Supporting Information to "Atmospheric photooxidation and ozonolysis of Δ^3 -carene and 3-caronaldehyde: Rate constants and product yields "

Luisa Hantschke¹, Anna Novelli¹, Birger Bohn¹, Changmin Cho¹, David Reimer¹, Franz Rohrer¹, Ralf Tillmann¹, Marvin Glowania¹, Andreas Hofzumahaus¹, Astrid Kiendler-Scharr¹, Andreas Wahner¹, and Hendrik Fuchs¹

¹Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany

Correspondence: Hendrik Fuchs (h.fuchs@fz-juelich.de)

measured quantity	measuremente technique	time	accuracy
		resolution	(1σ)
ОН	laser-induced fluoresence (LIF)	$47\mathrm{s}$	13 %
HO_2, RO_2	laser-induced fluoresence (LIF)	$47\mathrm{s}$	16 %
$k_{ m OH}$	laser photolysis + LIF	$180\mathrm{s}$	10%
Δ^3 -carene	proton-transfer-reaction mass-spectrometer	$40\mathrm{s}$	7%
CO	cavity ring-down spectroscopy	$60\mathrm{s}$	$1\mathrm{ppbv}$
NO	chemiluminescence	$180\mathrm{s}$	5%
NO_2	chemiluminescence	$180\mathrm{s}$	5%
HONO	long-path absorption photometry	300 s	20%
O_3	UV-absorption	$10\mathrm{s}$	5%
HCHO	Hantzsch monitor	90 s	8.5 %
HCHO	cavity ring-down spectroscopy	$300\mathrm{s}$	$1.5\mathrm{ppbv}$
photolysis freq.	spectroradiometer	$60\mathrm{s}$	10 %

Table S1 . Instrumentation for radical and trace gas detection in the experiments.

_

Figure S1. Overview of measured concentrations for selected species in the SAPHIR chamber for the Δ^3 -carene + OH oxidation experiment with low NOx conditions on E2. Dashed lines indicate times when Δ^3 -carene was injected into the chamber.

Figure S2. Overview of measured concentrations for selected species in the SAPHIR chamber for the caronaldehyde photooxidation experiments E5. The shaded area indicates the time where CO was injected as an OH scaveger (experiment E6). Dashed lines indicate times when caronaldehyde was injected into the chamber.

Figure S3. Experimental NOy budgets for the CH_4 experiment on 29 May 2020 (left) and the α -pinene experiment on 03 September 2019 (right), shown starting from the first injection of VOC into the chamber until closing of the roof. Dotted lines indicate the injection of VOC into the chamber. The obtained RONO₂ yield of 25.5 % for α -pinene is a result of the RMSE analysis explained in the text.

Figure S4. Timeseries of Q(HONO), $k_{OH+NO} \times OH \times NO$ and $j_{HONO} \times HONO$ used to calculate the organic nitrate yield of the OH + Δ^3 -carene in the main text (see Section 2.5).