

1 **Interactions of organosulfates with water vapor under sub- and supersaturated**
2 **conditions**

3
4 Chao Peng,^{1,2} Patricia N. Razafindrambinina,³ Kotiba A. Malek,⁴ Lanxiadi Chen,^{1,2,7} Weigang
5 Wang,⁵ Ru-Jin Huang,⁶ Yuqing Zhang,^{1,2} Xiang Ding,^{1,2} Maofa Ge,⁵ Xinming Wang,^{1,2} Akua A.
6 Asa-Awuku,^{3,4} and Mingjin Tang^{1,2,7,*}

7
8 ¹ State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental
9 Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for
10 Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of
11 Sciences, Guangzhou 510640, China

12 ² CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China

13 ³ Department of Chemistry and Biochemistry, College of Computer, Mathematical and Natural
14 Sciences, University of Maryland, College Park, MD 20742, USA

15 ⁴ Department of Chemical and Biomolecular Engineering, A. James Clark School of Engineering,
16 University of Maryland, College Park, MD 20742, USA

17 ⁵ State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National
18 Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular
19 Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

20 ⁶ Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and
21 Quaternary Geology, Institute of Earth and Environment, Chinese Academy of Sciences, Xi'an
22 710061, China

23 ⁷ University of Chinese Academy of Sciences, Beijing 100049, China

24

25 *Correspondence: Mingjin Tang (mingjintang@gig.ac.cn)

26

27 **Abstract**

28 Organosulfates (OS) are important constituents of secondary organic aerosols, but their
29 hygroscopic properties and cloud condensation nucleation (CCN) activities have not been well
30 understood. In this work we employed three complementary techniques to characterize interactions
31 of several OS with water vapor under sub- and supersaturated conditions. A vapor sorption
32 analyzer was used to measure mass changes of OS samples with RH (0-90%); among the 11
33 organosulfates examined, only sodium methyl sulfate (methyl-OS), sodium ethyl sulfate (ethyl-
34 OS), sodium octyl sulfate (octyl-OS) and potassium hydroxyacetone sulfate were found to
35 deliquesce as RH increased, and their mass growth factors at 90% RH were determined to be
36 3.65 \pm 0.06, 3.58 \pm 0.02, 1.59 \pm 0.01 and 2.20 \pm 0.03. Hygroscopic growth of methyl-, ethyl- and octyl-
37 OS aerosols was also studied using a humidity tandem differential mobility analyzer (H-TDMA);
38 continuous hygroscopic growth was observed, and their growth factors at 90% RH were
39 determined to be 1.83 \pm 0.03, 1.79 \pm 0.02 and 1.21 \pm 0.02. We further investigated CCN activities of
40 methyl-, ethyl- and octyl-OS aerosols, and their single hygroscopicity parameters (κ_{ccn}) were
41 determined to be 0.459 \pm 0.021, 0.397 \pm 0.010 and 0.206 \pm 0.008. For methyl- and ethyl-OS aerosols,
42 κ_{ccn} values agree reasonably well with those derived from H-TDMA measurements (κ_{gf}) with
43 relative differences being <25%, whereas κ_{ccn} was found to be ~2.4 times larger than κ_{gf} for octyl-
44 OS, likely due to both solubility limit and surface tension reduction.

45

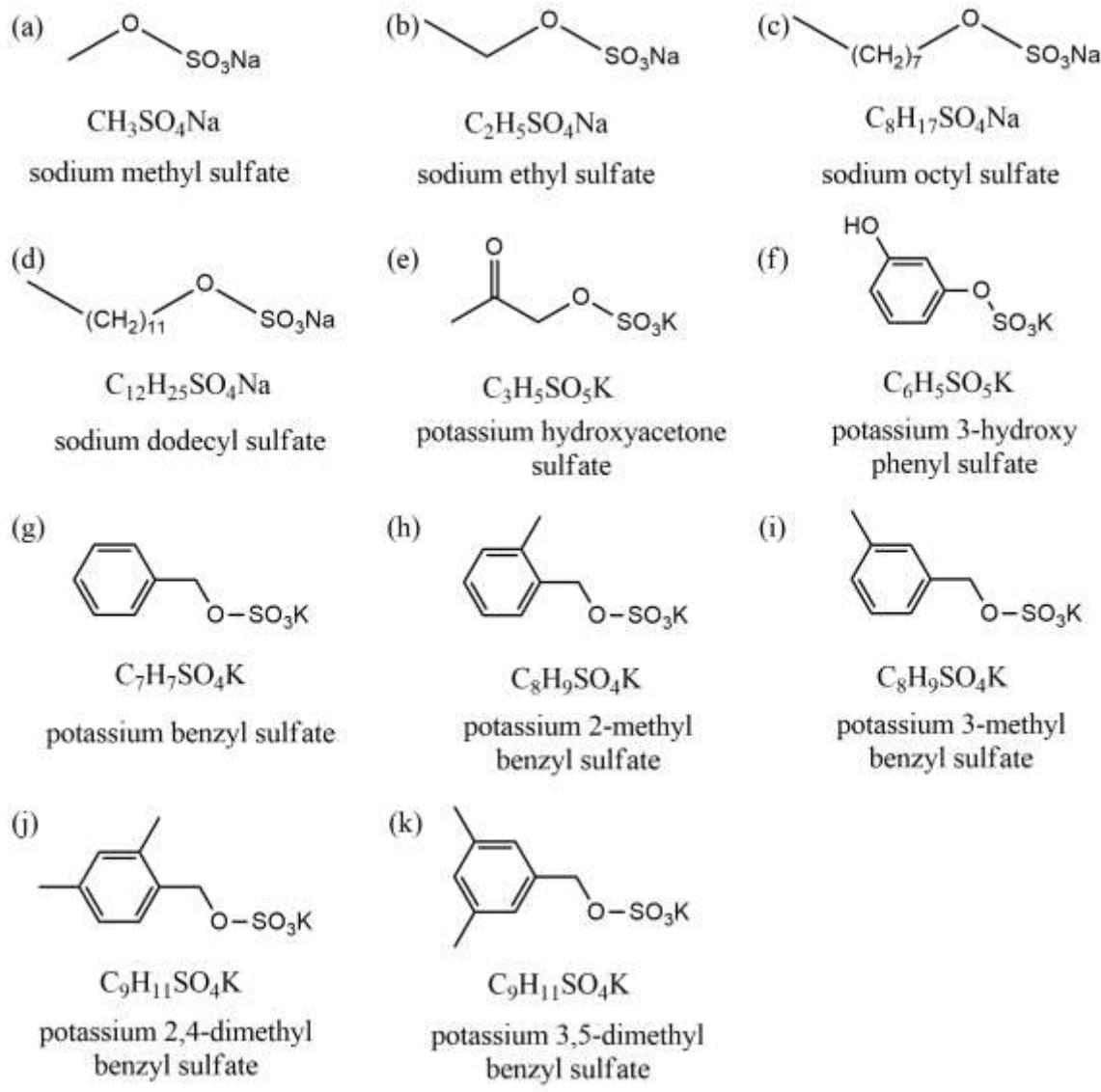
46 **1 Introduction**

47 Secondary organic aerosol (SOA) contributes approximately 70% to the global atmospheric
48 organic aerosols (Hallquist et al., 2009; Jimenez et al., 2009). SOA can affect the Earth's radiative
49 forcing and climate directly by scattering and absorbing solar and terrestrial radiation, and also
50 indirectly by acting as cloud condensation nuclei (CCN) or ice nucleating particles (Moise et al.,
51 2015; Shrivastava et al., 2017). Consequently, it is important to understand the source, formation,
52 and physicochemical properties of SOA (Pöschl, 2005; Jimenez et al., 2009; Noziere et al., 2015;
53 [Peng et al., 2020](#)). However, SOA concentrations on the global scale are significantly
54 underestimated by many modeling studies (Heald et al., 2005; Kanakidou et al., 2005; Ervens et
55 al., 2011; McNeill et al., 2012; Shrivastava et al., 2017), indicating that there might exist unknown
56 while important precursors and/or formation mechanisms of SOA.

57 Organosulfates (OS), which could contribute to the total mass of ambient organic aerosols by
58 as much as 30%, may largely explain the discrepancy between observed and modeled global SOA
59 budgets (Surratt et al., 2008; Tolocka and Turpin, 2012; Liao et al., 2015). A number of field
60 measurements have observed significant amounts of OS in ambient aerosols in different regions
61 over the globe (Froyd et al., 2010; Kristensen and Glasius, 2011; He et al., 2014; Hettiyadura et
62 al., 2015; Riva et al., 2019; Wang et al., 2019a; Wang et al., 2019b; Zhang et al., 2019;
63 Bruggemann et al., 2020; Wang et al., 2020). For example, the mass concentration of sodium
64 methyl sulfate, the smallest organosulfate, was found to be 0.2-9.3 ng m⁻³ in Centreville, Alabama
65 (Hettiyadura et al., 2017). Hydroxyacetone sulfate, which may originate from both biogenic
66 (Surratt et al., 2008) and anthropogenic emissions (Hansen et al., 2014), has been detected at
67 various locations, such as the Arctic (1.27-9.56 ng m⁻³) (Hansen et al., 2014), Beijing (0.5-7.5 ng
68 m⁻³) (Wang et al., 2018), [Shanghai \(1.8-2.3 ng m⁻³\) \(Wang et al., 2021\)](#), Xi'an (0.9-2.6 ng m⁻³)

69 (Huang et al., 2018), Centreville (1.5-14.3 ng m⁻³) (Hettiyadura et al., 2017) and Iowa City (4.8±1.1
70 ng m⁻³) (Hughes and Stone, 2019). In addition, benzyl and phenyl sulfates were also ubiquitous in
71 the troposphere, with reported concentrations up to almost 1 $\mu\text{g m}^{-3}$ (Kundu et al., 2013; Ma et al.,
72 2014; Staudt et al., 2014; Huang et al., 2018).

73 As OS are ubiquitous in the troposphere, it is important to understand their hygroscopic
74 properties and CCN activities in order to assess their environmental and climatic effects
75 (Kanakidou et al., 2005; Moise et al., 2015; Tang et al., 2016; Tang et al., 2019a), especially
76 considering that OS could contribute up to 30% of total mass of organic aerosols in the troposphere
77 (Surratt et al., 2008; Tolocka and Turpin, 2012; Liao et al., 2015). However, to our knowledge,
78 only two previous studies have explored their hygroscopic properties and CCN activities (Hansen
79 et al., 2015; Estillore et al., 2016). Hansen et al. (2015) investigated hygroscopic growth and CCN
80 activation of limonene-derived OS (with molecular weight of 250 Da) and their mixtures with
81 ammonium sulfate. Hygroscopicity of pure limonene-derived OS was weak, and its hygroscopic
82 growth factors were determined to be 1.0 at 80% RH and 1.2 at 93% RH (Hansen et al., 2015).
83 Estillore et al. (2016) investigated hygroscopic growth of a series of OS, including potassium salts
84 of glycolic acid sulfate, hydroxyacetone sulfate, 4-hydroxy-2,3-epoxybutane sulfate, and 2-
85 butenediol sulfate, as well as sodium salts of benzyl sulfate, methyl sulfate, ethyl sulfate, and
86 propyl sulfate. Continuous hygroscopic growth (i.e. without obvious deliquescence) was observed
87 for these OS aerosols (Estillore et al., 2016); in addition, their hygroscopic growth factors at 85%
88 RH were determined to vary between 1.29 and 1.50, suggesting that their hygroscopicity showed
89 substantial variation. In summary, it is fair to state that hygroscopic properties and CCN activities
90 of OS have not been well understood.


91 In this work, three complementary techniques were used to investigate hygroscopic properties
92 and CCN activities of a series of OS, including sodium methyl sulfate, sodium ethyl sulfate,
93 sodium octyl sulfate, sodium dodecyl sulfate, potassium hydroxyacetone sulfate, potassium 3-
94 hydroxy phenyl sulfate, potassium benzyl sulfate, potassium 2-methyl benzyl sulfate, potassium
95 3-methyl benzyl sulfate, potassium 2,4-dimethyl benzyl sulfate and potassium 3,5-dimethyl benzyl
96 sulfate. A vapor sorption analyzer was employed to measure mass change of these OS samples as
97 a function of RH. In addition, hygroscopic growth (change in mobility diameters) and CCN
98 activation of submicron aerosol particles were studied for sodium methyl sulfate, sodium ethyl
99 sulfate and sodium octyl sulfate, using a humidity tandem differential mobility analyzer (H-TDMA)
100 and a cloud condensation nuclei counter (CCNc). Due to their very limited quantities, we could
101 not carry out H-TDMA and CCNc measurements for other OS samples which were synthesized
102 by us. In addition, we also investigated the impacts of sodium methyl sulfate, sodium ethyl sulfate
103 and sodium octyl sulfate on hygroscopic properties and CCN activities of ammonium sulfate.

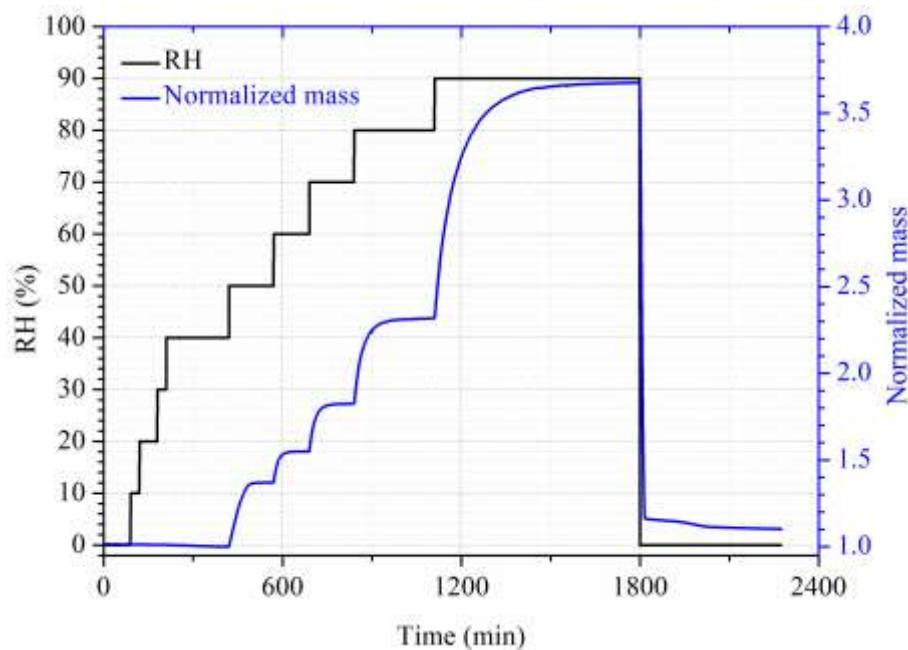
104 **2 Experimental section**

105 **2.1 Chemicals and reagents**

106 Sodium methyl sulfate ($\text{CH}_3\text{SO}_4\text{Na}$, >98%) and sodium ethyl sulfate ($\text{C}_2\text{H}_5\text{SO}_4\text{Na}$, >98%)
107 were purchased from Tokyo Chemical Industry (TCI); sodium octyl sulfate ($\text{C}_8\text{H}_{17}\text{SO}_4\text{Na}$, >99%),
108 sodium dodecyl sulfate ($\text{C}_{12}\text{H}_{25}\text{SO}_4\text{Na}$, >99%) and ammonium sulfate (>99.5%) were supplied by
109 Aldrich. The other seven OS, including potassium hydroxyacetone sulfate, potassium 3-hydroxy
110 phenyl sulfate, potassium benzyl sulfate, potassium 2-methyl benzyl sulfate, potassium 3-methyl
111 benzyl sulfate, potassium 2,4-dimethyl benzyl sulfate and potassium 3,5-dimethyl benzyl sulfate,
112 were synthesized using the method described by Huang et al. (2018), and their purities were found

113 to be >95% using nuclear magnetic resonance analysis. Chemical formulas and molecular
114 structures of OS investigated in this study can be found in Figure 1.

115


116 **Figure 1.** Chemical formulas and molecular structures of organosulfates investigated in this study.

117

118 **2.2 VSA experiments**

119 A vapor sorption analyzer (VSA), commercialized by TA Instruments (New Castle, DE,
120 USA), was used to measure mass change of organosulfates as a function of RH. Experimental

121 details can be found in our previous studies (Chen et al., 2019; Gu et al., 2017; Guo et al., 2019;
122 Tang et al., 2019b), and are thus described here briefly. Experiments were conducted at 25 ± 0.1 °C
123 and in the RH range of 0-90%. A high precision balance was used to measure the sample mass at
124 different RH with a stated sensitivity of <0.1 µg, and the dry mass of samples used in this work
125 was typically around 1.0 mg.

126

127 **Figure 2.** Change in RH (black curve, left y axis) and normalized sample mass (blue curve, right
128 y axis) of $\text{CH}_3\text{SO}_4\text{Na}$ with of time in a typical vapor sorption analyzer experiment at 25 °C.

129

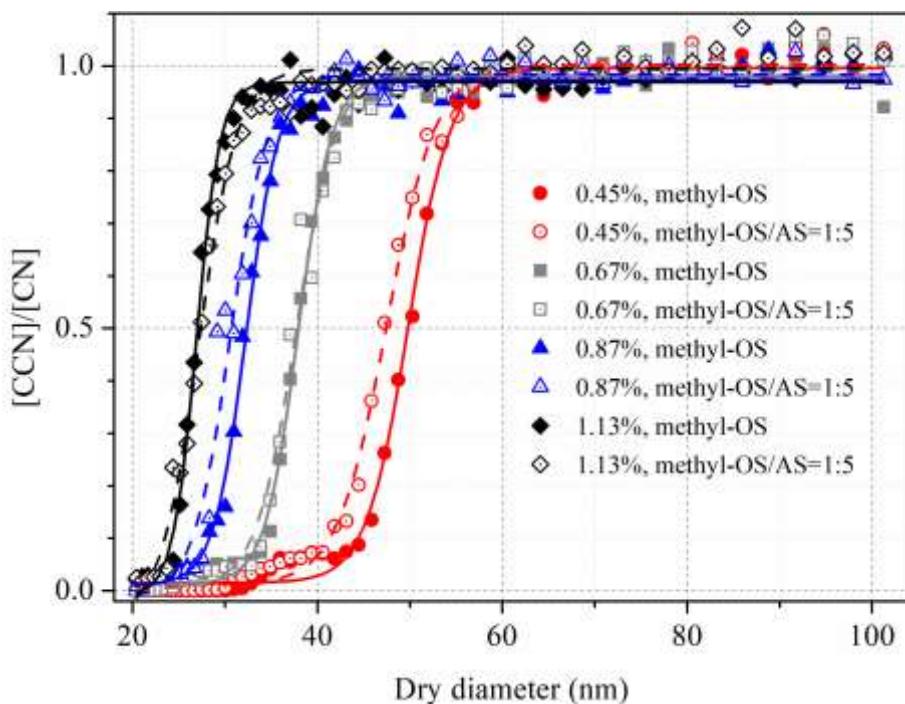
130 As shown in Figure 2, the mass of OS samples at different RH was determined by the VSA
131 using the following method. RH was set to $<1\%$ to dry the sample; after the sample mass was
132 stabilized, RH was increased to 90% stepwise with an interval of 10% per step; at the end, RH was
133 changed back to $<1\%$ to dry the sample again. The sample was considered to reach the equilibrium
134 at a given RH when the mass change was measured to be $<0.1\%$ within 30 min. All the experiments

135 were conducted at least three times in our work. The sample mass at a given RH (m) was
136 normalized to that at $<1\%$ RH (m_0) to determine the mass growth factor, defined as m/m_0 .

137 **2.3 H-TDMA experiments**

138 A custom-built hygroscopicity tandem differential mobility analyzer (H-TDMA) was used to
139 measure the mobility diameters of OS aerosol particles at different RH (5-90%) at 24 ± 1 °C. The
140 instrument was detailed elsewhere (Jing et al., 2016; Peng et al., 2016), and therefore only a brief
141 introduction is given here. A commercial atomizer (MSP 1500) was used to produced polydisperse
142 aerosol particles from dilute OS solutions in water (around 0.1 wt %), and the generated aerosol
143 was dried to $<5\%$ RH by passing the aerosol flow through a Nafion dryer (MD-110-12S) and then
144 a silica gel diffusion dryer. The dry aerosol flow was subsequently split to two flows. One aerosol
145 flow was sent to the vent, and the other aerosol flow (0.3 L min^{-1}) was passed through the first
146 differential mobility analyzer (DMA) to produce quasi-monodisperse aerosol particles with a
147 mobility diameter of 100 nm. After that, the aerosol flow was humidified to a desired RH by
148 flowing through a humidification section, which was made of two Nafion tubes (MD-700-12F-1)
149 connected in series, and the residence time in the humidification section was ~ 27 s. Finally, the
150 size distribution of humidified aerosol was measured by a scanning mobility particle sizer (SMPS),
151 which consisted of the second DMA coupled to a condensation particle counter (CPC 3776, TSI).
152 RH of the aerosol flow and the sheath flow in the second DMA were maintained to be equal and
153 monitored using a commercial dew-point hygrometer (Michell, UK) with a stated uncertainty of
154 $\pm 0.08\%$ RH. In addition, the flow rate ratio of the sheath flow to the aerosol flow was set to 10:1
155 for both DMAs.

156 Hygroscopic growth factors (GF), defined as d/d_0 (d is the mobility diameter at a given RH
157 and d_0 is the mobility diameter at RH $<5\%$) were reported. All the experiments were conducted in

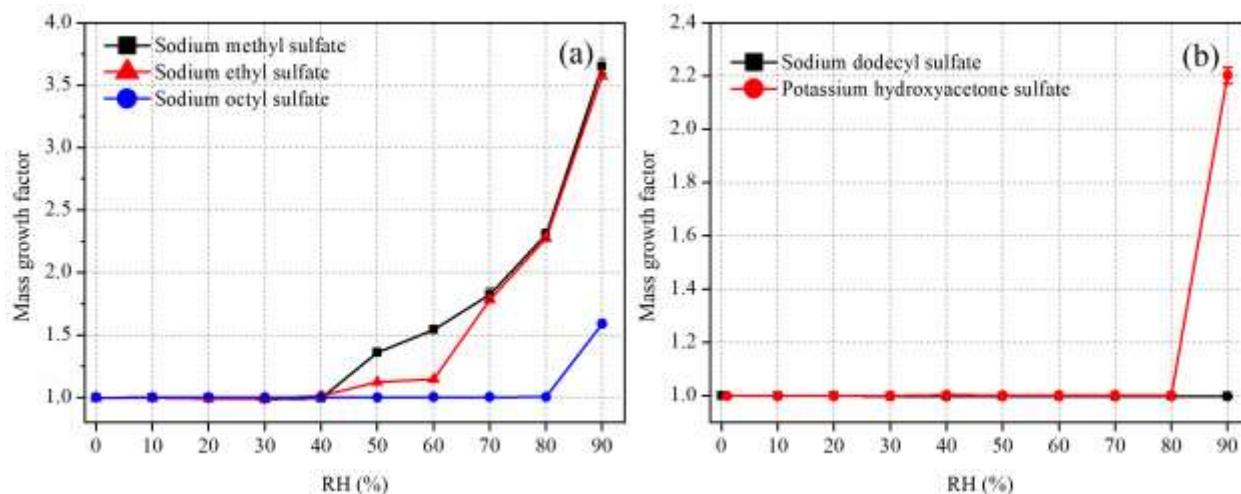

158 triplicate. During our experiments, ammonium sulfate was used to calibrate the H-TDMA system
159 routinely, and the absolute differences between the measured and theoretical GF at 90% RH were
160 found to be within 0.04, confirming the robustness of our measurements.

161 **2.4 CCN experiments**

162 The CCN activity of aerosol particles was determined using a commercial cloud condensation
163 nuclei counter (CCNc, CCN-100, Droplet Measurement Technologies, Longmont, CO, USA)
164 described in previous studies (Roberts and Nenes, 2005; Lance et al., 2006; Moore et al., 2010).
165 Polydisperse aerosol particles were generated using a commercial atomizer (TSI 3076), in which
166 concentrations of solutions used were around 0.1 g/L. The wet aerosol flow generated was passed
167 through two silica gel diffusion dryers to reduce its RH to <5% RH. After that, a dry aerosol flow
168 ($\sim 800 \text{ mL min}^{-1}$) was passed through a DMA (TSI 3081) in size scanning mode to produce quasi-
169 monodisperse aerosols, and subsequently the aerosol flow was split to two streams: one stream
170 ($\sim 300 \text{ mL/min}$) was sampled into a commercial CPC (TSI 3775) to measure total number
171 concentrations of aerosol particles ([CN]), and the second flow ($\sim 500 \text{ mL/min}$) was sampled into
172 the cloud condensation nuclei counter (CCNc, CCN-100) to measure number concentrations of
173 CCN ([CCN]).

174 Activation fractions ($[\text{CCN}]/[\text{CN}]$) of size-resolved dry particles were determined using the
175 Scanning Mobility CCN Analysis (SMCA) method described elsewhere (Moore et al., 2010). In
176 brief, the DMA was operated in the scanning voltage mode, and thus one activation curve
177 (activation fractions as a function of dry diameter) could be obtained in 60-120s. The multiple
178 charge effect was also corrected in this method, and in our work the supersaturation (SS) was set
179 in the range of 0.45-1.13% with the stated uncertainty to be $\pm 0.01\%$. As shown in Figure 3,
180 activation fractions of sodium methyl sulfate (methyl-OS) and its internally mixed aerosol with

181 ammonium sulfate were measured at four different SS with dry mobility diameters between 20
182 and 100 nm. Activation fractions were fitted versus dry diameters, and the critical particle diameter
183 (d_{50}) was determined as the dry diameter at which the activation fraction is equal to 0.5. During
184 our measurements, ammonium sulfate was used to calibrate supersaturations, and the Pitzer-ion
185 interaction model was applied in the calibration procedure to account for incomplete dissociation
186 of ammonium sulfate at droplet activation (Pitzer and Mayorga, 1973; Clegg and Brimblecombe,
187 1988). The corrected supersaturations were reported in our work.



188
189 **Figure 3.** Activation fractions of methyl-OS and its internally mixed aerosol particles with
190 ammonium sulfate (AS) as a function of dry particle diameter at four supersaturations.
191

192 **3 Results and discussion**

193 **3.1 Mass growth of organosulfates**

194 Figure 4 displays mass growth factors of sodium methyl sulfate (methyl-OS), sodium ethyl
195 sulfate (ethyl-OS), sodium octyl sulfate (octyl-OS), sodium dodecyl sulfate (dodecyl-OS) and
196 potassium hydroxyacetone sulfate, and the data are also listed in Table 1. Figure 4a suggests that
197 methyl-OS was deliquesced when RH was increased from 40% to 50%, and after that mass growth
198 factors increased further with RH. The mass of ethyl-OS was moderately increased (by ~11%)
199 when RH was increased from 40% to 50%, and further increase in RH to 60% led to additional
200 while small increase in sample mass (by ~2%); the increase in sample mass at 50% and 60% RH
201 may be because ethyl-OS were partially deliquesced at this stage. When RH was increased to 70%,
202 ethyl-OS was completely deliquesced, and further increase in RH (to 80% and 90%) resulted in
203 further increase in sample mass. Octyl-OS was only deliquesced when RH was increased from 80%
204 to 90%, whereas no significant water uptake was observed for dodecyl-OS even at 90% RH. The
205 mass growth factors at 90% RH were determined to be 3.65 ± 0.06 , 3.58 ± 0.02 and 1.59 ± 0.01 for
206 methyl-OS, ethyl-OS, and octyl-OS, respectively.

207

208 **Figure 4.** Mass growth factors of (a) methyl-, ethyl- and octyl-OS and (b) dodecyl-OS and
209 potassium hydroxyacetone sulfate as a function of RH at 25 °C. Please note that error bars are
210 included, but they are too small to be clearly visible.

211

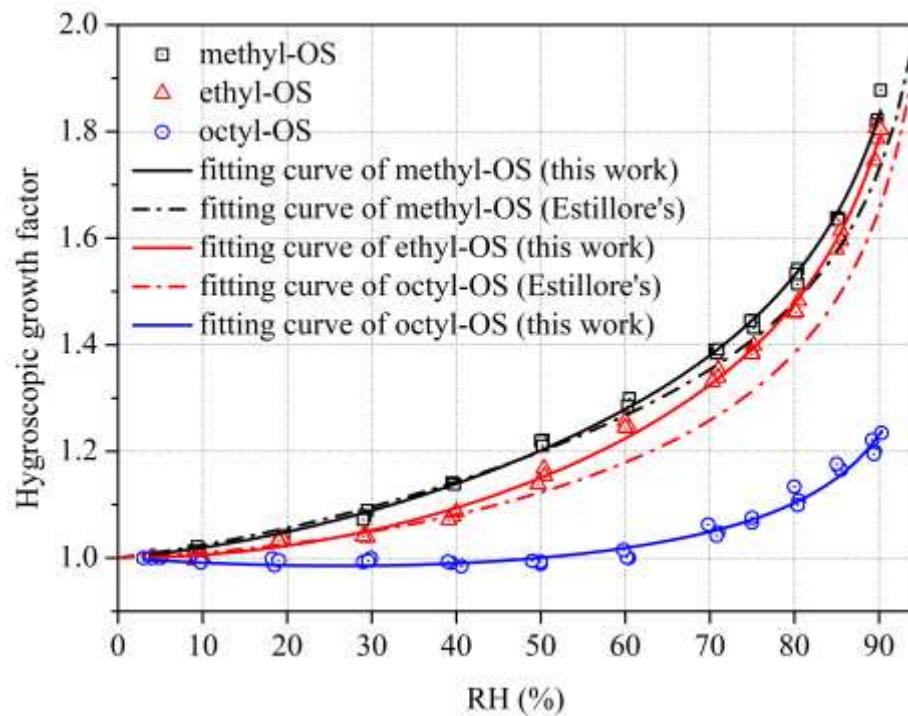
212 Mass growth factors of seven potassium organosulfates were also investigated, including
213 potassium hydroxyacetone sulfate, potassium 3-hydroxy phenyl sulfate, potassium benzyl sulfate,
214 potassium 2-methyl benzyl sulfate, potassium 3-methyl benzyl sulfate, potassium 2,4-dimethyl
215 benzyl sulfate and potassium 3,5-dimethyl benzyl sulfate. All the compounds did not show
216 **measurable** water uptake at 80% RH. When RH was increased to 90%, as shown in Figure 4b, a
217 significant increase in mass was observed for potassium hydroxyacetone sulfate particles,
218 suggesting **the** occurrence of deliquescence, and the mass growth factor was determined to be
219 **2.20±0.03** at 90% RH. No significant water uptake was observed for the other six potassium
220 organosulfates even when RH was increased to 90%. We should mention that occasionally small
221 increase in sample mass (up to 10-20%) was observed for a few samples when RH was increased
222 from 80% to 90%, and such small increase in sample mass may be caused by water uptake of
223 impurities (such as potassium hydroxide) contained in these synthesized compounds.

224

225 **Table 1.** Mass growth factors (m/m_0) and water-to-solute ratios (WSRs) as a function of RH (10-
226 90 %) at 25 °C for sodium methyl sulfate, sodium ethyl sulfate, sodium octyl sulfate and potassium
227 hydroxyacetone sulfate. All the errors given in this work are standard deviations.

RH (%)	sodium methyl sulfate		sodium ethyl sulfate	
	m/m_0	WSR	m/m_0	WSR
10	1.00±0.01	-	1.00±0.01	-
20	1.00±0.01	-	0.99±0.01	-

30	0.99±0.01	-	0.99±0.01	-
40	1.00±0.02	-	1.02±0.03	-
50	1.36±0.02	2.68±0.04	1.13±0.01	-
60	1.55±0.03	4.06±0.09	1.15±0.01	-
70	1.83±0.05	6.16±0.17	1.79±0.02	6.46±0.07
80	2.31±0.04	9.73±0.18	2.27±0.02	10.48±0.11
90	3.65±0.06	19.75±0.34	3.58±0.02	21.19±0.14
RH (%)				
sodium octyl sulfate		potassium hydroxyacetone sulfate		
<i>m/m₀</i>		WSR	<i>m/m₀</i>	WSR
10	1.00±0.01	-	1.00±0.01	-
20	1.00±0.01	-	1.00±0.01	-
30	1.00±0.01	-	1.00±0.01	-
40	1.00±0.01	-	1.00±0.01	-
50	1.00±0.01	-	1.00±0.01	-
60	1.00±0.01	-	1.00±0.01	-
70	1.00±0.01	-	1.00±0.01	-
80	1.01±0.01	-	1.00±0.01	-
90	1.59±0.01	7.63±0.02	2.20±0.03	12.84±0.18


228

229 For deliquesced samples, measured mass changes can be converted to water to solute ratios
 230 (WSRs), defined as the molar ratio of H₂O to sulfur. The WSRs data are summarized in Table 1
 231 for sodium methyl sulfate, sodium ethyl sulfate, sodium octyl sulfate and potassium
 232 hydroxyacetone sulfate. As shown in Table 1, WSRs at 90% RH were determined to be 19.75±0.34,
 233 21.19±0.14, 7.63±0.02 and 12.84±0.18 for sodium methyl sulfate, sodium ethyl sulfate, sodium
 234 octyl sulfate and potassium hydroxyacetone sulfate at 25 °C.

235 **3.2 Hygroscopic growth of aerosols**

236 **3.2.1 Organosulfates**

237 H-TDMA was employed to measure hygroscopic growth factors of 100 nm methyl-, ethyl-
238 and octyl-OS aerosols as a function of RH (up to 90%), and the results are shown in Figure 5 and
239 Table 2. In addition, no significant hygroscopic growth was observed for dodecyl-OS for RH up
240 to 90%. We did not investigate hygroscopic growth of other OS aerosols due to the very small
241 quantity of these synthesized compounds.

242

243 **Figure 5.** Hygroscopic growth factors of (a) methyl- and octyl-OS and (b) ethyl-OS aerosols as a
244 function of RH. Solid curves represent fitted curves in our work using Eq. (1). For comparison,
245 the fitted curves reported by Estillore et al. (2016) are presented by dashed curves.

246

247 As shown in Figure 5, methyl-, ethyl- and octyl-OS aerosols all exhibited continuous
248 hygroscopic growth without obvious phase transitions. To our knowledge, only one previous study

249 (Estillore et al., 2016) investigated hygroscopic growth of methyl- and ethyl-OS aerosols using a
 250 H-TDMA, and continuous hygroscopic growth was also observed. The continuous growth
 251 behavior can be attributed to the amorphous state of aerosol particles, which would take up water
 252 at very low RH. For methyl-OS aerosol, GFs were determined in our work to be 1.53 ± 0.01 ,
 253 1.63 ± 0.01 and 1.83 ± 0.03 at 80%, 85% and 90% RH; for comparison, its GF was measured to be
 254 1.50 at 85% RH by Estillore et al. (2016), only ~8% smaller than our result. In our work, GFs were
 255 determined to be 1.47 ± 0.01 , 1.60 ± 0.02 and 1.79 ± 0.02 at 80%, 85% and 90% RH for ethyl-OS
 256 aerosol; for comparison, it was measured to be 1.45 at 85% RH in the previous study (Estillore et
 257 al., 2016), only ~9% smaller than our result. **As DMA sizing typically has a relative uncertainty of**
 258 **5-7% (Wiedensohler et al., 2012)**, our measured GFs agree very well with those reported by
 259 Estillore et al. (2016) for methyl- and ethyl-OS, while the highest RH we reached was 90%,
 260 compared to 85% by Estillore et al. (2016). With respect to octyl-OS aerosol, GF were determined
 261 to be 1.11 ± 0.02 , 1.17 ± 0.01 and 1.21 ± 0.02 at 80%, 85% and 90% RH in our work; to our knowledge,
 262 hygroscopic growth of octyl-OS aerosol has not been explored previously. Compared to
 263 ammonium sulfate (**1.75** at 90% RH), GFs at 90% RHs were found to be slightly larger for methyl-
 264 and ethyl-OS, but significantly smaller for octyl-OS.

265

266 **Table 2.** Hygroscopic growth factors (GFs) of methyl-, ethyl- and octyl-OS aerosols at different
 267 RH. All the errors given in this work are standard deviations.

RH (%)	sodium methyl sulfate	sodium ethyl sulfate	sodium octyl sulfate
5	1.00 ± 0.01	1.00 ± 0.01	1.00 ± 0.01
10	1.01 ± 0.01	1.00 ± 0.01	1.00 ± 0.01
20	1.04 ± 0.01	1.03 ± 0.01	0.99 ± 0.01
30	1.08 ± 0.01	1.04 ± 0.01	1.00 ± 0.01

40	1.14 \pm 0.01	1.08 \pm 0.01	0.99 \pm 0.01
50	1.22 \pm 0.01	1.15 \pm 0.01	0.99 \pm 0.01
60	1.29 \pm 0.01	1.25 \pm 0.01	1.01 \pm 0.01
70	1.39 \pm 0.01	1.34 \pm 0.01	1.05 \pm 0.01
75	1.44 \pm 0.01	1.39 \pm 0.01	1.07 \pm 0.01
80	1.53 \pm 0.01	1.47 \pm 0.01	1.11 \pm 0.02
85	1.63 \pm 0.01	1.60 \pm 0.02	1.17 \pm 0.01
90	1.83 \pm 0.03	1.79 \pm 0.02	1.21 \pm 0.02

268

269 When aerosol particles take up water continuously, the RH-dependent GFs can usually be
 270 fitted using Eq. (1) (Kreidenweis et al., 2005):

271
$$GF = [1 + (a + b \cdot \frac{RH}{100} + c \cdot (\frac{RH}{100})^2) \cdot \frac{RH}{100-RH}]^{1/3} \quad (1)$$

272 where a , b and c are coefficients obtained from fitting using Eq. (1). As shown in Figure 5,
 273 hygroscopic growth factors of methyl-, ethyl- and octyl-OS aerosols can be fitted by Eq. (1), and
 274 the obtained coefficients (a , b and c) are summarized in Table 3.

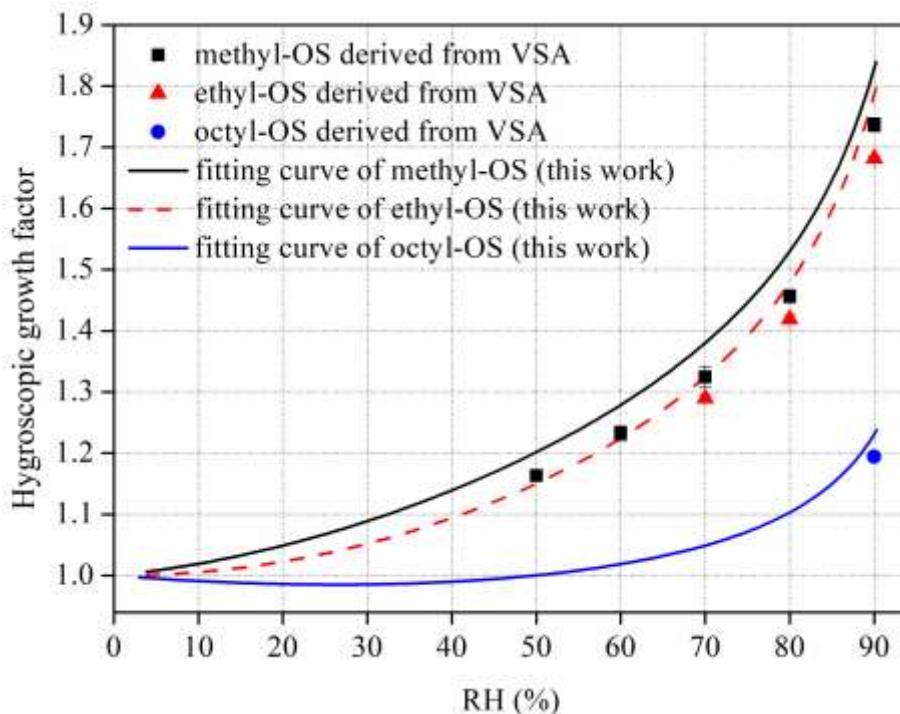
275

276 **Table 3.** The three coefficients (a , b and c) obtained by using Eq. (1) to fit RH-dependent GFs for
 277 sodium methyl sulfate, sodium ethyl sulfate and sodium octyl sulfate aerosols.

organosulfates	a	b	c
sodium methyl sulfate	0.42182	1.20336	-1.15508
sodium ethyl sulfate	0.00174	1.61805	-1.15502
sodium octyl sulfate	-0.31868	0.86233	-0.44623

278

279 **3.2.2 Comparison between VSA and H-TDMA measurements**

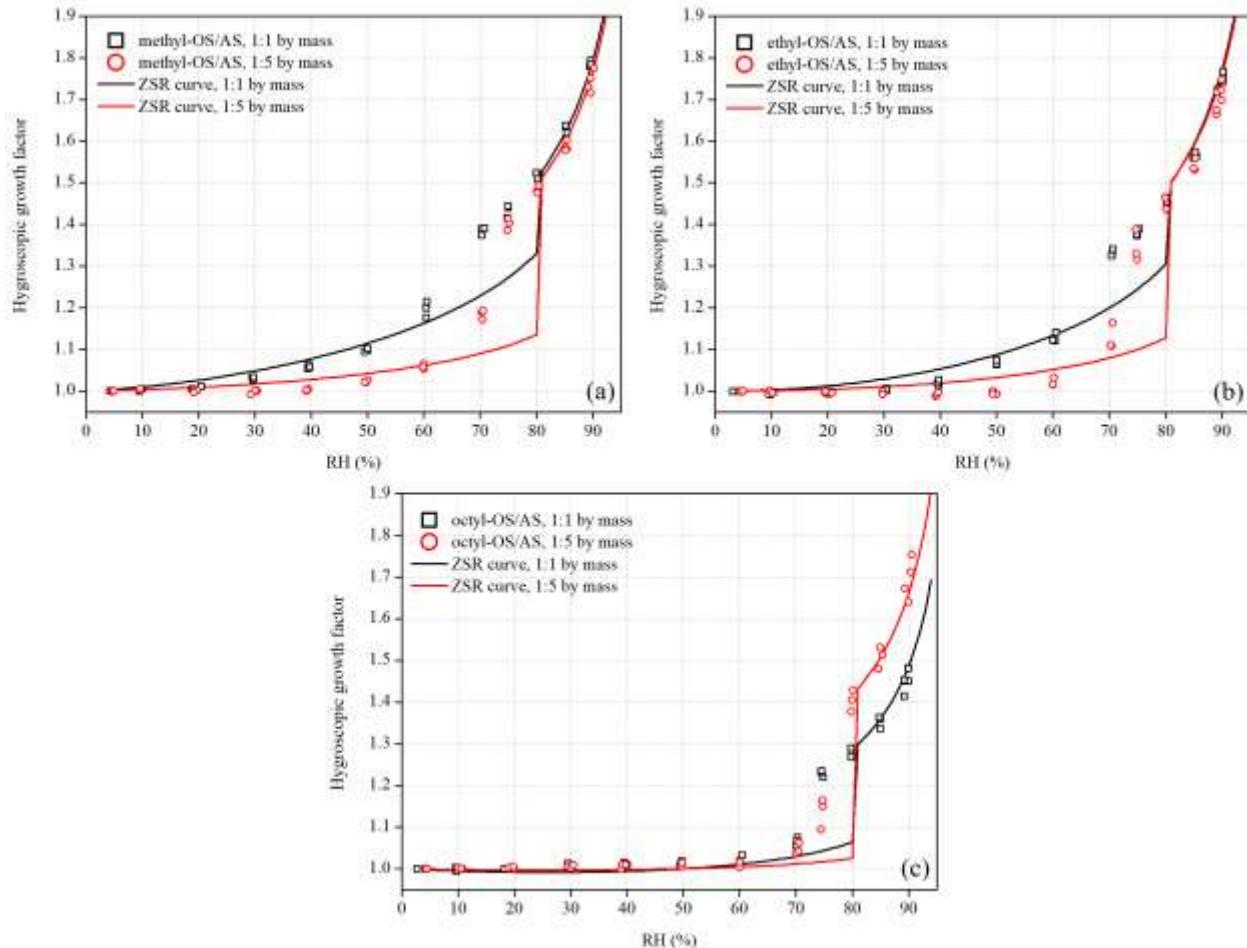

280 Figure 4 shows that obvious deliquescence transitions were observed for methyl-, ethyl-, and
281 octyl-OS in the VSA experiments, because samples used in VSA experiments may be crystalline
282 salts; in contrast, as revealed by Figure 5, continuous hygroscopic growth without obvious phase
283 transitions was observed for methyl-, ethyl- and octyl-OS aerosol particles in H-TDMA
284 measurements, suggesting that these aerosol particles which were produced by drying aqueous
285 droplets to <5% RH may exist in amorphous state. Estillore et al. (2016) employed a H-TDMA to
286 investigate hygroscopic properties of several OS aerosols, and similarly they found that those
287 aerosols, including methyl-OS, ethyl-OS and potassium hydroxyacetone sulfate which were also
288 examined in our work, displayed continuous hygroscopic growth.

289 For completely deliquesced particles, if it is assumed that the particle is spherical and that the
290 particle volume at a given RH is equal to the sum of the dry particle volume and the volume of
291 particulate water, particle mass change, measured using the VSA, can then be converted to
292 hygroscopic GF, using Eq. (2):

$$293 GF = \sqrt[3]{1 + \left(\frac{m}{m_0} - 1\right) \cdot \frac{\rho_0}{\rho_w}} \quad (2)$$

294 where ρ_0 and ρ_w are the density of the dry sample and water, respectively. The density of methyl-,
295 ethyl- and octyl-OS particles were reported to be 1.60, 1.46 and 1.19 g cm⁻³ with an uncertainty of
296 20-30% (Kwong et al., 2018; ChemistryDashboard, 2021). Figure 6 compares VSA-derived GFs
297 and those measured using H-TDMA for methyl-, ethyl- and octyl-OS, and it can be concluded that
298 for RH at which samples used in the VSA experiments were deliquesced, GFs derived from mass
299 change measured using VSA agree relatively well with those directly measured using H-TDMA.
300 For example, at 90% RH GFs were measured by H-TDMA to be 1.83±0.03, 1.79±0.02 and
301 1.21±0.02 for methyl-, ethyl- and octyl-OS, while at the same RH their GFs derived from VSA

302 measurements were found to be 1.74 ± 0.01 , 1.68 ± 0.01 and 1.19 ± 0.01 , only 6% (or less) smaller
303 than those measured using H-TDMA. The small but systematical differences between VSA and
304 H-TDMA results, as evident from Figure 6, could stem from volume additivity assumption used
305 to convert mass growth to diameter growth, uncertainties in OS densities, and DMA sizing errors.



306
307 **Figure 6.** Comparison between hygroscopic GFs of methyl-, ethyl- and octyl-OS derived from
308 VSA experiments to those measured using H-TDMA. Please note that H-TDMA results are
309 presented as the three-parameter curves obtained. Error bars are included, but they are too small
310 to be clearly visible.

311
312 **3.2.3 Internally mixed aerosols**
313 We also investigated hygroscopic properties of methyl-, ethyl- and octyl-OS aerosols
314 internally mixed with ammonium sulfate (AS), and the results are summarized in Table 4. Figure
315 7a displays GFs of 100 nm methyl-OS/AS mixed aerosols with mass ratios of 1:1 and 1:5. The 1:1

316 mixed aerosol particle showed a deliquescence transition at 70% RH, while the 1:5 mixed aerosols
317 showed a deliquescence transition at 75% RH, which was lower than the deliquescence RH (DRH,
318 80%) of AS. Here the DRH is defined as the RH at which the mixed aerosols are completely
319 deliquesced (Choi and Chan, 2002). Figure 7a suggests that before full deliquescence, significant
320 hygroscopic growth was also observed, i.e. pre-deliqescence of mixed particles occurred when
321 RH was lower than their DRH. Pre-deliqescence was widely reported in previous studies which
322 investigated hygroscopic properties of inorganic/organic mixed aerosols (Choi and Chan, 2002;
323 Prenni, 2003; Wise et al., 2003; Brooks, 2004; Marcolli and Krieger, 2006; Wu et al., 2011; Lei et
324 al., 2014; Jing et al., 2016; Estillore et al., 2017). For example, Choi and Chan. (2002) investigated
325 hygroscopic behaviors of internal mixed particles which consisted of water-soluble organic
326 compounds and AS, and found that the internal mixing with organics (such as malonic and citric
327 acids) could reduce the DRH of AS, due to the ability of organics to absorb water at low RH.

328 Internal mixing with ethyl- and octyl-OS could also reduce the DRH of AS. As shown in
329 Figure 7b, ethyl-OS/AS mixed aerosols were deliquesced at 70% RH when the mass ratio of ethyl-
330 OS to AS was 1:1 and at 80% RH when the mass ratio was 1:5. In addition, Figure 7c suggested
331 that the deliquescence of octyl-OS/AS aerosols took place at 75% RH for the 1:1 mixture and at
332 80% for 1:5 mixture.

333

334 **Figure 7.** Hygroscopic growth factors of (a) methyl-OS/AS, (b) ethyl-OS/AS, and (c) octyl-OS/AS
 335 aerosols as a function of RH. The mass ratios of methyl-, ethyl-, and octyl-OS to AS were 1:1 and
 336 1:5, respectively. Solid curves represent hygroscopic growth factors of mixed aerosols predicted
 337 using the ZSR method.

338

339 **Table 4.** Hygroscopic GF of methyl-, ethyl, and octyl-OS internally mixed with AS (their mass
 340 ratios are 1:1 and 1:5) at different RH. All the errors given in this work are standard deviations.

RH (%)	methyl-OS/AS		ethyl-OS/AS		octyl-OS/AS	
	1:1	1:5	1:1	1:5	1:1	1:5
5	1.00±0.01	1.00±0.01	1.00±0.01	1.00±0.01	1.00±0.01	1.00±0.01
10	1.00±0.01	1.00±0.01	1.00±0.01	1.00±0.01	1.00±0.01	1.00±0.01

20	1.01 \pm 0.01	1.00 \pm 0.01				
30	1.03 \pm 0.01	1.00 \pm 0.01	1.00 \pm 0.01	1.00 \pm 0.01	1.01 \pm 0.01	1.01 \pm 0.01
40	1.06 \pm 0.01	1.00 \pm 0.01	1.02 \pm 0.01	0.99 \pm 0.01	1.01 \pm 0.01	1.01 \pm 0.01
50	1.10 \pm 0.01	1.02 \pm 0.01	1.07 \pm 0.01	0.99 \pm 0.01	1.01 \pm 0.01	1.01 \pm 0.01
60	1.20 \pm 0.02	1.06 \pm 0.01	1.13 \pm 0.01	1.02 \pm 0.01	1.02 \pm 0.01	1.01 \pm 0.01
70	1.38 \pm 0.01	1.19 \pm 0.01	1.33 \pm 0.01	1.13 \pm 0.03	1.07 \pm 0.01	1.05 \pm 0.01
75	1.43 \pm 0.01	1.40 \pm 0.01	1.38 \pm 0.01	1.34 \pm 0.04	1.23 \pm 0.01	1.14 \pm 0.03
80	1.52 \pm 0.01	1.48 \pm 0.01	1.46 \pm 0.01	1.45 \pm 0.02	1.28 \pm 0.01	1.40 \pm 0.02
85	1.63 \pm 0.01	1.59 \pm 0.01	1.56 \pm 0.01	1.54 \pm 0.02	1.35 \pm 0.02	1.51 \pm 0.02
90	1.79 \pm 0.01	1.74 \pm 0.02	1.74 \pm 0.02	1.72 \pm 0.02	1.47 \pm 0.02	1.69 \pm 0.04

341

342 The Zdanovskii-Stokes-Robinson (ZSR) method (Stokes and Robinson, 1966) has been
 343 widely used to predict hygroscopic growth of internally mixed aerosol particles, assuming that the
 344 interaction among individual species are negligible and that individual species in the mixed
 345 particles take up water independently. According to the ZSR method, GF of a mixed particle, GF_{mix},
 346 can be calculated using Eq. (3) (Malm and Kreidenweis, 1997):

$$347 \quad GF_{\text{mix}} = \sqrt[3]{\sum(\varepsilon_i \cdot GF_i^3)} \quad (3)$$

348 where GF_i is the GF of *i*th species the dry mixed particle contains. The volume fraction of the *i*th
 349 species in the dry mixed particle, ε_i , can be calculated using Eq. (4):

$$350 \quad \varepsilon_i = \frac{m_i / \rho_i}{\sum(m_i / \rho_i)} \quad (4)$$

351 where m_i and ρ_i are the mass fraction and density of the *i*th species. GFs of pure OS, measured in
 352 our work using H-TDMA and presented in Section 3.2.1, and GFs of AS, calculated using the E-
 353 AIM model (Clegg et al., 1998; Wexler and Clegg, 2002), were used as input to predict GFs of
 354 methyl-, ethyl- and octyl-OS internally mixed with AS. Comparisons between measured and
 355 predicted GFs are displayed in Figure 7 for OS/AS mixed aerosols.

356 As shown in Figure 7a, GFs of methyl-OS/AS mixed aerosols (both the 1:1 and 1:5 mixtures)
 357 could be well predicted using the ZSR method when RH was <60% or >80%, while the ZSR
 358 method underestimated their GFs at 70% and 75% RH. Such underestimation at 70% and 75% RH
 359 is likely to due to that inorganic compounds (AS, in our work) may dissolve partially in the
 360 organics/water solution (which can be formed at much lower RH due to continuous water uptake
 361 of organics) before the mixed particle is completely deliquesced (Svenningsson et al., 2006;
 362 Zardini et al., 2008; Wu et al., 2011); in contrast, the ZSR method assumes that individual species
 363 take up water independently. As shown in Figure 7, the ZSR method also underestimated GFs at
 364 70 and 75% RH for ethyl-OS/AS and octyl-OS/AS mixed aerosols, though good agreement
 365 between measurement and prediction was found at other RH. **For example, the ratios of partially**
 366 **dissolved AS to total AS at 70% RH were estimated to be 0.95, 0.85 and 0.49 for methyl-OS/AS,**
 367 **ethyl-OS/AS, and octyl-OS/AS mixtures with a mass ratio of 1:1.**

368 **3.3 Cloud condensation nucleation activities**

369 Figures 3, S2 and S3 show CCN activation curves obtained at four supersaturations for
 370 methyl-, ethyl- and octyl-OS aerosols and their internal mixtures with ammonium sulfate. Each
 371 activation curve was fitted using a Boltzmann sigmoid function to derive the corresponding critical
 372 particle diameter (d_{50}), which was then used to calculate κ_{ccn} using Eqs. (5a-5b) (Petters and
 373 Kreidenweis, 2007):

$$374 \quad \kappa_{\text{ccn}} = \frac{4A^3}{27d_{50}^3 \ln^2 S_c} \quad (5a)$$

$$375 \quad A = \frac{4\sigma_{s/a} M_w}{RT \rho_w} \quad (5b)$$

376 where S_c is the critical saturation ratio (1+SS) of water; d_{50} is the critical particle diameter; A is a
 377 constant which describes the Kelvin effect on a curved surface of a droplet, and depends on the
 378 surface tension ($\sigma_{s/a}$), molecular weight (M_w), density (ρ_w) of water, temperature (T) and the

379 universal gas constant (R). Table 5 summarizes critical diameters at different supersaturations for
 380 aerosol particles examined in this work and their κ_{ccn} values.

381

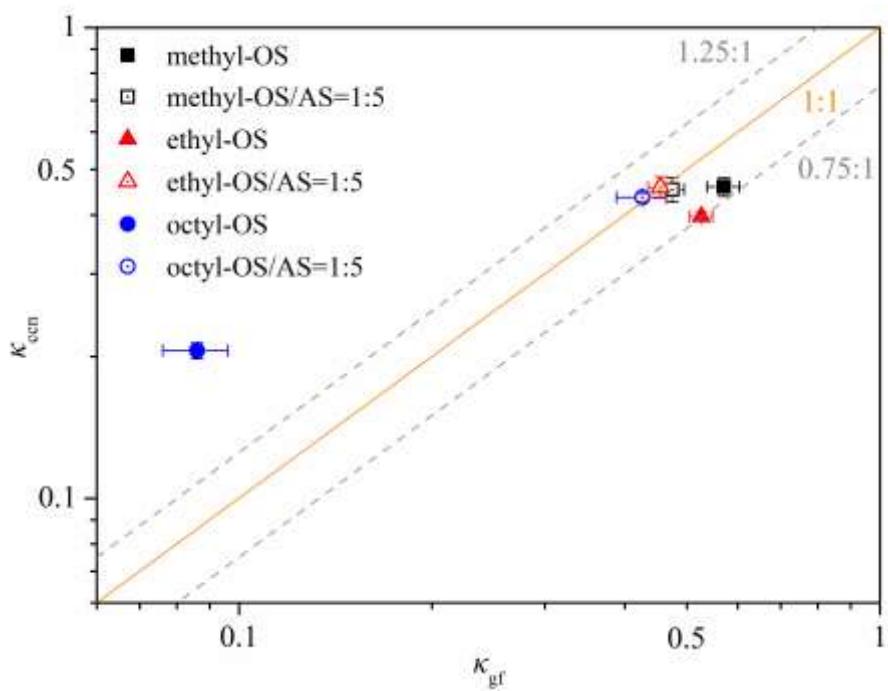
382 **Table 5.** Single hygroscopicity parameters derived from hygroscopic growth (κ_{gf}) and CCN
 383 activity measurements (κ_{ccn}) for methyl-, ethyl- and octyl-OS and their internal mixtures with
 384 ammonium sulfate (AS). All errors given were standard deviations.

aerosol	mass ratio	SS (%)	d_{50} (nm)	κ_{ccn}	average κ_{ccn}	κ_{gf}
methyl-OS	-	0.45	52.9 \pm 0.9	0.432-0.477	0.459 \pm 0.021	0.537-0.604
	-	0.67	41.1 \pm 0.8	0.416-0.468		
	-	0.87	33.3 \pm 0.4	0.471-0.507		
	-	1.13	28.8 \pm 0.5	0.431-0.477		
methyl-OS/AS	1:5	0.45	51.9 \pm 0.5	0.467-0.492	0.453 \pm 0.027	0.454-0.495
	1:5	0.67	41.6 \pm 0.4	0.411-0.436		
	1:5	0.87	33.7 \pm 0.5	0.453-0.490		
	1:5	1.13	29.2 \pm 0.6	0.412-0.464		
ethyl-OS	-	0.45	55.5 \pm 0.8	0.375-0.410	0.397 \pm 0.010	0.505-0.548
	-	0.67	42.8 \pm 0.6	0.376-0.406		
	-	0.87	35.3 \pm 0.5	0.395-0.428		
	-	1.13	30.2 \pm 0.3	0.382-0.408		
ethyl-OS/AS	1:5	0.45	52.3 \pm 1.2	0.437-0.504	0.458 \pm 0.024	0.435-0.474
	1:5	0.67	41.0 \pm 0.5	0.426-0.459		
	1:5	0.87	33.4 \pm 0.6	0.463-0.512		
	1:5	1.13	29.2 \pm 0.6	0.409-0.462		
octyl-OS	-	0.45	70.0 \pm 1.2	0.186-0.207	0.206 \pm 0.008	0.076-0.096
	-	0.67	53.2 \pm 0.6	0.196-0.211		
	-	0.87	44.1 \pm 0.7	0.202-0.221		
	-	1.13	37.1 \pm 0.8	0.200-0.227		
octyl-OS/AS	1:5	0.45	53.7 \pm 0.9	0.413-0.456	0.436 \pm 0.009	0.388-0.464
	1:5	0.67	41.1 \pm 0.5	0.426-0.458		
	1:5	0.87	34.4 \pm 0.5	0.427-0.462		

385	1:5	1.13	29.5±0.2	0.413-0.434
-----	-----	------	----------	-------------

386 As shown in Table 5, κ_{ccn} values were determined to be 0.459 ± 0.021 , 0.397 ± 0.010 and
 387 0.206 ± 0.008 for methyl-, ethyl- and octyl-OS, decreasing with alkyl chain length, and this suggests
 388 that the addition of hydrophobic hydrocarbon functional groups to OS reduced their hygroscopicity.
 389 **Decrease in hygroscopicity of OS compounds with the increase in the number of carbon atoms**
 390 **was also observed under subsaturated conditions (Section 3.2).** In addition, we investigated CCN
 391 activities of alkyl-OS/AS mixed aerosols with a mass ratio of 1:5, and κ_{ccn} values were determined
 392 to be 0.453 ± 0.027 , 0.458 ± 0.024 and 0.436 ± 0.009 for methyl-OS/AS, ethyl-OS/AS and octyl-
 393 OS/AS.

394 **3.3.1 Comparison between H-TDMA and CCN activities measurements**


395 It is suggested that the single hygroscopicity parameter, κ , could describe aerosol-water
 396 interactions under both sub- and supersaturated conditions (Petters and Kreidenweis, 2007). The κ
 397 values derived from CCN activity measurements, κ_{ccn} , have been illustrated above; the κ values
 398 derived from H-TDMA measurements, κ_{gf} , can be calculated using Eq. (6) (Petters and
 399 Kreidenweis, 2007; Tang et al., 2016):

400
$$\kappa_{\text{gf}} = (\text{GF}^3 - 1) \frac{1-\text{RH}}{\text{RH}} \quad (6)$$

401 In this work GF measured at 90% RH were used to calculate κ_{gf} values, which are also listed in
 402 Table 5. **Eq. (6) does not take into account the Kelvin effect as the effect is small for 100 nm**
 403 **particles (Tang et al., 2016).**

404 Figure 8 compares κ_{ccn} and κ_{gf} values for the six types of aerosol particles examined. **For pure**
 405 **OS, κ_{ccn} of methyl-OS (0.459 ± 0.021) and ethyl-OS (0.397 ± 0.010) were smaller than their κ_{gf}**
 406 **values ($0.537\text{-}0.604$ and $0.505\text{-}0.548$), but** the relative differences do not exceed 25%. Such a

407 difference (<25%) may not be significant if all the uncertainties associated with deriving κ from
 408 measured hygroscopic growth and CCN activities (Petters and Kreidenweis, 2007). Octyl-OS
 409 appears to be an exception, and the average κ_{ccn} (0.206) was \sim 2.4 times larger than the average κ_{gf}
 410 (0.086). In addition, no significant difference was observed between κ_{ccn} and κ_{gf} for all the alkyl-
 411 OS/AS mixed aerosols.

412
 413 **Figure 8.** Comparison of κ values derived from hygroscopic growth (κ_{gf}) with these derived from
 414 CCN activities (κ_{ccn}) for methyl-, ethyl- and octyl-OS aerosols as well as their internal mixtures
 415 with ammonium sulfate (the mass ratio was 1:5).

416
 417 Significant differences between κ_{gf} and κ_{ccn} were reported in previous studies (Petters et al.,
 418 2009; Wex et al., 2009; Hansen et al., 2015), attributed to several factors discussed below. Petters
 419 and Kreidenweis. (2008) demonstrated that cloud droplet activation was highly sensitive to the
 420 solubility for sparingly soluble compounds in the range of 5×10^{-4} - 2×10^{-1} , expressed as volume of

421 solute per unit volume of water (Petters and Kreidenweis, 2008). Compared to the highly soluble
422 methyl- and ethyl-OS (their solubilities are 0.127-0.219 and 0.075-0.151), the solubility of octyl-
423 OS (8.43×10^{-4} - 4.26×10^{-2}) (Chemistry Dashboard, 2021) is rather limited, and incomplete
424 dissolution at subsaturated condition in H-TDMA measurements may lead to underestimation of
425 κ_{gf} values for octyl-OS; as a result, the solubility limit may explain the observed difference between
426 κ_{gf} and κ_{ccn} for octyl-OS. Furthermore, surface tension is a key factor to influence critical
427 supersaturations at which aerosol particles are activated to cloud droplets (Petters and Kreidenweis,
428 2013). We measured surface tensions of alkyl-OS and alkyl-OS/AS (the mass ratio was 1:5)
429 solutions, and the results are shown in Table S1 and Figure S4. The surface tension of octyl-OS is
430 much lower than that of pure water, leading to significant reduction in critical supersaturations and
431 thus overestimation of its κ_{ccn} value; for comparison, the surface tension depression is also visible
432 but much less pronounced for octyl-OS/AS mixed aerosol. Overall, we proposed that solubility
433 limit and surface tension reduction may both contribute to the observed discrepancy between κ_{gf}
434 and κ_{ccn} values for octyl-OS aerosol. We note that some numerical models (Petters and
435 Kreidenweis, 2008, 2013; Riipinen et al., 2015) are available to quantitatively assess contribution
436 of solubility limit and surface tension reduction to the discrepancy between κ_{gf} and κ_{ccn} .

437 **4. Conclusions**

438 Organosulfates (OS) may contribute significantly to secondary organic aerosols in various
439 locations over the globe; however, their hygroscopic properties and CCN activities have not been
440 well understood. In this work, three complementary techniques, including a vapor sorption
441 analyzer (VSA), a hygroscopicity tandem differential mobility analyzer (H-TDMA) and a cloud
442 condensation nuclei counter (CCNc), were employed to investigate interactions of several OS with

443 water vapor under sub- and supersaturated conditions, trying to get a comprehensive picture of
444 their hygroscopic properties and CCN activities.

445 VSA was used to measure mass change of OS samples with RH (0-90%). Obvious
446 deliquescence was found for sodium methyl sulfate (methyl-OS), sodium ethyl sulfate (ethyl-OS),
447 sodium octyl sulfate (octyl-OS) and potassium hydroxyacetone sulfate, and their mass growth
448 factors at 90% RH were determined to be 3.65 ± 0.06 , 3.58 ± 0.02 , 1.59 ± 0.01 and 2.20 ± 0.03 ,
449 respectively. No significant water uptake were observed up to 90% RH for other OS compounds
450 examined, including sodium dodecyl sulfate, potassium 3-hydroxy phenyl sulfate, potassium
451 benzyl sulfate, potassium 2-methyl benzyl sulfate, potassium 3-methyl benzyl sulfate, potassium
452 2,4-dimethyl benzyl sulfate and potassium 3,5-dimethyl benzyl sulfate. Hygroscopic properties of
453 methyl-, ethyl- and octyl-OS aerosols were also studied using H-TDMA, which measured mobility
454 diameters of aerosol particles as a function of RH. Continuous hygroscopic growth was observed
455 for methyl-, ethyl- and octyl-OS aerosols, and their growth factors at 90% RH were measured to
456 be 1.83 ± 0.03 , 1.79 ± 0.02 and 1.21 ± 0.02 .

457 We further investigated CCN activities of methyl-, ethyl- and octyl-OS aerosols, and their
458 single hygroscopicity parameters, κ_{ccn} , were determined to be 0.459 ± 0.021 , 0.397 ± 0.010 and
459 0.206 ± 0.008 , respectively. For methyl- and ethyl-OS aerosols, single hygroscopicity parameters
460 derived from CCN activities (κ_{ccn}) agree reasonably well with those derived from H-TDMA
461 measurements (κ_{gf}) with relative differences being $< 25\%$. However, κ_{ccn} was found to be ~ 2.4
462 times larger than κ_{gf} for octyl-OS, and we show that solubility limit and surface tension reduction
463 may both contribute to such discrepancy observed.

464

465 **Data availability.** Data used in this paper can be found in the main text or supplement.

466 **Competing interests.** The authors declare that they have no conflict of interest.

467 **Author contribution.** Mingjin Tang conceived this work; Ru-Jin Huang, Yuqing Zhang, Xiang
468 Ding and Xinming Wang chose and provided samples investigated in this work; Chao Peng,
469 Lanxiadi Chen, Yuqing Zhang and Xiang Ding conducted VSA measurements; Chao Peng,
470 Weigang Wang and Maofa Ge conducted H-TDMA measurements; Patricia N. Razafindrambinina,
471 Kotiba A. Malek and Akua A. Asa-Awuku conducted CCN activity measurements; Chao Peng,
472 Patricia N. Razafindrambinina, Kotiba A. Malek, Akua A. Asa-Awuku and Mingjin Tang analyzed
473 the data and prepared the manuscript with contribution from all the other coauthors.

474 **Financial support**

475 This work was funded by National Natural Science Foundation of China (91744204), China
476 Postdoctoral Science Foundation (2020M682931), Ministry of Science and Technology of China
477 (2018YFC0213901), State Key Laboratory of Loess and Quaternary Geology (SKLLQG1921),
478 Guangdong Foundation for Program of Science and Technology Research (2017B030314057,
479 2019B121205006 and 2020B1212060053), Guangdong Science and Technology Department
480 (2017GC010501) and CAS Pioneer Hundred Talents program.

481

482 **References**

483 Brooks, S.: Water uptake by particles containing humic materials and mixtures of humic materials with ammonium
484 sulfate, *Atmos. Environ.*, 38, 1859-1868, 2004.
485 Bruggemann, M., Xu, R., Tilgner, A., Kwong, K. C., Mutzel, A., Poon, H. Y., Otto, T., Schaefer, T., Poulain, L., Chan,
486 M. N., and Herrmann, H.: Organosulfates in Ambient Aerosol: State of Knowledge and Future Research Directions
487 on Formation, Abundance, Fate, and Importance, *Environmental science & technology*, 2020.
488 ChemistryDashboard: United States Environmental Protection Agency, available at:
489 <https://comptox.epa.gov/dashboard>, last access: 12 January 2021, in, 2021.
490 Chen, L., Chen, Y., Chen, L., Gu, W., Peng, C., Luo, S., Song, W., Wang, Z., and Tang, M.: Hygroscopic Properties
491 of 11 Pollen Species in China, *ACS Earth and Space Chemistry*, 3, 2678-2683, 2019.
492 Choi, M. Y., and Chan, C. K.: The effects of organic species on the hygroscopic behaviors of inorganic aerosols,
493 *Environmental Science & Technology*, 36, 2422-2428, 2002.
494 Clegg, S. L., and Brimblecombe, P.: Equilibrium partial pressures of strong acids over concentrated saline solutions-
495 1. *HNO₃*, *Atmospheric Environment*, 22, 91-100, 1988.

496 Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic model of the system H+-NH4+-Na+-SO42--
497 NB3--Cl--H2O at 298.15 K, *J. Phys. Chem. A*, 102, 2155-2171, 1998.

498 Ervens, B., Turpin, B., and Weber, R.: Secondary organic aerosol formation in cloud droplets and aqueous particles
499 (aqSOA): a review of laboratory, field and model studies, *Atmospheric Chemistry and Physics*, 11, 11069-11102,
500 2011.

501 Estillore, A. D., Hettiyadura, A. P. S., Qin, Z., Leckrone, E., Wombacher, B., Humphry, T., Stone, E. A., and Grassian,
502 V. H.: Water Uptake and Hygroscopic Growth of Organosulfate Aerosol, *Environmental Science & Technology*,
503 50, 4259-4268, 2016.

504 Estillore, A. D., Morris, H. S., Or, V. W., Lee, H. D., Alves, M. R., Marciano, M. A., Laskina, O., Qin, Z., Tivanski,
505 A. V., and Grassian, V. H.: Linking hygroscopicity and the surface microstructure of model inorganic salts, simple
506 and complex carbohydrates, and authentic sea spray aerosol particles, *Physical Chemistry Chemical Physics*, 19,
507 21101-21111, 2017.

508 Froyd, K. D., Murphy, S. M., Murphy, D. M., de Gouw, J. A., Eddingsaas, N. C., and Wennberg, P. O.: Contribution
509 of isoprene-derived organosulfates to free tropospheric aerosol mass, *Proceedings of the National Academy of
510 Sciences of the United States of America*, 107, 21360-21365, 2010.

511 Gu, W., Li, Y., Zhu, J., Jia, X., Lin, Q., Zhang, G., Ding, X., Song, W., Bi, X., Wang, X., and Tang, M.: Investigation
512 of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption
513 analyzer, *Atmospheric Measurement Techniques*, 10, 3821-3832, 2017.

514 Guo, L., Gu, W., Peng, C., Wang, W., Li, Y. J., Zong, T., Tang, Y., Wu, Z., Lin, Q., Ge, M., Zhang, G., Hu, M., Bi,
515 X., Wang, X., and Tang, M.: A comprehensive study of hygroscopic properties of calcium- and magnesium-
516 containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols, *Atmospheric Chemistry and
517 Physics*, 19, 2115-2133, 2019.

518 Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M.,
519 George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E.,
520 Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F., Monod, A., Prevot, A. S. H.,
521 Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary
522 organic aerosol: current and emerging issues, *Atmospheric Chemistry And Physics*, 9, 5155-5236, 2009.

523 Hansen, A. M. K., Kristensen, K., Nguyen, Q. T., Zare, A., Cozzi, F., Nojgaard, J. K., Skov, H., Brandt, J., Christensen,
524 J. H., Strom, J., Tunved, P., Krejci, R., and Glasius, M.: Organosulfates and organic acids in Arctic aerosols:
525 speciation, annual variation and concentration levels, *Atmospheric Chemistry and Physics*, 14, 7807-7823, 2014.

526 Hansen, A. M. K., Hong, J., Raatikainen, T., Kristensen, K., Ylisirnio, A., Virtanen, A., Petaja, T., Glasius, M., and
527 Prisle, N. L.: Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates
528 and their mixtures with ammonium sulfate, *Atmospheric Chemistry and Physics*, 15, 14071-14089, 2015.

529 He, Q.-F., Ding, X., Wang, X.-M., Yu, J.-Z., Fu, X.-X., Liu, T.-Y., Zhang, Z., Xue, J., Chen, D.-H., Zhong, L.-J., and
530 Donahue, N. M.: Organosulfates from Pinene and Isoprene over the Pearl River Delta, South China: Seasonal
531 Variation and Implication in Formation Mechanisms, *Environmental Science & Technology*, 48, 9236-9245, 2014.

532 Heald, C. L., Jacob, D. J., Park, R. J., Russell, L. M., Huebert, B. J., Seinfeld, J. H., Liao, H., and Weber, R. J.: A
533 large organic aerosol source in the free troposphere missing from current models, *Geophysical Research Letters*,
534 32, 2005.

535 Hettiyadura, A. P. S., Stone, E. A., Kundu, S., Baker, Z., Geddes, E., Richards, K., and Humphry, T.: Determination
536 of atmospheric organosulfates using HILIC chromatography with MS detection, *Atmospheric Measurement
537 Techniques*, 8, 2347-2358, 2015.

538 Hettiyadura, A. P. S., Jayarathne, T., Baumann, K., Goldstein, A. H., de Gouw, J. A., Koss, A., Keutsch, F. N., Skog,
539 K., and Stone, E. A.: Qualitative and quantitative analysis of atmospheric organosulfates in Centreville, Alabama,
540 *Atmospheric Chemistry and Physics*, 17, 1343-1359, 2017.

541 Huang, R.-J., Cao, J., Chen, Y., Yang, L., Shen, J., You, Q., Wang, K., Lin, C., Xu, W., Gao, B., Li, Y., Chen, Q.,
542 Hoffmann, T., O'Dowd, C. D., Bilde, M., and Glasius, M.: Organosulfates in atmospheric aerosol: synthesis and
543 quantitative analysis of PM2.5 from Xi'an, northwestern China, *Atmospheric Measurement Techniques*, 11, 3447-
544 3456, 2018.

545 Hughes, D. D., and Stone, E. A.: Organosulfates in the Midwestern United States: abundance, composition and
546 stability, *Environmental Chemistry*, 16, 312-322, 2019.

547 Jimenez, J., Canagaratna, M., Donahue, N., Prevot, A., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H.,
548 and Ng, N.: Evolution of organic aerosols in the atmosphere, *Science*, 326, 1525-1529, 2009.

549 Jing, B., Tong, S., Liu, Q., Li, K., Wang, W., Zhang, Y., and Ge, M.: Hygroscopic behavior of multicomponent organic
550 aerosols and their internal mixtures with ammonium sulfate, *Atmospheric Chemistry and Physics*, 16, 4101-4118,
551 2016.

552 Kanakidou, M., Seinfeld, J., Pandis, S., Barnes, I., Dentener, F., Facchini, M., Dingenen, R. V., Ervens, B., Nenes, A.,
553 and Nielsen, C.: Organic aerosol and global climate modelling: a review, *Atmospheric Chemistry and Physics*, 5,
554 1053-1123, 2005.

555 Kreidenweis, S. M., Koehler, K., DeMott, P. J., Prenni, A. J., Carrico, C., and Ervens, B.: Water activity and activation
556 diameters from hygroscopicity data - Part I: Theory and application to inorganic salts, *Atmospheric Chemistry and
557 Physics*, 5, 1357-1370, 2005.

558 Kristensen, K., and Glasius, M.: Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols
559 from a forest in North West Europe during spring, *Atmospheric Environment*, 45, 4546-4556, 2011.

560 Kundu, S., Quraishi, T. A., Yu, G., Suarez, C., Keutsch, F. N., and Stone, E. A.: Evidence and quantitation of aromatic
561 organosulfates in ambient aerosols in Lahore, Pakistan, *Atmospheric Chemistry and Physics*, 13, 4865-4875, 2013.

562 Kwong, K. C., Chim, M. M., Davies, J. F., Wilson, K. R., and Chan, M. N.: Importance of sulfate radical anion
563 formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate,
564 *Atmospheric Chemistry and Physics*, 18, 2809-2820, 2018.

565 Lance, S., Medina, J., Smith, J. N., and Nenes, A.: Mapping the operation of the DMT Continuous Flow CCN counter,
566 *Aerosol Science and Technology*, 40, 242-254, 2006.

567 Lei, T., Zuend, A., Wang, W. G., Zhang, Y. H., and Ge, M. F.: Hygroscopicity of organic compounds from biomass
568 burning and their influence on the water uptake of mixed organic ammonium sulfate aerosols, *Atmospheric
569 Chemistry and Physics*, 14, 11165-11183, 2014.

570 Liao, J., Froyd, K. D., Murphy, D. M., Keutsch, F. N., Yu, G., Wennberg, P. O., St. Clair, J. M., Crounse, J. D.,
571 Wisthaler, A., Mikoviny, T., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., Ryerson, T. B., Pollack, I. B.,
572 Peischl, J., Anderson, B. E., Ziemba, L. D., Blake, D. R., Meinardi, S., and Diskin, G.: Airborne measurements of
573 organosulfates over the continental US, *Journal of Geophysical Research-Atmospheres*, 120, 2990-3005, 2015.

574 Ma, Y., Xu, X., Song, W., Geng, F., and Wang, L.: Seasonal and diurnal variations of particulate organosulfates in
575 urban Shanghai, China, *Atmospheric Environment*, 85, 152-160, 2014.

576 Malm, W. C., and Kreidenweis, S. M.: The effects of models of aerosol hygroscopicity on the apportionment of
577 extinction, *Atmos. Environ.*, 31, 1965-1976, 1997.

578 Marcolli, C., and Krieger, U. K.: Phase changes during hygroscopic cycles of mixed organic/inorganic model systems
579 of tropospheric aerosols, *J. Phys. Chem. A*, 110, 1881-1893, 2006.

580 McNeill, V. F., Woo, J. L., Kim, D. D., Schwier, A. N., Wannell, N. J., Sumner, A. J., and Barakat, J. M.: Aqueous-
581 Phase Secondary Organic Aerosol and Organosulfate Formation in Atmospheric Aerosols: A Modeling Study,
582 *Environmental Science & Technology*, 46, 8075-8081, 2012.

583 Moise, T., Flores, J. M., and Rudich, Y.: Optical properties of secondary organic aerosols and their changes by
584 chemical processes, *Chem Rev.*, 115, 4400-4439, 2015.

585 Moore, R. H., Nenes, A., and Medina, J.: Scanning Mobility CCN Analysis-A Method for Fast Measurements of Size-
586 Resolved CCN Distributions and Activation Kinetics, *Aerosol Science and Technology*, 44, 861-871, 2010.

587 Noziere, B., Kaberer, M., Claeys, M., Allan, J., D'Anna, B., Decesari, S., Finessi, E., Glasius, M., Grgic, I., Hamilton,
588 J. F., Hoffmann, T., Iinuma, Y., Jaoui, M., Kahno, A., Kampf, C. J., Kourtchev, I., Maenhaut, W., Marsden, N.,
589 Saarikoski, S., Schnelle-Kreis, J., Surratt, J. D., Szidat, S., Szmigielski, R., and Wisthaler, A.: The Molecular
590 Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges, *Chemical Reviews*, 115,
591 3919-3983, 2015.

592 Pöschl, U.: Atmospheric aerosols: composition, transformation, climate and health effects, *Angewandte Chemie
593 International Edition*, 44, 7520-7540, 2005.

594 Peng, C., Jing, B., Guo, Y. C., Zhang, Y. H., and Ge, M. F.: Hygroscopic Behavior of Multicomponent Aerosols
595 Involving NaCl and Dicarboxylic Acids, *The journal of physical chemistry. A*, 120, 1029-1038, 2016.

596 Peng, C., Wang, Y., Wu, Z., Chen, L., Huang, R. J., Wang, W., Wang, Z., Hu, W., Zhang, G., Ge, M., Hu, M., Wang,
597 X., and Tang, M.: Tropospheric aerosol hygroscopicity in China, *Atmos. Chem. Phys.*, 20, 13877-13903, 2020.

598 Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud
599 condensation nucleus activity, *Atmospheric Chemistry And Physics*, 7, 1961-1971, 2007.

600 Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud
601 condensation nucleus activity - Part 2: Including solubility, *Atmospheric Chemistry and Physics*, 8, 6273-6279,
602 2008.

603 Petters, M. D., Wex, H., Carrico, C. M., Hallbauer, E., Massling, A., McMeeking, G. R., Poulain, L., Wu, Z.,
604 Kreidenweis, S. M., and Stratmann, F.: Towards closing the gap between hygroscopic growth and activation for
605 secondary organic aerosol - Part 2: Theoretical approaches, *Atmospheric Chemistry and Physics*, 9, 3999-4009,
606 2009.

607 Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud
 608 condensation nucleus activity - Part 3: Including surfactant partitioning, *Atmospheric Chemistry and Physics*, 13,
 609 1081-1091, 2013.

610 Pitzer, K. S., and Mayorga, G.: Thermodynamics of electrolytes. 2. Activity and osmotic coefficients for strong
 611 electrolytes with one or both ions univalent, *Journal of Physical Chemistry*, 77, 2300-2308, 1973.

612 Prenni, A.: Water uptake of internally mixed particles containing ammonium sulfate and dicarboxylic acids, *Atmos.*
 613 *Environ.*, 37, 4243-4251, 2003.

614 Riipinen, I., Rastak, N., and Pandis, S. N.: Connecting the solubility and CCN activation of complex organic aerosols:
 615 a theoretical study using solubility distributions, *Atmospheric Chemistry and Physics*, 15, 6305-6322, 2015.

616 Riva, M., Chen, Y., Zhang, Y., Lei, Z., Olson, N. E., Boyer, H. C., Narayan, S., Yee, L. D., Green, H. S., Cui, T.,
 617 Zhang, Z., Baumann, K., Fort, M., Edgerton, E., Budisulistiorini, S. H., Rose, C. A., Ribeiro, I. O., RL, E. O., Dos
 618 Santos, E. O., Machado, C. M. D., Szopa, S., Zhao, Y., Alves, E. G., de Sa, S. S., Hu, W., Knipping, E. M., Shaw,
 619 S. L., Duvoisin Junior, S., de Souza, R. A. F., Palm, B. B., Jimenez, J. L., Glasius, M., Goldstein, A. H., Pye, H. O.
 620 T., Gold, A., Turpin, B. J., Vizuete, W., Martin, S. T., Thornton, J. A., Dutcher, C. S., Ault, A. P., and Surratt, J.
 621 D.: Increasing Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol Ratio Results in Extensive Conversion of Inorganic
 622 Sulfate to Organosulfur Forms: Implications for Aerosol Physicochemical Properties, *Environ Sci Technol*, 53,
 623 8682-8694, 2019.

624 Roberts, G. C., and Nenes, A.: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric
 625 measurements, *Aerosol Science and Technology*, 39, 206-221, 2005.

626 Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B., Jimenez, J. L., Kuang, C., Laskin, A., Martin,
 627 S. T., Ng, N. L., Petaja, T., Pierce, J. R., Rasch, P. J., Roldin, P., Seinfeld, J. H., Shilling, J., Smith, J. N., Thornton,
 628 J. A., Volkamer, R., Wang, J., Worsnop, D. R., Zaveri, R. A., Zelenyuk, A., and Zhang, Q.: Recent advances in
 629 understanding secondary organic aerosol: Implications for global climate forcing, *Reviews of Geophysics*, 55, 509-
 630 559, 2017.

631 Staudt, S., Kundu, S., Lehmler, H.-J., He, X., Cui, T., Lin, Y.-H., Kristensen, K., Glasius, M., Zhang, X., Weber, R.
 632 J., Surratt, J. D., and Stone, E. A.: Aromatic organosulfates in atmospheric aerosols: Synthesis, characterization,
 633 and abundance, *Atmospheric Environment*, 94, 366-373, 2014.

634 Stokes, R. H., and Robinson, R. A.: INTERACTIONS IN AQUEOUS NONELECTROLYTE SOLUTIONS . I.
 635 SOLUTE-SOLVENT EQUILIBRIA, *Journal of Physical Chemistry*, 70, 2126-&, 1966.

636 Surratt, J. D., Gomez-Gonzalez, Y., Chan, A. W. H., Vermeylen, R., Shahgholi, M., Kleindienst, T. E., Edney, E. O.,
 637 Offenberg, J. H., Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld, J. H.:
 638 Organosulfate formation in biogenic secondary organic aerosol, *Journal of Physical Chemistry A*, 112, 8345-8378,
 639 2008.

640 Svenningsson, B., Rissler, J., Swietlicki, E., Mircea, M., Bilde, M., Facchini, M. C., Decesari, S., Fuzzi, S., Zhou, J.,
 641 Monster, J., and Rosenorn, T.: Hygroscopic growth and critical supersaturations for mixed aerosol particles of
 642 inorganic and organic compounds of atmospheric relevance, *Atmospheric Chemistry and Physics*, 6, 1937-1952,
 643 2006.

644 Tang, M., Cziczo, D. J., and Grassian, V. H.: Interactions of Water with Mineral Dust Aerosol: Water Adsorption,
 645 Hygroscopicity, Cloud Condensation, and Ice Nucleation, *Chemical Reviews*, 116, 4205-4259, 2016.

646 Tang, M., Chan, C. K., Li, Y. J., Su, H., Ma, Q., Wu, Z., Zhang, G., Wang, Z., Ge, M., Hu, M., He, H., and Wang, X.:
 647 A review of experimental techniques for aerosol hygroscopicity studies, *Atmospheric Chemistry and Physics*, 19,
 648 12631-12686, 2019a.

649 Tang, M., Gu, W., Ma, Q., Li, Y. J., Zhong, C., Li, S., Yin, X., Huang, R.-J., He, H., and Wang, X.: Water adsorption
 650 and hygroscopic growth of six anemophilous pollen species: the effect of temperature, *Atmospheric Chemistry and*
 651 *Physics*, 19, 2247-2258, 2019b.

652 Tolocka, M. P., and Turpin, B.: Contribution of Organosulfur Compounds to Organic Aerosol Mass, *Environmental*
 653 *Science & Technology*, 46, 7978-7983, 2012.

654 Wang, K., Zhang, Y., Huang, R.-J., Wang, M., Ni, H., Kampf, C. J., Cheng, Y., Bilde, M., Glasius, M., and Hoffmann,
 655 T.: Molecular Characterization and Source Identification of Atmospheric Particulate Organosulfates Using
 656 Ultrahigh Resolution Mass Spectrometry, *Environmental Science & Technology*, 53, 6192-6202, 2019a.

657 Wang, Y., Hu, M., Guo, S., Wang, Y., Zheng, J., Yang, Y., Zhu, W., Tang, R., Li, X., Liu, Y., Le Breton, M., Du, Z.,
 658 Shang, D., Wu, Y., Wu, Z., Song, Y., Lou, S., Hallquist, M., and Yu, J.: The secondary formation of organosulfates
 659 under interactions between biogenic emissions and anthropogenic pollutants in summer in Beijing, *Atmospheric*
 660 *Chemistry and Physics*, 18, 10693-10713, 2018.

661 Wang, Y., Ma, Y., Li, X., Kuang, B. Y., Huang, C., Tong, R., and Yu, J. Z.: Monoterpene and Sesquiterpene alpha-
662 Hydroxy Organosulfates: Synthesis, MS/MS Characteristics, and Ambient Presence, *Environ Sci Technol*, 53,
663 12278-12290, 2019b.

664 Wang, Y., Hu, M., Wang, Y.-C., Li, X., Fang, X., Tang, R., Lu, S., Wu, Y., Guo, S., Wu, Z., Hallquist, M., and Yu,
665 J. Z.: Comparative Study of Particulate Organosulfates in Contrasting Atmospheric Environments: Field Evidence
666 for the Significant Influence of Anthropogenic Sulfate and NO_x, *Environmental Science & Technology Letters*,
667 2020.

668 Wang, Y., Zhao, Y., Wang, Y., Yu, J. Z., Shao, J., Liu, P., Zhu, W., Cheng, Z., Li, Z., Yan, N., and Xiao, H.:
669 Organosulfates in atmospheric aerosols in Shanghai, China: seasonal and interannual variability, origin, and
670 formation mechanisms, *Atmos. Chem. Phys.*, 21, 2959-2980, 2021.

671 Wex, H., Petters, M., Carrico, C., Hallbauer, E., Massling, A., McMeeking, G., Poulain, L., Wu, Z., Kreidenweis, S.,
672 and Stratmann, F.: Towards closing the gap between hygroscopic growth and activation for secondary organic
673 aerosol: Part 1—Evidence from measurements, *Atmospheric Chemistry and Physics*, 9, 3987-3997, 2009.

674 Wexler, A. S., and Clegg, S. L.: Atmospheric aerosol models for systems including the ions H⁺, NH₄⁺, Na⁺, SO₄²⁻,
675 NO₃⁻, Cl⁻, Br⁻, and H₂O, *J. Geophys. Res.*, 107, 2002.

676 Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S.,
677 Fiebig, M., Fjaraa, A. M., Asmi, E., Sellegrí, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J. A.,
678 Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hueglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner,
679 E., Riccobono, F., Santos, S., Gruening, C., Faloon, K., Beddows, D., Harrison, R. M., Monahan, C., Jennings, S.,
680 G., O'Dowd, C. D., Marinoni, A., Horn, H. G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao,
681 C. S., Moerman, M., Henzing, B., de Leeuw, G., Loeschau, G., and Bastian, S.: Mobility particle size spectrometers:
682 harmonization of technical standards and data structure to facilitate high quality long-term observations of
683 atmospheric particle number size distributions, *Atmospheric Measurement Techniques*, 5, 657-685, 2012.

684 Wise, M. E., Surratt, J. D., Curtis, D. B., Shilling, J. E., and Tolbert, M. A.: Hygroscopic growth of ammonium
685 sulfate/dicarboxylic acids, *Journal Of Geophysical Research-Atmospheres*, 108, 2003.

686 Wu, Z. J., Nowak, A., Poulain, L., Herrmann, H., and Wiedensohler, A.: Hygroscopic behavior of atmospherically
687 relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate, *Atmospheric
688 Chemistry and Physics*, 11, 12617-12626, 2011.

689 Zardini, A. A., Sjogren, S., Marcolli, C., Krieger, U. K., Gysel, M., Weingartner, E., Baltensperger, U., and Peter, T.:
690 A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles, *Atmospheric
691 Chemistry and Physics*, 8, 5589-5601, 2008.

692 Zhang, Y.-Q., Chen, D.-H., Ding, X., Li, J., Zhang, T., Wang, J.-Q., Cheng, Q., Jiang, H., Song, W., Ou, Y.-B., Ye,
693 P.-L., Zhang, G., and Wang, X.-M.: Impact of anthropogenic emissions on biogenic secondary organic aerosol:
694 observation in the Pearl River Delta, southern China, *Atmospheric Chemistry and Physics*, 19, 14403-14415, 2019.

695