Comprehensive Quantification of Height Dependence of Entrainment-Mixing between Stratiform Cloud Top and Environment

Sinan Gao¹, Chunsong Lu¹*, Yangang Liu², Seong Soo Yum³, Jiashan Zhu¹, Lei Zhu¹, Neel Desai^{2a}, Yongfeng Ma⁵

¹Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing, China

²Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton NY, US

³Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

⁴Michigan Technological University, Michigan, US

⁵Department of Mechanics & Aerospace Engineering, Southern University of Science and Technology, Shenzhen, China

Correspondence to: Chunsong Lu (<u>luchunsong110@gmail.com</u>)

Contents of this file:

Figures S1 to S13

^a Now at Department of meteorology and climate science, San Jose State University, San Jose, CA

Figure S1. Same as Figure 3, but with the different method for obtaining adiabatic properties: adiabatic liquid water content (LWC_a) is calculated from the adiabatic growth from cloud base, the maximum number concentration at each level is assumed to be adiabatic volume radius (r_{va}), and adiabatic number concentration (n_a) is calculated with LWC_a and n_a .

Figure S2. Same as Figure 3, but with the different method for obtaining adiabatic properties: the maximum liquid water content at each level is assumed to be adiabatic liquid water content (LWC_a), the maximum number concentration at each level is assumed to be adiabatic number concentration (n_a), and adiabatic volume mean radius (r_{va}) is calculated with LWC_a and n_a .

Figure S3. Same as Figure 3, but with the different method for obtaining adiabatic properties: the maximum liquid water content at each level is assumed to be adiabatic liquid water content (LWC_a), the maximum volume mean radius at each level is assumed to be adiabatic volume mean radius (r_{va}), and adiabatic number concentration (n_a) is calculated with LWC_a and r_{va} .

Figure S4. Same as Figure 3, but with the different method for obtaining adiabatic properties: the maximum number concentration at each level is assumed to be adiabatic number concentration (n_a), the maximum volume mean radius at each level is assumed to be adiabatic volume mean radius (r_{va}), and adiabatic liquid water content (LWC_a) is calculated with n_a and r_{va} .

Figure S5. Same as Figure 4, but with the different method for obtaining adiabatic properties: adiabatic liquid water content (LWC_a) is calculated by adiabatic condensation growth of droplets, the maximum number concentration at each level is assumed to be adiabatic volume mean radius (r_{va}), and adiabatic number concentration (n_a) is calculated with LWC_a and n_a .

Figure S6. Same as Figure 4, but with the different method for obtaining adiabatic properties: the maximum liquid water content at each level is assumed to be adiabatic liquid water content (LWC_a), the maximum number concentration at each level is assumed to be adiabatic number concentration (n_a) , and adiabatic volume mean radius (r_{va}) is calculated with LWC_a and n_a .

Figure S7. Same as Figure 4, but with the different method for obtaining adiabatic properties: the maximum liquid water content at each level is assumed to be adiabatic liquid water content (LWC_a), the maximum volume mean radius at each level is assumed to be adiabatic volume mean radius (r_{va}), and adiabatic number concentration (n_a) is calculated with LWC_a and r_{va} .

Figure S8. Same as Figure 4, but with the different method for obtaining adiabatic properties: the maximum number concentration at each level is assumed to be adiabatic number concentration (n_a), the maximum number concentration at each level is assumed to be adiabatic volume mean radius (r_{va}), and adiabatic liquid water content (LWC_a) is calculated with n_a and r_{va} .

Figure S9. Height dependence of (a) r_{va} , r_{vc} , r_{vh} , (b) n_a , n_h , n_c , n_i and (c) LWC_a, LWC_c 16 July 2008; height dependence of (d) r_{va} , r_{vc} , r_{vh} , (e) n_a , n_h , n_c , n_i and (f) LWC_a, LWC_c 02 August 2008; height dependence of (g) r_{va} , r_{vc} , r_{vh} , (h) n_a , n_h , n_c , n_i and (i) LWC_a, LWC_c 06 August 2008; height dependence of (j) r_{va} , r_{vc} , r_{vh} , (k) n_a , n_h , n_c , n_i and (l) LWC_a, LWC_c 08 August 2008. Adiabatic liquid water content (LWC_a) is calculated by adiabatic condensation growth of droplets, the maximum number concentration at each level is assumed to be adiabatic number concentration (n_a), and adiabatic volume mean radius (r_{va}) is calculated with LWC_a and n_a .

Figure S10. Same as Figure S9, but with the different method for obtaining adiabatic properties: adiabatic liquid water content (LWC_a) is calculated from the adiabatic growth from cloud base, the maximum volume mean radius at each level is assumed to be adiabatic volume mean radius (r_{va}), and adiabatic number concentration (n_a) is calculated with LWC_a and r_{va} .

Figure S11. Same as Figure S9, but with the different method for obtaining adiabatic properties: the maximum liquid water content at each level is assumed to be adiabatic liquid water content (LWC_a), the maximum number concentration at each level is assumed to be adiabatic number concentration (n_a), and adiabatic volume mean radius (r_{va}) is calculated with LWC_a and n_a .

Figure S12. Same as Figure 9, but with the different method for obtaining adiabatic properties: the maximum liquid water content at each level is assumed to be adiabatic liquid water content (LWC_a), the maximum volume mean radius at each level is assumed to be adiabatic volume mean radius (r_{va}), and adiabatic number concentration (n_a) is calculated with LWC_a and r_{va} .

Figure S13. Same as Figure S9, but with the different method for obtaining adiabatic properties: the maximum number concentration at each level is assumed to be adiabatic number concentration (n_a), the maximum number concentration at each level is assumed to be adiabatic volume mean radius (r_{va}), and adiabatic liquid water content (LWC_a) is calculated with n_a and r_{va} .