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Abstract. A thorough understanding of the relationship between urbanization and PM2.5 (fine particulate matter with 10 

aerodynamic diameter less than 2.5 µm) variation is crucial for researchers and policymakers to study health effects and 

improve air quality. In this study, we selected a fast-developing Chinese megacity as the studied area to investigate the 

spatiotemporal and policy-related variations of PM2.5 compositions and sources based on a long-term observation at multisite. 

A total of 836 samples were collected at 19 sites in wintertime of 2015-2019. According to the specific characteristics, 19 

sampling sites were assigned into three layers. Layer 1 was the most urbanized area referred to the core zone of Chengdu, layer 15 

2 was located in the outside circle of layer 1, and layer 3 belonged to the outer-most zone with the lowest urbanization level. 

The averaged PM2.5 concentrations for five years were in the order of layer 2 (133 µg m-3) > layer 1 (126 µg m-3) > layer 3 

(121µg m-3). And for each year, the spatial clustering of chemical compositions at sampling sites was generally consistent with 

the classification of layers. PM2.5 compositions for layer 3 in 2019 were found to be similar to that for other layers two or three 

years ago, implying that the urbanization levels had a strong effect on air quality. During the sampled period, a decreasing 20 

trend was observed for the annual averaged PM2.5 concentrations, especially at sampling sites in layer 1, which was caused by 

the more strict control policies implemented in layer 1. The SO4
2-/NO3

- mass ratio at most sites exceeded 1 in 2015 but dropped 

less than 1 since 2016, reflecting decreasing coal combustion and increasing traffic impacts in Chengdu. The positive matrix 

factorization (PMF) model was applied to quantify PM2.5 sources. A total of five sources were identified with the average 

contributions of 15.5% (traffic emission), 19.7% (coal and biomass combustion), 8.8% (industrial emission), 39.7% (secondary 25 

particles) and 16.2% (resuspended dust), respectively. From 2015 to 2019, dramatical decline was observed in the average 

percentage contributions of coal and biomass combustion, but traffic emission source showed an increasing trend. For spatial 

variations, coal and biomass combustion and industrial emission showed the stronger distribution patterns. High contributions 

of resuspended dust were occurred at sites with intensive construction activities such as subway and airport constructions. 

Combining the PMF results, we developed the source weighted potential source contribution function (SWPSCF) method for 30 

source localization, this new method highlighted the influences of spatial distribution for source contributions, and the 

effectiveness of the SWPSCF method was well-evaluated.  

1 introduction 

PM2.5, fine particulate matter with aerodynamic diameter less than 2.5 µm, is a complex heterogeneous mixture of chemical 

constituents originating from a variety of sources (Bressi et al., 2013; He et al., 2019; Kelly and Fussell, 2012). Numerous 35 

epidemiological studies have reported associations between PM2.5 and adverse human health effects (Bell Michelle et al., 2007; 

Yang et al., 2018b; Ostro et al., 2010; Philip et al., 2014), and attracted broad attention to PM2.5 in public in the past decades. 

The link between urbanization and spatiotemporal variability of PM2.5 has been studied (Zhang et al., 2015; Li et al., 2016). 

PM2.5 generally presented an increasing trend along with urbanization (Yang et al., 2018a). In addition, multiple policies were 
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conducted by governments to alleviate the pollution (Yan et al., 2018; Cai et al., 2017). The urbanization stage and emphasis 40 

of policies vary greatly in both time and space (Wang et al., 2018a; Gurjar et al., 2016; Seto et al., 2017), causing the significant 

spatiotemporal heterogeneity in the PM2.5 distribution. Thus, a thorough understanding of the spatiotemporal and policy-related 

variations of PM2.5 is necessary to investigate the relationship between urbanization and PM2.5. Previous studies have 

investigated the spatiotemporal variability of PM2.5 with the impact of urbanization (Li et al., 2016; Timmermans et al., 2017; 

Zhang et al., 2019; Yang et al., 2020; Seto et al., 2017), among which a small number of literatures devoted to the analysis of 45 

PM2.5 compositions and sources (Lin et al., 2014; Yan et al., 2018). However, there is a lack of research on multisite and long-

term sampling for PM2.5 compositions over a city-size area (Dai et al., 2020; Xu et al., 2020a; Fang et al., 2020). Systematic 

measurement based on multisite and long-term observation can provide valuable data for the comprehensive understanding of 

PM2.5 characteristics and variations. Related studies are critical for promulgating targeted control policies from the perspective 

of urbanization.  50 

 

In a city-size area, there exist a large number of natural and anthropogenic emission sources, such as soil or road dust, vehicle 

exhaust, biomass combustion, sea salt, forest fires, and they have great spatiotemporal variations (Zhang et al., 2015; Zhang 

et al., 2013; Mirowsky et al., 2013; Yang et al., 2018b). It is essential to identify and apportion PM2.5 sources for providing 

targeted control policies. To date, receptor models have been applied in a number of source apportionment studies of PM2.5, 55 

including factor analysis models (like PCA-MLR, PMF, UNMIX, and ME2) and chemical mass balance (CMB) techniques 

(Shi et al., 2009; Choi et al., 2015; Hasheminassab et al., 2014; Liu et al., 2015). These receptor models have been proved to 

be the effective methods of identifying and apportioning sources. Furthermore, to identify the likely source regions for a 

receptor site, a number of trajectory statistical methods have been widely applied, including concentration field (CF), 

concentration weighted trajectory (CWT), potential source contribution function (PSCF) and so on (Chen et al., 2011; Gebhart 60 

et al., 2011; Riuttanen et al., 2013; Kulshrestha et al., 2009b). For PSCF method, due to the sources showed discrepant spatial 

distribution patterns over the studied region, when trajectories passed over the grid cell in which a source category showed 

high local contributions, the probability of potential contribution for this grid cell should be relatively high in theory, which 

have been ignored during traditional PSCF modelling. Thus, the source weighted PSCF (SWPSCF) method would be 

developed in this work which combines PMF with PSCF and takes account of the spatial distribution of contributions for each 65 

source category. The SWPSCF can be employed as a valuable tool to obtain more precise hint on potential source areas.  

 

In China, megacities have experienced frequent air pollution events in response to rapid economic growth and urbanization 

(Li et al., 2016; Luo et al., 2018), which promoted governments to take various measures to improve air quality. Chengdu, one 

of typical megacities in China, can represent an illustrative example of urbanization in a metropolitan region. Since the 70 

implementation of policies such as the Air Pollution Prevention and Control Action Plan (APPCAP), Blue Sky Protection 

Campaign and the thirteenth Five-Year Plan (Cai et al., 2017), air quality prevention in Chengdu has achieved remarkable 

success, and it is helpful for researchers to explore the spatiotemporal and policy-related variations of PM2.5. In this study, we 

investigated the spatiotemporal and policy-related variations of PM2.5 compositions and sources in Chengdu at multisite based 

on a long-term observation. A total of 836 samples were collected in 19 sites of Chengdu in winters of 2015-2019. The positive 75 

matrix factorization (PMF) model was applied to estimate PM2.5 source contributions. The SWPSCF method was applied to 

identify the potential source location. The main objectives of this study were: (i) to analyse the long-term spatiotemporal 

variations of PM2.5 compositions among multiple zones in different urbanization levels; (ii) to determine PM2.5 sources and 

their contributions, and to evaluate the effectiveness of the SWPSCF method in potential source localization; (iii) to explore 

the spatiotemporal evolution of sources along with changing of urbanization and related policy-orientation. The findings of 80 

this research will be helpful for a comprehensive understanding of the impact of urbanization process and control policy on 

variations of PM2.5 compositions and sources in different zones, which can provide basic information for future 
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epidemiological studies. And it is of vital importance for further formulating emission reduction policies in China and in other 

developing and polluting countries. 

2 Method and materials 85 

2.1 Sampling sites and sampling 

We collected PM2.5 samples in Chengdu (102° E to 104° E, 30° N to 31° N), which is in the southwest of China with a 

population of 16.33 million and the area of 14605 km2. As the important metropolitan region in western China, Chengdu is 

undergoing rapid urbanization and is also attracting more and more people living here. At the same time, much attention was 

paid on the pollution of PM. To improve air quality, Chengdu government adopted several measures including limiting the 90 

driving area and time interval of highly polluted vehicles, adjusting industrial structures and implementing energy substitution. 

Considering the heterogeneous spatial distribution of population, economic, industry and construction activities, there exists 

great difference in urbanization and air quality in Chengdu, and emphasis on corresponding policies also varies over the city. 

As is shown in Fig. 1, the sampling was conducted at a total of 19 sites in Chengdu. Detailed information of sampling sites 

can be seen in Table S1. Based on the specific characteristics, 19 sampling sites were clustered in different zones for the 95 

convenience of discussion. Environment Protection Building (QY1), Chengdu University of Technology (CH1) and botanical 

garden (JN1) have similarities of high population density and high traffic. They are located in the core zone of Chengdu, and 

developed earlier in the urbanization process. Combining the city structure and evolution of urbanization level, Chengdu 

citizens are used to define regions surrounded by the third circle road as “layer 1”, and the location of QY1, CH1 and JN1 are 

in accordance with the extent of layer 1. Sampling sites including Qingbaijiang (QBJ2), Xindu (XD2), Pidu (PD2), Wenjiang 100 

(WJ2), Shuangliu (SL2), Tianfu (TF2) and Longquanyi (LQY2) are located in the outside circle of layer 1. The circle developed 

later than layer 1 and were clustered as the second zone named as layer 2. Among the sampling sites in layer 2, QBJ2, XD2, 

WJ2 and SL2 are featured by intensive industrial factories, and TF2 has frequent construction activities. The remaining 9 sites 

(Jintang (JT3), Pengzhou (PZ3), Dujiangyan (DJY3), Chongzhou (CZ3), Dayi (DY3), Qionglai (QL3), Pujiang (PJ3), Xinjin 

(XJ3) and Jianyang (JY3)) are located in the outer-most zone of Chengdu, which belongs to layer 3. The urbanization level of 105 

layer 3 is lower than layer 1 and layer 2. In addition, because the air pollution is usually heavy in winter, the sampling campaign 

was conducted in winter from 2015 to 2019, lasting about 15 days each year. The detailed sampling periods for sampling sites 

in 2015-2019 are listed in Table S2. Although several selected sampling sites may not fully consistent in each year, this small 

difference will not influence the reflection of spatiotemporal variations in Chengdu. A total of 836 PM2.5 samples were 

collected for analysis. 110 

 

The sampling campaign was conducted by two medium-volume air samplers (TH-150C; Wuhan Tianhong Ltd., China) with 

the airflow rate of 100 min L-1 were used at each site. One sampler placed quartz filters to collect PM2.5 for analysing organic 

(OC), elemental carbon (EC) and ions. The other sampler placed polypropylene filters for analysing elements in PM2.5. PM2.5 

samples were daily collected for 22h at 19 sites. Information of average temperature (℃), cumulative volume (L) and standard 115 

volume (L) were recorded. Collected samples were stored in a layer of aluminium foil in a freezer at -20℃ until weighing and 

analysis. The mass of PM2.5 was determined by weight difference of the filter before and after sampling. Before sampling, 

blank quartz filters and blank polypropylene filters were baked at 600 ℃ for 4h and 60 ℃ for 3h, respectively. For the process 

of weighing, filters were weighted at a temperature of 20±1℃ and a humidity of 40±5% for 48h. The weights of filters can be 

obtained using a microbalance with a sensitivity level of 0.01 mg. Each filter was weighted twice, and the final weight equals 120 

to the average of two values (the difference was less than 0.05 mg).  
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2.2 Chemical analysis and quality assurance/ quality control (QA/QC) 

The OC, EC, ions and elements were detected by the thermal/optical carbon aerosol analyser (DRI model 2001A; Desert 

Research Institute, USA), ion chromatograph system (ICS-900; DIONEX, USA) and Inductively Coupled Plasma Atomic 

Emission Spectrometer (ICAP 7400 ICP-AES; Thermo Fisher Scientific, USA), respectively.  125 

 

OC and EC were analysed based on a hole with 0.588 cm2 of the quartz filter. The thermal/optical carbon aerosol analyser 

orderly detected OC1, OC2, OC3 and OC4 in a pure helium atmosphere at the temperature of 140℃, 280℃, 480℃, and 580℃, 

respectively. Likewise, the oven increased the temperature to 540℃, 780℃, and 840℃ for EC1, EC2 and EC3 analysis, 

respectively, in a 2% O2 atmosphere. The organic pyrolyzed carbon (OPC) would also be detected after adding the oxygen. 130 

Finally, the OC and EC concentrations were calculated as Eq. (1) and Eq. (2), respectively. QA/QC was conducted by the 

calibration process. The analyser will be calibrated before and after analysing to make sure the analytic accuracy within 2%.  

𝑂𝐶 = 𝑂𝐶1 + 𝑂𝐶2 + 𝑂𝐶3 + 𝑂𝐶4 + 𝑂𝑃𝐶                            (1) 

𝐸𝐶 = 𝐸𝐶1 + 𝐸𝐶2 + 𝐸𝐶3 − 𝑂𝑃𝐶                                  (2) 

 135 

Ions such as Cl-, SO4
2-, NO3

- and NH4
+ were measured on a one-eighth sample. Samples were cut up into small pieces and 

ultrasonically extracted with 8mL deionized water for 20 minutes. Tubes that were used during extracting had been cleaned 

three times by an ultrasonic cleaner. After extracting, the supernatant was injected into a vial through two 0.22μm filters for 

analysis. Relative standard deviations had to be calculated more than three times to hold the value at a lower level. 

 140 

As for elements analysis, the microwave acid digestion method was applied for detecting Al, Fe, Mg, Ca, Na, K, V, Cd, Pb, 

Si, Zn, Cu, Cr, As, Ni, Co, Mn and Ti. 10mL mixed digestion solution was added to digest one-eighth sample pieces, the 

digestion process was conducted by four-stage microwave digestion procedure of the microwave-accelerated reaction system 

(MARS; CEM Corporation, USA). Afterward, the digestion solution would be transferred into a PET bottle, and diluted the 

solution to 25ml by deionized water for further analysis. 145 

2.3 Positive Matrix Factorization (PMF) 

The PMF model is a widely used bilinear receptor model. The goal of this model is to identify and quantify the source 

contribution of contaminants by solving the following equation (Eq. (3)):  

                    𝑥𝑖𝑗 = ∑ 𝑔𝑖𝑘𝑓𝑘𝑗 + 𝑒𝑖𝑗
𝑝
𝑘=1                                            (3) 

where i, j and p are the number of samples, chemical compositions, and factors, respectively; 𝑥𝑖𝑗  is the concentration of the 150 

𝑗𝑡ℎ species in the 𝑖𝑡ℎ sample; 𝑔𝑖𝑘 is the contribution of the 𝑘𝑡ℎ source to the 𝑖𝑡ℎ sample; 𝑓𝑘𝑗 is the concentration of the 𝑗𝑡ℎ 

species from the 𝑘𝑡ℎ source; and 𝑒𝑖𝑗 is the residual for each sample/species (Paatero, 1997; Paatero and Tapper, 1994).  

 

We input the measured speciated data as the matrix X of i by j dimensions, then the PMF model can divide it into two matrixes: 

factor contributions (G) and factor profiles (F). The non-negativity constraint is also introduced to ensure the positive value 155 

for each source contribution. In the process of decomposition, the model is run several times applying the least square method 

to minimize the objective function Q (Eq. (4)), and in this case, the obtained solution of G and F is considered the most optimal: 

𝑄 = ∑ ∑ (
𝑒𝑖𝑗

𝑢𝑖𝑗
)
2

𝑚
𝑗=1

𝑛
𝑖=1                                           (4) 

where 𝑢𝑖𝑗 is the uncertainty of the 𝑗𝑡ℎ chemical composition of the 𝑖𝑡ℎ sample. The model required both concentration data 

and uncertainty of species in each sample. The equation-based uncertainty is calculated as follows (Eq. (5)):   160 
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                           𝑢𝑖𝑗={

5

6
×𝑀𝐷𝐿,                                                                        𝑐𝑖𝑗 ≤ 𝑀𝐷𝐿     

√(𝐸𝑟𝑟𝑜𝑟 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 𝑐𝑖𝑗)
2
+ (0.5 × 𝑀𝐷𝐿)2,   𝑐𝑖𝑗 > 𝑀𝐷𝐿  

                  (5) 

where 𝑐𝑖𝑗  is the concentration of chemical compositions of each sample, MDL is the method detection limit for each 

component. 

 

In this study, the EPA PMF 5.0 was applied for the source apportionment of 𝑃𝑀2.5, and total of 22 chemical compositions of 165 

836 samples at 19 sites from 2015 to 2019 were simulated. The detailed source apportionment results are reported in 3.3 and 

more information on the PMF model is described in the PMF 5.0 User Guide.  

2.4 Source Weighted Potential Source Contribution Function (SWPSCF) 

The PSCF model is a conditional probability that was applied to identify the source regions of PM2.5 masses to the receptor 

site. In this study, the backward trajectories were modelled by the hybrid single-particle Lagrangian Integrated Trajectory 170 

(HYSPLIT 4.9 version), which is available at http://www.arl.noaa.gov/ready/hysplit4.html. Required meteorological data can 

be obtained from National Oceanic and Atmospheric Administration (NOAA) website 

(ftp://arlftp.arlhq.noaa.gov/pub/archives/reanalysis). The 12 h backward trajectories starting from the receptor site at 500 m 

above ground level were generated with 6 h time intervals during all sampling periods. PSCF model divided the region where 

trajectories passed over into 0.1°×0.1° grid cells and computed PSCF values of all grid cells in the domain. For the receptor 175 

site, the daily concentrations were assigned to the grid cells along related trajectories, and selected a certain threshold criteria 

value. When the concentration in one grid cell was above the threshold value, there exists a probability that sources located in 

this grid cell has an influence on the receptor PM2.5 concentrations. A higher PSCF value indicates a higher probability of this. 

The PSCF values were defined by Eq. (6) (Han et al., 2007):  

𝑃𝑆𝐶𝐹𝑖𝑗 = (
𝑚𝑖𝑗

𝑛𝑖𝑗
)𝑊𝑖𝑗                                    (6) 180 

where 𝑛𝑖𝑗 is the total number of trajectory endpoints that fall into the grid cell (i, j), and 𝑚𝑖𝑗 is the number of trajectory 

endpoints when their corresponding contributions exceed the criteria value. 𝑊𝑖𝑗  is a weight function (Eq. (7)) used for 

reducing uncertainty when specific grid cells have small numbers of trajectory endpoints (Polissar et al., 2001; Lee and Hopke, 

2006):  

𝑊𝑖𝑗 =

{
 
 

 
 1.0                              3𝑛𝑎𝑣𝑒 < 𝑛𝑖𝑗
0.7         1.5𝑛𝑎𝑣𝑒 < 𝑛𝑖𝑗 < 3𝑛𝑎𝑣𝑒
0.4          𝑛𝑎𝑣𝑒 < 𝑛𝑖𝑗 < 1.5𝑛𝑎𝑣𝑒  

0.2                             𝑛𝑖𝑗 < 𝑛𝑎𝑣𝑒   

                               (7) 185 

where 𝑛𝑎𝑣𝑒 is the average number of endpoints in each grid cell.  

 

When trajectories passed over a grid cell in which a certain source category showed high local contribution, the probability of 

potential contribution for this grid cell should be relatively high. Thus, we introduced another weighted function 𝑆𝑊𝑖𝑗 that 

represents the ratio of source contribution in grid cell (i, j) to average contribution in the whole study area. The 𝑆𝑊𝑖𝑗 is 190 

calculated as Eq. (8). The source weighted PSCF (SWPSCF) value is expressed as Eq. (9).  

𝑆𝑊𝑖𝑗 = 𝑐𝑖𝑗/𝑐𝑎𝑣𝑒                                    (8) 

𝑆𝑊𝑃𝑆𝐶𝐹 = 𝑆𝑊𝑖𝑗 × 𝑃𝑆𝐶𝐹                                (9) 

where 𝑐𝑖𝑗  is the source contribution of each source category in grid cell (i, j), and is available using the Kriging interpolation 

algorithm; 𝑐𝑎𝑣𝑒  is the average source contribution of this source category of all sampling sites in the whole study area. 195 
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2.5 Hierarchical cluster analysis (HCA) 

The similarity analysis of PM2.5 compositions among the 19 sampling sites from 2015 to 2019 was conducted using the method 

of hierarchical cluster analysis. Cluster analysis, a technique used for identifying groups that have similar characteristics, can 

be broadly classified as hierarchical and non-hierarchical (Govender and Sivakumar, 2020; Saxena et al., 2017). By recursively 

finding nested clusters, hierarchical clustering repeatedly combines the two closest groups into one larger group (Xu et al., 200 

2020b), and finally generates a dendrogram. The algorithm is implemented mainly by the following steps (Govender and 

Sivakumar, 2020):  

Step 1: Determine each observation as the initial cluster.  

Step 2: Measure the distance between clusters for quantifying the similarity between objects.  

Step 3: The closest pairs of clusters are merged into a single cluster, and re-calculate the distance matrix. 205 

Step 4: Repeat step 2 and 3 until all observations are integrated into a single cluster.  

 

In this study, the HCA was conducted based on the cosine distance and average linkage using IBM SPSS Statistics 25. By 

cutting the dendrogram at an appropriate distance, PM2.5 samples that have similarities in chemical species can be grouped 

into the same cluster.  210 

3 Results and discussion 

3.1 Spatiotemporal variations of PM2.5 concentrations 

The spatiotemporal variations of PM2.5 concentrations for layers and sites in 2015-2019 are depicted in Fig. 2. And the detailed 

PM2.5 concentrations are summarized in Table S3. Due to the slight difference of the selected sampling sites in layer 2 and 

layer 3 in each year, both layers and sites were discussed for a better understanding of the PM2.5 variability. For spatial 215 

distribution, the average PM2.5 concentrations of five years were 126 µg m-3, 133 µg m-3 and 121 µg m-3 for layer 1, layer 2 

and layer 3, respectively. Layer 1, the most urbanized area in Chengdu, suffered severe traffic pollution, however, more strict 

control policies were conducted by local government in this area. The high PM2.5 concentration in layer 2 may be caused by 

strong industrial activities and extensive construction activities at QBJ2, XD2, WJ2, SL2 and TF2. Layer 3 was characterized 

by the lowest urbanization level in Chengdu, although weak emissions of old chemical industries and small coal-fired boilers 220 

were observed at XJ3, PZ3, CZ3 and DY3, there existed less vehicles than layer 1 and less factories than layer 2, explaining 

the relatively low PM2.5 level of the area.  

 

PM2.5 concentrations in three layers showed similar temporal variation, which averagely declined from 174 µg m-3 in 2015 to 

95 µg m-3 in 2019, except for a small increase in 2017 (134 µg m-3), indicating the effective control measures in Chengdu in 225 

recent years. A more obvious decline was observed at sites in layer 1. In 2015, PM2.5 concentration was the highest in layer 1, 

however since 2016, the highest PM2.5 level have transferred from layer 1 to layer 2. This may be influenced by the fact that 

the coal-burning ban was promulgated the earliest in layer 1. The government published Chengdu’s Air Pollution Prevention 

and Control Regulation in each year and introduced a number of specific measures, among which the substitution of the clean 

energy boilers for existing coal-fired boilers was accelerated in 2016 in layer 1. PM2.5 concentrations at several sites in layer 2 230 

exhibited a minor elevation: for example, PM2.5 levels at WJ2 and SL2 elevated in 2018. It may be associated with the 

construction and industrial activities in this region. Temporal variations of sites in layer 3 are not discussed due to the deficiency 

of PM2.5 concentrations in many studied years.   

3.2 Spatiotemporal variations of chemical compositions 

Research in chemical compositions of PM2.5 can be helpful to identify the source changes and the effectiveness of related 235 
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policies. Figure 3 shows the fractions of main chemical species (%) in PM2.5 at each site during winters in 2015-2019, reflecting 

the relative importance of species under different PM2.5 concentrations. The average fractions of PM2.5 species were in the 

order of OC > NO3
- > SO4

2- > crustal elements (the sum of Al, Si, Ca, Ti and Fe) > NH4
+ > EC > Cl-, constituting 17.2%, 

13.5%, 11.0%, 8.3%, 5.7%, 5.4%, 2.3% of the PM2.5 mass, respectively.  

 240 

To identify the similarity and diversity of PM2.5 compositions among the sampling sites and years, Figure 4 describes the 

hierarchical cluster analysis (HCA) results (based on cosine distances) of chemical compositions (%) at each sampling site for 

five years (2015-2019). Four clusters were revealed, and the result showed a strong correlation with years: cluster 1 (C1) 

included all the sites in 2015; sites in 2016 and 2017 were classified as cluster 2 (C2); cluster 3 (C3) consisted of most sites in 

2018 and 2019; and 2016DJY3, the only sites far from the other sites, was separated as cluster 4 (C4) due to its distinctive 245 

pollution feature. The meteorological data during the sampling period from 2015 to 2019 is shown in Table S4, reflecting the 

similar meteorological conditions in the studied years, which highlighted the importance of the source variations for the 

clustering result. There existed a special case that sites of layer 3 in 2019 belonged to C2 rather than C3, indicating PM2.5 

compositions for layer 3 in 2019 were more similar to that for other layers two or three years ago. This can be explained by 

the fact that the urbanization levels varied between layers in Chengdu. As the outer-most zone of Chengdu, layer 3 lagged 250 

behind layer 1 and layer 2 in the urbanization, which contributed to the similar characteristics in air quality between current 

layer 3 and previous other layers. The HCA results indicated an incredible need to investigate the variations of PM2.5 

compositions in both time and space.  

3.2.1 Spatial variations of chemical compositions 

To investigate the spatial similarities and differences of chemical compositions, the HCA was also applied based on chemical 255 

compositions (%) at sampling sites for each year, and finally cluster results and their averaged species fractions are listed in 

Fig. S1. It’s interesting to find that the spatial clustering in each year was generally consistent with the classification of three 

layers. For example, sites in Layer 3 were generally clustered in specific clusters. 

 

The chemical compositions of clusters in 2015-2019 are shown in Fig. 5. Take an example of the first cluster in 2015, we 260 

defined it as 2015C1. Spatial differences were observed for each year. Clusters containing sites in layer 3 (2015C4, 2016C4, 

2017C1, 2018C2 and 2019C1) always showed higher OC fractions which were 20.9%, 14.6%, 20.5%, 17.5% and 23.3% of 

PM2.5 mass, respectively. The higher OC fractions in layer 3 may indicate stronger fuel combustion and biomass burning. One 

possible reason was that there were more residential combustions (like bulk coal and biofuel combustions) and small boilers 

with low combustion efficiency in layer 3 than in the other two layers, so control measures for fuel combustion is still needed 265 

to be strengthened in layer 3. The high NO3
- level in Chengdu were observed at PZ3 in 2015 and QY1, CH1 in 2019. The high 

NO3
- level at PZ3 in 2015 may be associated with the petrochemistry industry. In 2019, the NO3

- level at PZ3 was lower than 

that in 2015, which might be influenced by the renovation of de-nitrification of the key industries. On the other hand, the 

vehicle ownership in Chengdu markedly increased especially in layer 1. Characterized by the most intensive vehicles, QY1 

and CH1 was observed to suffer traffic pollution. Crustal elements accounted for the highest proportion in layer 1 related 270 

clusters (2016C3, 2017C3 and 2018C4) with 10.5%, 9.9% and 8.3%, respectively. The subway construction of in layer 1 of 

Chengdu can explain this result well. 

3.2.2 Temporal variations of chemical compositions 

For temporal variations of compositions shown in Fig. 3, the fractions of OC and EC generally showed a decreasing trend 

from 2015 to 2018 and slightly increased in 2019 at most sites. The average fractions of OC were 19.1% and 15.5% in 2015 275 

and 2018, respectively. EC accounted for 15.5% and 5.0% of PM2.5 in 2015 and 2018, respectively. The OC and EC mainly 
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come from fuel combustion, such as coal, gasoline, diesel, biomass, and so on (Wang et al., 2020). In Chengdu, coal is one of 

the important fuels for the industry but has been strongly reduced by the government in recent years. Gasoline and diesel are 

mainly used for vehicles. The decrease of OC and EC fractions from 2015 to 2018 may due to the decline of coal use for 

industries, which was consistent with the strict coal-burning ban in these years, however, as the vehicles become more 280 

important contributor, the OC and EC fractions increased in 2019. Publications have reported the SO4
2- and Cl- as the coal-

burning markers (Tian et al., 2014; Vassura et al., 2014). In this study, the fractions of SO4
2- and Cl- generally showed a 

decreasing trend, especially in 2016. However, the fractions of NO3
- showed a general increasing trend from 2015 to 2019, 

which might be attributed to the gradually enhanced contribution of vehicles and use of natural gas. We also analyzed the SO4
2-

/NO3
- mass ratio, a qualitative indicator of sulfur versus nitrogen sources (Gao et al., 2015; Arimoto et al., 1996), and the 285 

summary is listed in Fig. S2. Ratios at most sites exceeded 1 in 2015, dropped less than 1 in 2016 and then declined steadily, 

also indicating decreasing coal combustion and increasing traffic emissions in Chengdu. The result was consistent with the 

slow reduction in NOX and the sharp decline in SO2 emissions in China (Zhao et al., 2013; Wang et al., 2018b). For crustal 

elements, the temporal variations were found to have close relationship with the construction activities in Chengdu in 2015-

2019.  290 

3.3 Spatiotemporal variations of sources 

PMF was used to quantify the source contributions in the studied areas and finally five categories were selected with 

distinctively related source characteristics. Five sources were identified as traffic emission, coal and biomass combustion, 

industrial emission, secondary particles and resuspended dust, respectively. The estimated source profiles in the form of species 

concentrations (μg m-3) and percentages of species sum (%) are shown in Fig. 6. Factor 1 contributed 15.5% of PM2.5 and had 295 

high fractions of EC (70.0% of total EC) and OC (51.8% of total OC), which can be identified as traffic emission (Xu et al., 

2016). The relatively high NO3
- further revealed factor 1 as the traffic emission source. The moderate fractions of Al, Si, Cu, 

Ni and As in this factor may be associated with traffic activities including resuspension of road dust, tire and brake wear, and 

oil burning (Kulshrestha et al., 2009a; Almeida et al., 2005; Amato and Hopke, 2012). Factor 2 was determined as coal and 

biomass combustion source. Coal combustion generally plays an important role in Chinese energy structure. Identified as 300 

markers of coal combustion source, OC, EC, Cd and SO4
2- exhibited high loadings in factor 2, with fractions of 25.8%, 20.3%, 

61.9% and 26.7%, respectively (Tian et al., 2016). The existence of biomass burning was indicated by the high fraction of K+ 

in this factor (Amil et al., 2016; Richard et al., 2011). Factor 2 accounted for 19.7% of the total PM2.5 mass concentration. 

Factor 3, which accounted for 8.8% of PM2.5, was considered as an industrial emission source, due to its high loadings of Fe 

(73.8%), Cu (70.7%), Mn (60.5%), Ti (85.5%), Ni (61.5%) and Mg (50.2%). The above species are used frequently as source 305 

markers for industrial emissions including building materials and metallurgical production (Contini et al., 2014; Jiang et al., 

2014). Factor 4 was characterized by nearly 76.7%, 61.2% and 55.9% of NO3
-, NH4

+ and SO4
2-, and no other high species. 

According to previous studies, NO3
-, SO4

2- and NH4
+ are indicative species of secondary reactions (Richard et al., 2011; Wu 

et al., 2021). Consequently, factor 4 represented the secondary particle source, contributing 39.7% of PM2.5. Factor 5 was 

identified as resuspended dust accounting for 16.2% of PM2.5. The top three fractions of species were Al (84.2%), Ca (79.5%) 310 

and Si (56.5%), which were typical indicatory components for resuspended dust (Pant and Harrison, 2012).  

3.3.1 Spatial variations of source contributions 

Figure 7 shows the source contribution at each site from 2015 to 2019 to investigate their spatial variations. The CV 

(Coefficient of Variation), which is defined as the standard deviation divided by the mean, was used to investigate the spatial 

difference of each source category. As shown in Table S5, CV values in this study indicate that coal and biomass combustion 315 

and industrial emission showed stronger spatial variations. For coal and biomass combustion source, the percentage 

contributions were higher at CZ3 of layer 3 and QBJ2 of layer 2 than at other sites. And the high contributions of industry 
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source mainly occurred in layer 2 including QBJ2, WJ2, PD2, SL2 and XD2, with fractions from 8.9% to 12.9%. Among the 

sampling sites mentioned above, CZ3 was characterized by intensive coal-fired boilers. QBJ2 contains large-scale iron, steel 

and chemical plants. WJ2, PD2, SL2 and XD2 were in great development and also had large factories of glass, food and 320 

furniture, respectively. Therefore, the spatial distributions of PM2.5 from coal and biomass combustion and industrial emission 

were strongly associated with industrial manufacturing plants. Additionally, the contributions of traffic emission were higher 

in layer 1 and layer 2, with the percentage contributions in 2015-2019 ranging from 13.9% to 16.3% in layer 1 and from 11.6% 

to 17.5% in layer 2. The secondary particles had higher contributions in layer 3. Fractions of secondary particles at QY1 and 

LQY2 also presented relatively high values of 44.5% and 49.9%, respectively. For resuspended dust, the spatial distribution 325 

varied with human activities. The contributions were relatively higher at layer 1 in 2015-2018, which resulted from the 

construction of the urban subway. At JY3, high contributions from resuspended dust were attributed to the fact that Chengdu 

Tianfu International Airport was under construction. Overall, the spatial distributions of source contributions were exactly in 

accordance with the characteristics and urbanization level of sites, highlighting the importance of site-specific and urbanization 

research in pollutant emissions control.  330 

 

To better consider the spatial distribution of contributions for each source category, the SWPSCF method was applied for 

identifying the source regions to the receptor site based on a source contribution weight. In this study, we selected QY1 as the 

receptor site and the averaged contribution of each source category at QY1 as threshold values. Both SWPSCF and PSCF 

values were calculated for each source category in the wintertime from 2015 to 2019. The effectiveness of the SWPSCF method 335 

was well-evaluated during the investigation. The examples of traffic emission and coal and biomass combustion in 2015 and 

2019 were shown in Fig. 8, and differences were found in PSCF and SWPSCF results. For coal and biomass combustion source 

in 2015 (Fig. 8(a)), the potential source regions were observed to concentrate to CZ3 after source weighted, and the SWPSCF 

values around QBJ2 were higher than PSCF values, reflecting a strengthened influence of coal and biomass combustion source 

at CZ3 and QBJ2. For traffic emission source in 2019 (Fig. 8(b)), the identified potential source regions moved toward layer 340 

1 after source weighted, which was in agreement with the spatial distribution of traffic emission contributions.  

3.3.2 Temporal variations of source contributions 

Temporal variations of source contributions at each site are also summarized in Fig. 7. Contributions of traffic emissions at 

most sites showed an increasing trend from 2015 to 2019, because the number of vehicles was fast increasing. The average 

percentage contributions of traffic emissions of layer 1 and layer 2 were in the order of 13.3% (in 2015) < 13.4% (in 2016) < 345 

14.8% (in 2017) < 15.8% (in 2018) < 17.1% (in 2019). Contributions in layer 3 was not calculated because of the difference 

of sites in the studied year, but the tendency was consistent with conclusions of layer 1 and layer 2. An obvious decline in the 

contribution of coal and biomass combustion can be observed in studied years, especially in 2016. The average percentages of 

layer 1 and layer 2 declined from 33.2% in 2015 to 15.5% in 2016 and finally to 11.5% in 2019. The result indicated that 

notable success was achieved in the control of and coal-related sources in recent years. The industrial emission showed the 350 

highest percentages in 2016 at some sites and presented a downtrend. The percentage of source contributions of secondary 

particles at most sites increased steadily year by year. The average fractions of layer 1 and layer 2 from 2015 to 2019 were 

29.8%, 40.0%, 41.2%, 46.0% and 44.0%, respectively. For resuspended dust, the fractions in 2015 and 2016 were generally 

higher than those in other years, especially for sites in layer 1 where had strong subway construction activities in previous 

years. In 2017-2019, the source contributions of resuspended dust remained stable, and some slight fluctuations can be 355 

attributed to local construction activities.  

 

The above analysis of temporal variations provides insights on the changes of source structures in Chengdu: pollution from 

traffic and secondary aerosol were playing more important role; sources from coal and biomass combustion and industrial 
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emissions were effectively controlled; and resuspended dust always happened along with the urban construction. All of the 360 

information can offer useful references for the government to furtherly promulgate effective policies on atmospheric pollution 

prevention and reduction in China and other developing and polluting countries.  

4 Conclusion  

We investigated the spatiotemporal and policy-related variations of PM2.5 compositions and sources at 19 sites in Chengdu, 

based on a long-term sampling campaign in wintertime from 2015 to 2019. Considering the specific characteristics among 365 

sites, the variations were discussed in three layers that are in different urbanization levels. The results showed distinct 

spatiotemporal distribution patterns for both PM2.5 compositions and sources, linking with the process of urbanization and 

corresponding policies in the studied region.  

 

During the sampling period, temporal variations of averaged PM2.5 concentrations at sites in layer 1 showed the most obvious 370 

decreasing trend, which was caused by comparably strict control measures conducted in layer 1. The fractions of OC and EC 

declined from 2015 to 2018 and slightly increased in 2019 at most sites. The SO4
2-/NO3

- mass ratio at most sites dropped less 

than 1 since 2016 and showed a decreasing trend, indicating decreasing coal combustion and increasing traffic emissions in 

Chengdu. The average percentage contributions of coal and biomass combustion source declined obviously from 2015 to 2019, 

reflecting the notable success in the control of coal-related sources in Chengdu. For spatial variations, PM2.5 compositions for 375 

layer 3 in 2019 were found to be similar to that for layers two or three years ago, which indicated the great impact of differences 

in urbanization to air quality. Coal and biomass combustion and industrial emission showed the stronger spatial distribution 

patterns in Chengdu, the high percentage contributions of which usually occurred at sites with large-scale industrial factories 

and coal-fired boilers. Frequent construction activities in developing areas can considerably elevate the percentage 

contributions of resuspended dust. The SWPSCF results were found to have great differences with PSCF results. The changes 380 

for identified potential source regions after source weighted were in agreement with the spatial distribution of each source 

contributions. This study presented a perspective on the relationship between PM2.5 and urbanization. Sampling activities that 

conducted based on a five-year measurement at 19 sites in different urbanization levels provided particular valuable data for 

researchers. The results can be useful for further policy formulation in most developing and polluted countries, and supply 

basic information for future epidemiological studies.  385 

 

Data availability. The hybrid single-particle Lagrangian Integrated Trajectory (HYSPLIT 4.9 version) is available at 
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Figure 1: The locations of 19 sampling sites in Chengdu from 2015 to 2019. Sampling sites marked with red box were characterized 565 
by various industries as descried in the left part of the figure. More details of sampling sites were listed in Table S1. 

 

Figure 2. Spatiotemporal variations of PM2.5 concentrations for layers and sampling sites in 2015-2019. 
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Figure 3. The spatiotemporal variations of the fractions of main chemical species in PM2.5 at each site during winters in 2015 to 2019. 570 
Unit: % 

 

 

Figure 4. The HCA results (based on cosine distances) of chemical species (%) at sampling sites for five years (2015-2019) and their 

averaged species fractions. 575 
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Figure 5. Spatial distribution of PM2.5 compositions and fraction values of each cluster from 2015 to 2019. (i.e. 2015C1 refers to the 

first cluster of sampling sites in 2015). 

 

Figure 6. Source profiles estimated by the PMF, in the form of species concentrations (μg.m-3) and percentages of species sum (%). 585 
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Figure 7. Spatiotemporal variations of source contributions to total mass of PM2.5 in Chengdu. (TE, CC, IE, SP and RD represent 

traffic emission, coal and biomass combustion, industrial emission, secondary particles and resuspended dust, respectively.)  

 590 

 

Figure 8. Potential source locations identified by the PSCF and SWPSCF method: (a) coal and biomass combustion source in 2015; 

(b) traffic emission source in 2019.  
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