and removal of the mass through vertical and horizontal fluxes and surface

deposition, causing a negative change in the total stored mass (BC) within the volume of the box (EC,S < 0). These release

events can be seen as troughs (peaks) in the EC,S (EC,H ) time-series plot (Fig. 7c, d). While the plume remained at a constant

height, the balance was restored over time (EC,S → 0); this can be seen as peaks/plateaus in EC,S time-series in Fig. 7d. After

these periods of changing stability, the plume started to rise again, and the balance was shifted, again resulting in negative605
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Figure 8. Correlation between the normalized root-mean-square (NRMS) error and the change in atmospheric stability represented by the

absolute change in the gradient Richardson number |∆tRi|. The shaded areas indicate the 90% confidence region. Case ID is indicated for

each data point on the graph along with the calculated Pearson correlation coefficients (Pr) for the three methods. Results indicate a strong

positive correlation between the NRMS error and |∆tRi|.

EC,S values. This process was repeated several times over the period of case 4, resulting in a sequence of release events. Note

that the trough to peak duration (period) and scale (magnitude) of each event are inversely proportional to the wind speed

at plume height, and they are reduced as the plume ascends into faster moving layers of air resulting in a damped oscillatory

storage and release sequence. In this particular example, this periodic storage-release during the sampling time, with subsequent

equilibrium intervals, resulted in relatively small net storage of EC,S =−3% over the sampling time and TR estimates within610

6% of MIE (slight overestimation) for case 4. When consecutive storage-release pairs are captured during the flight/sampling

time as in case 4, the average error due to storage term (EC,S) is reduced. However, if the storage or release is of longer

duration, so that an unpaired event occurs during observations, the net error increases, as was the case for flight case 9 where

an unpaired release event (one storage-release pair and one additional release event) resulted in net storage of EC,S =−27%

and a consequent TR overestimates. Monotonic storage or release events occur when mass is continuously stored (e.g. when615

a plume descends into slower moving air throughout a sampling interval; ∂
∂t (EC,S)> 0 and ∂

∂t (EC,H)< 0) or released (e.g.

release of previously stored mass during a sampling interval; ∂
∂t (EC,S)< 0 and ∂

∂t (EC,H)> 0); such events result in TR

under/overestimates as in case 2 where net storage of EC,S = 20% (i.e. storage event: EC,S > 0 and ∂
∂t (EC,H)< 0) resulted

in TR underestimations.
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The average value Ri=−0.14 at plume height, indicates unstable conditions (Ri < RiC) during the period of case 4 –620

the average value was calculated by spatially averaging Ri at the vertical layer containing the plume center (maximum con-

centration in the vertical) over the horizontal extent of the box at each time-step and then averaging over the sampling time.

Atmospheric stability was further decreased at an average rate of ∆tRi=−0.25 h−1 over the period of this case. Change in

atmospheric stability (represented by ∆tRi) is thus related to plume vertical motion and mixing, which in turn contributes to

storage-release events and a corresponding over- or under-estimate in TR retrievals; ∆tRi is thus a useful forecast metric to use625

as an a priori indicator of the potential for changing atmospheric stability affecting emission rates retrieval accuracy, and may

also be calculated from retrieved aircraft meteorological data. Table 3 lists (flight time) average Ri and ∆tRi values for each

of the nine studied cases. Our analysis indicates a strong positive correlation between the absolute value |∆tRi| and the NRMS

error for DR, TR and TR* methods with the Pearson correlation coefficients (Pr) of 0.6, 0.7 and 0.8, respectively. Figure 8

shows the correlation between |∆tRi| and NRMS error for each method. Note that the rejected case 8 with ∆tRi=−0.34630

h−1 (see Table 3) was excluded from correlation analysis as an outlier, due to the extreme impact of high upwind emissions

(and not meteorological variability) on emission rate estimates (further discussed in Sect. 4.3). ∆tRi can be calculated from

aircraft-measured data along the lateral walls of the box and the measured data from additional profiling spiral flights upwind

and downwind the source, such as those conducted during JOSM 2013 campaign. Analysis of ∆tRi can provide insights

regarding the change in atmospheric stability and the probability of plume vertical motion and the resulting storage-release635

events during flight time; the uncertainty levels associated with the storage rate (EC,S) in the retrieved emissions can therefore

be quantified.

4.2 Plume vertical motion and variations in the direction of the transport

The direction of the wind experienced by the plume may change when the plume remains at one altitude, or may change as

the plume rises or falls in the atmosphere (e.g. via the well-known “Ekman spiral” of wind direction changes with increasing640

height, AMS 2021b). Changes in wind direction for a fixed plume height would result in the rejection (for top-down retrievals)

of the flight – here we note that changes in wind direction due to plume vertical motion may also be a potential reason for

flight rejection. Using GEM-MACH predicted wind fields for the nine studied cases (chosen a priori for relatively constant

wind speeds at each height), we here investigated the extent of variations in wind direction at the time-varying vertical level

containing the plume center,645

∆tα=
σα

∆tSP
(18)

where σα is the standard deviation in wind direction αwind time-series (spatially averaged over the horizontal extent of the

box including lateral walls at each time step) and ∆tSP is the Sampling Period time duration. In aircraft-based retrievals (e.g.

TERRA), ∆tα can be estimated from aircraft measurements around the box at plume center-point height. Our analysis of the

wind fields for the nine studied cases indicates a positive correlation (Pr = 0.6) between the rate of variation in wind direction650

(∆tα) and the rate of change in atmospheric stability (∆tRi). Variations in the direction of the flow at plume height (∆tα)

can result in the re-circulation of the plume, accumulation of the emitted mass within the volume of the box and its release at
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Figure 9. SO2 mixing ratio horizontal cross-sections at two (consecutive) plume center (max. conc.) heights (meters above sea level - masl)

and four time-steps, during the period of case 5 over CNRL. The strength and direction of the airflow at each cross-section is represented by

grey arrows. Corresponding time and average height are noted for each panel. As the plume rises into layers with different wind direction

over time, it re-circulates within the volume of the box which in turn results in a storage event.

a later time (storage-release event). Such an event occurred during our GEM-MACH model simulations for the period of the

JOSM flight on 26 August around CNRL (case 5). Figure 9 shows horizontal cross-sections of the SO2 mixing ratio data at

two (consecutive) plume-maximum heights and over time for case 5. Starting from top left at 20:20UT and height H1 = 909m655

(meters above sea level - masl) to the bottom right at 21:30UT and height H2 = 1079m (masl), horizontal cross-sections are

plotted at plume center-point (maximum concentration in the vertical) height at each time. Air flow direction and strength are

shown as grey arrows on each panel. The model shows strong vertical wind shear between these two heights, with a∼ 180°shift

in the wind direction between the upper and lower row of panels which remains relatively constant with time. This is a subtle

example of how wind direction changes may interact with changes in stability: while the wind direction is relatively static at660

each height, changes in stability may cause the plume to rise to different heights, where the wind direction may change or

even reverse relative to the level below. The changes in turn will alter (slow) the rate of mass release from the walls of the box

( ∂∂t (EC,H)< 0); a storage event, with ∂
∂t (EC,S)> 0. For this particular case (5), between 20:20UT and 20:50UT the plume
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Figure 10. Correlation between the normalized root-mean-square (NRMS) error and the change in wind direction at plume height (∆tα).

The shaded areas show the 90% confidence region. Case ID is noted for each data point on the graph along with the calculated Pearson

correlation coefficients (Pr) for the three methods. Results indicate a positive correlation between the NRMS error and ∆tα.

center was at H1 and was advected in a weak south-easterly wind; between 20:50UT and 21:00UT, the plume mixed upwards

and rose to H2 where wind direction was north north-westerly and remained there until 21:30UT (which afterwards descended665

back to H1). This change in wind direction at plume height (∆tα) as a consequence of plume vertical motion due to change in

atmospheric stability (∆tRi 6= 0), resulted in a net storage of EC,S = 43% during case 5 and consequently an underestimation

in emission rate using the TR method.

Cases 6 and 9 (both release events) along with rejected case 5 (storage event) were the three cases most impacted by

variations in wind direction at plume-center height. Flight time average ∆tα values for all nine cases are given in Table 3. Our670

results indicate a positive correlation between ∆tα and NRMS error in DR, TR and TR* estimates, similar to ∆tRi; Figure 10

demonstrates this correlation for the three methods, with Pr scores 0.4, 0.7 and 0.6, respectively. As mentioned earlier, there is

also a positive correlation between ∆tα and ∆tRi (Pr = 0.6); the combined effect of change in the direction of the transport

and changing stability increases the uncertainty in the retrieved emission rates. In aircraft-based emission rate retrievals, wind

shear strength in terms of ∆tα can be included in uncertainty analysis associated with plume vertical motion due to change675

in atmospheric stability (∆tRi). Aircraft-measured data along the box walls combined with measurements during additional

spiral flights can be used to evaluate these metrics.
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4.3 Weighted upwind to downwind concentration ratio (φ)

In applying the mass-balance technique, the mass flux associated with upwind emissions (and regional background levels)

entering the box volume (inflow) is subtracted from the downwind outgoing flux containing the emissions within the box680

(outflow) to estimate the net emission rate from sources within the box volume. The mass inflow associated with regional

background levels (e.g. for CH4 and CO with relatively high background concentrations) is balanced out with the mass flux out

of the box due to spatial (horizontal) homogeneity of background concentrations. However, emissions from upwind sources

carried through the sampling region (box volume) are spatially heterogeneous (plumes) and therefore their inflow and outflow

through a control volume is not necessarily equal and canceling. For instance, converging horizontal wind fields and/or plume685

vertical motion and mixing can result in temporary accumulation of the mass of these upwind plumes within the box (control

volume). If the emissions from upwind sources are large relative to the within-box source(s), the emission rates retrieval may

therefore become less accurate. That is to say, all the processes (including the ones described above in terms of ∆tRi and ∆tα)

that contribute to storage-release of the mass emitted by the source(s) within the flux box, may also affect the mass emitted

from upwind sources which are entering the box through the upwind wall(s) – leading to further increased uncertainty in the690

retrieved emission rates for sources within the box. The box upwind-to-downwind concentration ratio is in strong correlation

with the relative magnitude of upwind emissions entering the box to the emissions from a given source within the box, with

Pr ≥ 0.8 as determined for our nine studied cases. To distinguish upwind emissions from regional background levels, this ratio

can be weighted by temporal standard deviations in upwind and downwind concentrations. Hence we define,

φ=

(
χC,u
χC,p

)(
σχC ,u

σχC ,d

)
(19)695

where χC,u is the screen average upwind concentration and χC,p is the plume average concentration; here the plume is de-

fined as downwind concentrations that are one standard deviation above the mean. σχC ,u and σχC ,d are upwind and downwind

concentration standard deviations. Note that while the first ratio in Eq. (19) represents the magnitude of upwind to source emis-

sions, the second ratio distinguishes upwind plumes from background concentrations: in the absence of upwind plumes, σχC ,u

approaches zero due to the uniform nature of background concentrations. Parameter φ can therefore provide a quantitative700

indication of the level of confidence in the retrieved emissions based on the mass-balance approach, due to this factor. Table 3

lists φ values in % for the nine studied cases, determined from our GEM-MACH simulated fields.

For an isolated source with relatively low upwind emissions (which in turn depends on the mean wind direction and the

location of the nearby sources) φ would be small and the application of the mass-balance technique would be expected to

yield more accurate results. This was true for cases 3 and 4 with φ < 0.2% (see Fig. 2d for case 4). JOSM 2013 cases 3 and705

4 were conducted over CNRL and Syncrude oil sands facilities on 20 August and 3 September 2013. For the period of these

two flight cases, wind directions were also consistently from the south-west, a condition that was accurately simulated in our

GEM-MACH model runs for the same period. CNRL and Syncrude are the two facilities located on the western side of the

Athabasca oil sands complex, with no facilities to their west and therefore no upwind sources of emissions when wind direction

is from the west (Fig. 1b). These conditions resulted in low EC,S rates of 2% and -3% for cases 3 and 4. For these two cases,710

TR estimates were within 4-6% of the model input emissions (MIE). Our TR estimates of SO2 emissions for CNRL were
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Figure 11. Case 8 screens around Suncor: (a) air flux screen (b) SO2 mixing ratio screen and (c) SO2 mass flux screen. Note the strong

negative flux (inflow) on the west wall and the weaker positive flux (outflow) on the east wall resulting in (sampling time avg.) φ= 13%.

in strong agreement with TERRA SO2 emission rate estimates by Gordon et al. (2015) using aircraft-measured data during

JOSM 2013 campaign, where estimates were 4.8% higher than minute-by-minute emissions reported by CNRL. Our analysis

indicates that about 3% of this overestimation could be due to release of the stored mass during the flight on 20 August (case

4).715

Small φ values represent favorable conditions for applying the mass-balance technique for emission rate retrievals. For 7 out

of 9 studied cases, φ was less than 10% with NRMS errors between 4-28% for TR estimates. The opposite was true for rejected

cases 5 and 8 with φ scores 11% and 13%, with NRMS errors 39% and 166% for TR estimates. This under performance

was a combined result of upwind emissions which were higher than the source emissions, consistent converging wind fields

(slower wind speeds within the flux box relative to the upwind wall throughout the flight time), and plume vertical motion due720

to change in atmospheric stability (∆tRi 6= 0). For rejected case 5, there was an additional contribution from variations in the

direction of plume transport (∆tα= 46°, sampling time average). Rejected case 8 was conducted around the Suncor facility

on 28 August 2013, during which the mean wind direction was from the west; as a result large upwind SO2 plumes originating

from the Syncrude facility, located on the west side of Suncor (see Fig. 1b), continuously entered the flux box during the period

of this case. SO2 mass was accumulated within the volume of the box resulting in a flight/sampling time average storage rate725

of 156% of the total retrieved emission rates (see Fig. 4). Note that a large upwind source was a condition previously identified

for rejecting this flight from emissions calculations (which is why emissions from this flight were not estimated in previous
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Figure 12. Correlations between the normalized root-mean-square (NRMS) error and the forecast parameter φ, for DR, TR and TR* esti-

mates. The shaded areas indicate the 90% confidence region. Case ID is indicated for each data point. Pearson correlation coefficients (Pr)

for the three methods are also noted on the graph. Results indicate a strong correlation between NRMS error and the φ parameter.

work). The φ predictor introduced here allows this effect to be quantified (from model forecasts used to plan aircraft flights,

and the analysis of aircraft measured pollutant data time-series). Figure 11 shows (a) air flux, (b) SO2 mixing ratio (χSO2
) and

(c) SO2 mass flux screens around Suncor at the start of rejected case 8; note the strong negative (inwards) flux on the west wall730

(originating from upwind emissions from the Syncrude facility) and the weaker positive (outwards) flux on the east wall (Fig.

11). By accounting for the storage rate (Etr∗C,S), using model 3D data from time-consecutive screens, NRMS error was reduced

by 52% of MIE in TR* estimates for this case. Direct retrieval (DR) of the Suncor emission rates for the period of rejected case

8, where storage was estimated directly from the model 4D data (volumetric time-series), was within 23% of MIE. φ= 13%

for rejected case 8 implies unsuitable conditions (> 30% uncertainty) for the application of the mass-balance technique, as the735

TR method failed to retrieve facility emissions (EC < 0); the φ parameter allows a quantification of the conditions for rejection

of flight data for emission rates retrieval purposes.

Our results indicate a strong positive correlation between φ and the NRMS error (strongest among the three forecast param-

eters), independent of the method. Figure 12 shows this correlation for the three retrieval methods, note that rejected case 8

was excluded from correlation analysis as an outlier (extreme storage event) since its inclusion would dominate the correla-740

tion and obscure the information from the other data points. Pearson correlation coefficients (Pr) for DR, TR and TR* were

calculated as 0.6, 0.9 and 0.7, respectively. That is, a significant proportion of the variability in the emission retrieval NRMS
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error can be accounted for by each of the metrics proposed here. In aircraft-based retrievals, analysis of φ can provide insights

on the expected reliability of the retrieved emissions and the probability of storage-release events. Pre-flight model forecasts

of φ can be used for the same purpose. For φ scores greater than 10%, the uncertainty in the retrieved emission rates due to745

storage-release is over 30%. For such conditions, it is advised that the storage rate (EC,S) be estimated from time-consecutive

screens and/or vertical profiles of relevant fields. This can be achieved by conducting multiple box flights and/or downwind

vertical profiling over the sampling time in order to estimate Etr∗C,S for improved top-down emission rate retrievals (TR*, see

Sect. 2.2.3 and Sect. 3.3).

4.4 Summary of predictive methods750

The three forecast parameters ∆tRi, ∆tα and φ as discussed above provide a new approach for analyzing the uncertainty levels

associated with potential storage-release events during aircraft-based emission rate retrieval flight time, either using a priori

meteorological forecasts to provide guidance for emission retrieval flight decision-making, or in post-processing of already

completed flights. Table 2 summarizes the correlations between these parameters and the NRMS error in estimates by TR

method in terms of Pr correlation coefficients and the slopes (m) of the best fit lines (least squares) in Figures 8, 10 and 12.755

The last row in Table 2, demonstrates the correlation between the changes in the two meteorological forecast parameters ∆tRi

and ∆tα and change in NRMS error levels; accordingly, net changes of 0.57 h−1 in |∆tRi| and 60° h−1 in ∆tα during the

flight/sampling time may result in 30% (or more when both contribute) uncertainty in the estimates, the maximum estimated

uncertainty (30%) for TERRA SO2 emission rate retrievals in Gordon et al. (2015). The combined effects of |∆tRi|= 0.62

h−1 and ∆tα= 46° h−1 during the ∼2 h flight time of case 5, contributed to a net error of 39% in TR estimates for this case.760

Further, for any forecasted/estimated rate of change in meteorology in terms of ∆tRi and ∆tα, shorter sampling intervals

(e.g. two flights in tandem, vertical profiling information) may result in more confidence in the estimated emission rates; small

values of ∆tRi and ∆tα correspond to steady state conditions, whereas higher values correspond to increased uncertainty

in the estimates due to storage-release events. The NRMS errors in TR estimates for cases with φ < 10% (7 out of 9), were

less than 30%. φ > 10% correspond to over 30% uncertainty in the estimates, as for rejected cases 5 and 8. Note that cases 5765

and 8 were excluded (rejected) from TERRA retrievals in previous work due to unfavorable conditions for the application of

TERRA. Here, using GEM-MACH predicted fields, we were able to quantify the impact of changing meteorology and/or high

upwind emissions in mass-balance emission rate retrieval for these two cases in terms of the three forecast parameters ∆tRi,

∆tα and φ as described above.

We have examined storage and release events in the specific context of “box” flights around an emitting facility, however770

note that other strategies have been put forward in the literature (e.g. near-field downwind transects, Peischl et al., 2010).

We note: (1) The heterogeneous nature of meteorology even at the scales employed for the box flights here suggests that

the impact of storage and release will likely be greater as the distance between screen(s) and emission source(s) increases (for

example see Appendix C, Figure C1, for case 8, where the contribution of the storage term increases as a function of downwind

distance): short distance “box” flights such as examined here would reduce the storage and release impact; (2) Our ∆tRi and775

∆tα parameters may nevertheless be applied to "single-leg" downwind transects retrievals, and repeat flights (e.g. by a second
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Table 2. Summary of correlations between NRMS error in TR estimates and the three forecast parameters for storage-release events, in terms

of the Pearson correlation coefficient (Pr), and fit line (least squares) slopes (m) in Figures 8, 10 and 12. The last row indicates the amount

of change in forecast parameters that would result in >= 30% error in estimates. φ < 10% corresponds to NRMS error < 30%.

Parameter |∆tRi| ∆tαi φ

Pr correlation 0.7 0.7 0.9

m= ∆(NRMSe)
∆(Param.)

0.525 [h] 0.005 [°−1h] 2.4

30%
m 0.571 [h−1] 60°[h−1] 0.125

aircraft following behind the first aircraft) may be one way of reducing storage and release uncertainties in these flights; (3)

Our φ parameter relies on the availability of upwind information and hence is not applicable for “single-leg” (e.g. downwind

transects) retrievals. (4) Our φ parameter provided the strongest correlation between storage and release and retrieval outcomes

and therefore, where possible, should be estimated from additional upwind observations. These findings suggest that, while780

some aspects of storage and release can be identified with “single-leg” downwind flights, the impacts of storage and release for

these flight patterns may be higher than for “box” flight patterns such as studied here.

Table 3 provides a summary of all the meteorological conditions and emission scenarios in our GEM-MACH model simu-

lations for the period of the nine studied JOSM 2013 cases. The three forecast parameters are also provided in the table: the

average rate of change in atmospheric stability represented by ∆tRi, the average rate of change in wind direction at plume785

height (change in direction of the transport) represented by ∆tα and the weighted upwind-to-downwind concentration ratio

parameter (φ). Estimates by the three described methods (DR, TR and TR*) are compared to model input emissions (MIE),

and the corresponding normalized (to MIE) mean (NM) and root-mean-square (NRMS) errors are listed for each of the studied

cases.
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Table 3. A summary of the meteorological conditions and source emission scenarios by the three oil sands facilities for the period of the

nine JOSM 2013 box flight cases in our GEM-MACH model simulations. Flight date-time and duration is provided for each case, LT stands

for local time (UT−6hr). The flight time average Ri, wind speed and direction at plume height are shown. The three forecast parameters are

also provided: ∆tRi, ∆tα and (φ). DR, TR and TR∗ method estimates are compared to model input emissions (MIE). Storage (S) and/or

release (R) events, their order of occurrence (for the cases where both were present) and their relative magnitude (represented by font-size)

are given. The flight time average storage rate as a fraction (%) of the total retrieved emission rates are also provided for each case. The

performance of the three retrieval methods against MIE, are shown in terms NM and NRMS errors.

Facility Syncrude CNRL Suncor

Case ID 1 2 3 4 5 6 7 8 9

Flight Date & Aug 14 Aug 24 Sep 3 Aug 20 Aug 26 Sep 2 Aug 22 Aug 28 Aug 29

Start Time (LT) 10:12 11:50 14:58 10:30 13:43 11:43 11:45 11:18 15:01

Duration (hh:mm) 1:18 2:06 2:07 2:10 1:52 1:45 2:58 2:30 2:13

Atmos. Conditions stable unstable unstable unstable stable unstable unstable unstable unstable

Ri 0.26 -0.03 -0.66 -0.14 1.01 -0.26 -0.19 -0.44 -0.58

avg. Wind Direction 200° 264° 215° 259° 243° 100° 246° 297° 55°

avg. Wind Speed (m/s) 4.3 2.0 4.9 10.9 0.8 6.9 11.4 3.2 2.0

∆tRi (h−1) -0.38 -0.13 0.19 -0.25 0.62 -0.28 -0.26 -0.34 0.15

∆tα (h−1) 3.3° 6.5° 1.3° 1.8° 45.8° 33.9° 2.4° 3.3° 11.8°

φ (%) 0.244 2.766 0.167 0.004 10.97 6.725 5.992 13.04 0.137

avg. Model Input 3423 4050 6923 2979 120 83 1467 1273 1013

Emissions (MIE) kg/hr kg/hr kg/hr kg/hr kg/hr kg/hr kg/hr kg/hr kg/hr

Storage and/or Release S-R S R-S R-S S R R-S S R

Net Contribution 17 % 20 % 2 % -3 % 43 % -29 % 13 % 156 % -27 %

Norm. Mean Error:

DR (EC ) vs. MIE -0.07 0.04 -0.00 -0.01 0.11 -0.00 -0.14 0.22 -0.08

TR (EtrC ) vs. MIE -0.22 -0.16 -0.02 0.02 -0.36 0.24 -0.25 -1.66 0.17

TR∗ (Etr∗C ) vs. MIE -0.11 -0.07 -0.01 -0.00 -0.26 0.05 -0.14 -0.96 0.11

Norm. RMS Error:

DR (EC ) vs. MIE 0.10 0.04 0.01 0.02 0.12 0.07 0.14 0.23 0.08

TR (EtrC ) vs. MIE 0.23 0.18 0.04 0.06 0.39 0.25 0.28 1.66 0.17

TR∗ (Etr∗C ) vs. MIE 0.16 0.08 0.02 0.03 0.34 0.07 0.17 1.14 0.15
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5 Conclusions790

We have carried out a series of retrospective air quality simulations employing Environment and Climate Change Canada’s

(ECCC) air quality model, Global Environmental Multiscale - Modelling Air-quality and Chemistry (GEM-MACH), for the

period of the JOSM 2013 campaign over the Athabasca oil sands region, with the primary objective of evaluating aircraft-

based mass balance emission rate retrievals such as applied in TERRA (i.e. the Top-down Emission Rate Retrieval Algorithm).

We considered the simulations of nine JOSM 2013 emission estimation flight cases, over three oil sands facilities with high795

SO2 emissions (CNRL, Syncrude and Suncor), and used GEM-MACH model 4D output data as a surrogate for aircraft mea-

surements in emission rate estimations to evaluate the application of the mass-balance approach in top-down methodologies.

Although the emphasis was on SO2 emissions, the explored concepts and the three forecast parameters developed here are also

applicable to species with high background levels (e.g. CH4, CO). Emission retrievals were made by analyzing GEM-MACH

model output data through three different approaches: (a) Direct Retrieval (DR) of the model input emissions (MIE) by analyz-800

ing GEM-MACH model 4D data (volumetric time-series) through a comprehensive analysis of all of the processes contributing

to the change in mass within the control volume (flux box) including vertical and horizontal fluxes through box top and lateral

walls, surface deposition and rate of storage of mass within the volume of the box, (b) TERRA Retrieval (TR) approximations

by limiting our analysis to the model data on 2D screens comprised of lateral walls of the flux box surrounding the emission

source, mimicking aircraft-based retrievals during an emission estimation (box) flight, and (c) improved TERRA Retrievals805

(TR*) through estimation of the rate of change in the stored mass within the volume of the flux box by analyzing the data on

time-consecutive 2D screens at each model time-step (3D). See Table 1.

Results were compared to the model input emissions (MIE) and the performance of the three methods was analyzed in terms

of Normalized (to MIE) Root-Mean-Square (NRMS) error. DR method estimates (EC) were within 1-23% of MIE for all 9

studied cases. TR and TR* (EtrC and Etr∗C ) estimates for 7 out of 9 cases were within 4-28% and 2-17% of MIE, respectively.810

This range of emissions retrieval error was similar to the range (±30%) estimated from aircraft observations in previous

work (Gordon et al, 2015), with the remaining 2 flights (rejected cases 5 and 8) excluded in previous work due to unsuitable

meteorological conditions and knowledge of upwind emissions. Estimates for the JOSM case on 26 August 2013 around the

CNRL facility (rejected case 5) were impacted by change in atmospheric stability at rate |∆tRi|= 0.62 h−1 and shift in wind

direction at plume center-point (maximum concentration) height at rate ∆tα= 46° h−1 during the ∼2 h flight time; NRMS815

errors for this case in estimates by TR and TR* methods were 39% and 34%, respectively. Estimates for the case on August

28th around the Suncor facility (rejected case 8) were impacted by high emissions (relative to source emission rates) from the

upwind oil sands facility Syncrude (avg. φ= 13%) and change in atmospheric stability at rate |∆tRi|= 0.34 h−1 during the

∼2.5 h flight/sampling time; NRMS errors for this case were 166% and 114% by TR and TR* methods, respectively. The

under-performance in rejected cases 5 and 8 estimates were the consequence of several different factors and conditions during820

the flight time; we refer to the collective impact of these conditions as Storage-and-Release events. The nine studied cases

were affected by storage-release events at various degrees; ranging from -29% to 156% with a median of 13%. This range for

the 7 cases that are included in past work with TERRA applications is -29% to 20% with a 2% median.
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Storage-release events occur when temporal and spatial variations in meteorological conditions and/or source emission rate

result in a temporary imbalance between the addition of mass to the volume of the box through source emissions and removal825

of mass by vertical and horizontal fluxes through box top and lateral walls and the deposition to ground surface. The transient

storage of the emitted mass within box volume and its later release contribute to emission rate over- and under-estimations

based on the mass-balance technique. We introduced a correction term, EC,S , in the mass-balance equation to represent the

rate of storage-release. Utilizing GEM-MACH model output data, we investigated the contribution of this term to the total

integrated retrieved emission rates. The storage rate term (EC,S) contributed to over 20% of the total retrieved emissions for 5830

out of 9 cases, signifying the impact of storage-release events in emission rate retrievals based on the mass-balance approach.

The corresponding uncertainties in estimated emission rates were quantified for each of the nine studied cases, and conditions

giving rise to storage-release events were extensively explored.

We have introduced an approach for estimating the storage term as the TR* method, based on estimations of the rate of

change in the stored mass within the box volume from data on time-consecutive 2D screens and/or vertical-profiles around835

and downwind of the same emission source (3D data-set). We have shown that by estimating the storage term (E∗C,S) in this

way, estimates can be improved by 2-52% of MIE. Three forecast parameters were introduced for predicting/identifying the

probability of storage-release events: variations in atmospheric dynamic stability represented by change in gradient Richardson

number (∆tRi), shift in the direction of transport represented by variations in wind direction at plume height (∆tα), and

the weighted upwind to downwind concentration ratio (φ). We have demonstrated the strong correlation between these three840

parameters and the NRMS error in mass-balance estimates and discussed the potential of utilizing the three forecast parameters

in analysis of the uncertainty levels in aircraft-based top-down emission rate retrieval methodologies. Model-based forecasts

of these parameters can also provide practical advice for the planning of future airborne measurement campaigns.

The investigation carried out here has resulted in the creation of quantitative measures for the extent to which storage-and

release-events may impact on aircraft emissions retrieval accuracy. Retrieval uncertainties, using regional air-quality model845

output, were shown to be of similar magnitude to previously published values, with the exception of cases where the underlying

assumption of time-invariant meteorological conditions was not valid and/or where significant upwind emissions impacted the

estimates. We have also devised a methodology to reduce the impact of this form of emissions retrieval error by estimating the

storage rate (Etr∗C,S) through (a) the use of repeat flights, around the same facility, either with a single or multiple aircraft(s), or

(b) aircraft-based remote vertical-profiling of relevant fields during the sampling period.850

Appendix A
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Table A1. GEM-MACH Configuration Details

Model Component Description Reference

Driving numerical

weather prediction

model

Global Environmental Multiscale (GEM), v5.0
Côté et al. (1998a,b);

Girard et al. (2014)

Driving air-quality

model

Global Environmental Multiscale – Modelling Air-quality and Chemistry

(GEM-MACH) v2

Moran et al. (2010);

Makar et al. (2015a,b)

Model grid

and nesting,

time stepping

North American 10km resolution parent domain provides boundary conditions

for 2.5km high resolution, 64 vertical staggered hybrid level (terrain-following

coordinate) Alberta/Saskatchewan domain (Figure 1a). Time stepping: Parent

domain: 5 min physics, 15 min chemistry. Alberta/Saskatchewan domain:

1 min physics and 2 min chemistry.

Girard et al. (2014);

Makar et al. (2015a,b)

Weather/Aerosol

feedbacks

Direct effect via binary water-dry aerosol mixtures with Mie algorithm optical

property calculations. Indirect effect via aerosols providing cloud condensation

nuclei via the Abdul-Razzak and Ghan scheme.

Abdul-Razzak and Ghan

(2002); Gong et al. (2015);

Makar et al. (2015a,b)

Gas-phase

chemistry

Acid Deposition and Oxidant Mechanism, version 2 (ADOM-II) represents gas

-phase chemistry for 42 gas species, integrated using a Young and Boris solver.

Stockwell and Lurmann

(1989)

Particle

microphysics

Sectional approach – 8 particle species (sulphate, nitrate, ammonium, primary

organic carbon, secondary organic carbon, black carbon, sea salt, crustal

material), and 12 particle bins

Gong et al. (2002, 2003)

Aqueous chemistry

and gas and

aerosols scavenging

Cloud scavenging of gases and aerosols, aqueous phase chemistry using a

Young and Boris solver (combined time-resolved and steady-state chemistry).
Gong et al. (2015)

Deposition
Gas (Robichaud scheme) and particle dry deposition (Zhang scheme)

as described in Makar et al. (2018)
Makar et al. (2018)

Particle inorganic

thermodynamics

Sulphate-nitrate-ammonium non-ideal (high concentration) thermodynamic

equilibrium system solved using a nested iterative approach.
Makar et al. (2003)

Anthropogenic

plume rise

Modified Briggs (1984) equations for calculating plume rise. CEMS stack

parameters data (e.g. stack height and diameter, exit temperature, exit

velocity) were used for plume rise calculations in the model simulations.

Akingunola et al. (2018);

Gordon et al. (2018)

Advection and

mass conservation

Chemical transport in GEM-MACH is solved utilizing an implicit semi

-Lagrangian (SL) advection space-time integration scheme. The SL scheme

is not inherently mass conserving, and therefore requires the use of a post

advection mass conservation step (3D ILMC approach used here).

Bermejo and Conde (2002);

Sørensen et al. (2013);

de Grandpré et al. (2016)

Emissions data

Emissions are processed based upon the Sparse Matrix Operator Kernel

Emissions – SMOKE; emissions data from hybrid Oil Sands Database.

Large stack data derived from Continuous Emissions Monitoring (CEMS).

Coats (1996);

Zhang et al. (2018)
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Appendix B

B1 Derivations for mass-balance terms

The net horizontal flux exiting through lateral walls of the box (EC,H ) is calculated by extracting compound mixing ratio (χC),

air density (ρair) and the wind normal to the lateral walls of the box from the model output, and integrating over the surface855

(2D screen) comprised of box lateral walls at each time-step,

EC,H(t) =MR

∫∫
χC(t,s,z)ρairU⊥dsdz (B1)

where s(x,y) is the screen path coordinate, which follows the horizontal projection of the box flight path around the facility in

a counter clockwise direction.

The normal wind (positive outwards) along the screen is calculated as,860

U⊥(t,s,z) =
U ds(x,y)

dy −V ds(x,y)
dx√(

ds(x,y)
dx

)2
+
(
ds(x,y)
dy

)2 (B2)

where U and V are wind components towards east (x) and north (y), respectively.

The vertical flux through the box top can be calculated as,

EC,V (t) =MR

∫∫
χC,top ρair,top Wtop dxdy (B3)

where χC,top(t,x,y) and Wtop(t,x,y) are compound mixing ratio and the vertical wind component (positive upwards) at the865

box top. In the observational application of the retrieval methodology, the top of the box corresponds to an aircraft measurement

altitude which is above the plume.

The horizontal air flux through the screen (positive outwards) is calculated from extracted air density and wind fields along

the screen at time t as,

Eair,H(t) =

∫∫
ρair(t,s,z) U⊥ dsdz (B4)870

The rate of change in the air mass (accumulation) within the box due to changing air density (compressible fluid) can be

estimated as,

Eair,M (t) =

∫∫∫
∂ρair(t,V )

∂t
dV (B5)

The vertical air flux leaving the box (positive upwards) is calculated similar to Eq. (B3),

Eair,V (t) =

∫∫
ρair,top(t,x,y) Wtop(t,x,y) dxdy (B6)875

B2 Discrete Integral Expressions

The numerical integration expressions for calculating the terms in Eqs. (7), (12) and (16), using model data, are described in

Tables B1, B2 and B3. Throughout, the 2nd order central finite difference scheme (Jacobson, 2005) was used to numerically

38



solve the time derivatives (∆/∆t) with the residual error of order O(∆t2), where ∆t is equal to the 2 min (1/30 h) model

time-step. Surface deposition rates (EtC,V D) were extracted directly from the model output for the area covered by the base of880

the flux box for each case, to eliminate deposition estimates as a potential source of error in retrievals. Note that in Table B2,

the species vertical mass flux (EtC,V ) is calculated using the estimated vertical air mass flux (Etair,V ) from the mass-balance

equation for air (Eq. 8) and the box top average mixing ratio (χ̄tC,top).

Table B1. Discrete integral expressions of Eqs. (4), (5), (B1) and (B3) to be substituted in Eq. (7). Constants ∆x, ∆y and ∆s are equal to

model grid resolution in the horizontal, 2.5 km. t is the time index; i, j and k are the 3D-space indices and s is the path index around the box.

Term Numerical Integration

EtC,S = MR ∆x∆y
∑nx,ny,nz

i,j,k

∆χt
C,ijk

∆t
ρtair,ijk∆zk

EtC,M = −MR ∆x∆y
∑nx,ny,nz

i,j,k χtC,ijk
∆ρtair,ijk

∆t
∆zk

EtC,H = MR ∆s
∑ns,nz
s,k χtC,skρ

t
air,skU

t
⊥,sk∆zk

EtC,V = MR ∆x∆y
∑nx,ny

i,j χt,topC,ij ρ
t,top
air,ijW

t,top
ij
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Table B2. Discrete integral expressions for Eqs. (B4), (8), (9) and (10) to be substituted in Eq. (12) for TR method estimations. Terms and

variables are listed in the order needed for calculating the dependent terms. ∆s is constant and equal to model horizontal grid resolution, 2.5

km. t and s are time and path indices, respectively. A is the box base area. Point (io, jo) is at box horizontal center.

Term Numerical Integration

Etair,H = ∆s
∑ns,nz
s,k ρtair,skU

t
⊥,sk∆zk

Etair,M = A
∑nz
k

∆
∆t
ρtair,iojok ∆zk

χtC,k = 1
ns

∑ns
s χtC,sk

EtC,M = −AMR

∑nz
k χtC,k

∆
∆t
ρtair,iojok ∆zk

Etair,V = −Etair,M −Etair,H

χ̄tC,top = 1
ns

∑ns
s χtC,s top

EtC,V = AMR χ
t
C,top E

t
air,V
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Table B3. Discrete integral expressions for Eqs. (13), (14) and (15) to be substituted in Eq. (16) for TR∗ method estimations. t is the time

index; s and k are the horizontal and vertical space indices along the screens, respectively. A is the box base area.

Term Numerical Integration

ρtair,k = 1
ns

∑ns
s ρtair,sk

Etair,M = A
∑nz
k

∆ρtair,k

∆t
∆zk

Et ∗C,M = −AMR

∑ns,nz
sk χtC,sk

∆ρtair,sk

∆t
∆zk

Et ∗C,S = AMR

∑ns,nz
sk ρtair,sk

∆χt
C,sk

∆t
∆zk
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Appendix C

Figure C1. The contribution of the storage rate term (EC,S) to the net retrieved emission rates (EC ) as a function of downwind distance

for case 8. As shown in the wind-rose diagram, the wind direction for this case was towards south-east (S-E), and therefore the downwind

dependence is shown in two directions west-east (green squares) and north-south (red circles). The contribution of storage increases as a

function of downwind distance. This suggests that the impact of storage-release may increase as the distance between the downwind screen

(sampling location) and the emission sources increase. A similar dependence of the magnitude of the storage-release with downwind distance

was observed for the other cases.
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