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Abstract. A thorough understanding of the relationship between urbanization and PM2.5 (fine particulate matter with 10 

aerodynamic diameter less than 2.5 µm) variation is crucial for researchers and policymakers to study health effects and 

improve air quality. In this study, we selected a rapidly developing Chinese megacity, Chengdu, as the study area to investigate 

the spatiotemporal and policy-related variations of PM2.5 composition and sources based on long-term observation at multiple 

sites. A total of 836 samples were collected from 19 sites in winter, 2015-2019. According to the specific characteristics, 19 

sampling sites were assigned to three layers. Layer 1 was the most urbanized area referred to the core zone of Chengdu, layer 15 

2 was located in the outer circle of layer 1, and layer 3 belonged to the outermost zone with the lowest urbanization level. The 

average PM2.5 concentrations for five years were in the order of layer 2 (133 µg m-3) > layer 1 (126 µg m-3) > layer 3 (121 µg 

m-3). Spatial clustering of the chemical composition at the sampling sites was conducted for each year. The PM2.5 composition 

of layer 3 in 2019 was found to be similar to that of the other layers two or three years ago, implying that urbanization levels 

had a strong effect on air quality. During the sampling period, a decreasing trend was observed for the annual average 20 

concentration of PM2.5, especially at sampling sites in layer 1, where the stricter control policies were implemented in layer 1. 

The SO4
2-/NO3

- mass ratio at most sites exceeded 1 in 2015 but dropped to less than 1 since 2016, reflecting decreasing coal 

combustion and increasing traffic impacts in Chengdu, and can be further supported by temporal variations of the SO4
2- and 

NO3
- concentrations. The positive matrix factorization (PMF) model was applied to quantify PM2.5 sources. A total of five 

sources were identified, with average contributions of 15.5% (traffic emissions), 19.7% (coal and biomass combustion), 8.8% 25 

(industrial emissions), 39.7% (secondary particles) and 16.2% (resuspended dust). From 2015 to 2019, a dramatic decline was 

observed in the average percentage contributions of coal and biomass combustion, but the traffic emission source showed an 

increasing trend. For spatial variations, the high coefficient of variation (CV) values of coal and biomass combustion and 

industrial emissions indicated their higher spatial difference in Chengdu. High contributions of resuspended dust occurred at 

sites with intensive construction activities, such as subway and airport construction. Combining the PMF results, we developed 30 

the source weighted potential source contribution function (SWPSCF) method for source localization. This new method 

highlighted the influences of spatial distribution for source contributions, and the effectiveness of the SWPSCF method was 

well-evaluated.  

1 Introduction 

PM2.5, fine particulate matter with aerodynamic diameter less than 2.5 µm, is a complex heterogeneous mixture of chemical 35 

constituents originating from a variety of sources (Bressi et al., 2013; He et al., 2019; Kelly and Fussell, 2012). Numerous 

epidemiological studies have reported associations between PM2.5 and adverse human health effects (Bell Michelle et al., 2007; 

Yang et al., 2018b; Ostro et al., 2010; Philip et al., 2014), and have attracted broad attention to PM2.5 in public, in the past 

decades. The link between urbanization and the spatiotemporal variability of PM2.5 has been studied (Zhang et al., 2015; Li et 
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al., 2016). PM2.5 generally presents an increasing trend with urbanization (Yang et al., 2018a). In addition, multiple policies 40 

were conducted by governments to alleviate the pollution (Yan et al., 2018; Cai et al., 2017). The urbanization stage and 

emphasis on pollution prevention policies vary greatly in both time and space (Wang et al., 2018a; Gurjar et al., 2016; Seto et 

al., 2017), causing significant spatiotemporal heterogeneity in the distribution of PM2.5. Thus, a thorough understanding of the 

spatiotemporal and policy-related variations of PM2.5 is necessary to investigate the relationship between urbanization and 

PM2.5. The spatiotemporal variability of PM2.5 with the impact of urbanization has been reported in previous studies (Li et al., 45 

2016; Timmermans et al., 2017; Zhang et al., 2019; Yang et al., 2020; Seto et al., 2017), among which a small number of 

publications focused on the analysis of PM2.5 composition and sources (Lin et al., 2014; Yan et al., 2018). However, there is a 

lack of research on multiple sites and long-term sampling of PM2.5 composition over a city-sized area (Dai et al., 2020; Xu et 

al., 2020a; Fang et al., 2020). Systematic measurements based on multiple sites and long-term observations can provide 

valuable data for a comprehensive understanding of PM2.5 characteristics and variations. Related studies are critical for 50 

promulgating targeted control policies from the perspective of urbanization.  

 

In a city-sized area, there exist a large number of natural and anthropogenic sources of particulate matter, such as soil or road 

dust, vehicle exhaust, biomass combustion, sea salt, and smoke from forest fires, all of which show large spatiotemporal 

variations (Zhang et al., 2015; Zhang et al., 2013; Mirowsky et al., 2013; Yang et al., 2018b). It is essential to identify and 55 

apportion PM2.5 sources to provide targeted control policies. To date, receptor models have been applied in a number of source 

apportionment studies of PM2.5, including factor analysis models (such as PCA-MLR, PMF, UNMIX, and ME2) and chemical 

mass balance (CMB) techniques (Shi et al., 2009; Choi et al., 2015; Hasheminassab et al., 2014; Liu et al., 2015). These 

receptor models have proven to be effective methods for identifying and apportioning sources. Furthermore, to identify the 

likely source regions for a receptor site, a number of trajectory statistical methods have been widely applied, including 60 

concentration field (CF), concentration weighted trajectory (CWT), and potential source contribution function (PSCF) (Chen 

et al., 2011; Gebhart et al., 2011; Riuttanen et al., 2013; Kulshrestha et al., 2009b). In the traditional PSCF method, the source 

localization is mainly based on the number of trajectory endpoints that fall in the targeted grid cell. However, it should not be 

ignored that the sources showed discrepant spatial distribution patterns over the studied region. When trajectories pass over 

the grid cell in which a source category shows high local contributions, the probability of potential contribution for this grid 65 

cell should theoretically be relatively high. Accordingly, we developed a source weighted PSCF (SWPSCF) method that 

combines PMF with PSCF and considers the spatial distribution of contributions for each source category. The SWPSCF can 

be employed as a valuable tool to obtain more precise estimates of potential source areas.  

 

In China, megacities have experienced frequent air pollution events in response to rapid economic growth and urbanization 70 

(Li et al., 2016; Luo et al., 2018), which has prompted governments to take various measures to improve air quality. Chengdu, 

typical megacity in China, can represent an illustrative example of urbanization in a metropolitan region. Since the 

implementation of pollution prevention policies, namely the Air Pollution Prevention and Control Action Plan (APPCAP), 

Blue Sky Protection Campaign, and the thirteenth Five-Year Plan (Cai et al., 2017), air quality in Chengdu has been remarkedly 

improved; thus, Chengdu serves as a useful case study in which we can investigate the spatiotemporal and policy-related 75 

variations of PM2.5. In this study, we investigated the spatiotemporal and policy-related variations of PM2.5 composition and 

sources in Chengdu at multiple sites based on a long-term observation. The positive matrix factorization (PMF) model was 

applied to estimate PM2.5 source contributions. The SWPSCF method was then applied to identify the potential source locations. 

The main objectives of this study were: (i) to analyse the long-term spatiotemporal variations of PM2.5 composition among 

multiple zones in different urbanization levels; (ii) to determine PM2.5 sources and their contributions, and to evaluate the 80 

effectiveness of the SWPSCF method in potential source localization; and (iii) to explore the spatiotemporal evolution of 

sources along with changes in urbanization and related policy orientation. We propose the findings of this research will be 
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helpful for a comprehensive understanding of the impact of the urbanization process and control policy on variations in PM2.5 

composition and sources in different zones, which can provide basic information for future epidemiological studies. It is of 

vital importance for further formulating emission reduction policies in China and other developing and polluting countries.  85 

2 Method and Materials 

2.1 Sampling sites and sampling 

We collected PM2.5, from Chengdu (102° E to 104° E, 30° N to 31° N), a city in the southwest of China with a population of 

16.33 million and an area of 14,605 km2. As an important metropolitan region in western China, Chengdu is undergoing rapid 

urbanization and is attracting an increasing number of residents. At the same time, PM pollution has received much attention. 90 

To improve air quality, the Chengdu government adopted several measures, including limiting the driving area of highly 

polluting vehicles and setting specific hours for driving in, adjusting industrial structures, and implementing energy 

substitution. Considering the heterogeneous spatial distribution of population, economy, industry, and construction activities, 

the degree of urbanization as well as air quality varies greatly in different sections of the Chengdu, and the emphasis on 

corresponding policies also varies across the city. As shown in Figure 1, sampling was conducted at 19 sites in Chengdu 95 

(detailed information is shown in Table S1). Based on the specific characteristics, 19 sampling sites were clustered in different 

zones for purpose of comparison. The following sites—being located in the core zone of Chengdu and having developed earlier 

in the urbanization process—have high population and high traffic levels: Environment Protection Building (QY1), Chengdu 

University of Technology (CH1), and botanical garden (JN1). Combining the city structure and urbanization levels, Chengdu 

residents are accustomed to defining regions surrounded by the third circle road as “layer 1”, and the location of QY1, CH1 100 

and JN1 are in accordance with the extent of layer 1. The following sampling sites are included in the outer circle of layer 1: 

Qingbaijiang (QBJ2), Xindu (XD2), Pidu (PD2), Wenjiang (WJ2), Shuangliu (SL2), Tianfu (TF2) and Longquanyi (LQY2). 

This outer circle developed later than the area corresponding to layer 1. Accordingly, these sites are grouped together as the 

second zone and correspond to layer 2. Among the sampling sites in layer 2, QBJ2, XD2, WJ2, and SL2 are characterized by 

intensive industrial factories, and TF2 has frequent construction activities. The coordinates of factories in some key industrial 105 

sectors are presented in Figure S1. The remaining nine sites are located in the outer-most zone of Chengdu and correspond to 

layer 3: Jintang (JT3), Pengzhou (PZ3), Dujiangyan (DJY3), Chongzhou (CZ3), Dayi (DY3), Qionglai (QL3), Pujiang (PJ3), 

Xinjin (XJ3), and Jianyang (JY3). The urbanization level of layer 3 was lower than that of layers 1 and 2. In addition, because 

air pollution is usually heavy in winter, the sampling campaign was conducted in winter from 2015 to 2019, lasting 

approximately 15 days each year. The detailed sampling periods for the sampling sites in 2015–2019 are listed in Table S2. 110 

Although several selected sampling sites may not be fully consistent each year, this small difference does not influence the 

reflection of spatiotemporal variations in Chengdu. A total of 836 PM2.5 samples were collected from 19 sites for analysis.  

 

The sampling campaign was simultaneously conducted using two medium-volume air samplers (TH-150C; Wuhan Tianhong 

Ltd., China) with an airflow rate of 100 L min-1 at each site. One sampler placed quartz filters to collect PM2.5 for analysing 115 

organic carbon (OC), elemental carbon (EC) and ions. The other sampler placed polypropylene filters to analyse elements in 

PM2.5. Samples were collected daily for 22 h (from approximately 11:00 am to 09:00 am local time, GMT+8) at 19 sites. 

Average temperature (℃), cumulative volume (L), and standard volume (L), were recorded. When it rained, we stopped the 

sampling campaign. The air flow rate was corrected by a flowmeter before each sampling period. Collected samples were 

stored in a layer of aluminium foil in a freezer at -20 ℃ until weighing and analysis. The mass of PM2.5 was determined by 120 

the difference in weight of the filter before and after sampling. Before sampling, blank quartz filters and blank polypropylene 

filters were baked at 600 ℃ for 4h and 60 ℃ for 3 h, respectively. For the process of weighing, filters were weighed at a 

temperature of 20±1 ℃ and humidity of 40±5% for 48 h. The weights of the filters can be obtained using a microbalance 
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(METTLER TOLEDO UMX) with a sensitivity level of 0.01 mg. Each filter was weighed twice, and the final weight was 

equal to the average of the two values (the difference was less than 0.05 mg).  125 

2.2 Chemical analysis and quality assurance/ quality control (QA/QC) 

The OC, EC, ions and elements were detected using the thermal/optical carbon aerosol analyser (DRI model 2001A; Desert 

Research Institute, USA), an ion chromatograph system (ICS-900; DIONEX, USA), and Inductively Coupled Plasma Atomic 

Emission Spectrometer (ICAP 7400 ICP-AES; Thermo Fisher Scientific, USA), respectively. The following is a brief 

description of the pre-treatment procedure, chemical analysis and QA/QC; more detailed information is provided in our 130 

previous works (Tian et al., 2016; Tian et al., 2014; Bi et al., 2007; Kong et al., 2010; Xue et al., 2010).  

2.2.1 Organic carbon (OC) and elemental carbon (EC) analysis 

OC and EC were analysed based on a hole with a quartz filter of 0.588 cm2. The thermal/optical carbon aerosol analyser 

detected OC1, OC2, OC3, and OC4 in a pure helium atmosphere at temperatures of 140, 280, 480, and 580 °C, respectively. 

Similarly, the oven temperature was increased to 540 °C, 780 °C, and 840 °C for EC1, EC2, and EC3 analyses, respectively, 135 

in a 2% O2 atmosphere. Organic pyrolyzed carbon (OPC) was also detected after adding oxygen. Finally, the OC and EC 

concentrations were calculated using Eqs. (1) and (2), respectively. QA/QC was conducted using a calibration process. The 

method detection limit was 0.82 µg C cm-2 for OC, and 0.20 µg C cm-2 for EC. 

 𝑂𝐶 ൌ 𝑂𝐶ଵ ൅ 𝑂𝐶ଶ ൅ 𝑂𝐶ଷ ൅ 𝑂𝐶ସ ൅ 𝑂𝑃𝐶                                                           (1) 

𝐸𝐶 ൌ 𝐸𝐶ଵ ൅ 𝐸𝐶ଶ ൅ 𝐸𝐶ଷ െ 𝑂𝑃𝐶                                                                 (2) 140 

 

For QA/QC, a system stability test (three-peak detection) is required before and after detecting samples and the relative 

standard deviation should not exceed 5%. The sample was reanalysed for every ten samples.  

2.2.2 Ions analysis 

Ions including Cl-, SO4
2-, NO3

-, and NH4
+ were measured on a one-eighth sample. The portion was cut into small pieces directly 145 

into tubes and ultrasonically extracted with 8 mL deionized water for 20 min. The tubes used during extraction were cleaned 

three times using an ultrasonic cleaner. After extraction, the solution was stored in a refrigerator for 24 h. The supernatant was 

sucked by needle tubing and injected into a vial through two 0.22 μm filters. The obtained solution was analysed using ion 

chromatography to determine the ions. Anions were analysed using Dionex IonPac CS12A (4 mm) analytical column equipped 

with Dionex IonPac CG12A (4 mm) guard column, Dionex CSRS-500 (4 mm) was used as the suppressor, and methane 150 

sulfonic acid (20 mL of 99% methane sulfonic acid solution diluted to 2000 mL) was applied as the eluent. Cation analysis 

was conducted using Dionex IonPac AS22 (4 mm) as the analytical column, Dionex IonPac AG22 (4 mm) as the guard column, 

Dionex ASR-500 (4 mm) as the suppressor, NaHCO3 (0.14 mol L-1) and Na2CO3 (0.45 mol L-1) as the eluent. A conductivity 

detector was equipped for both anion and cation analysis with an injection volume of 0.5-0.8 mL and an eluent flow rate of 

1.2 mL min-1.  155 

 

For QA/QC, the RSD was calculated more than three times to hold the value at a lower value (<5%). A standard sample test 

was performed using certified reference materials (CRM, produced by National Research Center for Certified Reference 

Materials, China) to ensure QA/QC. The spiked recoveries of ions ranged from 96.0% to 110.0%, as reported in Table S3.  

2.2.3 Elements analysis 160 

The microwave acid digestion method was applied to detect the following elements: Al, Fe, Mg, Ca, Na, K, V, Cd, Pb, Si, Zn, 

Cu, Cr, As, Ni, Co, Mn, and Ti. A 10 mL mixed digestion solution (2 mL HNO3, 6 ml HCl, and 2 ml H2O2) was added to 
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digest one-eighth sample pieces, and the digestion process was conducted by a four-stage microwave digestion procedure of 

the microwave-accelerated reaction system (MARS; CEM Corporation, USA): the temperature was increased to 120 ℃ in 10 

min, held for 8 min, reached 150 ℃ in 3 min, held for 8 min, reach 180 ℃ in 3 min, held for 8 min, and then reached 200 ℃ 165 

in 3 min and held for 10 min. Subsequently, the digestion solution was transferred into a PET bottle, and the solution was 

diluted to 25 mL with deionized water for further analysis using an inductively coupled plasma atomic emission spectrometer. 

During analysis, the target element can radiate the characteristic spectral lines, the intensity of which is directly proportional 

to the concentration of the element.  

 170 

For QA/QC, a single-point calibration and blank tests were conducted for every ten samples. Single-element standards 

purchased from CRM were used for the calibration of each element. The determined RSD was below 10%, and the spiked 

recoveries for all elements varied between 85.5% and 113.1%, as listed in Table S3.  

2.3 Positive Matrix Factorization (PMF) 

The PMF model is a widely used bilinear receptor model. The goal of this model is to identify and quantify the source 175 

contribution of contaminants by solving the following equation (Eq. (3)):  

                    𝑥௜௝ ൌ ∑ 𝑔௜௞𝑓௞௝ ൅ 𝑒௜௝
௣
௞ୀଵ                                                                      (3) 

where i, j, and p are the number of samples, chemical species, and factors, respectively, 𝑥௜௝ is the concentration of the 𝑗௧௛ 

species in the 𝑖௧௛ sample, 𝑔௜௞ is the contribution of the 𝑘௧௛ source to the 𝑖௧௛ sample, 𝑓௞௝ is the concentration of the 𝑗௧௛ species 

from the 𝑘௧௛ source, and 𝑒௜௝ is the residual for each sample/species (Paatero, 1997; Paatero and Tapper, 1994).  180 

 

We input the measured speciated data as the matrix X of i by j dimensions; then, the PMF model can divide it into two matrices: 

factor contributions (G) and factor profiles (F). The non-negativity constraint was also introduced to ensure a positive value 

for each source contribution. In the decomposition process, the model is run several times by applying the least-squares method 

to minimise the objective function Q (Eq. (4)), and in this case, the obtained solutions of G and F are considered optimal:  185 

𝑄 ൌ ∑ ∑ ൬
௘೔ೕ
௨೔ೕ
൰
ଶ

௠
௝ୀଵ

௡
௜ୀଵ                                                                        (4) 

where 𝑢௜௝ is the uncertainty of the 𝑗௧௛ chemical species in the 𝑖௧௛ sample. The model required both concentration data and the 

uncertainty of the species in each sample. The equation-based uncertainty is calculated as follows (Eq. (5)):   

                           𝑢௜௝=൞

ହ

଺
ൈ 𝑀𝐷𝐿,                                                                        𝑐௜௝ ൑ 𝑀𝐷𝐿     

ට൫𝐸𝑟𝑟𝑜𝑟 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ൈ 𝑐௜௝൯
ଶ
൅ ሺ0.5 ൈ𝑀𝐷𝐿ሻଶ,   𝑐௜௝ ൐ 𝑀𝐷𝐿  

                                 (5) 

where 𝑐௜௝ is the concentration of chemical species in each sample, and MDL is the method detection limit for each component. 190 

 

In this study, the EPA PMF 5.0 was applied for the source apportionment of 𝑃𝑀ଶ.ହ. Because many concentrations of Cr and 

Co were under the MDL, they were not input for the apportionment, and a total of 22 chemical species of 836 samples at 19 

sites from 2015 to 2019 were simulated. The detailed source apportionment results are reported in Section 3.3, and more 

information on the PMF model is described in the PMF 5.0 User Guide.  195 

2.4 Source Weighted Potential Source Contribution Function (SWPSCF) 

The PSCF model is a conditional probability that was applied to identify the source regions of PM2.5 masses to the receptor 

site. In this study, the backward trajectories were modelled using the MeteoInfo, a GIS application which enables the user to 

visualize and analyse the spatial and meteorological data with multiple data formats, which is available at 

http://www.meteothinker.com/. The required meteorological data were obtained from the National Centers for Environmental 200 
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Prediction (NCEP) global reanalysis data, which are available from the National Oceanic and Atmospheric Administration 

(NOAA’s) Air Resources Laboratory (ARL) in a format suitable for transport and dispersion calculations. A detailed dataset 

can be obtained from the NOAA ARL FTP server (https://ready.arl.noaa.gov/archives.php). Using MeteoInfo modelling, 12 h 

backward trajectories starting from the receptor site at 500 m above ground level were generated with 6 h time intervals during 

all sampling periods. The 24 h and 72 h backward trajectories were also simulated in the process of parameter selection. The 205 

results suggested that regions passed over by 24 h and 72 h backward trajectories were far more widespread than those in our 

study area. The 12 h backward trajectories covered the most suitable range. In addition, it is possible to apply 24 h and 72 h 

trajectories when future studies refer to larger regions. In addition, the selection of the time interval showed little influence on 

the results. 

 210 

The PSCF model divided the region where trajectories passed over into 0.1°×0.1° grid cells and computed the PSCF values of 

all grid cells in the domain. For the receptor site, the daily concentrations were assigned to the grid cells along related 

trajectories, and a certain threshold criterion value was selected. When the concentration in one grid cell was above the 

threshold value, there exists a probability that sources located in this grid cell have an influence on the receptor PM2.5. A higher 

PSCF value indicates higher probability. The PSCF values are defined by Eq. (6) (Han et al., 2007):  215 

𝑃𝑆𝐶𝐹௜௝ ൌ ሺ
௠೔ೕ

௡೔ೕ
ሻ𝑊௜௝                                                                                  (6) 

where 𝑛௜௝  is the total number of trajectory endpoints that fall into the grid cell (i, j), and 𝑚௜௝  is the number of trajectory 

endpoints when their corresponding contributions exceed the criteria value. 𝑊௜௝ is a weight function (Eq. (7)) used to reduce 

uncertainty when specific grid cells have a small number of trajectory endpoints (Polissar et al., 2001; Lee and Hopke, 2006):  

𝑊௜௝ ൌ

⎩
⎪
⎨

⎪
⎧1.0                              3𝑛௔௩௘ ൏ 𝑛௜௝

0.7         1.5𝑛௔௩௘ ൏ 𝑛௜௝ ൏ 3𝑛௔௩௘
0.4          𝑛௔௩௘ ൏ 𝑛௜௝ ൏ 1.5𝑛௔௩௘ 
0.2                             𝑛௜௝ ൏ 𝑛௔௩௘  

                                                                   (7) 220 

where 𝑛௔௩௘ is the average number of endpoints in each grid cell.  

 

When trajectories passed over a grid cell in which a certain source category showed a high local contribution, the probability 

of the potential contribution of this grid cell should be relatively high. Thus, we introduced another weighted function 𝑆𝑊௜௝ 

that represents the ratio of the source contribution in grid cell (i, j) to the average contribution in the whole study area. The 225 

𝑆𝑊௜௝ is calculated using Eq. (8). The SWPSCF value is expressed in Eq. (9).  

𝑆𝑊௜௝ ൌ 𝑐௜௝/𝑐௔௩௘                                                                                      (8) 

𝑆𝑊𝑃𝑆𝐶𝐹 ൌ 𝑆𝑊௜௝ ൈ 𝑃𝑆𝐶𝐹                                                                             (9) 

where 𝑐௜௝ is the source contribution of each source category in the grid cell (i, j), and is available using the Kriging interpolation 

algorithm; 𝑐௔௩௘ is the average source contribution of this source category of all sampling sites in the entire study area. 230 

2.5 Hierarchical cluster analysis (HCA) 

The similarity analysis of PM2.5 composition among the 19 sampling sites from 2015 to 2019 was conducted using hierarchical 

cluster analysis. Cluster analysis, a technique used to identify groups that have similar characteristics, can be broadly classified 

as hierarchical and non-hierarchical (Govender and Sivakumar, 2020; Saxena et al., 2017). By recursively finding nested 

clusters, hierarchical clustering repeatedly combines the two closest groups into one larger group (Xu et al., 2020b), and finally 235 

generates a dendrogram. The algorithm is implemented mainly by the following steps (Govender and Sivakumar, 2020):  

Step 1: Determine each observation as the initial cluster.  

Step 2: Measure the distance between clusters for quantifying the similarity between objects.  
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Step 3: The closest pairs of clusters are merged into a single cluster, and the distance matrix is recalculated. 

Step 4: Repeat steps 2 and 3 until all observations are integrated into a single cluster.  240 

 

To guarantee the effectiveness of the algorithm, appropriate methods should be selected according to the properties of specific 

objects. An introduction on the specific choice of the distance metric and linkage function is added in the Supplement. In this 

study, the HCA was conducted using IBM SPSS Statistics 25, and the results were confirmed to be similar by using different 

distance metrics and linkage methods. Based on the comprehensive consideration, the HCA based on the cosine distance and 245 

average linkage method was selected. By cutting the dendrogram at an appropriate distance, PM2.5 samples that have 

similarities in chemical species can be grouped into the same cluster.  

3 Results and Discussion 

3.1 Spatiotemporal variations of PM2.5 concentrations 

The spatiotemporal variations in PM2.5 concentrations for layers and sites in 2015–2019 are depicted in Figure 2. The detailed 250 

PM2.5 concentrations are summarised in Table S4. Due to the slight difference in the selected sampling sites in layers 2 and 3 

in each year, both layers and sites were discussed for a better understanding of the PM2.5 variability. For spatial distribution, 

the average PM2.5 concentrations over five years were 126 µg·m-3, 133 µg·m-3, and 121 µg·m-3 for layers 1, 2, and 3, 

respectively. Layer 1, the most urbanized area in Chengdu, suffered severe traffic pollution; however, stricter control policies 

were implemented by local governments in this area. The high PM2.5 concentration in layer 2 may be caused by strong industrial 255 

activities and extensive construction activities at QBJ2, XD2, WJ2, SL2, and TF2. Layer 3 was characterized by the lowest 

urbanization level in Chengdu, although weak emissions of old chemical industries and small coal-fired boilers were observed 

at XJ3, PZ3, CZ3, and DY3; there were fewer vehicles than layer 1 and fewer factories than layer 2, explaining the relatively 

low levels of PM2.5 in the area.  

 260 

PM2.5 concentrations in three layers showed similar temporal variation, which averagely declined from 174 µg m-3 in 2015 to 

95 µg m-3 in 2019, except for a small increase in 2017 (134 µg m-3), indicating the effective control measures in Chengdu in 

recent years. Figure S2 shows the temporal variation of daily PM2.5 concentrations and annual average PM2.5 concentrations 

for each site. The large number of sampling data from all filters further demonstrates the temporal changes in PM2.5 

concentrations over time, as described above. The results of the statistical analysis, using the two tailed matched t-tests for 265 

PM2.5 concentrations at sampling sites between 2015 and 2019, are summarized in Table S5. As seen in the table, there was a 

significant decreasing trend in the level of PM2.5 in the period 2015-2019. A more obvious decline was observed at the sites in 

layer 1. In 2015, the PM2.5 concentration was the highest in layer 1; however, since 2016, the highest PM2.5 level has been 

transferred from layer 1 to layer 2. This may be influenced by the fact that the coal-burning ban was promulgated the earliest 

in layer 1. The government published Chengdu’s Air Pollution Prevention and Control Regulation in each year and introduced 270 

a number of specific measures, including the substitution of clean energy boilers for existing coal-fired boilers, which was 

accelerated in 2016 in layer 1. PM2.5 concentrations at several sites in layer 2 exhibited a minor elevation: for example, PM2.5 

levels at WJ2 and SL2 increased in 2018. This may be associated with construction and industrial activities in this region. 

Temporal variations of sites in layer 3 are not discussed due to the deficiency of PM2.5 concentrations in many studied years.   

3.2 Spatiotemporal variations of chemical composition 275 

Research on the chemical composition of PM2.5 can be helpful in identifying the source changes and the effectiveness of related 

policies. In Figure 3 we present the fractions of the main chemical species (%) in PM2.5 at each site during the winter in the 

period 2015–2019, reflecting the relative importance of species under different PM2.5. The average fractions of PM2.5, in the 
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order of OC > NO3
- > SO4

2- > crustal elements (the sum of Al, Si, Ca, Ti, and Fe) > NH4
+ > EC > Cl-, constituting 17.2%, 

13.5%, 11.0%, 8.3%, 5.7%, 5.4%, and 2.3% of the PM2.5 mass, respectively.  280 

 

To identify the similarity and diversity of PM2.5 composition among the sampling sites and years, hierarchical cluster analysis 

(HCA) (based on cosine distances) of chemical composition (%) was carried out at each sampling site for five years (2015-

2019).  The results are shown in Figure 4. Four clusters were identified, and the results showed a strong correlation with years: 

Cluster 1 (C1) consisted of most sites in 2018 and 2019; sites in 2016 and 2017 were classified as cluster 2 (C2); cluster 3 (C3) 285 

included all the sites in 2015; and 2016DJY3, the only site far from the other sites, was separated as cluster 4 (C4). A total of 

thirteen samples were collected at 2016DJY3, and both the sampling number and duration were similar to samples collected 

at other sites in 2016. As a typical background site in Chengdu, DJY3 is surrounded by plants and agricultural activities, so it 

is featured by the distinctive PM2.5 compositions with markedly high NH4
+ and crustal elements. This explains the particular 

HCA result of the C4 well. The meteorological data (https://rp5.ru/) during the sampling period from 2015 to 2019 are shown 290 

in Table S6, reflecting the similar meteorological conditions in the studied years, which highlighted the importance of the 

source variations for the clustering results. There was a special case where the sites of layer 3 in 2019 belonged to C2 rather 

than C1, indicating that the PM2.5 composition for layer 3 in 2019 was more similar to that for other layers two or three years 

ago. This can be explained by the fact that urbanization levels varied between the layers in Chengdu. As the outer-most zone 

of Chengdu, layer 3 lagged behind layer 1 and layer 2 in the urbanization, which contributed to the similar characteristics in 295 

air quality between current layer 3 and previous other layers. The HCA results indicated an incredible need to investigate the 

variations of PM2.5 composition in both time and space.  

3.2.1 Spatial variations of chemical composition 

To investigate the spatial similarities and differences of chemical composition, the HCA was also applied based on the chemical 

composition (%) at sampling sites for each year, and the cluster results and their averaged species fractions are listed in Figure 300 

S3.  

 

The chemical composition of the clusters in 2015-2019 is shown in Figure 5. Taking as an example the first cluster in 2015, 

we defined it as 2015C1. Spatial differences were observed each year. The clusters 2015C4, 2016C4, 2017C1, 2018C2, and 

2019C1 always showed higher OC fractions: 20.9%, 14.6%, 20.5%, 17.5%, and 23.3% of PM2.5 mass, respectively. The higher 305 

OC fractions of these clusters were considered to occur at the contained sites, such as PZ3, JT3, CZ3, XJ3, JY3, and PJ3, and 

could be either directly emitted (primary organic carbon, POC) or indirectly formed in the atmospheric (secondary organic 

carbon, SOC) (Kanakidou et al., 2005; Zhong et al., 2021). The high POC was largely associated with the stronger fuel 

combustion and biomass burning. One possible reason is that there were more residential combustions (such as bulk coal and 

biofuel combustion) and small boilers with low combustion efficiency at PZ3 and XJ3; therefore, control measures for fuel 310 

combustion still need to be strengthened. During the sampling period, activities such as the burning of firewood by residents 

to produce smoked meat can contribute greatly to the OC level from biomass burning. Additionally, the formation of SOC was 

also responsible for the high OC level. SOC is generated from the oxidation of volatile organic compounds (VOCs) through 

homogeneous or heterogeneous reactions (Jang et al., 2002). VOC precursors come from both anthropogenic sources and plant 

emissions (Ait-Helal et al., 2014; Kleindienst et al., 2009). Previous studies (Zhao et al., 2018; Han et al., 2013; Yin et al., 315 

2015) have reported high VOC emissions from industrial processes at PZ3, JT3, and other sites. Coal combustion in industries 

and thermal power plants were the main sources of industrial processes at PZ3 and JT3, respectively. Biogenic VOC emissions 

often occur at several agriculture sites such as JY3 and PJ3 because of the high vegetation coverage in these areas. High NO3
- 

levels in Chengdu were observed at PZ3 in 2015, and QY1 and CH1 in 2019. The high NO3
- levels at PZ3 in 2015 may be 

associated with the petrochemical industry. In 2019, the NO3
- level at PZ3 was lower than that in 2015, which might have been 320 
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influenced by the renovation of de-nitrification of the key industries. On the other hand, vehicle ownership in Chengdu 

markedly increased, especially in layer 1. Characterized by the most intensive vehicles, QY1 and CH1 experienced heavy 

traffic pollution. Crustal elements accounted for the highest proportion in layer 1 related clusters (2016C3, 2017C3, and 

2018C4) with 10.5%, 9.9% and 8.3%, respectively. The subway construction in layer 1 of Chengdu can explain this result. 

3.2.2 Temporal variations of chemical composition 325 

With respect to the temporal variations of composition shown in Figure 3, the fractions of OC and EC generally showed a 

decreasing trend from 2015 to 2018 and slightly increased in 2019 at most sites. The average fractions of OC were 19.1% and 

15.5% in 2015 and 2018, respectively. EC accounted for 15.5% and 5.0% of PM2.5, in 2015 and 2018, respectively. The OC 

and EC mainly come from the combustion of fuels, such as coal, gasoline, diesel and biomass (Wang et al., 2020). In Chengdu, 

coal is one of the important fuels for the industry, but has been strongly reduced by the government in recent years. Gasoline 330 

and diesel are mainly used in vehicles. The decrease in OC and EC fractions from 2015 to 2018 may be due to the decline in 

coal use for industries, which was consistent with the strict coal-burning ban in these years; however, as the vehicles became 

more important contributors, the OC and EC fractions increased in 2019. The absolute concentrations of SO4
2-, NO3

- and Cl- 

are shown in Figure S4. Publications have reported the use of SO4
2- and Cl- as coal-burning markers (Tian et al., 2014; Vassura 

et al., 2014). In the five years of the study, the average concentrations of both SO4
2- and Cl- sharply decreased, from 28 µg m-335 

3 to 8 µg m-3 and from 6 µg m-3 to 2 µg m-3, respectively. The fractions of SO4
2- and Cl- also showed a decreasing trend, 

especially in 2016. However, the fractions of NO3
- showed a general increasing trend from 2015 to 2019. The average 

concentrations of NO3
- were found to decrease from 20 µg m-3 in 2015 to 14 µg m-3 in 2016, mainly resulting from the strongly 

promoted coal-burning ban policy, after that, NO3
- increased slightly to 16 µg m-3 in 2019, which might be attributed to the 

gradually enhanced contribution of vehicles and use of natural gas. We also analyzed the SO4
2-/NO3

- mass ratio, a qualitative 340 

indicator of sulfur versus nitrogen sources (Gao et al., 2015; Arimoto et al., 1996), and the summary is presented in Figure S4 

(d). Ratios at most sites exceeded 1 in 2015, dropped to less than 1 in 2016, and then declined steadily. Combined with the 

absolute concentrations of SO4
2- and NO3

- discussed above, the SO4
2-/NO3

- mass ratio can also indicate decreasing coal 

combustion and increasing traffic emissions in Chengdu. This result is consistent with the slow reduction in NOX and the sharp 

decline in SO2 emissions in China (Zhao et al., 2013; Wang et al., 2018b). For crustal elements, temporal variations were found 345 

to have close a relationship with the construction activities in Chengdu in 2015-2019.  

3.3 Spatiotemporal variations of sources 

PMF was used to quantify the source contributions in the studied areas, and five categories were selected with distinctively 

related source characteristics. Five sources were identified: traffic emissions, coal and biomass combustion, industrial 

emissions, secondary particles, and resuspended dust. The estimated source profiles in the form of species concentrations 350 

(μg·m-3) and percentages of species sum (%) are shown in Figure 6. Factor 1 contributed 15.5% of PM2.5 and had high fractions 

of EC (70.0% of total EC) and OC (51.8% of total OC), which can be identified as traffic emissions (Xu et al., 2016). The 

relatively high NO3
- further revealed Factor 1 as the source of traffic emissions. The moderate fractions of Al, Si, Cu, Ni, and 

As in this factor may be associated with traffic activities, including resuspension of road dust, tire and brake wear, and oil 

burning (Kulshrestha et al., 2009a; Almeida et al., 2005; Amato and Hopke, 2012). Factor 2 was determined to be a coal and 355 

biomass combustion source. Coal combustion generally plays an important role in the energy structure of China. Identified as 

markers of coal combustion source, OC, EC, Cd, and SO4
2- exhibited high loadings in factor 2, with fractions of 25.8%, 20.3%, 

61.9%, and 26.7%, respectively (Tian et al., 2016). The presence of biomass burning was indicated by the high fraction of K+ 

in this factor (Amil et al., 2016; Richard et al., 2011). Factor 2 accounted for 19.7% of the total PM2.5 mass concentration. 

Factor 3, which accounted for 8.8% of PM2.5, was considered as an industrial emission source because of its high loadings of 360 

Fe (73.8%), Cu (70.7%), Mn (60.5%), Ti (85.5%), Ni (61.5%) and Mg (50.2%). These species are frequently used as source 
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markers for industrial emissions, including building materials and metallurgical production (Contini et al., 2014; Jiang et al., 

2014). Factor 4 was characterized by nearly 76.7%, 61.2%, and 55.9% of NO3
-, NH4

+, and SO4
2-, respectively, and no other 

high species. According to previous studies, NO3
-, SO4

2-, and NH4
+ are indicative of secondary reactions (Richard et al., 2011; 

Wu et al., 2021). Consequently, factor 4 represented the secondary particle source, contributing to 39.7% of PM2.5. Factor 5 365 

was identified as resuspended dust, accounting for 16.2% of PM2.5. The top three fractions of species were Al (84.2%), Ca 

(79.5%), and Si (56.5%), which are typical indicators of resuspended dust (Pant and Harrison, 2012).  

3.3.1 Spatial variations of source contributions 

In Figure 7, we show the source contributions at each site from 2015 to 2019 in order to investigate their spatial variations. 

The coefficient of variation (CV), which is defined as the standard deviation divided by the mean, was used to investigate the 370 

spatial differences of each source category. As shown in Table S7, the CV values in this study indicate that coal and biomass 

combustion and industrial emissions show stronger spatial variations. For coal and biomass combustion sources, the percentage 

contribution was higher at CZ3 of layer 3 and QBJ2 of layer 2 than at other sites. The high contributions of industry sources 

mainly occurred in layer 2, including QBJ2, WJ2, PD2, SL2, and XD2, with fractions from 8.9% to 12.9%. Among the 

sampling sites mentioned above, CZ3 was characterized by intensive coal-fired boilers. QBJ2 contains large-scale iron, steel, 375 

and chemical plants. WJ2, PD2, SL2, and XD2 are located in areas of intensified development, including large factories of 

glass, food, and furniture. Therefore, the spatial distributions of PM2.5, from coal and biomass combustion and industrial 

emissions, were strongly associated with industrial manufacturing plants. Additionally, the contributions of traffic emissions 

were higher in layers 1 and 2, with the percentage contributions in 2015–2019 ranging from 13.9% to 16.3% in layer 1 and 

from 11.6% to 17.5% in layer 2. The secondary particles had a higher contribution in layer 3. The fractions of secondary 380 

particles at QY1 and LQY2 also presented relatively high values of 44.5% and 49.9%, respectively. The spatial distribution of 

resuspended dust varied with human activity. The contributions were relatively higher in layer 1 in 2015–2018, which resulted 

from the construction of the urban subway. At JY3, high contributions from resuspended dust were attributed to the fact that 

Chengdu Tianfu International Airport was under construction. Overall, the spatial distributions of source contributions were in 

accordance with the characteristics and urbanization level of sites, highlighting the importance of site-specific and urbanization 385 

research in pollutant emission control.  

 

To better consider the spatial distribution of contributions for each source category, the SWPSCF method was applied to 

identify the source regions to the receptor site based on the source contribution weight. In this study, we selected QY1 as the 

receptor site and the average contribution of each source category at QY1 as the threshold value. Both SWPSCF and PSCF 390 

values were calculated for each source category in the winter from 2015 to 2019. Examples of traffic emissions and coal and 

biomass combustion in 2015 and 2019 are shown in Figure 8, and the differences were found in the PSCF and SWPSCF results. 

For coal and biomass combustion source in 2015 (Figure 8(a)), the potential source regions were observed to concentrate to 

CZ3 after source weighting, and the SWPSCF values around QBJ2 were higher than the PSCF values, reflecting the 

strengthened influence of coal and biomass combustion sources at CZ3 and QBJ2. For the traffic emission source in 2019 395 

(Figure 8(b)), the identified potential source regions moved toward layer 1 after source weighting, which was in agreement 

with the spatial distribution of traffic emission contributions. As described above, the potential source regions identified after 

the source weighting could better reflect the spatial variations of source contributions, suggesting the effectiveness of the 

SWPSCF method in this study.  

3.3.2 Temporal variations of source contributions 400 

The temporal variations of source contributions at each site are summarised in Figure 7. The contributions of traffic emissions 

at most sites showed an increasing trend from 2015 to 2019, because the number of vehicles increased rapidly. The average 
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percentage contributions of traffic emissions of layers 1 and 2 were in the order of 13.3% (in 2015) < 13.4% (in 2016) < 14.8% 

(in 2017) < 15.8% (in 2018) < 17.1% (in 2019). Contributions in layer 3 were not calculated because of the difference in sites 

in the studied year, but the tendency was consistent with the conclusions of layers 1 and 2. An obvious decline in the 405 

contribution of coal and biomass combustion can be observed in the studied years, especially in 2016. The average percentages 

of layers 1 and 2 declined from 33.2% in 2015 to 15.5% in 2016, and finally to 11.5% in 2019. The results indicated that 

notable success has been achieved in the control of coal-related sources in recent years. Industrial emissions showed the highest 

percentages in 2016 at some sites and presented a downward trend. The percentage of source contributions of secondary 

particles at most sites increased steadily each year. The average fractions of layers 1 and 2 from 2015 to 2019 were 29.8%, 410 

40.0%, 41.2%, 46.0%, and 44.0%, respectively. For resuspended dust, the fractions in 2015 and 2016 were generally higher 

than those in other years, especially for sites in layer 1, which experienced major subway construction activity in previous 

years. In 2017–2019, the source contributions of resuspended dust remained stable, and some slight fluctuations could be 

attributed to local construction activities.  

 415 

The above analysis of temporal variations provides insights into the changes of source structures in Chengdu: pollution from 

traffic and secondary aerosols played a more important role; sources from coal and biomass combustion and industrial 

emissions were effectively controlled; and resuspended dust always occurred along with the urban construction. All of this 

information can offer useful references for the government to further promulgate effective policies for atmospheric pollution 

prevention and reduction in China and other developing and polluting countries.  420 

4 Conclusions 

We investigated the spatiotemporal and policy-related variations of PM2.5 composition and sources at 19 sites in Chengdu, 

based on a long-term sampling campaign in winter from 2015 to 2019. Considering the specific characteristics among sites, 

the variations were discussed in three layers of different urbanization levels. The results showed distinct spatiotemporal 

distribution patterns for both PM2.5 composition and sources, linked to the process of urbanization and corresponding policies 425 

in the studied region.  

 

During the sampling period, temporal variations of averaged PM2.5 concentrations at sites in layer 1 showed the most obvious 

decreasing trend, caused by comparably strict control measures conducted in layer 1. The fractions of OC and EC declined 

from 2015 to 2018 and slightly increased in 2019 at most sites. The SO4
2-/NO3

- mass ratio at most sites dropped less than 1 430 

since 2016 and showed a decreasing trend, indicating decreasing coal combustion and increasing traffic emissions in Chengdu. 

The average percentage contributions of coal and biomass combustion sources declined from 2015 to 2019, reflecting the 

notable success in the control of coal-related sources in Chengdu. For spatial variations, the composition of PM2.5 for layer 3 

in 2019, was found to be similar to that for layers two or three years earlier, and this result indicates the considerable impact 

of differences in urbanization on air quality. The high CV values of coal and biomass combustion and industrial emissions are 435 

representative of the stronger spatial distribution patterns in Chengdu, the high percentage contributions of which usually 

occurred at sites with large-scale industrial factories and coal-fired boilers. Frequent construction activities in developing areas 

can considerably increase the percentage contribution of resuspended dust. The SWPSCF results were found to be significantly 

different from the PSCF results. The changes in the identified potential source regions after source weighting were in agreement 

with the spatial distribution of each source contribution. This study presented a perspective on the relationship between PM2.5 440 

and urbanization. Sampling activities that were conducted based on a five-year measurement at 19 sites in different 

urbanization levels provided valuable data for researchers. The results can be useful for further policy formulation in most 

developing and polluted countries, and provide basic information for future epidemiological studies.  
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Data availability. The coordinates of factories in some key industrial sectors presented in Figure S1 are available at 445 

http://lbs.amap.com/api/webservice/guide/api/search/ (last access June 2th, 2021). The MeteoInfo is available at 

http://www.meteothinker.com/ (last access September 5th, 2021). Required meteorological data during SWPSCF modelling 

can be obtained from National Oceanic and Atmospheric Administration (NOAA) website, 

https://ready.arl.noaa.gov/archives.php (last access August 20th, 2021). The provided meteorological data (Table S6) during 

the sampling period in Chengdu is available at https://rp5.ru/ (last access June 7th, 2021).  450 
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Figure 1: The locations of 19 sampling sites in Chengdu from 2015 to 2019.  

 

Figure 2. Spatiotemporal variations of PM2.5 concentrations for layers and sampling sites in 2015-2019. 660 
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Figure 3. The spatiotemporal variations of the fractions of main chemical species in PM2.5 at each site during winters in 2015 to 2019. 
Unit: % 

 

 665 

Figure 4. The HCA results (based on cosine distances) of chemical species (%) at sampling sites for five years (2015-2019) and their 
averaged species fractions. 
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Figure 5. Spatial distribution of PM2.5 compositions and fraction values of each cluster from 2015 to 2019. (i.e. 2015C1 refers to the 
first cluster of sampling sites in 2015). 675 

 

Figure 6. Source profiles estimated by the PMF, in the form of species concentrations (μg m-3) and percentages of species sum (%). 
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Figure 7. Spatiotemporal variations of source contributions to total mass of PM2.5 in Chengdu. (TE, CC, IE, SP and RD represent 680 
traffic emission, coal and biomass combustion, industrial emission, secondary particles and resuspended dust, respectively.)  

 

 

Figure 8. Potential source locations identified by the PSCF and SWPSCF method: (a) coal and biomass combustion source in 2015; 
(b) traffic emission source in 2019.  685 

 


