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Abstract. We evaluate the global atmospheric methane column retrievals from the new TROPOMI satellite instrument and 

apply them to a global inversion of methane sources for 2019 at 2°´2.5° horizontal resolution. We compare the results to an 

inversion using the sparser but more mature GOSAT satellite retrievals, and to a joint inversion using both TROPOMI and 

GOSAT. Validation of TROPOMI and GOSAT with TCCON ground-based measurements of methane columns, after 20 

correcting for retrieval differences in prior vertical profiles and averaging kernels using the GEOS-Chem chemical transport 

model, shows global biases of -2.7 ppbv for TROPOMI and -1.0 ppbv for GOSAT, and regional biases of 6.7 ppbv for 

TROPOMI and 2.9 ppbv for GOSAT. Intercomparison of TROPOMI and GOSAT shows larger regional discrepancies 

exceeding 20 ppbv, mostly over regions with low surface albedo in the shortwave infrared where the TROPOMI retrieval may 

be biased. Our inversion uses an analytical solution to the Bayesian inference of methane sources, thus providing an explicit 25 

characterization of error statistics and information content together with the solution. TROPOMI has ~100 times more 

observations than GOSAT but error correlation on the 2°´2.5° scale of the inversion and large spatial inhomogeneity in the 

number of observations make it less useful than GOSAT for quantifying emissions at that scale. Finer-scale regional inversions 

would take better advantage of the TROPOMI data density. The TROPOMI and GOSAT inversions show consistent downward 

adjustments of global oil/gas emissions relative to a prior estimate based on national inventory reports to the United Nations 30 

Framework Convention on Climate Change, but consistent increases in the south-central US and in Venezuela.  Global 

emissions from livestock (the largest anthropogenic source) are adjusted upward by TROPOMI and GOSAT relative to the 

EDGAR v4.3.2 prior estimate. We find large artifacts in the TROPOMI inversion over Southeast China, where seasonal rice 
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emissions are particularly high but in phase with extensive cloudiness, and where coal emissions may be misallocated. Future 

advances in the TROPOMI retrieval together with finer-scale inversions and improved accounting of error correlations should 35 

enable improved exploitation of TROPOMI observations to quantify and attribute methane emissions on the global scale.  

1 Introduction 

Methane (CH4) is the second most important anthropogenic greenhouse gas in the atmosphere after CO2. It is emitted to the 

atmosphere naturally, mainly from wetlands. Anthropogenic sources include the oil/gas industry, coal mining, livestock, rice 

agriculture, landfills, and wastewater treatment. Methane loss in the atmosphere is mainly by oxidation by the hydroxyl radical 40 

(OH). This oxidation leads to the production of other greenhouse gases (ozone, stratospheric water vapor, and CO2), which 

together with methane add up to a radiative forcing of 0.97 W m-2 since pre-industrial times [Myhre et al., 2013]. Climate 

change action on methane requires quantification of its emissions but current inventories are highly uncertain [Saunois et al., 

2020]. Satellite observations of atmospheric methane columns can evaluate and improve these inventories using inverse 

analyses [Jacob et al., 2016], and this has been extensively done with the Greenhouse Gases Observing Satellite (GOSAT) 45 

launched in 2009 [Monteil et al., 2013; Cressot et al., 2014; Alexe et al., 2015; Pandey et al., 2016; Maasakkers et al., 2019; 

Lu et al., 2021; Y. Zhang et al., 2021]. The TROPOspheric Monitoring Instrument (TROPOMI) launched in October 2017 

now provides a much higher observation density than GOSAT [Hu et al., 2018]. Here we present a global inverse analysis of 

one year (2019) of these early TROPOMI observations to evaluate their capability for quantifying methane emissions, 

comparing to an inversion for that same year using the sparser but more mature observations from GOSAT.  50 

 

Both TROPOMI and GOSAT measure atmospheric methane columns by backscatter of solar radiation in the shortwave 

infrared (SWIR). TROPOMI observes light intensity at 2305-2385 nm wavelength and retrieves methane columns with a full-

physics algorithm [Connor et al., 2008; Butz et al., 2011]. GOSAT observes light intensity at 1630-1700 nm wavelength, which 

enables retrieval by the CO2 proxy method taking advantage of CO2 absorption in that same band [Parker et al., 2020a]. The 55 

full-physics approach does not depend on prior information on the CO2 column, but the retrieval is more vulnerable to 

scattering artefacts. Therefore, TROPOMI has very strict filtering and its retrieval success rate is only 3% [Hasenkamp et al., 

2019]. GOSAT has a much higher retrieval success rate of 24% limited mainly by cloud cover [Parker et al., 2020a]. The 

reported precisions of TROPOMI and GOSAT retrievals are comparable, with a value of 0.7% for GOSAT [Kuze et al., 2016; 

Parker et al., 2020a] and 0.6% for TROPOMI [Butz et al., 2012]. TROPOMI provides continuous daily global coverage with 60 

a nadir pixel resolution of 7 ´ 7 km2 (5.5 ´ 7 km2 after August 2019). GOSAT samples circular pixels of 10.5 km diameter 

separated by 250 km with a 3-day return time in its standard viewing mode.  

 

Inferring emissions from methane satellite observations requires inversion with a chemical transport model (CTM) that relates 

emissions to atmospheric concentrations. This is generally done by Bayesian inference of a posterior emission estimate given 65 
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the observations and a prior estimate [Jacob et al., 2016]. Most inverse analyses use 4-dimensional variational data assimilation 

(4D-Var) to solve the Bayesian problem numerically, which enables inference of emissions at any resolution but does not 

readily provide error statistics [Meirink et al., 2008; Monteil et al., 2013; Wecht et al., 2014; Stanevich et al., 2019]. Analytical 

solution is possible if the CTM is linear, as is the case for methane, and has the advantage of including posterior error statistics 

and hence information content as part of the solution [Brasseur and Jacob, 2017]. It requires explicit construction of the 70 

Jacobian matrix of the CTM, which is computationally expensive, but this is readily done with massively parallel computing. 

Once the Jacobian matrix has been constructed, it can be applied to conduct ensembles of inversions at no added cost exploring 

the dependence of the solution on inversion parameters or observational data selection. The analytical method can be applied 

as a Kalman Filter by updating methane emissions sequentially [e.g., Chen and Prinn, 2006; Fraser et al., 2013; Henne et al., 

2016] but optimizing all emissions together over the period of interest makes the best use of the information content from the 75 

observations [Maasakkers et al., 2019; Lu et al, 2021; Y. Zhang et al., 2021]. Analytically-based inversions of GOSAT satellite 

data have been used to pinpoint areas where the inversion results are most informed by the observations [Turner et al., 2015; 

Maasakkers et al., 2019], to diagnose the ability of the inversion to separate contributions from different source sectors 

[Maasakkers et al., 2021; Y. Zhang et al., 2021] and from sources and sinks [Y. Zhang et al., 2018; Maasakkers et al., 2019], 

and to compare the information content from satellite and suborbital observations [Lu et al., 2021; Baray et al., 2021].  80 

 

Here we present global analytical inversions of TROPOMI and GOSAT data for 2019 at 2°´2.5° resolution to infer methane 

sources and sinks and to attribute emissions to different sectors. This involves evaluation and intercomparison of the 

TROPOMI and GOSAT retrievals prior to the inversion, as any biases in the observations will propagate to the inversion 

results.  We compare inversion results for the two instruments separately and jointly. We diagnose the information content of 85 

the inversion for each instrument and for the joint system in different regions of the world. This enables us to assess the 

consistency and complementarity of the two data sets. 

2 Methane observations 

TROPOMI and GOSAT are in Sun-synchronous orbits with local overpass solar times of 13:30 and 13:00 respectively 

[Veefkind et al., 2012; Kuze et al., 2016]. We use the version 1.03 TROPOMI methane retrieval from the Netherlands Institute 90 

for Space Research [Hu et al., 2016] (http://www.tropomi.eu/data-products/methane, last accessed Aug 8, 2020) and the 

GOSAT methane retrieval version 9.0 of the University of Leicester obtained by the CO2 proxy method [Parker and Boesch, 

2020] (https://catalogue.ceda.ac.uk/uuid/18ef8247f52a4cb6a14013f8235cc1eb, last accessed Dec 29, 2020). We use one year 

data (January-December 2019) to optimize methane emissions for 2019. We only include high quality retrievals with 

“qa_value” ³ 0.5 for TROPOMI [S5P MPC, 2020] and “xch4_quality_flag” = 0 for GOSAT. The TROPOMI and GOSAT 95 

products are provided as column-averaged dry methane mixing ratios (XCH4) along with the prior vertical profiles used in the 

retrieval procedures and the averaging kernel vectors describing the altitude-dependent sensitivity of the retrievals.  
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The left panels of Figure 1 show the annual mean XCH4 observations from TROPOMI and GOSAT in 2019. We excluded 

observations poleward of 60° where (1) persistent snow cover leads to low albedo [Hasekamp et al., 2019], (2) low Sun angles 100 

and extensive cloud cover make the retrieval more difficult, and (3) stratospheric CTM bias can affect the inversion [Turner 

et al., 2015]. The TROPOMI retrieval is successful for only 2% of scenes at 60°S – 60°N, still producing 56684576 TROPOMI 

observations, which is two orders of magnitude higher than for GOSAT (544911 observations after filtering with the quality 

flag). As shown in the right panel of Figure 1, TROPOMI observations are relatively sparse over persistently cloudy regions 

such as the wet tropics. GOSAT has relatively more success over these regions because of the use of the CO2 proxy method. 105 

The GOSAT CH4 product also includes observations over the ocean for sunglint geometries and these are not included in the 

current TROPOMI product.  

 

We conducted a common evaluation of the TROPOMI and GOSAT observations with ground-based Total Carbon Column 

Observing Network (TCCON) measurements of XCH4 [TCCON Team, 2017], using the GEOS-Chem CTM to resolve 110 

differences in prior estimates and averaging kernels between the TROPOMI, GOSAT, and TCCON retrievals [L. Zhang et al., 

2010]. TCCON is a network of ground-based, sun-viewing, near Infra-Red, Fourier transform spectrometers to measure 

greenhouse gases [Wunch et al., 2011] and evaluate satellite retrievals [Parker et al., 2011; Butz et al., 2011; Houweling et al., 

2014]. Only 9 TCCON sites have continuous observations for the whole year of 2019, but 21 sites (Bialystok, Bremen, Burgos, 

California Institute of Technology, Darwin, Edwards, Garmisch, Izana, Jet Propulsion Laboratory, Sega, Karlsruhe, Lauder, 115 

Lamont, Orleans, Park Falls, Paris, Rikubetsu, Sodankyla, Tsukuba, Wollongong, and Zugspitze) have observations over the 

period of May 2018 – Apr 2019 when TROPOMI observations started to be available. We therefore focus on the period from 

May 2018 to April 2019 for evaluation.  

 

Following L. Zhang et al. [2010], we remove the discrepancy from the use of different prior profiles in the TROPOMI, GOSAT, 120 

and TCCON retrievals by substituting a common fixed prior profile, which we take as the annual averaged TROPOMI prior 

profile between 30°S and 30°N. This substitution is done only for the purpose of intercomparison; it is not used subsequently 

in the inversion. We average the individual retrievals over 2o´2.5o GEOS-Chem grid cells, and apply the averaging kernels of 

the individual retrievals to the GEOS-Chem simulated vertical profiles to produce a model simulation of the observations. We 

calculate the differences Δ between satellite and TCCON measurements with reference to the GEOS-Chem CTM using: 125 

 

∆	(TROPOMI − TCCON) = /𝑋1234,67898:; − 𝑋1234,26:_67898:;= − (𝑋1234,6228> − 𝑋1234,26:_6228>), (1) 

and 

∆	(GOSAT − TCCON) = /𝑋1234,B8CD6 − 𝑋1234,26:_B8CD6= − (𝑋1234,6228> − 𝑋1234,26:_6228>),  (2) 

 130 
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where 𝑋1234,67898:;, 𝑋1234,B8CD6, and 𝑋1234,6228> are methane column mixing ratios from TROPOMI, GOSAT, and TCCON 

after substitution with the same prior profile. 𝑋1234,26:_67898:;, 𝑋1234,26:_B8CD6, and 𝑋1234,26:_6228> are simulated methane 

column mixing ratios with the appropriate averaging kernels applied.   

 

Figure 2 shows the mean differences of TROPOMI and GOSAT with TCCON for the 21 TCCON sites. There are large and 135 

correlated differences at the Izana and Zugspitze mountaintop sites where we would not expect consistency with the satellite 

data averaged over the 2o´2.5o grid. For the remaining 19 sites, the mean biases are -2.7 ppbv for TROPOMI and -1.0 ppbv 

for GOSAT. Of more interest for the inversion are systematic errors on regional scales (regional bias), which can be estimated 

by the standard deviations of ∆ (TROPOMI – TCCON) and ∆ (GOSAT – TCCON) across all TCCON sites [Buchwitz et al., 

2015]. The regional bias diagnoses the reliability of the observed methane gradients for inferring methane sources in the 140 

inversion. We find regional biases of 2.9 ppbv for GOSAT and 6.7 ppbv for TROPOMI. The regional bias for GOSAT is 

below the “breakthrough requirement” of 5 ppbv set by Buchwitz et al. [2015] as needing to be achieved for regional/global 

inversions of satellite observations, and the regional bias for TROPOMI is below their “threshold requirement” of 10 ppbv. 

This implies that GOSAT observations are of high quality for quantifying methane sources while TROPOMI observations are 

still useful. The regional bias of GOSAT compared to TCCON is smaller than the value of 3.9 ppbv reported by Parker et al. 145 

[2020a], which may reflect at least in part our accounting for differences in averaging kernels and prior vertical profiles. The 

larger regional biases in the TROPOMI data may reflect error correlations of retrieved XCH4 and SWIR surface albedo [Hu et 

al., 2018; Hasekamp et al., 2019; Schneising et al., 2019]. 

 

We apply the same method for a more extensive analysis of regional differences between TROPOMI and GOSAT. Figure 3 150 

shows the global distributions of the seasonal mean differences ∆ between the two instruments, again correcting for differences 

in prior estimates and averaging kernels. The seasonal global mean biases for TROPOMI relative to GOSAT are consistent 

with the comparison to TCCON but the regional biases are larger (8.8-12.8 ppbv), and some regions show differences of 

magnitude comparable to the regional enhancements of Figure 1. The regional biases tend to be consistent across seasons, 

except for positive biases north of 40oN in DJF that could be associated with snow cover. These biases may affect TROPOMI’s 155 

constraints on the seasonal variations of methane sources. We find particularly large differences between TROPOMI and 

GOSAT where the SWIR surface albedo is smaller than 0.1 as in Brazil, central Africa, and subarctic regions (see Figure S1). 

We may therefore expect large differences between TROPOMI and GOSAT inversions for these regions.  

3 Inversion method 

We assemble the 2019 TROPOMI and GOSAT observations of XCH4 into an observation vector 𝒚, and use the observations to 160 

optimize a state vector 𝒙 consisting of methane sources and sinks. We use the GEOS-Chem global CTM version 12.5.0 

(10.5281/zenodo.3403111) at 2°´2.5° grid resolution with 47 vertical layers as the forward model in the inversion. The model 
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is essentially linear except for a small nonlinearity from the optimization of OH concentrations [Maasakkers et al., 2019]. Prior 

estimates 𝒙G for methane sources are compiled from bottom-up inventories. We solve the Bayesian problem analytically to 

obtain both the posterior solution 𝒙H and its error covariance matrix 𝐒1. We conduct inversions using TROPOMI and GOSAT 165 

observations separately and together (joint inversion), and also conduct additional inversions to examine the sensitivity of 

results to different parameters. 

3.1 GEOS-Chem simulations and prior estimates 

GEOS-Chem is driven by Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) 

meteorological fields from the NASA Global Modeling and Assimilation Office (GMAO). The original methane simulation is 170 

described by Wecht et al. [2014]. Previous GEOS-Chem-based inversions at 4°´5° horizontal resolution had excessive 

stratospheric methane poleward of 60o in winter-spring due to the inability to reproduce the polar vortex dynamical barrier, 

and this needed to be corrected in the inversion [Turner et al., 2015; Y. Zhang et al., 2021]. The polar vortex dynamics are 

much better captured at 2°´2.5° resolution [Stanevich et al., 2019; Y. Zhang et al., 2021], and we do not use satellite data 

poleward of 60o in our inversion anyway. There is therefore no need for stratospheric bias correction.   175 

 

Table 1 summarizes the prior estimates of the sources and sinks of methane, and Figure 4 shows the spatial distribution of the 

sources. The emissions from oil, gas, and coal exploitation are from the 2016 Global Fuel Exploitation Inventory (GFEI) 

version 1.0 [Scarpelli et al., 2020], which spatially allocates national emissions reported to the United Nations Framework 

Convention on Climate Change (UNFCCC). Other anthropogenic sources (livestock, landfills, wastewater, rice, etc.) are from 180 

the EDGAR v4.3.2 inventory in 2012 as global default [Janssens-Maenhout et al., 2019] and from the gridded version of the 

US Environmental Protection Agency (EPA) greenhouse gas inventory in 2012 for the continental US [Maasakkers et al., 

2016]. Seasonalities of rice and manure emissions are based on B. Zhang et al. [2016] and Maasakkers et al. [2016], 

respectively.  

 185 

We use monthly wetland methane emissions in 2019 from the 18-member ensemble mean of the WetCHARTs version 1.3.1 

inventory [Bloom et al., 2017], which has good performance in reproducing the observed wetland methane seasonal cycle for 

most regions [Parker et al., 2020b]. Other natural sources include open fire emissions in 2019 from the Global Fire Emissions 

Database version 4 (GFED4) [van der Werf et al., 2017], termite emissions from Fung et al. [1991], and geological seepage 

from Etiope et al. [2019] scaled to the global magnitude of 2 Tg a-1 from Hmiel et al. [2020]. The total methane sources in the 190 

prior estimate add up to 542 Tg a-1, which is smaller than the bottom-up inventory estimate of 594-881 Tg a-1 from the Global 

Methane Budget 2020 [Saunois et al., 2020]. The difference is mainly caused by the higher estimates of emissions from 

freshwater (117 – 212 Tg a-1), seeps (18 – 65 Tg a-1), oil and gas (72 – 97 Tg a-1), and coal (29 – 61 Tg a-1) in Saunois et al. 
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[2020]. The freshwater source in our prior estimate is included in the wetland sector as represented by WetCHARTs [Bloom 

et al., 2017]. 195 

 

The main sink of methane is oxidation by the hydroxyl radical (OH) in the troposphere [Ehhalt and Heidt, 1973], with a 

corresponding lifetime of 11.2 ± 1.3 years as constrained by the methylchloroform proxy [Prather et al., 2012]. Our prior 

estimate for the loss of methane from reaction with tropospheric OH is calculated using archived 3-D climatological monthly 

fields of OH concentrations from a GEOS-Chem full-chemistry simulation [Wecht et al., 2014], yielding a methane lifetime 200 

of 10.5 years due to oxidation by tropospheric OH. Additional minor losses include oxidation by tropospheric Cl atoms 

computed using archived Cl concentration fields from Wang et al. [2019], stratospheric oxidation computed with archived 2-

D monthly loss frequencies from the NASA Global Modeling Initiative model [Murray et al., 2012], and soil uptake of methane 

specified following Murguia-Flores et al. [2018]. 

 205 

3.2 Analytical inversion 

We apply Bayesian inference to optimize a state vector consisting of (1) annual mean non-wetland methane emissions for 

land-containing 2o´2.5o grid cells (4020 state vector elements), (2) monthly wetland methane emissions for the 14 

subcontinental regions of Figure 4 (168 elements), and (3) annual hemispheric tropospheric OH concentrations (2 elements). 

Trade-off is needed between spatial and temporal resolution in the state vector to avoid smoothing error in the inversion [Wecht 210 

et al, 2014] and for computational tractability. For non-wetland emissions we use high spatial resolution but only optimize the 

annual mean values because seasonality is relatively small and predictable. For wetland emissions, we cannot assume that the 

prior seasonality is correct [Maasakkers et al., 2019] and instead optimize monthly emissions at coarse spatial resolution. This 

setup is the same as in Lu et al. [2021] and Y. Zhang et al. [2021] except for the higher horizontal resolution applied to non-

wetland emissions. Together we have 4190 state vector elements, which requires a total of 4190 perturbed GEOS-Chem 215 

simulations and a base simulation to construct the full Jacobian matrix. This is readily done on a high-performance computing 

platform as an embarrassingly parallel workload. Initial conditions on January 1, 2019 are obtained from a standard GEOS-

Chem simulation using the prior emission estimates and a 10-year spin-up, and are scaled by a globally uniform factor of 0.97 

in order to match the global mean column mixing ratio retrieved from TROPOMI between Jan 1 and Jan 10, 2019. This 

initialization efficiently reduces the normalized mean square error (NMSE) between GEOS-Chem and TROPOMI 220 

observations on January 1, 2019 from 0.37 to 0.02 and is used for both TROPOMI and GOSAT inversions. 

 

The posterior estimate as defined by Bayesian inference assuming Gaussian error statistics is obtained by minimizing the scalar 

cost function J(x):  

 225 

𝐽(𝑥) = (𝒙 − 𝒙G)L𝐒𝐚NO(𝒙 − 𝒙G) + 𝛾(𝒚 − 𝐊𝒙)L𝐒𝐨NO(𝒚− 𝐊𝒙),     (3) 
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where K is the Jacobian matrix describing the sensitivity of the observations to the state vector as simulated by GEOS-

Chem,	𝐒𝐚 is the prior error covariance matrix, 𝐒𝐨 is the observational error covariance matrix assumed to be diagonal, and 𝛾 is 

a regularization parameter that accounts for the effect of unresolved correlation in the observational error.  230 

 

𝐒𝐚 is constructed by assuming 50% prior error standard deviation for all non-wetland emissions on the 2°´2.5° grid and 10% 

prior error standard deviation for hemispheric annual mean OH concentrations, with no error correlations. Prior error variances 

and covariances for monthly wetland emissions in the 14 subcontinental regions are calculated using the WetCHARTs model 

ensemble [Bloom et al., 2017] following Y. Zhang et al. [2021].   235 

 

Observational error variances (diagonal elements of 𝐒𝐨) are calculated using the residual error method [Heald et al., 2004] as 

the variance of the residual difference between observations and the GEOS-Chem prior simulation on the 2°´2.5° grid after 

subtracting the mean difference. This method sums up errors from instrument retrieval, representation, and GEOS-Chem 

transport. We find a global annual mean error of 13 ppbv for TROPOMI and 14 ppbv for GOSAT. For cases where the 240 

calculated error is smaller than the instrument precision reported in the satellite retrieval, we use the latter instead (annual 

means of 9 ppbv for GOSAT and 2 ppbv for TROPOMI).  

 

So is specified as diagonal but there is in fact some observational error covariance if only from the GEOS-Chem transport. For 

TROPOMI in particular, there may be many individual observations in a single GEOS-Chem grid cell for a given day, and the 245 

corresponding GEOS-Chem transport errors would be perfectly correlated. Although one could average all TROPOMI 

observations within a 2o´2.5o grid cell before ingesting them in the inversion, this would lose the averaging kernel specificity 

for each observation. We therefore use a regularization parameter 𝛾  [Hansen et al., 1999; Y. Zhang et al., 2018, 2020; 

Maasakkers et al., 2019; Lu et al., 2021] to account for the off-diagonal structure missing in 𝐒𝐨. Based on the corner of the L-

curve [Hansen et al., 1999] and the expected chi-square distribution of the cost function [Lu et al., 2021] (see Figure S2), we 250 

choose 𝛾 = 0.002 for TROPOMI observations and 𝛾 = 0.5 for GOSAT observations. The regularization parameter of 0.5 for 

GOSAT is larger than the values of 0.05 - 0.1 in Maasakkers et al. [2019], Y. Zhang et al. [2021], and Lu et al. [2021], because 

they used 4o´5o resolution and several years of observations. The smaller value of 𝛾 for TROPOMI is due to its large number 

of collocated observations on the 2°´2.5° model grid. Shen et al., [2021] conducted a regional inversion of TROPOMI data 

using GEOS-Chem at 0.25°´0.3125° resolution and found that	𝛾 = 0.25 provided the best fit to the L-curve, reflecting the 255 

much smaller number of collocated observations on the 0.25°´0.3125° grid.   

 

We further balance the prior terms in the cost function by weighing the wetland emission term by the number of elements in 

the state vector (4020/14). This step ensures that changes in non-wetland and wetland emissions are equally expensive from a 
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cost-function perspective [Maasakkers et al., 2019]. Similarly scaling the hemispheric OH terms in the cost function by the 260 

number of elements in the state vector (4020/2) would lead to excessively small posterior adjustments. We therefore choose 

weighting factors of the OH terms (400 for TROPOMI, 450 for GOSAT) that lead to a standard deviation of 5% in the posterior 

OH adjustments.  

 

There is some arbitrariness in the selection of regularization parameters 𝛾 and prior weighting factors in the inversion. In 265 

addition to the base inversion as described above, we examined the sensitivity to the choice of 𝛾 with sensitivity inversions 

using (1) 𝛾 = 0.02 and (2) 𝛾 = 0.5 for TROPOMI, and (1) 𝛾 = 0.02 and (2)  𝛾 =  0.002	 for GOSAT. We further examined 

the sensitivity to the choice of weighting factors with sensitivity inversions using (3) no weighting factors, (4) a weighting 

factor of 1 for wetland terms, and (5) a weighting factor of 2010 for the OH terms (i.e., the ratio of the number of state vector 

elements for non-wetland and OH terms). In this manner we performed 6 inversions using TROPOMI observations only (base 270 

inversion + 5 sensitivity inversions), 6 inversions using GOSAT observations only, and 6 ´ 6 = 36 inversions using the joint 

TROPOMI and GOSAT observations.  

 

The best posterior estimate obtained by minimization of the cost function J(x) is given by [Rodgers, 2000]: 

 275 

𝒙H = 𝒙G + /𝛾𝐊L𝐒𝐨NO𝐊+ 𝐒𝐚NO=
NO
𝛾𝐊L𝐒𝐎NO(𝒚 − 𝐊𝒙G).     (4) 

 

with posterior error covariance matrix 𝐒1: 

 

𝐒1 = (𝛾𝐊L𝐒𝐨NO𝐊 + 𝐒𝐚NO)NO.        (5) 280 

 

The averaging kernel matrix 𝐀 defines the sensitivity of the solution to the true state: 

 

𝐀 = 𝐈 −	𝐒1𝐒𝐚NO,          (6) 

 285 

where 𝐈 is the identity matrix. The trace of 𝐀 represents the number of independent pieces of information on the state vector 

that is gained from the observations, and is called the degrees of freedom for signal (DOFS) [Rodgers, 2000]. Note that A here 

is different from the retrieval averaging kernel vectors in Section 2, which described the sensitivity of methane satellite 

retrievals to the vertical distribution of methane. 

 290 

The posterior solution can also be presented in reduced dimensionality. For instance, posterior emissions on the 2o´2.5o grid 

can be aggregated to national or global emissions from individual source sectors. This aggregation can be expressed with a 
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summation matrix W to represent the linear transformation from the full state vector to the reduced state vector. The posterior 

estimate of the reduced state vector (𝑥[𝒓𝒆𝒅) is computed as 

𝑥[𝒓𝒆𝒅 = 𝐖𝑥[.           (7) 295 

 

and its posterior error covariance and averaging kernel matrices are given by 

 

𝐒1𝒓𝒆𝒅 = 𝐖𝐒1𝐖𝐓,           (8) 

𝐀𝒓𝒆𝒅 = 𝐖𝐀𝐖∗,           (9) 300 

 

where 𝐖∗ = 𝐖𝐓(𝐖𝐖𝐓)N𝟏 is the Moore-Penrose inverse [Calisesi et al., 2005]. 

4 Results and discussion 

Our discussion focuses principally on results from the base inversions of the TROPOMI-only, GOSAT-only, and joint 

TROPOMI+GOSAT observations, and uses ranges from the inversion ensemble as a more conservative estimate of posterior 305 

errors than the posterior error covariance matrix 𝐒1. In this analysis we exclude ensemble members with unreasonable emission 

adjustments (e.g., negative emissions aggregated at regional scales) and OH adjustments larger than 40% (see Table S1, S2).  

 

4.1 Information content from the inversions 

Figure 5 shows the corrections to the prior estimates of non-wetland emissions (posterior/prior ratios) on the 2o´2.5o grid for 310 

the TROPOMI, GOSAT, and joint TROPOMI+GOSAT inversions. These corrections will be discussed in Section 4.3. Also 

shown are the averaging kernel sensitivities of the inversions, defined as the diagonal elements of the averaging kernel matrices 

and representing the ability of the observations to determine the posterior solution independently of the prior estimate (1 = 

fully, 0 = not at all). The averaging kernel sensitivities are highest over major anthropogenic source regions where the methane 

emissions are the largest.  315 

 

The TROPOMI inversion has 155 DOFS, meaning that it contains 155 independent pieces of information on the distribution 

of methane emissions and OH concentrations. The GOSAT inversion has 238 DOFS, more than TROPOMI despite having 

much fewer observations. This reflects the large error correlation between individual TROPOMI observations on the 2o´2.5o 

grid of the inversion, as expressed by the difference between the regularization parameters for GOSAT observations (γ = 0.5) 320 

and TROPOMI observations (γ = 0.002). GOSAT with precise individual observations spaced by 250 km is particularly well 

adapted to an inversion on a 2o´2.5o grid. TROPOMI would be far more valuable in a regional inversion at higher spatial 

resolution [Shen et al., 2021], although the regional biases discussed in Section 2 would still be a concern.   
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Y. Zhang et al. [2021] previously reported an inversion of 2010-2018 GOSAT data using GEOS-Chem at 4o´5o resolution. 325 

That inversion achieved 179 DOFS, compared to 238 DOFS in our inversion for just one year of GOSAT data at 2o´2.5o 

resolution. The higher DOFS in our case reflects the higher dimension of our emission state vector (2o´2.5o versus 4o´5o grid 

cells), combined with higher weight per observation (γ = 0.5 versus 0.05) because of lower error correlation on the 2o´2.5o 

scale. As pointed out above, the GOSAT data are particularly well suited to a 2o´2.5o resolution for the inversion. The finer 

2o´2.5o resolution allows for improved sectoral and national attribution of inversion results as will be done in Section 4.3.  330 

 

In the joint inversion, TROPOMI observations add additional DOFS to the GOSAT posterior at 0°–30° N (mainly over India 

and the Middle East, Figure 5 and Figure S3), where TROPOMI has more observations than in the rest of the world (Figure 

1). TROPOMI has lower averaging kernel sensitivities at 30°–60° N and 0°–60° S, and the information content over these two 

regions mostly comes from GOSAT. This could reflect the limitation of using a single global regularization parameter γ for 335 

the TROPOMI observations, because the observations should have more weight (larger γ) when they are less dense. Improving 

this aspect of the inversion is a target for future work.   

 

The 155 DOFS for TROPOMI are partitioned as 151 for non-wetland emissions, 3 for wetlands, and 1 for OH. The 238 DOFS 

for GOSAT are partitioned as 232 for non-wetland emissions, 5 for wetlands, and 1 for OH. The wetland emissions are largely 340 

unchanged in both inversions because of error weighting in the cost function that penalizes departure from the prior estimate. 

Without this error weighting, the TROPOMI inversion would yield unrealistic wetland emissions and seasonalities (case 3 in 

Table S1). The problem may reflect systematic biases in the TROPOMI retrieval due to the low SWIR surface albedo over 

wetland surfaces (e.g., Brazil and central Africa, see Figure S4, and boreal wetlands in Canada and Russia), combined with 

seasonal imbalance in observations (cloudiness for tropical wetlands, sun angle and snow for boreal wetlands) and seasonal 345 

biases at high northern latitudes (Figure 3). The GOSAT-only inversion without error weighting for wetlands shows no such 

problems, but we still apply error weighting in that base inversion for comparison to TROPOMI. Improvement in TROPOMI 

retrievals over wetlands is clearly needed. In the meantime, our further discussion of results in Section 4.3 will focus on the 

non-wetland emissions. 

 350 

The posterior/prior ratio of global OH concentrations is 0.96 for both the TROPOMI and GOSAT inversions and 0.91 for the 

joint inversion. Methane lifetimes against oxidation by tropospheric OH range from 10.7 to 11.0 years in the ensemble of 

TROPOMI inversions excluding case 3 (Table S1) and from 10.7 to 11.1 years in the GOSAT inversions (Table S2). These 

corrections improve agreement with the observationally constrained methane lifetime of 11.2 ± 1.3 years [Prather et al., 2012]. 

The north/south interhemispheric OH ratio (NH/SH) is 1.03 in the prior estimate, 0.93 in the TROPOMI inversion, 1.15 in the 355 
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GOSAT inversion, and 1.03 in the joint inversion, suggesting that the observations do not usefully constrain this ratio. Patra 

et al. [2014] estimated a ratio of 0.97 ± 0.12 from methyl chloroform observations.  

4.2 Cross-fit to TROPOMI and GOSAT observations 

Figure 6 shows the ability of the inversions to improve the fit between GEOS-Chem and the 2019 satellite observations when 

using posterior versus prior emissions and OH concentrations. This includes cross-evaluation of the TROPOMI inversion with 360 

independent GOSAT observations and vice versa. The simulation using prior emissions started on January 1, 2019 in an 

unbiased state compared to TROPOMI and a -1.7 ppbv global bias relative to GOSAT (Section 2). It underestimates 2019 

GOSAT observations everywhere by an average of 14.6 ppbv (Figure 6), implying the need to increase methane sources and/or 

decrease OH concentrations. It also underestimates TROPOMI over most of the world but overestimates in some regions 

(notably the subarctic) that may reflect TROPOMI retrieval biases as discussed in Section 2.  365 

 

Both TROPOMI and GOSAT inversions reduce the negative differences between simulations and observations. The 

improvement can be measured by the value of the cost function J(x) in Equation 3, which decreases by 35% for the TROPOMI 

inversion and 54% for the GOSAT inversion. GOSAT observations are still underestimated by an average of 5.3 ppbv in the 

GOSAT inversion because the information from the observations is not sufficient to fully correct the bias in the prior estimate. 370 

Cross-evaluation of the posterior simulation with the independent data set (TROPOMI or GOSAT) also shows improvement. 

The fit to the GOSAT data is improved everywhere even with the TROPOMI inversion. TROPOMI shows problematic regions 

where the inversion overcorrects the prior bias. This will be discussed further in Section 4.3. 

4.3 Implications for methane emissions 

4.3.1 Global distribution 375 

Our posterior/prior ratios for the 2019 GOSAT inversion in Figure 5 show large upward adjustments of non-wetland emissions 

in the south-central US, Venezuela, and the Middle East, consistent in magnitude with the previous inversion of 2010-2018 

GOSAT data by Y. Zhang et al. [2021], who used the same prior estimate. These two inversions also have consistent magnitude 

of downward adjustments in the western US, Europe, Russia, and North China Plain. We find larger upward adjustments than 

Y. Zhang et al. [2021] in India, East Africa, and Brazil, which they identified as regions with rapidly increasing emissions over 380 

the 2010-2018 period.  

 

Figure 5 shows agreement between GOSAT and TROPOMI in the adjustments of methane emissions in several major source 

regions including western Russia, the North China Plain, the south-central US, East Africa, and Venezuela. A few regions 

have adjustments of different signs, notably Brazil and parts of central Africa where the TROPOMI retrievals are likely biased 385 

(Figure 3 and Figure S4).  
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We conducted a global sectoral breakdown of the posterior non-wetland emission fluxes on the 2o´2.5o grid by using Equation 

7, where we assume that the partitioning between sectors in a given grid cell to be correct in the prior inventory and that the 

posterior/prior ratio applies equally to all sectors in the grid cell. This assumption is due to the lack of additional information 390 

(e.g., isotopic fractionation [Ghosh et al., 2015; G. Zhang et al., 2016; Zazzeri et al., 2017]) to separate different sources. Our 

restricted adjustment of wetland emissions due to increased weight in the cost function means that errors in wetland emissions 

could be projected to non-wetland sectors. For example, for the TROPOMI-only inversion, global posterior non-wetland 

emissions are 361 Tg a-1 in the base inversion and 389 Tg a-1 in the sensitivity inversion without increased weight for wetland 

emissions (Table S1). For the GOSAT inversion the effect is much less, 399 versus 404 Tg a -1 (Table S2).    395 

 

Table 1 compiles our sectoral attributions of inversion results. Of particular interest is the oil/gas sector, for which the global 

prior estimate (66 Tg a-1) is based on 2016 UNFCCC national inventory reports. We find global decreases in the joint 

TROPOMI+GOSAT inversion to 56 Tg a-1, largely driven by decreases in Russia. This is consistent with the correction in 

Russian oil/gas emissions reported to the UNFCCC, from 27 Tg a-1 in the communication used by the GFEI to 16 Tg a-1 in the 400 

latest communication [UNFCCC, 2020]. Livestock emissions (the single largest anthropogenic methane source) are adjusted 

upward by the joint inversion from 116 Tg a-1 in the EDGAR v4.3.2 prior estimate to 139 Tg a-1.   

4.3.2 Major source regions 

Figure 7 shows emissions in the top five anthropogenic methane source regions including China, India, Brazil, Europe, and 

the contiguous US (CONUS). These regions account for 56% of global posterior anthropogenic emissions in the GOSAT 405 

inversion.  

 

In China, both GOSAT and TROPOMI inversions adjust non-wetland methane emissions downward in the North China Plain 

(Figure 5). This has been a long-standing result of inversions of satellite data using EDGAR v4.1 and v4.2 as prior estimate 

[Monteil et al., 2013; Thompson et al., 2015; Alexe et al., 2015; Turner et al., 2015] and has been attributed to an overestimate 410 

of emissions from the coal sector which dominates total EDGAR emissions in the region. More recent inversions using the 

UNFCCC-based GFEI as prior estimate have found the same result [Lu et al., 2021; Y. Zhang et al., 2021], but GFEI takes its 

spatial allocation of coal emissions from EDGAR v4.3.2. A more detailed bottom-up analysis by Sheng et al. [2019] finds 

most of the Chinese coal emissions to be in South China, in contrast to EDGAR which places them in the North China Plain. 

Our TROPOMI inversion over Southeast China shows spatially inconsistent results with the GOSAT inversion (Figure 5) and 415 

overcorrects the fit to observations (Figure 6), which may be due to aliasing between coal and rice emissions. Rice cultivation 

is the dominant source of methane in Southeast China in our prior estimate, but the emissions have large seasonality and peak 

in summer when cloudiness is pervasive and TROPOMI observations are few, as shown in Figure 8. GOSAT is less affected 

by cloudiness (Figure 8), on account of its use of the CO2 proxy retrieval method. We therefore exclude posterior estimates 
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from TROPOMI and the joint inversions from Figure 7. Because China accounts for a large fraction of global rice [Chen et 420 

al., 2013] and coal emissions [Cheng et al., 2011; Miller et al., 2019], we also exclude these entries from Table 1. At national 

scale, the GOSAT inversion adjusts anthropogenic methane emissions downward from 67 Tg a-1 to 56 Tg a-1 in China, very 

close to the value of 55 Tg a-1 in the latest report by China to the UNFCCC in 2014.  

 

All three inversions adjust methane emissions upwards in India. The results from the base inversion are at the higher end of 425 

the range from the inversion ensemble, but the 41-57 Tg a-1 range of national emissions spanned by the ensemble is still much 

higher than previous inversions of GOSAT and in-situ data including 33 Tg a-1 for 2010-2018 by Y. Zhang et al. [2021] and 

22 Tg a-1 for 2010-2015 by Ganesan et al. [2017]. This may reflect the rapid increase of Indian emissions over the 2010-2018 

period previously identified by Y. Zhang et al. [2021] and attributed principally to livestock. 

 430 

In Brazil, the large upward adjustments from 19 Tg a-1 (prior) to 35 Tg a-1 (GOSAT) and 32 Tg a-1 (joint) in the posterior 

estimates are consistent with previous top-down estimates [Maasakkers et al., 2019; Y. Zhang et al., 2021]. TROPOMI shows 

adjustments in the opposite direction, likely reflecting observational bias associated with low SWIR surface albedo (Figure 3) 

and limited number of observations. The joint inversion is dominated by results from GOSAT on account of the much higher 

averaging kernel sensitivities for the inversion (Figure 5).  435 

 

All inversions adjust emissions downwards in Europe (prior: 37 Tg a-1, TROPOMI: 26 Tg a-1, GOSAT: 33 Tg a-1, joint: 29 Tg 

a-1), consistent with the previous downward adjustments in the 2010-2018 mean in the GOSAT inversion and the small negative 

trend in methane emissions [Y. Zhang et al., 2021]. The largest reductions of emissions in Europe are from coal and oil/gas 

emissions.  440 

 

In CONUS, the large upward adjustment in the south-central region reflects the well-known underestimate of oil/gas emissions 

by the US EPA inventory in that region [Kort et al., 2014; Smith et al., 2017; Peischl et al., 2018; Alvarez et al., 2018; 

Maasakkers et al., 2021; Gorchov Negron et al., 2020; Y. Zhang et al., 2021; Lyon et al., 2021]. The posterior estimates from 

both TROPOMI and GOSAT adjust national methane emissions slightly downwards from 30 Tg a-1 to 26 Tg a-1 (TROPOMI) 445 

and 29 Tg a-1 (GOSAT) over CONUS, close to the posterior estimates of 31 Tg a-1 from the 0.5o´0.625o inversion over 2010-

2015 [Maasakkers et al., 2021]. The joint inversion adjusts emissions upwards to 40 Tg a-1 due to the larger averaging kernel 

sensitivity over the south-central US, where emissions have large upward adjustments.  

5 Conclusions 

We used one year (2019) of atmospheric methane column observations from the new TROPOMI satellite instrument in a 450 

global inverse analysis of methane sources at 2o´2.5o resolution, and compared results to the same analysis using the more 

mature but sparser GOSAT instrument as well as the combination of the two instruments. By analytical solution to the inverse 
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problem, we were able to quantitatively compare the information content from the two satellite datasets. This includes 

averaging kernel sensitivities and degrees of freedom for signal (DOFS) that quantify the number of independent pieces of 

information on the distribution of methane emissions. 455 

 

We began by validating the global observations from TROPOMI and GOSAT by common reference to the ground-based 

TCCON methane column measurements, using the GEOS-Chem CTM to correct for the effects of different prior estimates 

and averaging kernels in the retrievals from each instrument. Results show that TROPOMI and GOSAT are globally biased 

by -2.7 ppbv and -1.0 ppbv respectively. Their regional biases relative to TCCON are 7 ppbv and 3 ppbv, respectively, 460 

sufficiently small for inverse analyses of methane emissions on regional to global scales. Intercomparison between TROPOMI 

and GOSAT shows larger regional differences exceeding 20 ppbv, generally in places where the SWIR surface albedo is low 

and TROPOMI retrievals would be subject to biases [Lorente et al., 2021]. GOSAT is less sensitive to albedo-driven biases 

because of its CO2 proxy retrieval method, as compared to the full-physics retrieval in TROPOMI.  

 465 

We find that the GOSAT inversion has a global DOFS of 232 for non-wetland methane emissions on the 2´2.5o grid, larger 

than the TROPOMI inversion (DOFS of 151) despite the TROPOMI data being much denser. This is because individual 

TROPOMI observations have large error correlations on the 2°´2.5° grid of the inversion, whereas the GOSAT observations 

with their 250 km separation are ideally suited for our 2°´2.5° inversion scale. Finer-scale inversions, as done for regional 

studies, would be far more effective at exploiting the information from TROPOMI. A better representation of error correlation, 470 

accounting for the relative sparsity of TROPOMI data in cloudy regions, would also increase the value of TROPOMI data in 

global inversions. Combining the TROPOMI and GOSAT data in a joint inversion increases the DOFS to 244, with most of 

the added information from TROPOMI in the 0°–30° N latitudinal band including India and the Middle East.  

 

The TROPOMI and GOSAT inversions for 2019 show consistent upward adjustments of anthropogenic methane emissions 475 

over Venezuela (oil/gas) and the south-central US (oil/gas), and downward adjustments over Europe (oil/gas and coal), Russia 

(oil/gas), and the North China Plain (coal). These adjustments are relative to the official national inventory reports to the 

UNFCCC in 2016 and used as prior estimates in our inversion. The TROPOMI and GOSAT inversions also show consistent 

upward adjustments over East Africa where livestock emissions are large. Global livestock emissions increase from 116 Tg a-

1 in the EDGAR v4.3.2 prior estimate to 139 Tg a-1 in the joint GOSAT+TROPOMI inversion. Some regions show large 480 

inconsistencies between TROPOMI and GOSAT inversions, and we find that these generally reflect TROPOMI regional biases 

in low-albedo regions. The strict cloudiness filter used in TROPOMI observations is also problematic in methane source 

regions such as wetlands and rice agriculture that have extensive and sometimes seasonal cloud cover.  

 

Our results demonstrate the potential of applying TROPOMI observations to constrain methane emissions on a global scale 485 

through inverse analyses, but also stress the need for caution. The methane retrieval from TROPOMI is still in an early stage, 
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and the current operational product appears to have systematic biases in low-albedo regions. Future generations of the retrieval 

may address these data quality flaws [Lorente et al., 2021]. Improved accounting of model transport error correlations is also 

needed to fully exploit the inversion of TROPOMI observations on a global scale. In the meantime, GOSAT provides a high-

quality record of methane observations going back to 2010 and we have shown that 1 year of GOSAT observations can usefully 490 

inform emissions on a 2o´2.5o grid. GOSAT will be increasingly useful in the future to attribute methane trends and to validate 

future generations of the TROPOMI retrieval.  
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 805 
Figure 1. Mean column averaged dry methane mixing ratios (XCH4) measured by TROPOMI and GOSAT in 2019, and number of 
observations from each instrument in that year on the GEOS-Chem 2o´2.5o grid. The data have been filtered using “qa_value” ³ 0.5 
for TROPOMI and “xch4_quality_flag” = 0 for GOSAT, and are shown on the GEOS-Chem 2o´2.5o grid. Note the difference in 
scale for the number of observations by TROPOMI and GOSAT. 
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Figure 2. Biases of TROPOMI and GOSAT methane (XCH4) retrievals relative to TCCON. Values are averages for May 2018 - April 
2019 at each of the 21 sites of the TCCON network, and have been corrected for differences in averaging kernels and prior vertical 
profiles on the 2o´2.5o GEOS-Chem grid as described in the text. The large correlated biases at Zugspitze and Izana can be explained 
by the high altitude of these TCCON sites. Statistics for the other 19 sites are given inset including the mean bias (MB), the regional 815 
bias (RB) calculated as the standard deviation of the bias between satellite and individual TCCON stations, and the coefficient of 
determination (R2) between the TROPOMI and GOSAT biases.  
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Figure 3. Seasonally averaged differences (Δ) of XCH4 between TROPOMI and GOSAT retrievals for May 2018 – April 2019 on a 820 
4o×5o grid. The retrievals have been corrected for differences in averaging kernels and prior vertical profiles as described in the text. 
MB is the global mean bias of TROPOMI relative to GOSAT and RB is the regional bias as defined by the standard deviation of ∆ 
on the 4o×5o grid. 
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Figure 4. Spatial distribution of prior methane emissions in 2019. The blue box over China in the left panel indicates the region used 
for seasonality analysis in Figure 8. The blue boxes in the right panel indicate the 14 subcontinental regions of Y. Zhang et al. [2021] 
for which monthly wetland emissions are aggregated.  
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Figure 5. Corrections to prior estimates of 2019 non-wetland methane emissions on the 2o×2.5o grid (posterior/prior ratios), and 
corresponding averaging kernel sensitivities. Results are shown for the TROPOMI, GOSAT, and joint TROPOMI+GOSAT 
inversions. Less than 3% grid cells have negative posterior / prior ratios, which is allowed by the statistics but is likely unphysical. 
The averaging kernel sensitivities are the diagonal elements of the averaging kernel matrix for the inversion, and measure the ability 835 
of the observations to constrain the emissions (1 = fully, 0 = not at all). The sum of averaging kernel sensitivities (trace of the 
averaging kernel matrix) defines the degrees of freedom for signal (DOFS) for the inversion, shown inset. DOFS including 
contributions from wetland emissions and OH concentrations are 155 for TROPOMI and 238 for GOSAT. 
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Figure 6. Comparison of GEOS-Chem XCH4 to TROPOMI and GOSAT observations. Panels show annual mean differences for 2019 
between the GEOS-Chem simulation and observations, with mean bias ± standard deviation given inset. Top panels: GEOS-Chem 
with prior emission and OH estimates. Middle panels: GEOS-Chem with posterior estimates from the TROPOMI inversion. Bottom 
panels: GEOS-Chem with posterior estimates from the GOSAT inversion.  
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Figure 7. Annual anthropogenic methane emissions in 2019 for five major source regions, accounting for 56% of global 
anthropogenic emissions in the inversion of GOSAT data. The vertical bars represent the range of posterior emissions from the 
ensemble of inversions. Europe is defined as west of 37oE. CONUS is the contiguous United States. TROPOMI and joint inversion 
results are not shown for China because of concern over biases resulting from seasonal cloudiness and prior errors in the spatial 850 
distribution of coal emissions (see text).   
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Figure 8. Seasonality of methane emissions from rice cultivation and satellite observations frequency over Southeast China (20°N – 
37°N, 103°E – 123°E, shown in Figure 4) in 2019. The number of TROPOMI observations increases after August 2019 due to change 855 
in pixel size from 7 ´ 7 km2 to 5.5 ´ 7 km2. Seasonality of rice emissions is from B. Zhang et al. [2016]. Note the difference in scale 
for the number of observations by TROPOMI and GOSAT. 
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Table 1. Global methane budget for 2019.  

 Prior estimate a 
[Tg a-1] 

Posterior estimates [Tg a-1] 
TROPOMI 
 

GOSAT  
 

Joint 

Total sources 542 556 562 570 
    Anthropogenic 341 336 371 363 
        Livestock 116 126 143 139 
        Oil and gas 66 53 54 56 
        Rice 38 NR b 43 NR 

b 
        Wastewater 37 44 48 44 
        Coal 31 NR b 26 NR 

b 
        Landfills 30 27 30 31 
        Other anthropogenic 23 26 27 26 
    Natural 201 220 191 207 
        Wetlands 168 195 163 183 
        Termites 12 12 13 12 
        Open fires 19 11 13 10 
        Seeps 2 2 2 2 
Total sinks 563 543 543 533  
    Tropospheric OH  489 468 468 458 
    Soil uptake c 34 34 34 34 
    Stratospheric loss c 35 35 35 35 
    Tropospheric Cl c 6 6 6 6 
Imbalance -21 13 19 37 
Lifetime against tropospheric OH [a]d  10.5 11.1 11.1 11.3 
     

 
a Prior anthropogenic source estimates are from EDGAR v4.3.2 [Janssens-Maenhout et al., 2017] in 2012, superseded by oil, 
gas, and coal emissions from GFEI [Scarpelli et al., 2020] for 2016, and gridded EPA inventory data for the US [Maasakkers 865 
et al., 2016]. Prior wetland emissions in 2019 are from WetCHARTs [Bloom et al., 2017]. Open fire emissions are from the 
Global Fire Emissions Database version 4 (GFED4) in 2019 [van der Werf et al., 2017]. Termite emissions are from Fung et 
al. [1991]. Geological seepages are from Etiope et al. [2019] scaled to the global magnitude from Hmiel et al. [2020].  
b Not reported because of the potential for bias in the sectoral attribution of TROPOMI inversion results for China, which is a 
major global source of emissions from rice and coal. See text for details.  870 
c These minor sinks are not optimized by the inversion. 
d Lifetime of total atmospheric methane against oxidation by tropospheric OH 
 
 

 875 


