
The authors describe a method wherein in situ-constrained XCO2 simulations over North
America are used to evaluate retrievals of XCO2 from OCO-2 v10. The paper could be
appropriate for publication after several major concerns are addressed.

We  thank the reviewer for their careful review of the manuscript. We have significantly
revised two paragraphs (paragraphs 3 and 4, lines 67-76 in the introduction that were
flagged for concern by the reviewer. For each paragraph, we present the revised text (in
quotes) below all comments for that paragraph in the response below.

Additionally, we have revised the preceding paragraph (paragraph 2, lines 51-66) to
clarify the intent of our analysis: To better understand the use of satellite data for
regional flux estimation.
Finally, we believe we have addressed all additional comments and concerns, as outlined
in detail below.
As a general note, we wish to clarify that the authors are not putting forth an opinion of
satellite retrievals relative to in-situ data. We have taken great care in this work to put
forth quantitative and objective analysis. As such, we have, in several places throughout
the paper, edited the text for clarity in this regard. We hope that these changes address the
reviewer’s overall impression that this manuscript offers “opinions” in any form. This
was not the intent of the paper as written and we believe the below revisions aid the
clarity of the message.
To summarize this message: the satellite community continues to make great advances in
theoretical understanding (spectroscopy), instrument design, and evaluation of bias. Even
compared with simulations in this study, potential bias in v10 is lower than that for v9
(Table 4 in the revised text). The purposes of this manuscript are, however, to assess the
specific use case of satellite data for inferring regional scale CO2 fluxes. We probe three
critical points. First, terrestrial net non-fire biospheric flux (NEE) is a balance of two
opposing fluxes (Gross Primary Productivity and Ecosystem Respiration) and even when
these one-way fluxes are large, the balance can be very small. Second, NEE occurs
everywhere on land unlike spatially discrete point sources from industrial emissions.
Finally, CO2 has a long lifetime in the atmosphere and therefore is well-mixed. Together,
these points mean that CO2 mole fraction enhancements or depletions due to NEE over a
given region can be very small and hard to distinguish from variability in CO2 mole
fraction resulting from upwind fluxes and transport. The problem is magnified in the total
column, as NEE signals at the surface are diluted over the path length of the atmosphere.
For the purposes of assessing NEE fluxes with satellite data, it is therefore a critical
exercise to understand and assess the accuracy of that data, which is what this manuscript
aims to achieve.

Major comments:

On lines 120 and 194 and elsewhere, the authors state their assumption that the influence of
recent surface fluxes are zero in the upper troposphere and stratosphere. This is not the case
during some forest fires (e.g., Hooghiem et al., 2020 and references therein) and some volcanic
eruptions. How does this assumption influence the validity of the results, and in particular, the
seasonal cycle? How realistic is the background XCO2 at those altitudes? The satellites measure
through the entire atmosphere, and even if the averaging kernels are smaller in the stratosphere



than in the troposphere, they are nonzero – that region of the atmosphere will still influence the
retrievals. The authors discuss the errors associated with this around line 295 and dismiss the
differences as small, but they do not show profiles comparing the simulated profiles and AirCore
above 8 km.

We sample global Eulerian model fields (optimized with in-situ observations calibrated on the
WMO scale) to estimate background and present seasonal comparisons of all background models
with independent aircore observations above 8 km (Table 2) and propagate those errors when
comparing simulated XCO2 with OCO-2 XCO2. Since background models are optimized by in-situ
observations, these should be able to capture those surface fluxes to the extent that they impact
the observations. While relatively coarse global models may not be able to capture individual
events such as fire very well, in analyzing thousands of aircraft profiles of CO and CO2 over
North America collected over the last 10-15 years, the incidence of fire signals in the mid and
upper troposphere is very low. To clarify this point for the reader, we have added he following at
line 119 of the revised text:

“If there are cases where recent surface fluxes influence upper tropospheric and stratospheric air,
those are accounted for as part of background estimation. This is because models used to
estimate background are also constrained by in-situ measurements. Note that there may still be
rare cases, e.g., in the proximity of large fires (Hooghiem et al., 2020), where surface flux
influence in the upper troposphere and lower stratosphere may not be captured by this approach.“

On lines 335-345, the authors evaluate the OCO-2 scaling to the WMO X2007 scale using a
single year (2014-2015) and their simulated XCO2 product. Seasonal scaling does not make
sense in this context, as the scaling is largely required because of spectroscopic uncertainties, and
it is therefore more likely to be related to the airmass or water vapour interference than to the
season. I suggest that these results are checked by binning the C0 values over different airmasses
instead of season. The authors also claim that their annual C0,sim (0.9960) is inconsistent with
the C0 derived through comparisons with TCCON (0.9959), but given the different timescales
and spatial scales used in the analysis, I do not think this is a robust conclusion.

The reviewer has highlighted that this conclusion may not be robust given the available data. In
response, we have removed this section from the manuscript.

The third and fourth paragraphs of the introduction betray the authors’ low opinion of the value
of remote sensing relative to in situ measurements. I strongly recommend that the authors
completely rewrite those paragraphs as they are misleading. I shall respond to each sentence of
these two paragraphs in turn (original text in red italics):

Note that, in response to the reviewer’s comments, for each of the two paragraphs in
question, we present the revised text (in quotes) below all comments for that paragraph
below.

In-situ measurements that comprise global networks, such as NOAA’s Global Greenhouse
Reference Network (https://www.esrl.noaa.gov/gmd/ccgg/ggrn.php), are rigorously evaluated
and carefully calibrated relative to the World Meteorological Organization (WMO) calibration
scale (data used here are reported on the X2007 scale), thus ensuring the fidelity of these



measurements over timescales of seasons to decades (Andrews et al., 2014; Hall et al., 2020).

I agree that in situ measurements like NOAA’s Reference Network are rigorously evaluated and
calibrated. While the authors do cite the (now published) Hall et al. 2021 paper, it seems relevant
to explicitly mention that these calibrations are complex and that periodic and significant
changes of scale are possible. From the Hall et al. 2021 paper (italics are my additions): “The
new scale [WMO-CO2-X2019] is 0.18 μmol mol−1 (ppm) greater than the previous scale [WMO
CO2-X2007] at 400 ppm CO2. While this difference is small in relative terms (0.045 %), it is
significant in terms of atmospheric monitoring.”

The "open-path" nature of space-based XCO2 measurements however, does not allow for direct
calibration.

I agree with this sentence but feel that the authors’ use of “however” is unnecessary.

Satellite retrievals of XCO2 require complicated models of atmospheric radiation and are
sensitive to a host of assumptions about aerosols, clouds, interference of jointly retrieved
parameters, surface properties and details of the instrumentation (Kulawik et al., 2019).

Again, I largely agree with the sentiment, but the language betrays a value judgment
(“complicated,” “host of assumptions”). There has been significant research into these
areas.

Moreover, sensors typically degrade over time, and limited information is available to
characterize resulting time-dependent systematic errors.

Sensors can and do degrade over time, but there is sufficient data available to characterize time
dependent systematic errors through radiometric calibrations, lunar calibrations, and
comparisons with ground-based data (e.g., Crisp et al., 2017; Bruegge et al., 2019; Yu et al.,
2020).

Post-launch data corrections are performed if and when biases (O’Dell et al., 2018) and errors
(Kiel et al., 2019) are identified, but are severely limited due to the sparsity of calibrated in-situ
vertical profile observations.

Post-launch data corrections are rigorously and systematically evaluated against the available
ground-based information provided by multiple sources (TCCON, models, small area analyses,
southern hemisphere approximation, etc.). None of this is limited by “the sparsity of calibrated
in-situ vertical profile observations.” This is not done “if and when biases and errors are
identified” – they are actively sought out and significant effort is put into this.

Revised text # 1

“Satellite retrievals of total column CO2 mole fraction (XCO2), such as those from NASA's
Orbiting Carbon Observatory-2 (OCO-2), have the potential to provide unprecedented
information about spatio-temporal patterns and variability in the Earth’s atmosphere.



However, observations of XCO2 must be extremely stable, highly precise and free from bias
to detect and quantify abundance changes caused by a change in surface fluxes (Rayner and
O’Brien 2001; Olsen et al., 2004, Miller et al., 2007, Houweling et al., 2003). Regional flux
of terrestrial net non-fire ecosystem exchange of CO2 (NEE) can be small as it is composed
of two opposing fluxes (photosynthesis and respiration). Further, NEE is ubiquitous on the
terrestrial surface (unlike for e.g., spatially discrete point sources from industrial emissions).
Lastly, CO2 has a long lifetime in the atmosphere (and therefore is well-mixed). Together
these imply that CO2 mole fraction changes due to NEE over large regions (e.g., temperate
North America) can be hard to distinguish from variability in CO2 mole fraction resulting
from flux processes and transport upwind. CO2 mole fraction changes in XCO2 from NEE at
the surface are diluted over the path length of the atmosphere and largely obscured by
meteorological variability (Basu et al., 2018; Feng et al., 2019).

In-situ measurements that comprise global networks, such as NOAA's Global Greenhouse
Reference Network (https://www.esrl.noaa.gov/gmd/ccgg/ggrn.php), are rigorously carefully
calibrated relative to the World Meteorological Organization (WMO) calibration scale (data
used here are reported on the X2007 scale), thus ensuring the fidelity of these measurements
over timescales of seasons to decades (Andrews et al., 2014; Hall et al., 2020). The
open-path nature of space-based XCO2 measurements does not allow for mole fraction
calibration. Satellite retrievals require a forward model of radiative transfer that is run
through an inversion system along with satellite-obtained absorption spectra of atmospheric
O2 and CO2 to infer XCO2. While a great amount of progress has been made to identify and
eliminate sources of uncertainty emanating from this chain of processes, e.g., in the
molecular absorption model and spectroscopy (Thompson et al., 2012; Payne et al., 2020;
Hobbs et al., 2020), considerable sources of uncertainty remain. These are attributed to the
presence of aerosols in the column (Connor et al., 2016), clouds and cloud shadows (Massie
et al., 2021), interference of jointly retrieved parameters (Kulawik et al., 2019), surface
properties, and details of the instrumentation. For example, Connor et al. (2016) estimate
that aerosol dependent biases for retrievals over land may be as large as ∼2  [ppm].
Moreover, sensors typically degrade over time, and limited information is available to
characterize resulting time-dependent systematic errors. Post-launch data corrections are
routinely performed and have generally reduced XCO2 bias. For example, mean bias in
land-nadir XCO2 relative to TCCON in the v8 product was reduced from  0.72 ± 1.22 [ppm]
to 0.30 ± 1.04 [ppm] (O’Dell et al., 2018) and a correction in a geo-location error resulted in
a decrease in across-scene standard deviation from 1.35 [ppm] in v8 to 0.74 [ppm] in the v9
data product (Kiel et al., 2019).”

Currently, satellite derived XCO2 retrievals are linked to the WMO scale most directly through a
limited set of in-situ profiles obtained over a network of ground-based Fourier Transform
Infrared Spectrometers that comprise the Total Carbon Column Observation Network (TCCON;
Wunch et al., 2017).

Satellite retrievals of XCO2 are linked to the WMO scale through thousands of coincident
measurements over TCCON stations throughout the lifetime of the mission.

However, TCCON itself provides remotely sensed information about XCO2, and TCCON
retrievals undergo a complex validation and bias correction routine (Wunch et al., 2010) that
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links these retrievals to the WMO scale.

The TCCON data have been rigorously and systematically compared with in situ profiles that
are, in turn, calibrated to the WMO X2007 scale. There have been about 80 such CO2 in situ
profiles over TCCON stations – the first collected in 2004, and the most recent from the current
year. I do not know what the authors mean by “TCCON retrievals undergo a complex
validation.” The paper cited details the method of tying the TCCON retrievals to the WMO
X2007 scale.

Moreover, TCCON sites are few.

There are 26 currently operating TCCON stations.

Issues with validation of OCO-2 retrievals via TCCON have been identified- seasonal and site
dependent biases have been reported (Wunch et al., 2017, 2015), raising questions about the
adequacy of this network to validate satellite derived XCO2 products (Basu et al., 2013).

I do not see how the 2015 paper (describing the GGG2014 algorithm and dataset) is related to
this topic. The 2017 paper identifies biases in OCO-2, and not in the TCCON data – the 2013
paper discusses biases in the RemoTeC GOSAT retrievals relative to TCCON. I do not think
these papers question the “adequacy” of the network to provide valuable validation
information.

This is especially important since systematic bias corrections of XCO2 from TCCON data are
developed over small spatio-temporal scales and extrapolated globally (Wunch et al., 2011) for
retrievals over land and ocean respectively (O’Dell et al., 2018).

I do not understand what the authors are referring to in this statement. If the authors are referring
to the systematic bias identification related to retrieval parameters like albedo, aerosol, etc., then
I do not know what “small spatio-temporal scales” the authors are referring to. The 2011 work
did not use TCCON data to identify these systematic biases – it used GOSAT data from the
southern hemisphere south of 25S. Comparisons with the TCCON data showed that the bias
correction improved the comparisons globally, and identified the scaling required to tie the bias
corrected GOSAT XCO2 to the WMO scale.

OCO-2 retrievals are additionally corrected for bias by comparing with 4-D CO2 mole fraction
fields from global inverse models, and a small-area approximation, but both methods are prone
to smoothing across fine-scale variability in XCO2 (O’Dell et al., 2018; Corbin et al., 2008).

I don't understand this statement at all. It should be comforting that bias corrections derived from
these independent methods are consistent.

While bias correction generally reduces inferred surface flux uncertainty when retrievals are
assimilated in atmospheric inversions (Basu et al., 2013), even small retrieval errors can lead to
large errors in inferred flux (Takagi et al., 2014; Chevallier et al., 2014).

I agree.



Biases in XCO2 from OCO-2, hereafter XretCO2 , have been identified, and found to be related
to surface (e.g. pressure, albedo) and atmospheric (e.g. aerosol loading, sky condition)
properties (Kiel et al., 2019).
The Kiel et al., 2019 paper talks about a geolocation error and a meteorological reanalysis
sampling error. I’m not sure why the authors attribute aerosol, albedo, cloud cover to this
paper.

However, systematic biases not accounted for in the v10 bias correction approach persist and
therefore the measurement uncertainty associated with individual retrievals is believed to be at
least twice the value currently reported in the OCO-2 data files (Eldering et al., 2017).

I don’t see how the authors can justify this claim with the citation provided. Version 10 was
released in 2020, and the Eldering paper is dated in 2017.

Revised text # 2

“Currently, satellite derived XCO2 retrievals are linked to the WMO scale most directly
through a set of in-situ aircraft and AirCore profiles obtained above a network consisting of
26 ground-based Fourier Transform Infrared Spectrometers that comprise the Total Carbon
Column Observation Network (TCCON; Wunch et al., 2017). However, TCCON itself
provides remotely sensed information about XCO2, and comparison with aircraft profiles
have revealed errors ~ 1 [ppm] (Wunch et al., 2011). Seasonal and site-dependent biases
associated with validation of OCO-2 retrievals via TCCON have been reported (Wunch et al.,
2017). OCO-2 retrievals are additionally corrected for bias by comparing with 4-D CO2 mole
fraction fields from global inverse models, and a small-area approximation, but both methods
are prone to smoothing across fine-scale variability in XCO2 (ODell et al., 2018; Corbin et al.,
2008). While bias correction generally reduces inferred surface flux uncertainty when
retrievals are assimilated in atmospheric inversions (Basu et al., 2013), even small retrieval
errors can lead to large errors in inferred flux (Takagi et al., 2014; Chevallier et al., 2014).”

Thus, a dynamic method to routinely evaluate satellite retrievals is necessary.

This statement does not follow from the previous two paragraphs. Define what is meant by “a
dynamic method”.

We have removed the word dynamic from this sentence.

Other comments:

Figure 7 and lines 360-364: There’s a 4-ppm latitudinal gradient in the column across North
America before and after optimizing biospheric fluxes. This is not “small” from a carbon cycle
perspective and should be detectable from space.

The reviewer has pointed out here, as above, that the original manuscript was not clear enough
in defining the intent of this work. That is, to understand the sensitivities of OCO-2 retrievals
to surface fluxes and the consequent implications of small errors in those data. We have
clarified the text in lines 349-356 of the revised text to reiterate that we are not assessing the
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ability of OCO-2 to characterize large-scale gradients, but to identify smaller changes in NEE,
for e.g., flux adjustments from biospheric flux models.

The revised text (lines 349-356) reads as follows:

“Considering that the vast majority of current inverse modeling or data assimilation systems
used for CO2 flux estimation are designed to correct errors in an a priori estimate, the effective
flux signal is considerably smaller than shown above (right column in Fig. 4). In fact, when
projected onto the total column, we find that the difference between a biospheric prior flux
model (CASA-CMS) and flux optimized using in-situ observations over the continent by the
CT-Lagrange inversion system (using the same prior flux estimate; Hu et al., 2019) for January
and July, 2015 are 0.15 ± 0.38 and 0.09 ±  1.06 [ppm] respectively. Flux adjustment impacts on
XCO2

sim are usually indistinguishable from 0 in January. While a gradient of ~ 3 [ppm] is visible
across the continent in July (Fig. 7), less than a third of simulated retrievals show differences
between prior and optimized flux greater than ± 1 [ppm], when biospheric uptake over North
America is strongest. Errors in terrestrial biosphere models of CO2 flux translate to similarly
small impacts on XCO2, posing questions on the utility of these data currently in evaluating
terrestrial biosphere models.”
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