Method to Quantify the Black Carbon Aerosol Light Absorption Enhancement with Mixing State Index

Gang Zhao¹, Tianyi Tan¹, Yishu Zhu¹, Min Hu¹, Chunsheng Zhao²*

¹ State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
² Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China

*Correspondence author: Chunsheng Zhao (zcs@pku.edu.cn)

Abstract

Large uncertainties remain when estimating the warming effects of ambient black carbon (BC) aerosols on climate. One of the key challenges in modeling the radiative effects is predicting the BC light absorption enhancement, which is mainly determined by the mass ratio of non-BC coating material to BC in the population of BC-containing aerosols (MR). For the same MR, recent researches find that the radiative absorption enhancements by BC are also controlled by its particle-to-particle heterogeneity. In this study, the BC mixing state index (χ) is developed to quantify the dispersion of ambient black carbon aerosol mixing states based on binary systems of BC and other non-black carbon components. We demonstrate that the BC light absorption enhancement increases with χ for the same MR, which indicates that χ can be employed as a factor to constrain the light absorption enhancement of ambient BC. Our framework can be further used in the model to study the black carbon radiative effects on climate change.

1 Introduction
Black carbon (BC) aerosols absorb solar radiation, thus exert warming effects on the earth’s energy system (Bond et al., 2006; Bond et al., 2013). However, large uncertainties remain when quantifying the BC warming effects (Menon et al., 2002; Koch et al., 2009; Jacobson, 2010; Cui et al., 2016). Most of the BC particles were emitted from incomplete combustion of bio-fossil fuel (Bond et al., 2013). After initially emitted, the BC particles would experience aging processing with some other non-BC components coated on the BC particles (Peng et al., 2016; Peng et al., 2017). During the aging processing, the light absorption of BC aerosols would increase, which is well known as the “lensing effect” (Saleh et al., 2013; Saleh et al., 2014). One critical challenge in estimating the BC warming effects is quantifying the “lensing effects” of ambient BC aerosols (Liu et al., 2017).

The light absorption enhancement (E_{abs}), which is the ratio of light absorption of BC aerosols with the coating to that of bare BC particles, is proposed to quantify the “lensing effects”. Comprehensive studies have been carried out to study the E_{abs} (Cappa et al., 2012; Liu et al., 2015; Fierce et al., 2016; Peng et al., 2016; Liu et al., 2017; Fierce et al., 2020). However, a large discrepancy remains between the results of E_{abs} from field measurements and laboratory studies. The measured E_{abs} of laboratory generated monodisperse BC particles can reach up to a factor of 2, which is consistent with the results from the Mie scattering model (Cappa et al., 2012; Cappa et al., 2019). However, some field measurement shows that the E_{abs} of ambient BC aerosols are relatively small, with 1.06 at California (Cappa et al., 2012), 1.07 in South China (Lan et al., 2013), and 1.10 in Japan (Nakayama et al., 2014), while the measured E_{abs} of ambient BC reaches 1.59 during summer time in Beijing (Xie et al., 2019).

Many factors, such as the morphology of the BC core, the position of BC core inside coating, the coating thickness, chemical properties of coating materials, and size
distribution of the BC, would influence the E_{abs} of ambient BC aerosols. Wu et al. (2018) reported that the BC light absorption properties vary significantly for different morphology from the calculation of models. Laboratory studies also find that the light absorption properties of the BC core were tuned due to the change of the BC core morphology (Yuan et al., 2020). Comparing with the concentric spherical structure, the off-center coated BC aggregates would lead to up to a 31% reduction in E_{abs} by the multiple-sphere T-matrix method (Zhang et al., 2017). It has been well studied that the E_{abs} is highly related with the mass ratio of coating materials and BC core (MR) (Liu et al., 2014; Liu et al., 2017). The coating material are also critical in regulating the morphology and optical properties as the coating of sulfuric acid has been shown to be more efficient in altering the BC morphology and light absorption(Zhang et al., 2008; Xue et al., 2009b, a). Zhao et al. (2019b) reported that the light absorption properties of ambient BC particles are influenced by BC mass size distribution. Besides, recently researchers found that the E_{abs} are also controlled by particle-to-particle heterogeneity (Fierce et al., 2016; Fierce et al., 2020). As shown in Fig.1, the E_{abs} of ambient aerosols for the same MR would vary by about 30%, which is consistency with the results of Fierce et al. (2020). However, there is no study, to our best knowledge, that constrains the uncertainties of the E_{abs} for the same MR.

In this study, we developed a BC mixing states index (χ) to quantify the dispersion of black carbon aerosol mixing states based on binary systems of BC and other non-black carbon components. We demonstrate that the BC E_{abs} increases with χ for the same MR based on the field measurement, which indicates that χ can be employed as a factor to constrain the E_{abs} properties of ambient BC.

2 Data and methods
2.1 Field measurement

The field measurements were conducted at a suburban site Taizhou (119°57’ E, 32°35’ N) from 26 May to 18 June. As shown in Fig. S1, the Taizhou site lies between two large cities of Nanjing and Shanghai, where the aerosols can be seen as representative that of the Yangtze River Delta area (Liu et al., 2020). More details of the field measurements can refer to Zhao et al. (2019a). During the field measurement, we placed all of the instruments in a container where the temperature was carefully controlled between 22 and 26 °C. A PM$_{10}$ impacter, which is about 5 meters above the ground, was mounted on the top of the container. The sample aerosols were drawn from the impacter and then dried by a Nafion dryer tube.

The size-resolved BC core distribution and non-BC coating thickness were measured by using a differential mobility analyzer (DMA, model 3081, TSI, USA) in tandem with a single-particle soot photometer (SP2, Droplet Measurement Technologies, USA). Detailed information on the DMA can refer to Zhao et al. (2019c). SP2 can measure the BC mass concentration from the incandescence signals emitted by the BC particle, which is heated to around 6000 K by laser with a wavelength of 1064 nm (Zhao et al., 2020b). Along with the measurement of size-resolved BC distributions, a nephelometer (Aurora 300, Ecotech, Australia) (Müller et al., 2011) was employed to measure the aerosol scattering coefficient (σ_{sca}) at the wavelength of 525 nm.

2.2 BC mixing states from DMA-SP2 system

In this study, the SP2 was placed after the DMA to measure the size-selected distribution of BC-core and non-BC coating thickness. The schematic instrument setup is shown in Fig. S2 and the details can refer to part 1 in the supplementary material. The DMA was set to scan the aerosols D_p from 12.3 to 697 nm over a period of 285 seconds and repeated after a pause of 15 seconds. After careful calibrations of the SP2 (part 3.1 in the supplementary material), transformations of the measured signals to BC mass
concentrations (part 3.2 in the supplementary material), and multiple charging corrections (part 3.3 in the supplementary material), the BC-containing number concentration distribution under different total diameter (Dp) and BC core diameter (Dc) can be calculated, as shown in Fig. S5 (b). The details of the calculation of the size-resolved distribution of BC core and coating thickness from the DMA-SP2 system can refer to Zhao et al. (2020a). The measured size-resolved distribution of BC core and coating thickness as in Fig. S5(b) were used for further analysis. It should be mentioned that the measured number distribution of BC-containing aerosols is two dimensional $(\frac{d^2N}{d\log Dp \cdot d\log Dc})$. As noted by Zhao et al. (2020b), the SP2 can only detect these BC-containing aerosols with a core diameter larger than 84 nm. The DMA select the aerosol at the range between 13.3 nm and 749.9 nm. In the following discussion, the size-resolved distribution of BC core and coating thickness is constrained in the range between 84 and 697 nm.

2.3 Calculating the aerosol optical properties

2.3.1 Calculating the single-particle aerosol absorption coefficient for a given Dp and Dc

A Mie scattering core-shell model (Bohren et al., 2007) was employed to calculate the aerosol absorption coefficient (σ_{abs}). When calculating the σ_{abs} of single particle, the Mie scattering model requires the diameter of the core, the coating thickness, the refractive index of the core, and the refractive index of the shell. The refractive index of the core adopted here is $1.67+0.67i$, which is the calculated mean value by comparing the measured light absorption and calculated light absorption properties (Zhao et al., 2020a). The refractive index of the shell is chosen to be $1.46+0i$, which is assumed to be that of the non-BC component measured by the DMA-SP2 system (Zhao et al., 2019a;
Zhao et al., 2019c). With the above information, the σ_{abs} values at a given Dp and a given Dc can be calculated.

2.3.2 Calculating the aerosol bulk absorption coefficient

We calculate the single-particle σ_{abs} of different Dp and Dc with the given refractive index of core and shell and then the ambient aerosol σ_{abs} distributions at different Dp and Dc ($\frac{d^2\sigma_{abs}}{d\log Dp\,d\log Dc}$) can be calculated by multiplying the number concentrations of the BC-contained aerosols ($\frac{d^2N}{d\log Dp\,d\log Dc}$). By integrating the $\frac{d^2\sigma_{abs}}{d\log Dp\,d\log Dc}$ over different Dc values, the ambient aerosol σ_{abs} distribution along with different Dp ($\frac{d\sigma_{abs}}{d\log Dp}$) can be calculated. The total σ_{abs} of the ambient BC-containing aerosols can be calculated by integrating the $\frac{d\sigma_{abs}}{d\log Dp}$ over different Dp values.

2.3.3 Calculating the aerosol E_{abs}

Along with calculating the $\sigma_{abs}(Dp,Dc)$ of single-particle for different Dp and Dc, we calculate the corresponding light absorption ($\sigma_{abs}(Dc,Dc)$) value for Dc without thickness. The corresponding total light absorption of all measured BC-contained aerosols without coating can be calculated by integrating the calculated $\sigma_{abs}(Dc,Dc)$ among different Dp and Dc weighted with $\frac{d^2N}{d\log Dp\,d\log Dc}$. Thus the ambient BC particles without coating ($\sigma_{abs}(Dp = Dc)$) can be calculated. The bulk ambient aerosol E_{abs} can thus be calculated with $E_{abs} = \frac{\sigma_{abs}}{\sigma_{abs}(Dp=Dc)}$.

2.4 Quantifying BC mixing states
In this study, the mass-weighted mixing state index for BC-containing particles (χ) is developed to investigate the distribution of non-BC material across the BC-containing particle population, which is essentially the same as that of Yu et al. (2020). As for BC particles with known D_p and D_c, the mass concentration of BC core and coating material can be calculated with the effective density of BC core and coating material. The effective density of the BC core is calculated in detail in section 2.2 in the supplement. The effective density of the coating material is assumed to be the same as the measured effective density of non-BC aerosols by using a centrifugal particle mass analyzer (version 1.53, Cambustion Ltd, UK) in tandem with a scanning mobility particle sizer system (Zhao et al., 2019a) and a mean value of 1.5 g/cm^3 was used here.

For each of the particle i ($i=1,2,...,N$ is the measured BC-containing aerosol number concentration), we can calculate its mass ratio of BC with

$$p_{i,BC} = \frac{m_{i,BC}}{m_i},$$ \hspace{1cm} (1)

where $m_{i,BC}$ is the mass concentration of BC and m_i is the total mass concentration of particle i. The mass portion of BC can be calculated as

$$p_{BC} = \frac{m_{BC}}{m_{tot}},$$ \hspace{1cm} (2)

were m_{BC} (the total mass concentration of BC) and m_{tot} (total mass of BC-containing aerosols) can be calculated as $m_{BC} = \sum_{i=1}^{N} m_{i,BC}$, $m_{tot} = \sum_{i=1}^{N} m_i$. The MR is calculated as:

$$MR = \frac{(m_{tot}-m_{BC})}{m_{BC}},$$ \hspace{1cm} (3)

The mass portion of particle i to total BC-containing aerosols is calculated as

$$p_i = \frac{m_i}{m_{tot}},$$ \hspace{1cm} (4)

With the definition above, we can calculate the mixing entropy of particle i (H_i) by:
the average mixing entropy of the population by:

\[H_{\alpha} = \sum_{i=1}^{N} p_i H_i, \]

(6)

And the population bulk mixing entropy by:

\[H_{\gamma} = -(p_{BC} \ln(p_{BC}) + (1 - p_{BC}) \ln(1 - p_{BC}). \]

(7)

Then the average particle species diversity can be calculated by

\[D_{\alpha} = e^{H_{\alpha}}, \]

(8)

And the bulk population species diversity can be calculated by

\[D_{\gamma} = e^{H_{\gamma}}, \]

(9)

With the above information, the dispersion of BC particle mixing states can be defined as:

\[\chi = \frac{D_{\alpha}}{D_{\gamma}}. \]

(10)

The basic idea of quantifying the BC particle mixing states is the same as that of Riemer et al. (2013) and Riemer et al. (2019), their framework mainly focuses on the bulk ambient aerosols with about five species (Bondy et al., 2018; Ye et al., 2018). Several different (binary) species definitions for \(\chi \) have been used in the literature. Ching et al. (2017) used this index to study the impact of mixing of hygroscopic and non-hygroscopic species on cloud condensation nuclei. Dickau et al. (2016) quantified the volatile and nonvolatile species mixing characters. Zheng et al. (2021) compared three different variants for \(\chi \), one of which was based on absorbing (BC) and non-absorbing species, and Yu et al. (2020) use a metric that is very related to this paper. Our developed \(\chi \) is a reduced parameter that only concerns the BC-containing aerosols with two species of BC component and non-BC coating materials.

3. Results and Discussions
3.1 BC mixing states diagram

A mixing state diagram as shown in Fig. 2 was employed for better understanding the dispersion of BC mixing states. Nine different aerosols populations were given and summarized in Table 1. For each group, we include six BC-containing particles with different mass concentrations of BC core and non-BC coating material.

For group 1, the amounts of BC are very small (near zero) and most of the aerosols are composed of the non-BC component. The D_α and D_γ values are 1.00 and 1.00 respectively. These groups can also be described as all of the particles are pure BC particles without coating.

For groups 2, 3, and 4, the mass concentration ratios of the BC component to the non-BC component are 1:5, 2:4, and 3:3 respectively. All of the D_α values are 1.00 for groups 2, 3, and 4 because the BC particles are externally mixed. The corresponding D_γ values are 1.56, 1.89, and 2.00 respectively. For these three groups, the χ values are all 0.00.

For groups 4, 5, 6, and 7, the mass concentration ratios of the BC component to the non-BC component are all 1:1 while the BC component is mixed to a different extent. It is easy to conclude that the BC particles of group 7 are most well mixed among these four groups. The corresponding χ values are 0, 0.26, 0.83, and 1.0 for group 4, 5, 6, and 7, respectively.

As for groups 8 and 9, the mass concentration ratios of the BC component to the non-BC component are 1:6.1. The D_γ values are 1.5 and the D_α values are 1.5 and 1.35 respectively.

From the different groups, the average particle species diversity D_γ value is mainly determined by the total mass concentration ratio of the BC component to the non-BC component. It varies between 1 and 2 for different total mass concentration ratios. The
increases when the mass ratio approaches 1. The bulk population species diversity D_γ ranges between 1 and D_α. It denotes the diversity of different BC-containing particles.

3.2 Overview of the measurement

Fig. S6 gives the time series of our field measurements results. During the field measurement, the σ_{sca} varies between 29 and 1590 Mm$^{-1}$. The ranges of H_α, H_γ, D_α, D_γ, and χ are 0.10~0.55, 0.42~0.64, 1.32~1.72, 1.52~1.91 and 0.62~0.82 respectively.

For a better understanding of the characteristics of the above parameters, we only present the time series of these parameters during a pollution period between 27, May and 30, May in Fig. 3. As shown in Fig. 3, the MR increased from about 2 to 4 when the σ_{sca} increased from 300 to 1200 Mm$^{-1}$, which indicates that some secondary aerosol components were coated on the BC particles when the ambient air is more polluted. During the aging processing, the H_α decreased from 0.51 to 0.38 and H_γ decreased from 0.63 to 0.49. The D_α decreases from 1.66 to 1.48. The D_γ decreases with the MR from 1.86 to 1.66, which is consistent with the results in section 3.1 that the D_γ should decrease with the MR when the MR is larger than 1. The χ varies between 0.68 and 0.79. It is worth noting that the χ is not well correlated with the pollution conditions.

The corresponding mean value of BC-containing number size distributions under different Dp and Dc between the day of 27 and 28, May, 28 and 29, May, 29 and 30, May are shown in Fig. S7. It is obvious that the BC-containing number and coating thickness increase with the pollution levels. However, the normalized BC-core distributions under different pollutions are almost the same for different pollution levels as shown in Fig. S8. The daily variation of σ_{sca}, which is highly related to the
development of the boundary layer, reaches its maximum value of 525 Mm\(^{-1}\) at 6:00 AM and a minimum value of 150 Mm at 7:00 PM. The daily variation of MR is largest at 5:00 AM with a mean value of 3.16 and reaches its minimum value of 2.56 at 7:00 PM. The daily variation of MR was mainly influenced by aging processing and anthropogenic activities. During the daytime, the newly emitted BC particles due to anthropogenic activities have low MR and the measured mean MR is low than that at night. The \(D_\alpha\) values, which are anti-correlated with MR, show the opposite trend with MR. As for \(\chi\), it is smaller in the daytime than that at night. The lower \(\chi\) values at daytime mainly resulted from the mixing of newly emitted BC particles due to anthropogenic activities and some pre-existed aged BC particles.

3.3 Relationship between the \(\chi\) and \(E_{abs}\) from measurement

For each of the measured group of size-resolved distribution of BC core and coating thickness, we calculated the corresponding MR, \(\chi\), and \(E_{abs}\). And the relationship between the MR and absorption enhancement is summarized in Fig. 5. It should be noted that the shown BC population is only one of the possible examples with \(\chi\) equaling 0, 0.81, and 1 respectively. There are many other possible ways the particle composition can be arranged that would give the same mixing state index.

Overall, the BC \(E_{abs}\) increase with MR, which is consistent with the previous knowledge. For a given value of MR, \(E_{abs}\) varies by about 20%, especially for these conditions with MR larger than 1.0. When MR is larger than 1.0, the \(E_{abs}\) increase with the \(\chi\). Relationship between the \(E_{abs}\) and \(\chi\) is rather complex when MR is smaller than 1.0. However, only 448 of 6948 groups (6.4%) of the measured MR values are smaller than 1. Therefore, for most of the conditions, the measured \(E_{abs}\) should
increase with χ, which indicates that the BC mixing state index χ can be employed as a factor to constrain the E_{abs} of ambient aerosols.

A schematic diagram as shown in Fig. 6 to denotes the relationship between the E_{abs} and χ. From Fig. 6, we calculated the E_{abs} and χ under differ MR and then compared the E_{abs} of different bulk aerosols. The first group contains two particles with both the MR equaling 8. The corresponding χ is 1.00 and E_{abs} is 1.60. Another group of particles contains two particles with MR equaling 1 and 15, respectively. Thus the second group of particles has a mean MR of 8. The calculated corresponding χ and E_{abs} are 0.79 and 1.42 respectively. Thus, the E_{abs} tend to increase with χ for the same MR, which is mainly resulted from that the increasing ratio of E_{abs} (the slope of E_{abs} to MR) decrease with MR.

It is worth noting that the increasing ratio is almost the same when the MR is in the range of 0 and 3. Therefore, the E_{abs} doesn’t tend to increase with the χ when the MR was less than 1, which is consistent with our study as shown in Fig. 6.

3.4 Relationship between the χ and E_{abs} from simulation

A Mont-Carlo simulation was carried out for a better understanding of the relationship between χ and E_{abs}. During the simulation, a group of the BC-containing aerosols was generated with the Dp and Dc meet the following conditions and the number of BC-containing particles was assumed to be 30. For each of the BC-containing particles, the core diameter of the BC particle was randomly generated with a geometric mean diameter of 130.7 nm and a geometric standard deviation of 1.5, which is the mean measurement results of the BC core distribution during the field measurement (Zhao et al., 2020b). The corresponding MR of the BC particle is assumed to be randomly
distributed in the range between 0.0 (pure BC particles without coating) and 78.0 (particles with a core diameter of 130 nm and a total diameter of 560 nm). For each group particles, the corresponding aerosol bulk MR, E_{abs} and χ can be calculated using the core-shell Mie scattering model and the parameterization proposed by Wu et al. (2018) to accounting for the non-sphericity of the BC aerosols. The simulations were conducted for 10^7 times, and the calculated mean and standard deviation of E_{abs} under different MR and χ are summarized in Fig. 7 (a) and (b).

From Fig. 7 (a), the calculated E_{abs} tend to increase with MR for each of the given χ, which is consistent with the previous knowledge of the BC light absorption properties. Then the MR is smaller than 2, the calculated E_{abs} does not seem to increase with the χ, which is consistent with the analyzed results from section 3.3 and Fig. 6. When the MR is larger 2, the E_{abs} tend to increase with the χ. The larger the MR is, the E_{abs} is more sensitive to χ. Two reasons may lead to this phenomenon. One reason is that that calculated slope of E_{abs} to MR for one particle as shown in Fig. 6 decreases with the MR. Another reason is that the calculated E_{abs} range increase with MR when the χ changes between 0 and 1 as shown in Fig. 5.

As for the uncertainties of simulated E_{abs}, it tends to increase with the MR, which is consistent with the previous discussions that the E_{abs} the range tends to increase with MR. Overall, the calculated standard deviations of E_{abs} are all the way smaller than 10% for different MR and χ. Therefore, the calculated E_{abs} can be well
constrained by χ. When the ambient aerosol χ and MR were measured, the corresponding E_{abs} can be estimated from Fig. 7(a).

4 Conclusion

Larger uncertainties remain when estimating the warming effects of ambient BC aerosols due to the poor understanding of the ambient BC light absorption enhance ratio. Previous studies find that the light absorption of ambient aerosols was mainly determined by the morphology of the BC core, the position of the BC core inside coating, the coating thickness, and the size distribution of the BC. We find that there are more than 20% of uncertainties for the same measured mean coating thickness, i.e. the same measured MR based on the field measurement of the size-resolved distribution of BC core and coating thickness. However, there was no study, to our best knowledge, that attempts to constrain the uncertainties.

In this study, we developed the BC mixing states index χ based on the mass concentrations of BC components and non-BC material of each BC-containing particle. Results show that the light absorption enhancement ratio E_{abs} trend to increase the χ for the same measured MR. Therefore, our developed parameter χ, which reflects the dispersion of the BC mixing states, can be employed as an effective parameter to constrain the light absorption enhancement of ambient BC-containing aerosols.

The new finding of our study is that the mixing state index can contribute to improvements in the accuracy of simulating the BC radiative effects. In the particle-resolved simulation of ambient aerosols, the particle-to-particle heterogeneity of BC-containing aerosols can be resolved by simply introducing the BC mixing state index χ. The aerosol light absorption enhancement can be better constrained by MR and χ and then the radiative effects of BC can be estimated. Therefore, our framework can be
employed in the model by simply introduce a BC mixing state index for better estimating the BC radiative effects.

Data availability. The data involved is available in the manuscript.

Author contributions. Gang Zhao wrote the manuscript. Chunsheng Zhao, Min Hu, Tianyi Tan, Song Guo, Zhijun Wu, Yishu Zhu, and Gang Zhao discussed the results.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgments. This work is supported by the National Key R&D Program of China (2016YFC020000: Task 5) and the National Natural Science Foundation of China (41590872).

Zhao, G., Zhao, W., and Zhao, C.: Method to measure the size-resolved real part of aerosol refractive index using differential mobility analyzer in tandem with single-particle soot photometer, Atmospheric Measurement Techniques, 12, 3541-3550, 10.5194/amt-12-3541-2019, 2019c.

Figure 1. The measured E_{abs} of BC particles from different ambient measurements, including this work (in pink), and lab studies.
Figure 2. Mixing states diagram to illustrate the relationship between D_{α}, D_{γ}, and χ. Each species consists of six particles, and the colors of black and cyan represent the BC and non-BC components.
Figure 3. Measured time series of (a) σ_{sca} and MR, (b) D_α and D_γ, and (c) χ.

![Graph showing time series of σ_{sca}, MR, D_α, D_γ, and χ.](image-url)
Figure 4. Daily variation of the measured (a) σ_{sca}, (b) MR, (c) D_α, and (d) χ.
Figure 5. Relationship between the BC E_{abs} and the measured mass ratio of the BC-containing aerosols coating material to BC under different χ conditions. Four solid lines from bottom to up corresponding to the measured ambient size-resolved BC mixing states data with χ ranges of 0.575~0.625, 0.625~0.675, 0.675~0.725, and 0.725~0.775. The dotted line corresponds to the χ of 0.0 (blue), 0.81 (light red), and 1.0 (dark red), respectively.
Figure 6. Schematic diagram that denotes the relationship between χ and Er.
Figure 7. The calculated (a) mean E_{abs} values and (b) standard deviations of the E_{abs} values for different MR and χ.
Table 1. Detail information of the BC particles shown in Fig.2

<table>
<thead>
<tr>
<th>ID</th>
<th>((D_\alpha, D_\gamma))</th>
<th>(\chi)</th>
<th>(P_1^{*1})</th>
<th>(P_2^{*1})</th>
<th>(P_3^{*1})</th>
<th>(P_4^{*1})</th>
<th>(P_5^{*1})</th>
<th>(P_6^{*1})</th>
<th>(\text{Tot}^{*1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1.00, 1.00)</td>
<td>-</td>
<td>(10^{-9},1)</td>
<td>(10^{-9},1)</td>
<td>(10^{-9},1)</td>
<td>(10^{-9},1)</td>
<td>(10^{-9},1)</td>
<td>(10^{-9},1)</td>
<td>(6\times10^{-9},1)</td>
</tr>
<tr>
<td>2</td>
<td>(1.00, 1.56)</td>
<td>0</td>
<td>(1,10^{-9})</td>
<td>(10^{-9},1)</td>
<td>(10^{-9},1)</td>
<td>(10^{-9},1)</td>
<td>(10^{-9},1)</td>
<td>(10^{-9},1)</td>
<td>(1, 5)</td>
</tr>
<tr>
<td>3</td>
<td>(1.00, 1.89)</td>
<td>0</td>
<td>(1,10^{-9})</td>
<td>(1,10^{-9})</td>
<td>(10^{-9},1)</td>
<td>(10^{-9},1)</td>
<td>(10^{-9},1)</td>
<td>(10^{-9},1)</td>
<td>(2, 4)</td>
</tr>
<tr>
<td>4</td>
<td>(1.00, 2.00)</td>
<td>0</td>
<td>(1,10^{-9})</td>
<td>(1,10^{-9})</td>
<td>(1,10^{-9})</td>
<td>(10^{-9},1)</td>
<td>(10^{-9},1)</td>
<td>(10^{-9},1)</td>
<td>(3, 3)</td>
</tr>
<tr>
<td>5</td>
<td>(1.26, 2.00)</td>
<td>0.26</td>
<td>(2,10^{-9})</td>
<td>(2,10^{-9})</td>
<td>(10^{-9},2)</td>
<td>(10^{-9},2)</td>
<td>(10^{-9},1)</td>
<td>(1, 1)</td>
<td>(6, 6)</td>
</tr>
<tr>
<td>6</td>
<td>(1.83, 2.00)</td>
<td>0.83</td>
<td>(1,3)</td>
<td>(1,3)</td>
<td>(3,1)</td>
<td>(3,1)</td>
<td>(2,2)</td>
<td>(2,2)</td>
<td>(12,12)</td>
</tr>
<tr>
<td>7</td>
<td>(2.00, 2.00)</td>
<td>1.00</td>
<td>(1,1)</td>
<td>(1,1)</td>
<td>(1,1)</td>
<td>(1,1)</td>
<td>(1,1)</td>
<td>(1,1)</td>
<td>(6,6)</td>
</tr>
<tr>
<td>8</td>
<td>(1.5, 1.50)</td>
<td>1.00</td>
<td>(1,6.1)</td>
<td>(1,6.1)</td>
<td>(1,6.1)</td>
<td>(1,6.1)</td>
<td>(1,6.1)</td>
<td>(6,1.1)</td>
<td>(6, 36.6)</td>
</tr>
<tr>
<td>9</td>
<td>(1.35, 1.50)</td>
<td>0.70</td>
<td>(1,10^{-9})</td>
<td>(1,10^{-9})</td>
<td>(1,6.1)</td>
<td>(1,6.1)</td>
<td>(1,12.2)</td>
<td>(1,12.2)</td>
<td>(6, 36.6)</td>
</tr>
</tbody>
</table>

*1 Mass of the BC component of and non-BC component (arbitrary unit).