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Abstract. Observations suggest that the vertical distributions of air pollutants, such as black carbon (BC), present as various

types depending on the emission sources and meteorological diffusion conditions. However, the formation process and

source appointment of some special BC profiles are not fully understood. In this paper, by using the Weather Research and

Forecasting model coupled with chemistry (WRF-Chem) with a BC-tagging technique, we investigate the formation

mechanism and regional sources of a BC peak in the free troposphere observed by aircraft flight in Beijing (BJ) on May 5th,20
2018. The results show that the contribution rate of the Beijing-Tianjin-Hebei (BTH) region to the surface BC of BJ

exceeded 80% in this case. Local sources dominated BC in BJ from the surface to approximately 700 m (78.5%), while the

BC peak in the free troposphere (~4000 m) was almost entirely imported from external sources (99.8%). Combining BC

tracking and process analysis, we find that horizontal advection (HADV) and vertical advection (VADV) processes played

an important role in the convergent and upward movement and the transport of BC. The BC originating from the surface in25
central provinces, including Shanxi (SX), Henan (HN) and Hebei (HB), was uplifted through a cyclone system 16 hours

previously, transported to a height of approximately 3000 m above BJ, and then lifted by the VADV process to

approximately 4000 m. At the surface, BJ and its surroundings were under the control of a weak pressure gradient, leading to

the accumulation of BC within the boundary layer. Our results indicate that cyclone systems can quickly lift air pollutants,

such as BC, up to the free troposphere, as well as extend their lifetimes and further affect the regional atmospheric30
environment and climate.
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1 Introduction

Black carbon aerosol (BC) has been a research hotspot in recent years owing to its significant environmental and climate

effects (IPCC, 2013). Unlike scattering aerosols (sulfate, etc.), BC has a strong ability to absorb solar radiation, which

accelerates global warming (Jacobson, 2001; Weingartner et al., 2003; Bond et al., 2013). Additionally, BC can heat the35
upper air of the planetary boundary layer (PBL), inhibit its development, and promote regional air pollution (Ding et al.,

2016). Air quality is affected not only by local emissions but also by long-distance transport (Zhang et al., 2017a). For

example, BC in South China is mainly transported from Southeast Asia and North China (Fang et al., 2020), and most of the

BC in the Arctic is transported from low-latitude regions (Keegan et al., 2014). Therefore, it is necessary to study the

temporal and spatial distributions of BC and quantitatively analyse its regional sources to provide a reference for BC40
emission reduction.

The annual carbon emissions in China account for approximately one-quarter of the global carbon emissions (Bond et al.,

2004). As the capital of China, Beijing (BJ) has experienced frequent air pollution in recent years (Van Pinxteren et al.,

2009). In BJ and its surrounding areas, straw is often burned in early summer; hence, BC pollution has become an

environmental problem that cannot be ignored (Bergin et al., 2001; He et al., 2001). However, most of the previous45
measurements of BC were performed at ground level, and the quantitative source tracking of BC was not thorough enough.

For example, based on radiocarbon (14C) measurements, Zhang et al. (2015) found that fossil emissions dominated BC with a

mean contribution of 75±8% in BJ, but regional source research was lacking. To identify the regional sources, Liu et al.

(2018) used a potential source contribution function (PSCF) model to determine that SX and HB were the main sources of

BC in BJ but failed to quantify their separate contributions. Wen et al. (2020) used the Weather Research and Forecasting50
model coupled to chemistry (WRF-Chem) to simulate the regional contribution and found that regional transport contributes

more than 40% to BC in BJ, but there was no detailed delineation of external source regions.

In addition to research on horizontal BC, many vertical observations have also been conducted in recent years, showing that

vertical distributions of BC are strongly affected by meteorological conditions and regional transport. The aircraft

observation experiment carried out in BJ showed that regional transport of BC can enhance air pollution, and transport55
occurs not only near the surface but also in the middle levels of the PBL (0.5-1 km) (Zhao et al., 2015). Moreover, when the

BC profile has a homogeneous or negative gradient distribution, the diurnal evolution of the PBL is the leading factor. When

there is a positive BC gradient from the surface to the top of the PBL, it is mainly caused by surrounding emissions from

high stacks and regional transport (Lu et al., 2019; Shi et al., 2021). However, these studies were mostly qualitative

inferences, and it is difficult to quantitate the formation process of vertical distributions and BC sources in detail. In addition,60
the effect of BC on PBL varies greatly owing to its altitude. BC will inhibit the development of the PBL above the morning

residual layer and conversely promote its development (Ma et al., 2020). Therefore, it is worth emphasizing that using only

BC surface concentrations to calculate radiative forcing and heating rate and ignoring the vertical distribution of BC will

induce great uncertainties (Shi et al., 2021).
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In summary, there are few studies on the quantitative interpretation of the regional contribution of BC, or the source regions65
are not sufficiently separated; additionally, research on the reasons and source tracking of the vertical distribution of BC is

even scarcer. Based on the BC profile observed in BJ, this study uses the air quality model WRF-Chem with a BC-tagging

technique to track the sources of BC, with the hope to explain the observed BC peak in the free troposphere and evaluate BC

sources and direct BC regional emission reduction measures.

2 Data and methodology70

2.1 Model configuration

The model used in this study, WRF-Chem 3.9.1.1, is coupled with a BC-tagging technique (Zhu et al., 2020), which is

similar to the particle source analysis technology in the Comprehensive Air Quality Model with Extensions (CAMx) model.

The model can track the BC emitted from the predivided source region and quantitatively calculate the BC concentration in

each source region one time. Before running the model, we divide the model domain into 20 geographic source regions. The75
model domain and the administrative regions of each source region are shown in Fig. 1 and Table 1, respectively (the source

regions with less contribution will be merged in the subsequent analysis, defined as Others). The BC of each source region is

regarded as an independent variable, and it is marked from the beginning of the BC emission, ∆Emisi. The concentration of

the total emissions in region i is defined as follows:

∆Emisi(x, y, z) = ∆Emisi(x, y, z)
0

������ ������ �
������� ������ �

If BC is in region i, then ∆Emisi (x, y, z) = ∆Emis (x, y, z); otherwise, ∆Emisi (x, y, z) = 0. Subsequently, the newly defined80
variables will participate in the physical and chemical calculation process in the model accompanied by the origin variables

in the model. Thus, we can obtain the BC concentrations of each source region at any grid of the model and at any time.

Compared with sensitive experiments, this method can more accurately quantify the sources of BC with fewer errors.

Previous studies have used a similar technique to study the source of air pollutants, such as PM2.5 and O3 (Gao et al., 2016;

Zhang et al., 2017b; Gao et al., 2020).85

2.2 Description of data used

A variety of data were used in this study. The initial and boundary meteorological and chemical conditions were provided by

the National Centers for Environmental Prediction (NECP) final (FNL) operational global analysis data and outputs of the

Community Atmosphere Model with chemistry (CAM-chem; Lamarque et al., 2012). Anthropogenic emissions were

provided by the Multiresolution Emission Inventory for China (MEIC, 2016, http://www.meicmodel.org/). Biogenic90
emissions were generated by using the Model of Emissions of Gas and Aerosols from Nature (MEGAN; Guenther et al.,

2006).
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In terms of the data used for model verification, the meteorological factors were derived from the ground station

observations using the Meteorological Information Comprehensive Analysis and Processing System (MICAPS) with a time

accuracy of 3 h. PM2.5 data were provided by the pollution real-time release platform of the Ministry of Ecology and95
Environment of China. BC data were collected by the single particle soot photometer (SP2) carried by the aircraft, and more

details about SP2 can be found in Sharma et al. (2017) and Stephens et al. (2003).

2.3 Parameterized scheme settings

Experiments started at 08:00 BJT on 01 May 2018 and ended at 08:00 BJT on 10 May 2018. The first 3 days were

designated the spin-up time. Regarding the simulation settings, two nested domains (Fig. 1) were set up with grid sizes of 99100
× 99 at horizontal resolutions of 36 and 12 km for D01 and D02, respectively. D01 covered most parts of China, the

surrounding areas and ocean, and D02 covered most parts of North China. The modelling results of D01 provided

meteorological and chemical boundary conditions for the simulations of D02. For the vertical direction, 38 layers were set up

from the surface up to a pressure limit at 50 hPa, where 10 layers were located below 1 km. Notably, the carbon bond

mechanism Z (CBM-Z, Zaveri and Peters, 1999) was applied as the gas-phase chemical mechanism in this study.105
Correspondingly, the Model for Simulating Aerosol Interactions and Chemistry with eight bins (MOSAIC-8bins; Zaveri et

al., 2008) was chosen as the aerosol chemistry mechanism. Other parameterization settings are listed in Table 2.

3 Results and discussion

3.1 Model validation

Although the WRF-Chem model is widely used in air quality research, there are significant differences in the simulation110
results with different parameterization schemes. In this study, time series of both simulated and observed PM2.5, BC

concentration, temperature (T) and wind (Ua and Va) are shown in Fig. 2 to evaluate the performance of the model. Figure 2

illustrates that the model reproduces the numerical magnitude and variation characteristics of PM2.5, BC and meteorological

factors well. Additionally, we calculate several common metrics (correlation coefficient (R), index of agreement (IOA),

mean bias (MB), root mean square error (RMSE), mean normalized bias (MNB), mean fractional bias (MFB) and total error115
(TE)) to validate the model performance on meteorological factors and air pollutants. The benchmarks shown in brackets in

Table 3 follow the recommended values suggested by Emery and Tai (2001) and EPA (2007). The validation of the

modelling profiles of BC and meteorological factors is also presented in section 3.2.2.

As shown in Table 3, meteorological factors (T, Ua and Va) showed high values of the mean IOAs (≥ 0.75), indicating that

the simulation agreed well with the observations. In addition, the MB and RMSE of meteorological elements were120
comparable with those in another modelling study (Gao et al., 2020) and were both within the threshold range. However, the

MNB and MFB of Ua were beyond the scope of its benchmark, suggesting an overestimation of Ua.
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For air pollutants, good agreement was found between the simulations and observations since the IOAs of PM2.5 and BC

were 0.93 and 0.70, respectively. The MFB of PM2.5 was within the scope of its benchmark. Notably, all the metrics of air

pollutants also indicated that the model performance for air pollutants was acceptable. Generally, the model reproduces the125
pollutants and main meteorological elements well, which provides a good basis for subsequent analysis.

3.2 Tracking observed BC from the surface to the free troposphere

We conducted aircraft observations in BJ from 10:00 to 11:00 on May 5th, 2018 (Beijing Time, BJT). The maximum flight

altitude of the aircraft was 6000 m (Fig. 3a), and high BC values were observed both near the ground and in the free

troposphere (~4000 m) (Fig. 3b). To reveal the cause of the distinct BC profile, the WRF-Chem model with a BC-tagging130
technique was used for quantitative explanation.

3.2.1 Tracking BC sources at the surface

The near-surface pollution in BJ lasted from May 5th to 6th (Fig. 2). In the synoptic chart of Fig. 4a, there was a weak

cyclone system in SX and NWCHN at 17:00 BJT on May 4th, leading to convergence and upward movement there. At 08:00

BJT on May 5th (Fig. 4b), the regions controlled by the weak cyclone system had expanded, including SX, NWCHN, HB135
and HN, while BJ was in front of the weak low pressure. There was convergence near the surface, and air pollutants in the

surrounding areas were likely to accumulate, leading to an increase in BC concentration in BJ (Fig. 4d and e). Moreover,

there was an obvious ‘transport channel’ from SX to BJ in the free troposphere (Fig. 4h), and BC was transported from SX to

BJ by westerly winds. Subsequently, the low-pressure system moved south, and the BJ was controlled by the uniform

pressure field at 08:00 BJT on May 6th (Fig. 4c), which was not beneficial for the diffusion of BC in the horizontal and140
vertical directions (Fig. 4f). At an altitude of approximately 4000 m, BC was transported southwards due to clean north

winds (Fig. 4i).

Moreover, the sources of BC were quantitatively traced (Fig. 5) to explain the cause of pollution in BJ. The mean BC

concentration was 2.29 g·m-3 in this case (Fig. 5a), and the diurnal evolution of BC showed a characteristic of ‘lower in the

daytime and higher in the nighttime’, which is related to the daily change in the PBL (Huang et al., 2018). Furthermore, BC145
near the surface mainly originated from BJ, HB, HN, TJ and SD, whose mean contribution rates were 52.0%, 23.9%, 6.1%,

5.7% and 4.4%, respectively (Fig. 5b). The BC contribution rate of the BTH region to BJ exceeded 80%, further confirming

that when controlled by weak low pressure, air pollutants in surrounding areas are likely to accumulate in BJ, and local

pollutants have difficulty diffusing outward (Chen et al., 2008).

3.2.2 Tracking BC sources vertically150

Near-surface BC mainly originated from BJ and its surrounding areas, while the source of BC in the free troposphere (~4000

m) showed different characteristics. The model grasped the key features of vertical BC, T, relative humidity (RH) and upper

wind wells (Fig. 6a-d). The BC concentration presents a decreasing trend from the ground to approximately 700 m but
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increases from approximately 3000 m, forming a peak at an altitude of approximately 4000 m (Fig. 6a). As shown in Fig. 6e,

the total contribution rate of BJ and HB below 700 m was as high as 96.7%, which is related to the easterly wind near the155
surface (Fig. 6d). For the BC peak in the free troposphere (~4000 m), almost all BC was transported from external regions,

including SX, NWCHN, SWCHN, HB, HN, and even SCHN, and the contribution rates were 24.7%, 23.5%, 10.5%, 9.4%,

8.9 and 7.1%, respectively. In addition, Fig. 6d illustrates that this altitude was mainly controlled by westerly winds (~225°),

and the wind speeds increased significantly above 3000 m, which is beneficial to the long-distance transport of BC.

3.3 Air mass trajectory and physical process analysis160

3.3.1 Air mass trajectory analysis

To determine the source of BC in depth and to validate the source tracing results above, we utilized the Hybrid Single

Particle Lagrangian Integrated Trajectory (HYSPLIT) model, developed by the National Oceanic and Atmospheric

Administration (NOAA), to analyse the air mass backward trajectory (24 h) at 08:00 BJT on May 5th (Fig. 7). As presented

in Fig. 7, the air mass near the surface (red line) originated from BJ and its surrounding areas, which is consistent with the165
source tracking results (Fig. 6). The upper air mass (blue line) originated in SX and reached BJ via HB, corresponding to the

results of the cross section (Fig. 8). In addition, the blue line indicates that from 08:00 BJT on May 4th to 08:00 BJT on May

5th, there was an air mass lifting from the surface in SX along a southwestern path and reaching the upper levels of BJ

(~4000 m). During this time, the China central (including SX, HB and HN) was controlled by a cyclone system (Fig. 4a and

b), leading to convergent and elevating motion there, which is conducive to the uplift of near-surface air masses and170
consistent with the backward trajectory model results.

3.3.2 Tracking BC sources in the cross section

In addition to the backward trajectory, the BC sources in the vertical cross section along the path from SX to BJ (in Figs. 1

and 7) can more convincingly explain the BC uplift and transport phenomenon. Referring to the backward trajectory, the

white line shown in Fig. 1b can be regarded as the transport path of the air mass. To illustrate the uplift and transport175
mechanism of BC, cross sections of BC concentration, wind vector, and BC contour lines (including BJ, SX and NWCHN)

along the aforementioned line are shown in Fig. 8. From 08:00 to 18:00 BJT on May 4th, the southwest wind prevailed along

the SX-BJ line (Fig. 8a and b), which contributed to the transport of BC. BC originated in the NWCHN transported to SX

and mixed with BC emitted in the SX region. By 16:00 BJT on May 4th, the ascending movement in SX was vigorous,

resulting in the elevation of near-surface BC (Fig. 8b), which is consistent with the initial uplifting position presented in Fig.180
7. BC originating from NWCHN and SX was uplifted up to 3000 m and transported to HB and BJ to form high values (Fig.

8c). However, the wind direction near the surface changed from westerly to easterly, while westerly winds still prevailed in

the upper air (Fig. 8d). As a result, near-surface BC in BJ diffused to the surrounding areas, such as HB, but in the upper air,

BC originating in NWCHN and SX was still transported to BJ and lifted further to approximately 4000 m (Fig. 8d). Thus far,
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there were high BC values both near the surface and in the free troposphere above BJ (~4000 m), which is consistent with185
the observation and source tracing results in Fig. 6.

3.3.3 Physical process analysis

In this section, we further quantified the dominant transport processes of BC in the source region (SX) and receptor region

(BJ), including horizontal advection (HADV), vertical advection (VADV) and vertical mixing (VMIX). In Fig. 9, the results

show that HADV and VADV played an important role in the convergent and upward movement induced by cyclones and the190
transport of BC. From 14:00 to approximately 18:00 BJT on May 4th, in the boundary layer (<2 km), HADV made positive

contributions to BC concentration in SX, while the VADV had the opposite effect, suggesting that convergent and upward

motion existed therein (Fig. 9a and b). At the same time, in the free troposphere (~4 km), the contribution of VADV and

HADV to BC concentration was opposite to that in the boundary layer, indicating that BC originating in SX was lifted from

the surface to the free troposphere by VADV (Fig. 9a and b), which is consistent with the cross-sectional analysis (Fig. 8b195
and c). In the upper layer of BJ (~3 km), HADV made a positive contribution to the BC concentration from 14:00 to

approximately 22:00 BJT on May 4th, showing that BC was transported from SX by westerly winds. Then, VADV lifted the

BC transported by the HADV to approximately 4 km from 02:00 to approximately 08:00 BJT on May 5th (Fig. 9d and e),

consistent with the analysis in Fig. 8c and d. VMIX in both SX and BJ occurred mainly in the afternoon of May 4th owing to

intense turbulence (Fig. 9c and f).200

4 Conclusions

This paper utilizes the air quality model WRF-Chem with a BC-tagging technique to study the formation mechanism of a

special BC profile observed by an aircraft flight in BJ. The major findings are summarized as follows:

In this case, the mean BC concentration was 2.29 g·m-3. BC at the surface mainly originated from BJ, HB, HN, TJ and SD,

with contribution rates of 52.0%, 23.9%, 6.1%, 5.7% and 4.4%, respectively. The BC contribution rate of the BTH region to205
BJ exceeded 80%, further confirming that when controlled by weak low pressure, air pollutants in surrounding areas are

likely to accumulate in BJ, and local air pollutants have difficulty diffusing outward.

Local sources dominated BC in BJ from the surface to approximately 700 m (78.5%), while BC was almost entirely

imported from external sources (99.8%) in the free troposphere (~4000 m). BC in the free troposphere mainly originated

from SX, HB, HN, and NWCHN, and the contribution rates were 24.7%, 9.4%, 8.9% and 23.5%, respectively.210
Figure 10 illustrates the formation mechanism of the special BC profile. HADV and VADV processes played an important

role in the convergent and upward movement and the transport of BC. Near-surface BC that originated from SX, HB, HN

and NWCHN was uplifted by a cyclone system approximately 16 hours previously, transported to a height of approximately

3000 m above BJ, and then lifted by the VADV process to approximately 4000 m. At the surface, BJ and its surroundings

were in the field of a weak pressure gradient, leading to the accumulation of BC.215
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The results indicate that cyclone systems can quickly lift air pollutants, such as BC, up to the free troposphere, extend their

lifetimes, and further affect the regional atmospheric environment and climate.
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Tables

Table 1. Source region division.

Source name The administrative areas in each region
BJ Beijing

TJ Tianjin
HB Hebei
SX Shanxi

SD Shandong
HN Henan
AH Anhui
JS Jiangsu

NWCHN Including Shaanxi, Gansu, Ningxia, Qinghai, Inner Mongolia and Xiangjiang

MONGOLIA MONGOLIA
NECHN Including Heilongjiang, Liaoning, Jilin
SWCHN Including Yunnan, Guizhou, Sichuan, Chongqing and Xizang
SECHN Including Jiangxi, Fujian and Taiwan
SCHN Including Hunan, Hubei, Guangdong and Guangxi
KOREA Including North Korea and South Korea
JAPAN JAPAN
RUSSIA RUSSIA
VIETNAM VIETNAM

ZJ Zhejiang
SH Shanghai

OCEAN Including Bohai Sea, Yellow Sea, East Sea, South Sea and Western Pacific
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Table 2.Major configuration options of WRF-Chem used for this study.

Item Selection Reference
PBL scheme MYJ scheme Janjic (2002)

Microphysics scheme Lin scheme Lin et al. (1983)
Longwave radiation scheme RRTM Iacono et al. (2008)
Shortwave radiation scheme RRTM Iacono et al. (2008)

Land surface scheme Noah land surface model Chen and Dudhia (2001)
Dry-deposition scheme Wesely scheme Wesely (1989)
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Table 3. Statistical indicators for evaluating the simulation results.

Variables R IOA MB RMSE MNB MFB TE

T (°C) 0.93 0.95
-0.25
([-0.5, 0.5])

1.88
(≤ 2.0)

-0.01
([-0.15, 0.15])

-0.002
([-0.6, 0.6])

1.44
(≤ 2.0)

Ua (m·s-1) 0.6 0.75
-0.36
([-0.5, 0.5])

1.68
(≤ 2.0)

-2.32 2.01
1.26
(≤ 2.0)

Va (m·s-1) 0.76 0.85
-0.01
([-0.5, 0.5])

1.82
(≤ 2.0)

-0.02
([-0.15, 0.15])

0.009
([-0.6, 0.6])

1.41
(≤ 2.0)

BC (g·m-3) 0.51 0.70 -0.42 1.47 -0.23 -0.06 1.02

PM2.5 (g·m-3) 0.73 0.93 -11.2 33.79 -1.29 -0.06 26.48

Values that do not meet the threshold criteria are shown in bold.
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Figures

Figure 1.Model domain (the white line is the path of the vertical cross section in section 3.3.2).
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Figure 2. Time series of (a) temperature, (b) Ua, (c) Va, (d) BC and (e) PM2.5 at Beijing station. The red box indicates the
pollution episode in this study.
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Figure 3. (a) Aircraft routes and (b) the BC profile observed at 10:00-11:00 BJT.
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Figure 4. (a)-(c) Surface synoptic patterns, (d)-(f) BC concentration and wind vector at the surface, and (g)-(i) BC
concentration and wind vector in the troposphere (~4000 m) at 17:00 BJT on May 4th, 08:00 BJT on May 5th, and 08:00
BJT on May 6th.
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Figure 5. (a) BC concentration and (b) contribution rate of each source region to BC in BJ during the pollution episode.
Legend is the same as that in Figure 1.
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Figure 6.Model validation of (a) vertical BC, (b) T and RH, (c) WS, (d) WD, (e) BC concentration of each source region,
and (f) contribution rate of each source region at 10:00-11:00 BJT on May 5th. Legend is the same as that in Figure 1.
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Figure 7. Backward trajectory (24 h) of the air mass at 08:00 BJT on May 5th.
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Figure 8. Vertical cross sections of BC concentration from SX to BJ and wind vectors (arrows) where the vertical speed is
multiplied by 100 at (a) 08:00 BJT on May 4th, (b) 16:00 BJT on May 4th, (c) 00:00 BJT on May 5th, and (d) 08:00 BJT on
May 5th. The black line is the BC contour lines of SX plus NWCHN, and the red line is the BC contour line of BJ.
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Figure 9. Contributions of horizontal advection (HADV), vertical advection (VADV), and vertical mixing (VMIX)
processes to vertical BC concentrations in SX and BJ from 08:00 BJT on May 4th to 08:00 BJT on May 5th.
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Figure 10. Formation mechanism of BC peak in the free troposphere.
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