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Abstract. Feedbacks between the climate system and the carbon cycle represent a key source of uncertainty in model projec-

tions of Earth’s climate, in part due to our inability to directly measure large scale biosphere-atmosphere carbon fluxes. In-situ

measurements of CO2 mole fraction from surface flasks, towers and aircraft are used in inverse models to infer fluxes, but mea-

surement networks remain sparse, with limited or no coverage over large parts of the planet. Satellite retrievals of total column5

CO2 (XCO2 ), such as those from NASA’s Orbiting Carbon Observatory-2 (OCO-2), can potentially provide unprecedented

global information about CO2 spatiotemporal variability. However, for use in inverse modeling, data need to be extremely

stable, highly precise and unbiased to distinguish abundance changes emanating from surface fluxes from those associated

with variability in weather. Systematic errors in XCO2
have been identified and, while bias correction algorithms are applied

globally, inconsistencies persist at regional and smaller scales that may complicate or confound flux estimation. To evaluate10

XCO2 retrievals and assess potential biases, we compare OCO-2 v10 retrievals with in-situ data-constrained XCO2 simulations

over North America estimated using surface fluxes and boundary conditions optimized with observations that are rigorously

calibrated relative to the WMO X2007 CO2 scale. Systematic errors in simulated atmospheric transport are independently

evaluated using unassimilated aircraft and AirCore profiles. We find that the global OCO-2 v10 bias correction shifts the distri-

bution of retrievals closer to the simulatedXCO2
, as intended. Comparisons between bias corrected and simulatedXCO2

reveal15

differences that vary seasonally. Importantly, the difference between simulations and retrievals is of the same magnitude as the

imprint of recent surface flux in the total column. This work demonstrates that systematic errors in OCO-2 v10 retrievals of

XCO2 over land can be large enough to confound reliable surface flux estimation and that further improvements in retrieval and

bias correction techniques are essential. Finally, we show that independent observations, especially vertical profile data, such

as from NOAA’s aircraft and AirCore programs are critical for evaluating errors in both satellite retrievals and carbon-cycle20

models.
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1 Introduction

Interannual variability in the growth rate of atmospheric CO2 is largely driven by variability in uptake and release by terrestrial

ecosystems (Heimann and Reichstein, 2008; Piao et al., 2020). Oceanic fluxes also respond to variability in climate (e.g.,25

DeVries et al., 2019; Riebesell et al., 2009), but the amplitude of oceanic flux variability is thought to be considerably less than

for terrestrial fluxes. While individual component fluxes (e.g., photosynthesis) are currently not directly measurable at scales

larger than leaf or soil chambers, well-calibrated and precise measurements of CO2 have allowed us to track the accumulation

of this greenhouse gas in the atmosphere and associated radiative feedbacks on the global climate, as well as its spatiotemporal

variability (e.g., Tans et al., 1989). These measurements continue to provide valuable insights into surface flux processes and30

feedbacks (e.g., Tans et al., 1990; Ballantyne et al., 2012; Keeling et al., 2017; Arora et al., 2020). Observed spatial and

temporal gradients in CO2 mole fraction (relative to dry air) can be combined with a numerical model of atmospheric transport

to infer surface fluxes (i.e. exchange of CO2 between the atmosphere and the underlying ocean or land surface), in a "top-

down" or inverse modelling framework (e.g., Peters et al., 2007; Gurney et al., 2002). An ever-increasing global greenhouse

gas measurement network and progress in modelling techniques have tremendously improved our understanding of surface35

processes. However, measurement networks remain sparse and continue to under-sample large parts of the world, including

large parts of North America, which can limit our understanding of surface flux processes in those regions. Furthermore,

incompatibility across datasets that arises from inconsistent calibrations or systematic errors can significantly corrupt surface

flux estimates – leading to inaccurate models of carbon-climate interactions and subsequent errors in climate forecasts.

Satellite retrievals of total column CO2 mole fraction (XCO2
), such as those from NASA’s Orbiting Carbon Observatory-240

(OCO-2), have the potential to provide unprecedented information about spatio-temporal patterns and variability in the Earth’s

atmosphere. However, space-based observations of XCO2
must be extremely stable, highly precise and free from bias to detect

and quantify abundance changes caused by a change in surface fluxes (Rayner and O’Brien, 2001; Olsen, 2004; Miller et al.,

2007; Houweling et al., 2003). Regional flux of terrestrial net non-fire ecosystem exchange of CO2 (NEE) can be small, as it is

composed of two opposing fluxes (photosynthesis and respiration). Further, NEE is ubiquitous on the terrestrial surface (unlike45

for e.g., spatially discrete point sources from industrial emissions). Lastly, CO2 has a long lifetime in the atmosphere (and

therefore is well-mixed). Together these imply that CO2 mole fraction changes due to NEE over large regions (e.g., temperate

North America) can be hard to distinguish from variability in CO2 mole fraction resulting from flux processes and transport

upwind. CO2 mole fraction changes in XCO2
from NEE at the surface are diluted over the path length of the atmosphere and

largely obscured by meteorological variability (Basu et al., 2018; Feng et al., 2019).50

In-situ measurements that comprise global networks, such as NOAA’s Global Greenhouse Reference Network (https://www.

esrl.noaa.gov/gmd/ccgg/ggrn.php), are rigorously evaluated and carefully calibrated relative to the World Meteorological Or-

ganization (WMO) calibration scale (data used here are reported on the X2007 scale), thus ensuring the fidelity of these

measurements over timescales of seasons to decades (Andrews et al., 2014; Hall et al., 2020). The "open-path" nature of
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space-based XCO2
measurements does not allow for direct calibration. Satellite retrievals require a forward model of radiative55

transfer that is run through an inversion system along with satellite-obtained absorption spectra of atmospheric O2 and CO2 to

infer XCO2 . While a great amount of progress has been made to identify and eliminate sources of uncertainty emanating from

this chain of processes, e.g., in the molecular absorption model and spectroscopy (Thompson et al., 2012; Payne et al., 2020;

Hobbs et al., 2020), considerable sources of uncertainty remain. These are attributed to the presence of aerosols in the column

(Connor et al., 2016), clouds and cloud shadows (Massie et al., 2021), interference of jointly retrieved parameters (Kulawik60

et al., 2019), surface properties, and details of the instrumentation. Connor et al. (2016) estimate that aerosol dependant biases

for retrievals over land may be as large as ∼ 2 [ppm] (parts per million dry air mole fraction). Moreover, sensors typically

degrade over time, and limited information is available to characterize resulting time-dependent systematic errors. Post-launch

data corrections are routinely performed and have generally reduced XCO2 bias. For example, mean bias in land-nadir XCO2

relative to TCCON in the v8 product was reduced from 0.72 ± 1.22 [ppm] to 0.30 ± 1.04 [ppm] (O’Dell et al., 2018) and a65

correction in a geo-location error resulted in a decrease in across-scene standard deviation from 1.35 [ppm] in v8 to 0.74 [ppm]

in the v9 data product (Kiel et al., 2019).

Currently, satellite derived XCO2
retrievals are linked to the WMO scale most directly through a set of in-situ profiles ob-

tained over a network consisting of 26 ground-based Fourier Transform Infrared Spectrometers that comprise the Total Carbon

Column Observation Network (TCCON; Wunch et al., 2017). However, TCCON itself provides remotely sensed information70

about XCO2 , and comparison with aircraft profiles have revealed errors ∼ 1 [ppm] (Wunch et al., 2011). Seasonal and site-

dependent biases associated with validation of OCO-2 retrievals via TCCON have also been reported (Wunch et al., 2017).

OCO-2 retrievals are additionally corrected for bias by comparing with 4-D CO2 mole fraction fields from global inverse mod-

els, and a small-area approximation, but both methods are prone to smoothing across fine-scale variability in XCO2
(O’Dell

et al., 2018; Corbin et al., 2008). While bias correction generally reduces inferred surface flux uncertainty when retrievals are75

assimilated in atmospheric inversions (Basu et al., 2013), even small retrieval errors can lead to large errors in inferred flux

(Takagi et al., 2014; Chevallier et al., 2014; Villalobos et al., 2020).

Thus, a method to routinely evaluate satellite retrievals is necessary. In this study, we propose such a method that takes

advantage of the relatively dense in-situ network of surface, tower-based and vertical profile CO2 mole fraction measurements

over North America, and leverage an ensemble of optimized flux estimates derived using the high resolution CarbonTracker-80

Lagrange CO2 inverse modeling framework (Hu et al., 2019). We demonstrate an approach for constructing XCO2
that offers

optimal consistency with in-situ measurements of CO2 dry air mole fraction calibrated relative to the WMO X2007 scale (Hall

et al., 2020). We compare our simulated XCO2 retrievals with the v10 OCO-2 product, hereafter Xret
CO2

, evaluate the extent

to which observed differences are consistent with rigorous uncertainties on the simulated fields, and potentially correct biases

in satellite retrievals. We essentially use the CarbonTracker-Lagrange modeling framework to interpolate the existing in-situ85

measurements to the time and location of Xret
CO2

. The in-situ measurement uncertainty is generally ∼ 0.15 [ppm] (Andrews

et al., 2014), and we have carefully accounted for uncertainty in regional boundary conditions and uncertainties in the optimized

fluxes. While a single realization of the simulated atmospheric transport is used here (a limitation of the approach that we aim

to address in future work by using transport ensembles), we evaluate transport uncertainty using independent vertical in-situ
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Figure 1. Flowchart linking in-situ measurements of CO2 to simulated columns.

profiles of CO2. CarbonTracker-Lagrange simulations are driven by meteorological simulations from the Weather Research90

Forecast model system optimized for particle dispersion modeling (Nehrkorn et al., 2010) with resolution of 10 [km] over

continental U.S., and 30 [km] over the rest of North America, considerably higher than global in-situ informed simulations that

have so far been used for OCO-2 evaluation (Kiel et al., 2019; Crowell et al., 2019; Miller and Michalak, 2020). Simulated

XCO2
are compared with OCO-2 v10 retrievals, both before and after global bias correction, thus providing an independent

evaluation of the global bias correction over North America. In principle, differences can result from errors in the retrievals or95

from errors in the CarbonTracker-Lagrange modeling framework, but we show that for certain seasons these differences are

unlikely to result from the latter. North America is a useful test-bed for evaluating consistencies and for developing improved

model simulations and retrieval bias correction strategies, given the relatively dense sampling network (compared to other

regions) and that the best surface flux estimates are likely to come from approaches that combine in-situ measurements and

satellite retrievals (Basu et al., 2013; Fischer et al., 2017; Byrne et al., 2020). The US Inter-Agency North American Carbon100

Program (Wofsy et al., 2002) has supported intensely focused research for nearly two decades and has resulted in a wealth of

datasets and model:data fusion activities that have informed model development.

2 Methods

SimulatedXCO2
, hereafter "Xsim

CO2
", is constructed by estimating impact of different surface fluxes (∆flux

CO2
) on the total column.

This involves imposing a time, latitude, longitude, and altitude dependent lateral boundary condition or background, which105

accounts for changes in Xsim
CO2

originating outside our model domain. The chain of events that link the in-situ data with the

simulations is shown in fig. 1. We use multiple ensembles of surface flux and boundary conditions to assess uncertainty in each.

4



Comparisons with independent unassimilated aircraft and AirCore profiles are used to assess combined random and systematic

errors in surface flux, background and atmospheric transport.

2.1 Convolution Method110

We follow the recommended protocol for comparing satellite retrievals with modeled CO2 columns from the Atmospheric

CO2 Observations from Space (ACOS) retrieval algorithm v10 (O’Dell et al., 2012).

Xsim
CO2

=

N∑
i=1

wi

[
ai.χ

model
CO2,i + (1− ai).χ

pri
CO2,i

]
(1)

Here, Xsim
CO2

[ppm], the total column CO2, is computed as a pressure weighted sum of the modeled column (Xmodel
CO2

=∑N
i=1wi. χmodel

CO2,i
), comprising N model (i.e., not OCO-2) levels from the surface to the top of the atmosphere (0.01 [hPa]).115

χmodel
CO2

is convolved with the OCO-2 averaging kernel profile (ai) and the OCO-2 prior profile (χpri
CO2

) and summed according

to a pressure weighting function (w; identical to h in Connor et al., 2008). w is calculated as:

w =

N∑
i=1

wi =

N∑
i=1

∣∣∣(− pi +
pi+1 − pi
ln(pi+1

pi
)

)
+
(
− pi +

pi − pi−1

ln( pi

pi−1
)

)∣∣∣ 1

psurf
, (2)

where pi and psurf are WRF modeled pressure at level i and at the surface respectively. The profile sum of w is always

unity. Additionally, since XCO2 is reported as dry air mole fraction, WRF total pressure is converted to dry air pressure at all120

receptor levels.

χmodel
CO2,i

[ppm] is constructed as:

Xmodel
CO2

=

N∑
i=1

χbkg
CO2,i

+

N−3∑
i=1

∆flux
CO2,i

(3)

Here, χbkg
CO2,i

[ppm] represents background (i.e., lateral boundary condition, described in sec. 2.4) and ∆flux
CO2,i

[ppm] denotes

the impact of surface flux at level i of the column. ∆flux
CO2,i

is computed at discrete levels from the surface to 14 [km], whereas125

χbkg
CO2,i

is computed at 3 additional levels. These additional levels represent the upper troposphere and the stratosphere, where

influence of recent surface flux is assumed to be zero. If there are cases where recent surface fluxes influence upper tropospheric

and stratospheric air, those are accounted for as part of background estimation. This is because models used to estimate

background are also constrained by in-situ measurements. Note that there may still be rare cases, e.g., in the proximity of large

fires (Hooghiem et al., 2020), where surface flux influence in the upper troposphere and lower stratosphere may not be captured130

by this approach. ∆flux
CO2,i

is estimated as:

∆flux
CO2,i

=Hi(sbio + sff + sbmb + socn), (4)

whereHi [ppm CO2.(µmol m
−2 s−1)−1] represents the sensitivity at pressure level i of simulatedXCO2 to upwind surface

fluxes (detailed in sec. 2.3), and s indicates surface flux [µmol m−2 s−1]. sbio denotes net ecosystem exchange (i.e. the sum of
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ecosystem photosynthesis and respiration), sbmb denotes biomass burning, sff corresponds to fossil fuel emissions and socn is135

the net ocean-atmosphere flux. Fluxes are described in detail in sec. 2.5.

2.2 OCO-2 retrievals and receptor selection criterion

We construct XCO2
for valid land-nadir and land-glint Xret

CO2
from the v10 data product (Osterman et al., 2020) over North

America between September 2014 and August 2015. Globally, OCO-2 retrievals are primarily obtained in three operation

modes: Land Glint, Land Nadir, and Ocean Glint. Additionally, retrievals are obtained in "target" mode, for evaluation against140

TCCON, and a "transition" mode, where the sensor switches between modes. While the "nadir" mode is mostly used over

land, over darker ocean the satellite sensor is able to receive a higher fraction of directly reflected sunlight in a separate "glint"

mode (Eldering et al., 2017). Here, we evaluate soundings over land obtained in both nadir and glint modes. Additionally, only

retrievals that passed the aerosol and cloud-screening filers are considered (i.e., quality flagged as 0, or "good").

Over North America, there can be a few thousand to tens of thousands of valid retrievals on any given day (Fig. 2a). Each145

retrieval covers an area of approximately 1.29 [km] × 2.25 [km] on the surface. Individual satellite retrievals are known as foot-

prints. The satellite collects 8 simultaneous footprints, and the next row of footprints are spaced 300 [ms] apart. For each satel-

lite overpass (along-track), we select locations every 2 [s] over the continental U.S. (i.e.,∼ 12[km]) and 4 s (i.e.,∼ 24[km]))

over the rest of North America (Fig. 2b). These locations are usually called receptors in a Lagrangian particle dispersion model

(LPDM) as they represent locations and times from which a set of particles are released and tracked back in time. In an LPDM,150

an ensemble of particles is released from each receptor, and the residence time of particles in the planetary boundary layer

is used to calculate sensitivities describing the relationship between upwind surface fluxes and mole fraction at the receptor

location. Ultimately, a library of sensitivity arrays is generated corresponding to XCO2
retrieval locations. Note that these sen-

sitivity arrays are sometimes called footprints or influence functions. Here we avoid this use of footprints so as not to create

confusion with OCO-2 footprints (i.e. scenes). This method enables improved simulation of near-field transport compared to155

Eulerian gridded models, as particle locations are not restricted to grid-boxes and meteorological fields can be interpolated

to sub-grid scale locations (Lin et al., 2003), and has been used extensively in estimating regional trace gas fluxes in inverse

models using in-situ measurements (e.g., Schuh et al., 2009; Gourdji et al., 2012; Lauvaux et al., 2013; Alden et al., 2016; Hu

et al., 2019).

In this study, a vertical profile of receptors corresponding to a range of altitudes is created corresponding to the location of a160

single valid satellite retrieval. We preferentially select receptors that are in the middle of the OCO-2 track to provide the most

spatially representative sample and minimize footprint dependant biases (O’Dell et al., 2012). For this analysis, we assume that

Xsim
CO2

from a given receptor location is representative of all Xret
CO2

within 1 [s]. ∼ 32,000 unique receptor profiles associated

with valid retrievals are created between September 2014 and August 2015 representing ∼ 1.61 million retrievals that passed

quality flags between September 2014 and August 2015. At each receptor, 24 unique Xsim
CO2

are created, from combinations of165

six flux and four background ensemble members (Fig. 1). Using an ensemble of 24 flux-background combinations provides an

estimate of unresolved variability in the simulations. In this analysis we report Xsim
CO2

as the the mean and standard deviation

of these simulations. Similarly, Xret
CO2

represents the mean of all OCO-2 footprints within ±1 [s] for a selected retrieval.
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Figure 2. All valid satellite retrievals for June 2015 (left). A zoomed-in map (right) shows all retrievals for a section of an individual sounding

and locations of along-track receptors (stars). Black lines in the zoomed map indicate 1° latitude bands.

A profile of receptors for each selected satellite scene consists of discrete altitude levels approximately representing the

lowermost 850 [hPa] of the atmosphere. Models sampled for background estimation are sampled at receptor locations to170

account for the rest of the column (detailed in sec. 2.4). A similar method (the application of a regional Lagrangian model

to estimate source-receptor relationships) was developed recently by Wu et al. (2018). In that study a set of model particles

distributed throughout an entire column of air (weighted to appropriately represent the retrieved total column, i.e., "the column

receptor") was transported and tracked backward in time and a single surface flux sensitivity array was computed for the total

column. In contrast, here we establish source-receptor relationships at discrete altitude intervals and then apply appropriate175

vertical weighting for the column. This method has a higher computational cost and results in larger output files but adds

flexibility in the simulation, for instance, a quick recalculation can be performed if the OCO-2 averaging kernel is modified

and more importantly, our simulated profiles can be used with experimental retrieval products such as partial column retrievals

(e.g., Kulawik et al., 2017).
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2.3 Transport model and constructing column weighted surface-sensitivity arrays: H180

We use output from the Stochastic Time-Inverted Lagrangian Transport (STILT) particle dispersion model (Lin et al., 2003)

driven with high resolution meteorological fields from a customized implementation of the Weather Research and Forecasting

(WRF) model (Nehrkorn et al., 2010). We use the WRF-STILT modeling configuration developed for the CarbonTracker-

Lagrange modeling framework (Hu et al., 2019).

The high spatial resolution of regional models provides an appropriate framework to investigate relatively fine-scale structure185

in atmospheric transport (e.g. mesoscale) and atmospheric signatures of surface flux heterogeneity. WRF model fields are

computed at 10 [km] spatial resolution over temperate North America and 30 [km] spatial resolution outside of temperate

North America. STILT is run off-line (i.e. driven by archived hourly WRF output) and trajectories are computed backwards

in time from each receptor location. STILT surface-sensitivity arrays represent simulated upwind surface flux influence for 10

days prior to each observation at 1°×1° spatial and 1 hourly temporal resolution. A library of WRF-STILT surface-sensitivity190

arrays is pre-computed, archived, and can be efficiently convolved with independently estimated surface fluxes. This is in

contrast to most modern Eulerian model CO2 simulations, where the transport model needs to be rerun whenever a new

surface flux product becomes available. STILT surface-sensitivity arrays have units of [ppm(µmol m−2 s−1)−1].

The OCO-2 retrieval is a pressure-weighted mean of χCO2
obtained at 20 equally spaced pressure boundaries from the

surface to the top of the atmosphere. STILT receptors however, are specified not on the pressure grid used for OCO-2 retrievals,195

but at fixed altitudes above ground level and with high vertical resolution where strong gradients in CO2 are expected (e.g.

near the surface, or at the top of planetary boundary layer). Additionally, Xret
CO2

is computed from a combination of the signal

received by the spectrometer and an a priori profile (χpri
CO2

). This approach constrains the uppermost portion of the atmospheric

column where the satellite sensor lacks sensitivity. The relative weights of the received signal and χpri
CO2

are described by the

column averaging kernel (a; O’Dell et al., 2012), which is computed during the retrieval and archived along with Xret
CO2

and200

χpri
CO2

. Thus, the first step in creating column-weighted surface-sensitivity arrays (H) is to interpolate χpri
CO2

and a onto the

STILT grid. Then, a pressure weighting function (eq. 2) is applied to appropriately weight the surface sensitivity obtained from

all receptors for each column. The upper 150 [hPa] of the atmosphere is considered as part of the lateral boundary condition

(the column weighted background; section 2.4), as sensitivity to recent surface flux is assumed to be zero at these pressure

levels and the WRF-STILT framework has not been optimized for upper atmospheric simulations.205

2.4 Column weighted background: Xbkg
CO2

The background or lateral boundary condition is an essential component of regional models, required to isolate changes in CO2

from surface fluxes within the model domain. Boundary values need to represent synoptic variability and contributions from

surface fluxes outside the model domain and may contribute significantly to uncertainty in modeled XCO2 (Feng et al., 2019).

Here, we combine WRF-STILT back-trajectories with 4-D global mole fraction fields from simulations that were optimized210

using global in-situ measurements. From each receptor, 500 back-trajectories (simulating air parcels) are released and tracked

backwards in time until the point at which they exit the WRF domain or for the duration of the simulation (10 days). At
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that coordinate (longitude, latitude, altitude, time) a global 4-D mole fraction field is sampled and that value is considered as

the background value for that particle. Background values for all 500 particles are then averaged to calculate the estimated

background value for a given receptor. For background estimation, the WRF domain is subset to only include continental215

North America plus margins along the coast. These strategies minimize transport-related errors in the trajectories that inflate

with increasing distance from the receptor and time of release. The background values for each receptor in a column are

summed according to the pressure weighting function (eq. 2).

Four different global 4-D mole fraction fields that are informed by in-situ measurements and routinely updated are sampled

as background. These are two versions of CarbonTracker (CT2016 and CT2019B; Peters et al., 2007; Jacobson et al., 2020)220

from NOAA’s Global Monitoring Laboratory (GML), the Copernicus Atmosphere Monitoring Service reanalysis (CAMS;

Chevallier et al., 2019) produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), and the Jena Car-

boScope model from the Max Planck Institüt for Biogeochemistry (Rödenbeck et al., 2020). We evaluate each model against

all designated assimilable CO2 data from NOAA GML’s GlobalView Plus version 6.0 data product (Table 1 Schuldt et al.,

2020). Assimilable data include assimilated as well as withheld data. Withheld data are qualitatively equivalent to assimilated225

data (i.e., they pass the same quality flags) but are excluded and used to evaluate model results in CarbonTracker (A.R. Ja-

cobson, pers. comm.). Here, over 150,000 ground, tall-tower and aircraft in-situ observations spanning 2014-15 over North

America and the eastern North Pacific Ocean are used. Comparisons with these observations are provided for all assimilable

observations, and assimilable observations between 4 − 8 [km].

Table 1. Global CO2 4D mole fraction fields used in this study. Comparisons with GML’s GlobalView Plus version 6.0 data product are also

presented. These comparisons are provided for all assimilable observations, and all assimilable observations between 4 − 8 [km] .

Model Version Resolution
Comparison with GV+ 6.0 obs [ppm]

all altitudes 4 to 8 [km]

CarbonTracker CT2016 3°× 2°× 3 hrly 0.49 ± 0.02 0.02 ± 0.03

CarbonTracker CT2019B 3°× 2°× 3 hrly 0.30 ± 0.01 0.05 ± 0.03

CAMS v18r3 (2019) 1.9°× 3.75°× 3 hrly -0.73 ± 0.01 -0.18 ± 0.03

CarboScope v4.3 (2019) 6°× 4°× 6 hrly 0.60 ± 0.02 0.06 ± 0.03

2.5 Surface fluxes of CO2: s230

We sample optimized and imposed flux fields from regional and global inverse models. Net non-fire terrestrial ecosystem

exchange (i.e., CO2 fluxes from photosynthesis and respiration from autotrophic and heterotrophic sources or sbio) are from

NOAA’s CarbonTracker-Lagrange (Hu et al., 2019). Briefly, CarbonTracker-Lagrange is a regional atmospheric inverse model

in which biospheric fluxes for North America are optimized using surface-sensitivity arrays from high resolution WRF-STILT

simulations and North American measurements of CO2 from GlobalView+ v2.1 (Cooperative Global Atmospheric Data Inte-235
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gration Project, 2016), which is composed largely of data from NOAA’s Global Greenhouse Gas Reference Network and from

Environment and Climate Change Canada. Observations include flask-air measurements from near-surface and aircraft and

quasi-continuous in-situ measurements primarily made on towers. The inversions were run with three different prior estimates

of sbio. These included two versions of the Carnegie-Ames Stanford Approach (CASA; Potter et al., 1993) biogeochemical

model runs (CASA GFED-CMS and CASA GFEDv4.1) and the Combined Simple Biosphere/Carnegie-Ames-Stanford Ap-240

proach terrestrial carbon cycle model (SiBCASA; Schaefer et al., 2008). Prior error covariance parameters were derived from

maximum likelihood estimation (MLE) with fixed correlation scales of 1000 [km] and 7[days] and also for optimized corre-

lation scales, for each model runs, resulting in six different posterior estimates of sbio. Non-biospheric fluxes include imposed

biomass burning (sbmb) and fossil fuel (sff ) fluxes, and optimized ocean fluxes (socn) from CT2016. We use the mean of two

fossil fuel emission products (“Miller” and “ODIAC” datasets) and fire emission products (“GFED4.1s” and “GFED-CMS”)245

used in CT2016. All fluxes are 1°× 1° spatial and 3 hourly temporal resolution.

3 Results and discussion

3.1 Comparing simulated and satellite retrievals

For all retrievals selected over the spatiotemporal domain of this study, the impact of the OCO-2 bias correction is 2.01 ±
0.87 [ppm], and the mean difference between seasons is 0.5 [ppm] (1.76 in winter and spring, and 2.31 [ppm] in summer;250

blue distributions in Fig. 3). Across seasons, the difference in residuals between Xret,bc
CO2

and Xsim
CO2

is significantly lower

than that between Xsim
CO2

and Xret
CO2

: µsim−ret = 2.23 ± 1.36 [ppm], whereas µret,bc−sim = −0.22 ± 1.91 [ppm], i.e., the

OCO-2 bias correction brings the distribution of OCO-2 XCO2
substantially closer to the in-situ data-constrained synthetic

columns (Xsim
CO2

), as expected. Residuals are lowest in the Northern Hemisphere summer months of June, July and August

(µret,bc−sim = 0.2 ± 1.36 [ppm]; Fig. 3d) and highest in the winter and spring (µret,bc−sim = −0.61 [ppm]; Fig. 3a). Apart255

from the summer, mean Xret,bc
CO2

over North America is lower than Xsim
CO2

.

3.2 Spatial patterns

To examine spatial patterns of simulated and retrieved soundings we first sort retrievals in 2°× 2° bins and then average all

retrievals (and simulations) in each bin for each season. The spatial extent of OCO-2 soundings varies seasonally (Fig. 4a,e,i,m).

The northern extent of valid retrievals follows the solar declination, as the OCO-2 spectrometer is unable to retrieve a signal260

over land that is dark or blanketed by snow. Consequently, between September and March, there are few soundings north of

the U.S.- Canada border (∼ 49°N ). Conversely, all of North America is observable between March and August.

Across seasons, Xsim
CO2

and Xret,bc
CO2

exhibit broadly similar spatial patterns (Fig. 4a-n). However, residuals between the two

reveal that Xret,bc
CO2

is usually lower than Xsim
CO2

, except in the summer, when a majority of retrievals in the eastern half of the

continent (right of the dotted lines in Fig. 4o) are higher than the simulations. Such coherent spatial differences are not evident265

when examining the mean bias over the continent (Fig. 3). Importantly, the magnitude of this difference is similar to that of
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Figure 3. Kernel density distributions for residuals between simulated and satellite retrievals, grouped seasonally. Blue distributions show

the impact of the OCO-2 bias correction on Land-Nadir retrievals. The orange and green curves show the difference between simulated

retrievals and retrievals before and after bias correction respectively. Printed numbers report the mean and standard deviation of residuals.

Uncertainties in Xsim
CO2

are discussed later in sec. 3.3.

the recent flux signals in the total column (Fig. 4d, h, l, p). For e.g., the mean residuals in the northeast quadrant during the

summer (Fig. 4o) are 0.79 ± 1.63 [ppm], significantly higher than that for the entire domain (0.09 ± 1.38 [ppm]) and ∼ 45%

of the impact of recent surface flux on XCO2
, i.e., ∆flux

CO2
.

3.3 Examining bias and uncertainty in Xsim
CO2

270

To establish whether differences betweenXret,bc
CO2

andXsim
CO2

presented above (Figs. 3, 4) are due to residual biases in the former,

we characterize systematic errors as well errors arising from unresolved variability in model fields used to construct Xsim
CO2

.

Cross-model standard deviations of four background models and ∆flux
CO2

from six biospheric flux ensembles on Xsim
CO2

is shown

in Fig. 5. Cross model standard deviation in background fields is highest in the northwest during the summer (0.36 [ppm]) but

usually less than 0.3 [ppm]. Over the entire spatio-temporal domain of the study the standard deviation in estimates of ∆flux
CO2

275

and Xbkg
CO2

is 0.26 ± 0.14 [ppm] and 0.28 ± 0.15 [ppm] respectively. Model spread in ∆flux
CO2

is largest along the pacific coast

of Mexico, a region that is relatively less well-constrained by the in-situ network. The standard deviation in ∆flux
CO2

is highest

in the southeast quadrant in the summer (0.32 [ppm]), but usually between 0.1 and 0.3 [ppm]. Uncertainty from model spread

in flux and background is propagated in comparisons of Xsim
CO2

and Xret,bc
CO2

presented earlier (Fig. 3).
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Figure 4. Spatial patterns of Xret,bc
CO2

(a, e, i, m), Xsim
CO2

(b, f, j, n), ∆Xsim−ret,bc (c, g, k, o), and impact of recent surface flux (∆flux
CO2

) on

the Xsim
CO2

(d, h, l, p) for soundings grouped seasonally and plotted on a 2°×2° grid. Units for all maps [ppm]. Dotted lines in c, g, k, o r are

drawn along 40°N and 100°W.

Systematic error or bias in Xsim
CO2

can arise from errors in the estimation of background and surface flux, both of which280

are linked by an atmospheric transport model (Fig. 1). We use the same transport model used by Hu et al. (2019) to generate

source-receptor relationships and background (secs. 2.3 and 2.4). Accuracy of the six-member ensemble of fluxes we use is also

dependent upon the accuracy of WRF-STILT used in Hu et al. (2019). Thus, potential biases in WRF-STILT form a common

thread for error propagation. The combined accuracy of fluxes and transport is evaluated by examining aircraft vertical profiles

of CO2 collected under NOAA GML’s aircraft program (Sweeney et al., 2015, https://www.esrl.noaa.gov/gmd/ccgg/aircraft/)285

not assimilated by Hu et al. (2019). These data were obtained from NOAA GML’s GlobalView Plus version 6.0 data product
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Figure 5. Cross model standard deviations flux impact (a, c, e, g) and background models (b, d, f, h). Six biospheric flux ensembles and four

model fields for background are used in this study.

(Schuldt et al., 2020). We simulate all independent aircraft observations over North America for 2007-2015 (the entire spa-

tiotemporal range of Hu et al., 2019) using existing WRF-STILT source-receptor relationships. To ensure consistency with

Hu et al. (2019), we perform this evaluation with the same background conditions as in that study (i.e., CT2016). Aircraft

profiles are sorted in 1 [km] altitude bins from the surface to 8 [km] a.s.l. (above sea level) and separated by season. Aircraft290

vertical profiles of CO2 (after removing the influence of background) as well as surface fluxes propagated with WRF-STILT

show net release of CO2 in non-summer months and net uptake from photosynthesis depleting near-surface CO2 during the

summer (green triangles and pink hexagons in Fig. 6a, c, e, g respectively). The difference between independent, unassimilated

observations and simulations show that bias at any given altitude level for any season is usually less than 0.5 [ppm] (Fig. 6b,

e, h, j). Bias is also usually largest near the surface (except in spring). The pressure-weighted partial column (from the surface295

to 8 [km] a.s.l.) mean bias (µsim−obs) ranges from −0.12 in autumn to 0.18 [ppm] in the spring and is comparable to the

typical measurement uncertainty within the in-situ Global Greenhouse Gasses Research Network of ∼ 0.15 [ppm] as derived

13



Figure 6. Simulated and observed vertical profiles from independent in-situ aircraft observations collected over 2007-2015 (a, c, e, g),

showing simulated enhancements or depletion in CO2 as a result of surface flux (pink hexagons). Additionally, the difference between

observations and CT2016 background is plotted (green triangles). We report the vertically resolved and pressure weighted bias (mean and

standard deviation) between simulations and observations (b, d, f, h). Finally, a map shows the location of aircraft profiles (blue circles-i)

The size of each data point indicates relative number of samples. Additionally, AirCore profile locations are also shown (orange squares-i).

AirCore data are used to evaluate biases in boundary conditions in the upper 350 [hPa] of the column and are presented in table 2.

from long term comparisons of differences between different within-network sampling and analysis approaches for CO2 (e.g.,

Andrews et al., 2014; Lan et al., 2017; Sweeney et al., 2015). Low partial column bias relative to independent vertical profile

CO2 data show that errors in WRF-STLT transport contribute very minimally to bias in Xsim
CO2

.300

To examine potential systematic errors in the highest part of the column, (above 8 [km] i.e., the upper troposphere and the

stratosphere), we compare 4-D model fields used in this study with CO2 profiles collected by NOAA GML’s AirCore program

(Karion et al., 2010; Baier et al., 2021, data version "v20200210"). There is a considerably larger spread in models’ ability

to replicate AirCore observations (Table 2) than surface and aircraft observations (Table 1 and Fig. 6). Bias between model

and observations varies seasonally, is highest in the spring and lowest in the summer. However, this region forms the upper ∼305

350 [hPa] of the column. This has two implications. First, the contribution to total column bias reduces by ∼ 65%. Second, the
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ACOS convolution equation (eq. 1) requires modeled estimates of XCO2
be appropriately weighted with the averaging kernel

(ai). ai determines the balance between information obtained by the retrieval and that contained in the OCO-2 prior (χpri
CO2

),

and tends to decrease from ∼ near the surface to< 0.5 in the upper third of the column. Thus ∼ 50% of the error in the highest

350 [hPa] of the simulated column is due to errors in χpri
CO2

. Consequently, the total contribution of model bias presented in310

Table 2 contributes to only ∼ 50% of the bias in Xsim
CO2

in the uppermost third of the column. The other source of error above

8 [km] is the error in χpri
CO2

, but this information is currently unavailable in the OCO-2 v10 lite files and is thus ignored in our

error analysis. However, errors in χpri
CO2

are identical for Xsim
CO2

and Xret,bc
CO2

and do not affect comparisons between the two.

Table 2. Systematic bias between global 4D CO2 fields and AirCore profiles above 8 [km]. Across-model mean and standard deviation is

weighted with the pressure weighting function and OCO-2 averaging kernel. All values in [ppm]. Location of AirCore profiles is shown as

orange squares in Fig. 6i.

Season CT 2016 CT 2019B CAMS CarboScope µmodels ± σmodels

Autumn 0.59 ± 0.02 0.77 ± 0.01 0.27 ± 0.01 0.95 ± 0.02 0.11 ± 0.04

Winter 0.57 ± 0.01 0.74 ± 0.01 0.34 ± 0.01 1.99 ± 0.02 0.16 ± 0.19

Spring −− 1.40 ± 0.03 0.76 ± 0.03 3.31 ± 0.07 0.32 ± 0.19

Summer 0.4 ± 0.04 0.45 ± 0.02 −0.11 ± 0.02 0.73 ± 0.03 0.06 ± 0.05

Combined with the standard deviation across 24 flux-background ensemble members that comprise Xsim
CO2

, comparisons

with independent unassimilated aircraft (Fig. 6) and AirCore profiles (Table 2) allow us to comprehensively assess uncertainties315

associated with Xsim
CO2

. We estimate the combined uncertainty from surface flux, background estimation and transport as:

σXsim
CO2

= µmodel−aircraft +µmodel−AirCore ±
√

(σmodel−aircraft)2 + (σmodel−AirCore)2 + (σflux+bkg ensembles)2 (5)

where

σflux+bkg ensembles =
√
σ2
flux ensembles +σ2

bkg ensembles + 2σflux,bkg (6)

The first two terms in eq. 5 represent the pressure-weighted mean partial column bias between modeled and observed CO2320

vertical profiles from aircraft (Fig. 6) and aircore (Table 2) respectively. The sum of these two terms provides an estimate of

bias or systematic error. The third term in eq. 5 represents unresolved variability.
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Table 3. Total uncertainty estimates for Xsim
CO2

, the mean difference between Xsim
CO2

and Xret,bc
CO2

, and bias in Xret,bc
CO2

. Bias is obtained as

the difference between the first two terms in the middle and left columns. All values in [ppm]. The number on the right in the third column

indicates the spatial variability in Xret,bc
CO2

bias. Finally we also present the same quantity for the previous version of OCO-2 retrievals, the

v9 data product. Note, for v9 only land-nadir retrievals are analysed.

Season σXsim
CO2

∆Xret,bc−sim Bias in Xret,bc
CO2

Bias in Xret,bc
CO2

v9-LN

Autumn −0.01 ± 0.31 −0.61 ± 0.99 −0.62 ± 0.99 −0.88 ± 1.00

Winter 0.25 ± 0.35 −0.61 ± 0.98 −0.36 ± 0.98 −0.76 ± 1.10

Spring 0.50 ± 0.31 −0.44 ± 0.85 0.06 ± 0.85 0.07 ± 0.99

Summer 0.05 ± 0.40 0.20 ± 1.36 0.25 ± 1.36 0.14 ± 1.38

We find that unresolved variability due to model spread in Xsim
CO2

is ∼ 0.35 [ppm] (second term under σXsim
CO2

in Table 3),

similar across seasons, and significantly lower than the uncertainty of Xret,bc
CO2

as reported in the OCO-2 v10 lite files (∼ 0.6

[ppm]). Systematic error or bias in Xsim
CO2

(first term under σXsim
CO2

in Table 3) shows significant variability across seasons.325

Comparing this to ∆Xret,bc − sim allows an estimation of mean bias in Xret,bc
CO2

over North America (Table 3). We find that

Xret,bc
CO2

bias ranges from −0.62 [ppm] in autumn to 0.14 [ppm] in summer. This indicates that ∆Xret,bc − sim in autumn (Fig.

3a and Fig. 4c) is entirely due to a residual bias in Xret,bc
CO2

but almost entirely due to bias in σXsim
CO2

in the spring (Fig. 3c

and Fig. 4k). During summer the mean bias in Xsim
CO2

is 0.05 [ppm], and consequently the mean bias in Xret,bc
CO2

is 0.25 [ppm].

However, the mean conceals larger regional differences. In the northeast quadrant for instance, ∆Xret,bc − sim (Fig. 4o) of330

0.79 [ppm] translates to a high bias 0.84 [ppm] during the summer. Finally, we find that the OCO-2 v10 bias correction shows

an improvement over the v9 bias correction, particularly in the winter.

3.4 Evaluating the OCO-2 bias correction

Bias in OCO-2 v10 XCO2
is a combination of footprint bias (8 coincident across track retrievals; Cf ) and feature biases

(related to surface or atmospheric parameters, e.g., aerosol optical depth; Cp). Finally, a global scaling factor (C0) obtained335

from comparisons with TCCON retrievals, is used to empirically link retrievals to the WMO scale.

To examine residual feature biases, we perform simple linear regressions between parameters used in the OCO-2 v10 bias

correction with ∆Xret,bc−sim. These parameters are ∆Pfrac [ppm], which accounts for fractional change in XCO2
due to

difference in prior and retrieved surface pressure (Kiel et al., 2019), CO2-grad del, defined as the difference of the difference

between retrieved and prior CO2 at the surface and at 0.7 times the surface pressure, dws, which is the total retrieved optical340

depth associated with aerosols from dust, water cloud and aerosol and aodfine, the aerosol optical depth from sulfate and

organic carbon (O’Dell et al., 2018; Osterman et al., 2020). Additionally, we perform simple linear regressions with altitude and

surface albedo. All parameters are available in the OCO-2 v10 lite files. We find no significant correlations observed between

∆Xret,bc−sim and any parameters suggesting that there are no regional scale parametric biases over North America for our
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study period that are not already removed by the OCO-2 global bias correction. These figures are shown in the supplementary345

information S1.

4 Implications for carbon flux estimation

The impact of recent surface flux onXsim
CO2

is small (e.g. right column in Fig. 4). The interquartile range of ∆flux
CO2

over the entire

spatiotemporal domain is less than 1 [ppm] implying that the imprint of recent surface flux on the total column is roughly half

the magnitude of the OCO-2 bias correction (blue curves in Fig.3). Moreover, only around 2% of simulations in the summer350

(when surface fluxes are highest) are associated with absolute ∆flux
CO2

magnitudes higher than 4 [ppm], indicating that recent

surface flux rarely accounts for more than a ∼ 1% change in Xsim
CO2

. In autumn, ∆flux
CO2

is of the same magnitude as bias in

Xret,bc
CO2

(Table 3). OCO-2 retrievals in autumn 2014 are therefore unlikely to provide reliable estimates of North American

surface flux. During the summer, OCO-2 has a high bias of 0.25 [ppm] over the continent, but this bias may be significantly

larger in the eastern half of the domain (Fig. 4o). In the northeast quadrant for example, a potential bias of 0.84 [ppm] con-355

stitutes ∼ 47% of the mean ∆flux
CO2

of −1.79 [ppm]. Considering that the vast majority of current inverse modeling or data

assimilation systems used for CO2 flux estimation are designed to correct errors in an a priori estimate, the effective flux

signal is considerably smaller than shown above (right column in Fig. 4). In fact, when projected onto the total column, we find

that the difference between a biospheric prior flux model (CASA-CMS) and flux optimized using in-situ observations over the

continent by the CT-Lagrange inversion system (using the same prior flux estimate; Hu et al., 2019) for January and July, 2015360

are 0.15 ± 0.38 and 0.09 ± 1.06 [ppm] respectively. Flux adjustment impacts on Xsim
CO2

are usually indistinguishable from 0

in January. While a gradient of ∼ 3 ppm is visible across the continent in July (Fig. 7), less than a third of simulated retrievals

show differences between prior and optimized flux greater than ± 1 [ppm], when biospheric uptake over North America is

strongest. Errors in terrestrial biosphere models of CO2 flux translate to similarly small impacts on XCO2
, posing questions on

the utility of these data currently in evaluating terrestrial biosphere models.365

5 Conclusions

In this study, we compare one year of Xret,bc
CO2

over North America from NASA’s OCO-2 (v10; land-nadir and glint retrievals)

satellite against synthetic columns that are constructed using a high-resolution regional model of atmospheric transport and

driven by fluxes and background that are optimally consistent with in-situ measurements of CO2 dry air mole fraction, which

are rigorously calibrated to the WMO CO2 X2007 scale. Although XCO2
from OCO-2 and from the posterior of in-situ data370

inversions has been compared previously, and used in its bias correction (O’Dell et al., 2018; Kiel et al., 2019), this is the first

such evaluation at the regional scale that uses high-resolution atmospheric transport. We use a suite of optimized non-fire net

ecosystem exchange fluxes and background fields to assess under in Xsim
CO2

. Potential systematic errors in fluxes, transport,

and background fields are evaluated by comparisons with vertical gradients of atmospheric CO2 from independent aircraft and

AirCore vertical profiles. Xsim
CO2

is associated with errors arising from unresolved variability in model fields, and systematic375
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Figure 7. Difference between prior and optimized biospheric flux from CarbonTracker Lagrange show small differences, when projected

onto the total column [ppm].

bias. The first of these results in an uncertainty of ∼ 0.35 [ppm]. Bias or systematic error in Xsim
CO2

is found to vary seasonally

and ranges from −0.01 [ppm] in autumn to 0.50 [ppm] in the spring. Bias is highest in the upper 350 [hPa] of the column

(Table 2), a region that is most poorly constrained by atmospheric measurements. However, the effect of this bias is relatively

small in the total column comparisons.

Comparisons with Xsim
CO2

show that the OCO-2 v10 global bias correction greatly improves the quality of OCO-2 data over380

North America (Fig. 3). However, generally good agreement between Xret,bc
CO2

and Xsim
CO2

at the continental scale masks sig-

nificant differences at regional scales and for some seasons (Fig. 4). Error analysis of the components of Xsim
CO2

(i.e., trans-

port, background, and flux) allows us to better characterize difference between simulations and retrievals. Differences in

∆Xret,bc−sim are highest in autumn and indicative of a low bias in Xret,bc
CO2

of 0.62 [ppm] which is identical to the mean

impact of recent surface flux (mean ∆flux
CO2

over the continent is 0.64 [ppm]) in that season. In winter, a low bias in Xret,bc
CO2

385

of 0.36 [ppm] is roughly 50% of the mean ∆flux
CO2

of 0.71 [ppm]. In summer we find spatially coherent regional patterns in

∆Xret,bc−sim. ∆Xret,bc−sim is highest in the northeast quadrant of North America (Fig. 4o) at −0.81 [ppm], 50% of the mean

expected ecosystem flux impact over this region. Since inverse models of CO2 flux usually optimize a prior flux estimate,

the surface flux signal (i.e., difference between prior and optimized flux) in XCO2 is minuscule (Fig. 7), significantly smaller

than the magnitude of the OCO-2 v10 bias correction, and translates to extremely strenuous requirements on the quality of390

space-based retrievals. The OCO-2 community has worked diligently to reduce uncertainty on satellite retrievals (e.g., O’Dell

et al., 2012, 2018; Kiel et al., 2019; Wunch et al., 2017; Kulawik et al., 2019); bias in v10 retrievals over North America has
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reduced in autumn and winter of 2014-15 compared to the v9 data product (Table 3), but further improvement is necessary

for both existing satellite datasets and planned missions that will provide this quantity in order to accurately constrain surface

fluxes in a changing climate. Finally, we argue that a greatly expanded global reference network of calibrated in-situ vertical395

profile measurements is necessary to reliably detect and correct systematic errors in satellite XCO2 .
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