



Figure S1. Seasonally averaged differences (Δ) of X_{CH4} between TROPOMI and GOSAT retrievals for May 2018 – April 2019 at different SWIR surface albedo.

Figure S2. Dependence of the inverse modeling solution on the regularization parameter γ for TROPOMI (left column) and GOSAT (right column). J_{obs} and J_{prior} stand for the prior term $(\mathbf{x} - \mathbf{x}_a)^T \mathbf{S_a}^{-1} (\mathbf{x} - \mathbf{x}_a)$ and the observation term $(\mathbf{y} - \mathbf{K}\mathbf{x})^T \mathbf{S_o}^{-1} (\mathbf{y} - \mathbf{K}\mathbf{x})$ in the cost function. m and n are number of parameters and observations. Selected γ values in the test are: 1, 0.1, 0.01, 0.002, 0.001, 0.0002, 0.0001, 10⁻⁵, 10⁻⁶ for the TROPOMI inversion and 1, 0.5, 0.1, 0.05, 0.01, and 0.001 for the GOSAT inversion. We chose $\gamma = 0.002$ (TROPOMI) and 0.5 (GOSAT) based on the corner of L-curve and the ratio between J_{prior} and n.

Table S1. Global methane budget in 2019 from the TROPOMI sensitivity inversions.

	$\gamma = 0.02 \text{ [Tg]}$	$\gamma = 0.5$ [Tg	$\gamma = 0.002$, no	$\gamma = 0.002$,	$\gamma = 0.002$,
	a^{-1}]	a^{-1}]	weighting [Tg	weight $= 1$	weight $= 2010$
			a ⁻¹]	for wetland	for OH [Tg a ⁻¹]
				$[Tg a^{-1}]$	
Total sources	577	593	479	571	574
Non-wetland	357	391	348	389	375
Wetland	220	202	131	182	199
Total sinks	546	559	471	555	560
OH oxidation	471 ^a	484 ^b	396°	479 ^d	485 ^e
Other losses	75	75	75	76	75
Imbalance	31	34	8	16	14

^a Posterior methane has a lifetime of 11.0 years against oxidation by tropospheric OH.

^b Posterior methane has a lifetime of 10.7 years against oxidation by tropospheric OH.

^c Posterior methane has a lifetime of 13.0 years against oxidation by tropospheric OH.

^d Posterior methane has a lifetime of 11.1 years against oxidation by tropospheric OH.

^e Posterior methane has a lifetime of 10.7 years against oxidation by tropospheric OH.

Table S2. Global methane budget in 2019 from the GOSAT sensitivity inversions.

	$\gamma = 0.002$	$\gamma = 0.02$	$\gamma = 0.5$, no	$\gamma = 0.5$,	$\gamma = 0.5$,
	$[Tg a^{-1}]$	$[Tg a^{-1}]$	weighting [Tg	weight $= 1$	weight $= 2010$
			a ⁻¹]	for wetland	for OH [Tg a ⁻¹]
				$[Tg a^{-1}]$	
Total sources	569	569	575	583	551
Non-wetland	403	398	391	404	395
Wetland	166	171	184	179	156
Total sinks	559	556	545	555	533
OH oxidation	484 a	481 ^b	470 °	480^{d}	458
Other losses	75	75	75	75	75
Imbalance	10	13	30	33	18

^a Posterior methane has a lifetime of 10.7 years against oxidation by tropospheric OH.

^b Posterior methane has a lifetime of 10.8 years against oxidation by tropospheric OH.

^c Posterior methane has a lifetime of 11.1 years against oxidation by tropospheric OH.

^d Posterior methane has a lifetime of 10.8 years against oxidation by tropospheric OH.

^e Posterior methane has a lifetime of 10.8 years against oxidation by tropospheric OH.