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 1 

ABSTRACT 2 

Sensitive and accurate detection of sulfur dioxide (SO2) from space is important for monitoring 3 

and estimating global sulfur emissions. Inspired by detection methods applied in the thermal 4 

infrared, we present here a new scheme to retrieve SO2 columns from satellite observations of 5 

ultraviolet back-scattered radiances. The retrieval is based on a measurement error covariance 6 

matrix to fully represent the SO2-free radiance variability, so that the SO2 slant column density is 7 

the only retrieved parameter of the algorithm. We demonstrate this approach, named COBRA, on 8 

measurements from the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Sentinel-9 

5 Precursor (S-5P) satellite. We show that the method reduces significantly both the noise and 10 

biases present in the current TROPOMI operational DOAS SO2 retrievals. The performance of this 11 

technique is also benchmarked against that of the Principal Component Algorithm (PCA) 12 

approach. We find that the quality of the data is similar and even slightly better with the proposed 13 

COBRA approach. The ability of the algorithm to retrieve SO2 accurately is also further supported 14 

by comparison with ground-based observations. We illustrate the great sensitivity of the method 15 

with a high-resolution global SO2 map, considering two and a half years of TROPOMI data. In 16 

addition to the known sources, we detect many new SO2 emission hotspots worldwide. For the 17 

largest sources, we use the COBRA data to estimate SO2 emission rates. Results are comparable 18 

to other recently published TROPOMI-based SO2 emissions estimates, but the associated 19 

uncertainties are significantly lower than with the operational data. Next, for a limited number of 20 

weak sources, we demonstrate the potential of our data for quantifying SO2 emissions with a 21 

detection limit of about 8 kt yr-1, a factor of 4 better than the emissions derived from the Ozone 22 

Monitoring Instrument (OMI). We anticipate that the systematic use of our TROPOMI COBRA 23 

SO2 column data set at a global scale will allow identifying and quantifying missing sources, and 24 

help improving SO2 emission inventories. 25 

 26 

1. INTRODUCTION 27 

Sulfur dioxide (SO2) in the atmosphere rapidly oxidizes into sulfuric acid and sulfate aerosols, 28 

which have environmental effects ranging from local and long-range air pollution to global climate 29 

impact. SO2 is released into the atmosphere from anthropogenic activities, due to fossil fuel 30 
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burning (coal, oil and gas) and smelting, and from natural sources, mainly volcanoes. Satellites 1 

provide a viable means to monitor global SO2 emissions and assess their environmental impacts. 2 

Since the late seventies, SO2 vertical column densities (VCD) are provided by several ultraviolet 3 

(UV) polar-orbiting nadir instruments, namely the Total Ozone Monitoring Spectrometer (TOMS; 4 

Krueger, 1983), Global Ozone Monitoring Experiment (GOME; Eisinger and Burrows, 1998; 5 

Khokhar et al., 2005), SCanning Imaging Absorption spectroMeter for Atmospheric 6 

CHartographY (SCIAMACHY; Afe et al., 2004), Ozone Monitoring Instrument (OMI; Krotkov 7 

et al., 2006; Yang et al., 2007, 2010; Li et al., 2013; Theys et al., 2015), Global Ozone Monitoring 8 

Experiment-2 (GOME-2; Nowlan et al., 2011; Rix et al., 2012; Hörmann et al., 2013), Ozone 9 

Mapping and Profiler Suite (OMPS; Yang et al., 2013, Zhang et al., 2017) and TROPOspheric 10 

Monitoring Instrument (TROPOMI; Theys et al., 2017). From the various datasets, a remarkable 11 

trend emerges in the ability of successive sensors to detect weaker and more localized emissions. 12 

This is in part due to the better spatial resolution and signal-to-noise of the modern UV 13 

spectrometers (see e.g. Fioletov et al., 2013; Theys et al., 2019), but also from advances in retrieval 14 

techniques. In particular, the Principal Component Algorithm (PCA) applied to OMI (Li et al., 15 

2013, 2020a) and OMPS (Zhang et al., 2017) proved to be a very efficient method to reduce 16 

retrieval noise and biases and thus to increase the sensitivity of the retrievals to weak SO2 17 

emissions to 30-40 kt yr-1. This enabled major improvements in bottom-up emissions inventories 18 

(Liu et al., 2018) and detection of missing SO2 emission sources (Fioletov et al., 2016; McLinden 19 

et al., 2016). 20 

TROPOMI, launched in October 2017 onboard the ESA and Copernicus Sentinel-5 Precursor (S-21 

5P) platform, is an atmospheric mission with a dedicated focus on the tropospheric composition 22 

(Veefkind et al., 2012). With a spatial resolution as good as 3.5 x 5.5 km² per ground pixel (3.5 x 23 

7 km² before August 2019), it is specifically designed to monitor atmospheric constituents from 24 

urban to global scales. The first observations of SO2 by TROPOMI were focusing on relatively 25 

large volcanic sources and indeed revealed the great potential of the instrument to inform about 26 

global volcanic SO2 degassing with high resolution and unprecedented sensitivity (Theys et al., 27 

2019; Queier et al. 2019). However, further investigation of anthropogenic and volcanic SO2 28 

sources using TROPOMI revealed problems with the current TROPOMI SO2 retrievals for weak 29 

emission sources (Fioletov et al., 2020). In brief, large-scale and variable VCD biases on the order 30 
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of 0.25 Dobson Unit (DU; 1 DU= 2.69 x 1016 molecules x cm-2) are present in the data, which 1 

limits their use to medium to large SO2 sources only.  2 

The operational TROPOMI SO2 algorithm is based on the Differential Optical Absorption 3 

Spectroscopy technique (DOAS; Platt and Stutz, 2008), and essentially works in three steps 4 

(details are given in Theys et al., 2017): a spectral analysis yielding SO2 slant column densities 5 

(SCD), an empirical background correction of the SCDs and a radiative transfer calculation of air 6 

mass factors (AMF) to convert the corrected SCD into the VCD output (VCD=SCDcor/AMF).  As 7 

a matter of fact, the SO2 SCD retrieval is subject to spectral misfits which can lead to systematic 8 

offsets. These SCD errors are difficult to correct and arise from imperfect DOAS forward 9 

modeling. Here, we propose an alternative spectral fitting approach, named COBRA, which 10 

strongly reduces the SO2 SCD biases for the weak SO2 columns and suppresses the need for the 11 

post-processing background correction. COBRA is akin to the PCA approach, which constitutes 12 

the basis of the OMI and OMPS SO2 operational retrievals (Li et al., 2020b, 2020c). As 13 

demonstrated below, COBRA significantly improves the quality as compared with the current 14 

TROPOMI DOAS operational SO2 product. The analysis of two and a half years of data 15 

oversampled at high resolution reveals many new SO2 emission sources globally, highlighting the 16 

great performance of COBRA in terms of SO2 detection.   17 

The paper is structured as follows. Section 2 describes the algorithm and its practical 18 

implementation. In section 3, SO2 retrievals from COBRA are evaluated against other satellite data 19 

sets, model results and ground-based observations. Section 4 presents long-term averaged global 20 

results. In Section 5, we apply an emission inversion scheme to the COBRA SO2 data set and 21 

compare with previously estimated SO2 emissions from the TROPOMI operational product. New 22 

SO2 emission sources detected by the COBRA are discussed. Conclusions are given in Section 6.  23 

 24 

2. METHODOLOGY 25 

2.1 TROPOMI 26 

In this study, we use observations from the TROPOMI instrument on the Sentinel-5 Precursor 27 

satellite. TROPOMI is a hyperspectral nadir sensor measuring solar radiation backscattered by the 28 

atmosphere and reflected by the Earth, in the ultraviolet, visible, near-infrared and shortwave 29 

infrared wavelength regions. TROPOMI delivers column amounts of minor atmospheric 30 

constituents, such as O3, NO2, SO2, HCHO, CO, CH4, as well as aerosol and cloud information 31 
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(Veefkind et al., 2012). The S-5P satellite is a polar orbiting platform crossing the equator at 1 

13:30h local time. A nearly global coverage is achieved in one day owing to a 2600 km wide 2 

swath. The footprint on the ground of the satellite measurement depends mainly on the across-3 

track position in the swath and on the spectral band. For SO2, the ultraviolet spectral band 3 is 4 

used, and the swath is divided into 450 across-track positions (also referred to as ‘rows’). The 5 

spatial resolution for the center of the swath is approximately 3.5 x 7 km² (across-track x along-6 

track) until 6 August 2019 when the sampling improved to 3.5 x 5.5 km².  7 

For this work, we analyze data measured between 1 April 2018 and 31 December 2020, and solar 8 

zenith angles (SZA) less than 60°. 9 

2.2 Algorithm description 10 

As mentioned above, the operational TROPOMI SO2 algorithm is based on the DOAS technique, 11 

the most widely used method to derive atmospheric trace gas constituents in the UV-visible 12 

spectral range. The inverse problem can be expressed (employing the notation of Rodgers, 2000): 13 

    𝑦 = 𝐾 . 𝑥 +  𝜖            (1) 14 

where y = - log (I /Io) is the optical depth, i.e. the logarithmic ratio of the wavelength calibrated 15 

measured intensity (I) and the reference intensity spectrum (Io) over a given wavelength range, x 16 

is the state vector including SCDs of relevant trace gases and closure fit parameters (e.g. for 17 

broadband effects), K is the forward model matrix with absorption cross-sections and other spectra, 18 

and ϵ is the measurement noise. The solution can be approximated by least-square fitting: 19 

            (2) 20 

where Sϵ  is the measurement error covariance matrix. The latter matrix is most often taken diagonal 21 

(no error correlations) or proportional to unity (unweighted least-square). Eqs. (1) and (2) describe 22 

the simplest DOAS approach and are given here for illustration purpose only. In practice, the 23 

DOAS problem is fundamentally non-linear in many aspects and DOAS software packages, such 24 

as QDOAS (Danckaert et al., 2017), support different non-linear retrieval options (e.g. for 25 

wavelength shift and squeeze, or intensity offset), with the aim to improve the quality of the 26 

retrievals.  27 

For weakly absorbing tropospheric species, retrieval artefacts are frequent with DOAS (notably 28 

for satellite nadir geometry), and are attributed to spectral interferences, imperfect forward model 29 

and incomplete treatment of instrumental effects (e.g., polarization sensitivity). For UV nadir SO2 30 

𝑥̂ = (𝐾𝑇𝑆∈
−1𝐾)−1𝐾𝑇𝑆∈

−1𝑦 
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retrievals in particular, biases in the data arise mainly from strong ozone absorption and imperfect 1 

treatment of the non-elastic Rotational Raman Scattering (Ring) effect. It is generally difficult to 2 

completely remove these offsets even after applying post-processing background corrections 3 

(Theys et al., 2017; Fioletov et al., 2020). 4 

The Covariance-Based Retrieval Algorithm (COBRA) presented here, and illustrated for 5 

TROPOMI measurements, aims at correcting most of the artefacts in the DOAS SO2 SCDs by 6 

optimally retrieving a single parameter: the SO2 SCD. 7 

First introduced by von Clarmann et al. (2001), the retrieval approach was developed by Walker 8 

et al. (2011) for nadir observations of SO2 and NH3 from the Infrared Atmospheric Sounding 9 

Interferometer (IASI). Then, the technique, also known as Hyperspectral Range Index (HRI), has 10 

been further refined and successfully applied to other trace gases and aerosols (e.g., Van Damme 11 

et al., 2014; Franco et al., 2018; Clarisse et al., 2019). The method proved to be very sensitive and 12 

led to superior data quality both in terms of precision and accuracy. Surprisingly, this technique 13 

has, to our knowledge, never been applied in the UV-visible spectral range.  14 

Starting from Eq. 1, we assume the measurement vector can be linearized around a background 15 

SO2-free spectrum 𝑦̅ : 16 

                (3) 17 

with ϵ𝑏𝑔  being the deviation of the SO2-free component of the spectrum relative to the mean 18 

spectrum 𝑦̅, and ϵ is the measurement noise. The SO2 contribution to the measured spectral optical 19 

depth is approximated by the product of the instrument slit convolved absorption cross-section 20 

vector k (expressed in cm²/molecule) and the SO2 slant column density SCD (in molecules/cm²). 21 

Here, we use as input of the retrieval the same SO2 absorption cross-section data (Bogumil et al., 22 

2003) and the same approach for the wavelength calibration of the spectra, as for the operational 23 

TROPOMI SO2 retrievals (see Theys et al., 2017). The only difference is the wavelength interval 24 

of 310.5 – 326 nm (see discussion below).  25 

The basic principle of the method is to consider all contributions to the difference (𝑦 − 𝑦̅) other 26 

than SO2 as an error term (ϵbg + ϵ) with a Gaussian distribution. If one can define an ensemble Y 27 

of N measured SO2-free spectra, representative of the total (ϵbg + ϵ) variability, and characterized 28 

by a mean measurement vector 𝑦̅ and a covariance matrix S:  29 

𝑦 = 𝑦̅ + 𝑘. 𝑆𝐶𝐷 + ϵ𝑏𝑔 + ϵ 
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                  (4) 1 

then the solution of the problem writes as:   2 

          (5) 3 

where 𝑆𝐶𝐷̅̅ ̅̅ ̅̅   i  the eenn O 2 OCD of the en eeble (𝑆𝐶𝐷̅̅ ̅̅ ̅̅ = 0  by definition). The error on the 4 

retrieved OCD i  given by the square root of the error covariance of the solution (Rodgers, 2000): 5 

           (6) 6 

Fundamentally, COBRA generalizes the measurement error covariance matrix of Eq. 2 by 7 

incorporating geophysical background spectral variability (including all cross-correlations), 8 

variability from the atmosphere or induced by instrumental changes.  9 

For spectra where no enhancements of SO2 can be detected, the linearization (Eq. 3) simplifies to 10 

                       (7) 11 

Both sides of the equation have therefore the same probability distribution, and it follows that the 12 

covariance matrix associated with ϵ𝑏𝑔  + ϵ can readily be constructed by applying Eq. 4 on a 13 

representative set of SO2-free spectra. The key is to define the ensemble Y such that 𝑦 − 𝑦̅ cnncel  14 

euch of the  y teentic coeponent  of ϵ𝑏𝑔. 15 

A remarkable feature of COBRA is its simplicity. The SO2 SCD retrieval in Eq. 5 reduces to a 16 

simple dot product between the 𝑦 − 𝑦̅  residue nnd 𝑘𝑇𝑆−1  ( kipping the norenlizntion fnctor 17 

(𝑘𝑇𝑆−1𝑘)−1 ). The vector 𝑘𝑇𝑆−1  essentially contnin  the weight  of ench wnvelength to the 18 

retrieved tnrget coluen neount; the  trength of the eethod relie  in the fnct thnt the e weight  nre 19 

optienlly detereined by the een ureeent  thee elve . Thi  i  in contrn t to the D AO nppronch 20 

which eo tly con ider  nll wnvelength  equnl. Furthereore, D AO nl o nllow  for cro  -tnlk  21 

between the  tnte vector eleeent , which cnn lend to nn incren e of the OCD dntn  cntter (in 22 

pnrticulnr for wenk nb orber ). Thi  i  obviou ly not the cn e for C BRA, n  only n  ingle 23 

pnrneeter i  retrieved, the O 2  lnnt coluen. C BRA hn  other grent advantages that we briefly 24 

outline here:  25 

- Except for the wavelength calibration step, the algorithm does not need a reference 26 

spectrum (Io). Indeed, equations 4 and 5 involve differences of logarithmic intensity ratios 27 

𝑆 =
1

𝑁 − 1
. ∑(𝑦𝑖 − 𝑦̅

𝑁

𝑖=1

)(𝑦𝑖 − 𝑦̅)𝑇 

𝑆𝐶𝐷̂ = 𝑆𝐶𝐷̅̅ ̅̅ ̅̅ + (𝑘𝑇𝑆−1𝑘)−1𝑘𝑇𝑆−1(𝑦 − 𝑦̅) 

𝑆𝐶𝐷̂𝑒𝑟𝑟 = √(𝑘𝑇𝑆−1𝑘)−1 

𝑦 − 𝑦̅ =  ϵ𝑏𝑔 + ϵ 
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and thus Io cancels out. Following the same logic, any constant spectral feature 1 

multiplicative to the radiance and shared by the ensemble Y will have no influence on the 2 

retrieved SCDs. 3 

- The analysis of individual spectra with COBRA does not require the fit of a wavelength 4 

shift and squeeze, a common (and often time-consuming) practice in DOAS. Beirle et al 5 

(2013) have shown that the effects of spectral shift and squeeze can be linearized and 6 

represented by pseudo-absorbers. Therefore, their contributions (and variability) to the 7 

optical depth are accounted for by the covariance matrix. 8 

- The COBRA results display low noise. This is a direct result of the COBRA approach in 9 

that the wavelengths with the largest background radiance variability will have the lowest 10 

weights on the retrieved SCD (Eq. 5).  11 

- Very small biases are observed in the COBRA data (see next section). As a consequence, 12 

an empirical SCD background correction is not needed. 13 

- The approach works in principle for any wavelength range. This allows flexibility in case 14 

of lower instrumental performance for certain wavelength regions. 15 

- The covariance matrix S and mean measurement vector 𝑦̅ can be pre-calculated and the 16 

implementation of COBRA then becomes very efficient in terms of processing time (about 17 

an order of magnitude faster than DOAS non-linear schemes). 18 

However, the practical implementation for COBRA require some caution. The main difficulty lies 19 

in the definition of the ensemble Y used to construct S (and 𝑦̅). The sample of N spectra should be 20 

highly representative of the measurement conditions under consideration, otherwise offsets in the 21 

SCDs will likely occur. Also, in principle, the spectra should be uncontaminated by absorption of 22 

the trace gas of interest. Finally, N should be large enough to insure statistically meaningful 23 

covariance results.  24 

It should be stressed that COBRA is close in concept to the PCA SO2 algorithm of Li et al. (2013, 25 

2020a). In brief, the PCA scheme characterizes the background radiance variability using a number 26 

of leading PC spectra (typically 20-30), instead of a covariance matrix. The SO2 column is then 27 

retrieved from the measured spectrum along with the PCs fitted parameters. In comparison, 28 

COBRA removes the need of having many parameters to fit. Only the SO2 slant column density is 29 

determined and the background radiance variability is fully described by the covariance matrix. In 30 

a sense, COBRA can be considered as a generalization of the PCA scheme. It is therefore of great 31 
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interest to compare the two methods (see section 3.1). Having this perspective in mind, the 1 

parameters of COBRA for the retrieval of SO2 from TROPOMI have been largely aligned with 2 

the PCA algorithm, to facilitate the comparison.  3 

The input spectra for the covariance matrix calculation are analyzed separately for each TROPOMI 4 

row, to consider the row-dependent characteristics of the instrument. We also treat each orbit 5 

individually to account best for the orbit-to-orbit variability. The data are first screened for solar 6 

zenith angles larger than 60°, and to cope with the latitudinal dependence of the total ozone 7 

absorption and of the Ring effect, the data are divided into 6 equal and non-overlapping along-8 

track segments. For each segment, an initial covariance matrix S is derived and initial estimates of 9 

SO2 SCDs are inverted through equation 5. In a second step, improved estimates of S and SO2 10 

SCDs are obtained iteratively by removing SO2 contaminated spectra from the ensemble Y. To do 11 

this, we use the ratio of the SO2 SCD to its retrieval uncertainty (Eqs. 5 and 6), referred to as the 12 

signal to noise ratio (SNR):                                                                                                                                                                         13 

   𝑆𝑁𝑅 =  
𝑘𝑇𝑆−1.(𝑦−𝑦̅)

√𝑘𝑇𝑆−1𝑘
         (8) 14 

A fixed SNR upper value of 1.5 is used for the filtering. This is a rather strict value but tests over 15 

pristine regions indicate that this choice does not introduce biases in the SCDs data. The number 16 

of iterations is set to 4 but in general we found small changes in the results already after 2 iterations. 17 

A lower limit on the number N of SO2-free spectra is set to 50. If this limit is reached, because of 18 

a major volcanic eruption for example, the SO2 SCD retrieval is entirely skipped for the 19 

corresponding row-segment pair. This is a limitation of the current algorithm version, but in the 20 

future a better handling of this problem would be possible, e.g. by using a covariance matrix 21 

fallback constructed from previously processed orbits. However, the amount of data skipped is 22 

small, on the order of 0.025% in total. 23 

To help the comparison with the PCA SO2 algorithm, we have used a spectral window from 310.5 24 

to 326 nm (instead of 312-326 nm for the TROPOMI operational DOAS product), which includes 25 

the same strong SO2 absorption bands as in the spectral range 310.5-340 nm used by Li et al. 26 

(2013). This choice is also motivated by the inclusion of the intense absorption band at 310.8 nm 27 

which leads to a further reduction of the noise on the SO2 column by about 25%. Note that initial 28 

tests with the TROPOMI operational algorithm using the 310.5-326 nm window were actually not 29 

very successful (large SO2 SCD offsets). On the contrary, with COBRA, we tested both 30 
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wavelength ranges (310.5-326 nm and 312-326 nm) and found only small differences between the 1 

retrieved SO2 column patterns (Fig. S1). 2 

In the following sections, SO2 vertical columns will be presented. For the SCD to VCD conversion, 3 

we have used air mass factors from the operational product. Note that doing so is not strictly valid 4 

because one should expect lower AMFs due to the change in fitting window (from 310.5 to 326 5 

nm to 312-326 nm). To account for this, we have applied a constant scaling factor of 1.15 to the 6 

retrieved SO2 VCDs. Based on radiative transfer calculations, we found this to be a good first order 7 

correction. However, in the future, AMFs shall be recalculated properly. For the cloud filtering 8 

and AMF cloud correction, the operational cloud product OCRA/ROCINN CRB is used (Loyola 9 

et al., 2018; Compernolle et al., 2020). 10 

As a final note, it should be reminded that the operational TROPOMI algorithm also handles the 11 

retrieval of large SO2 VCDs, by making use of multiple fitting windows (as described in Theys et 12 

al., 2017). In this study, we have not applied COBRA on the alternative fitting windows. While 13 

there is no fundamental limitation to do so, COBRA is relevant mostly for low SO2 columns. All 14 

the results presented in the next sections are for situations where the SO2 VCDs are below 5 DU. 15 

 16 

3. VERIFICATION OF THE RETRIEVALS 17 

 18 

3.1 Comparison to satellite observations and CAMS 19 

 20 

In order to evaluate the SO2 data from COBRA, it is interesting to first investigate the bias and 21 

data scatter over a clean region and compare with the operational product (hereafter referred to as 22 

‘D AO’). In Figure 1, the mean and standard deviation of SO2 slant columns over an equatorial 23 

Pacific region are shown for one particular orbit, as a function of the TROPOMI row. As can be 24 

seen from Fig. 1a, the DOAS data suffer from SCD offsets in the range of ± 0.25 DU, despite the 25 

background correction applied. These offsets have a low-frequency dependence component with 26 

the across-track position which is not well understood, but also vary sharply from one row to the 27 

next (leading to stripes in the SO2 maps). Given that the background correction is applied 28 

separately for each row, this behavior points to limitations in the correction approach. In contrast, 29 

the COBRA results have very small SCD biases (mostly below ± 0.025 DU) and no noticeable 30 
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across-track dependence. It follows that COBRA is a very powerful bias self-correction and 1 

destriping scheme. In Fig. 1b, the standard deviations of the SO2 SCD values are shown for both 2 

algorithms. Compared to DOAS, it is clear that the data scatter is significantly improved with 3 

COBRA, by a factor of 2. It is understood that part of this noise reduction is due to the change in 4 

fitting window (section 2.2), but most of the improvement (~75%) is from the COBRA approach. 5 

From Fig. 1, it is clear that the combined reduction of bias and data scatter provided by COBRA 6 

over the DOAS results is very significant. From a practical point of view, a factor of 2 7 

improvement of the data scatter means 4 times less pixels to average to reach a certain noise level.  8 

In Fig. 1b, we note also a distinct increase in data scatter for the outermost rows, for both DOAS 9 

and COBRA. This feature is due to difference in detector signal binning at the swath edges which 10 

leads to an increase in radiance shot noise. To keep the data of the best quality, we will not use the 11 

50 outermost rows in the following of the paper.  12 

 13 
Figure 1. (a) Mean SO2 slant columns from (black) DOAS (background corrected) and (red) 14 

COBRA for one orbit (10394 on 15 October 2019) over the equatorial Pacific region (10°S-10°N), 15 

as a function of the across-track position of TROPOMI, (b) same as (a) for the SO2 SCD standard 16 

deviation.  17 

 18 
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Figure 2 compares the DOAS and COBRA seasonal averaged SO2 VCD maps from September to 1 

November 2019. The data are gridded at a resolution of 0.1° x 0.1° and smoothed by a 2-2 

dimensional 5-points box car function. Both DOAS and COBRA results are extracted using 3 

identical pixel selection criteria: SZA less than 60°, radiometric cloud fraction lower than 30% and 4 

TROPOMI rows 26-424. From Fig. 2, several artefacts are evident in the DOAS product. Negative 5 

values are found in the tropics and a large scale positive bias at mid-latitudes. In comparison, 6 

COBRA remarkably solves all the systematic biases found in the operational product whereas the 7 

signal from major SO2 sources (e.g. in China, India, Middle-East, South Africa, Central and South 8 

America) is nicely preserved. Note that for individual pixels with unambiguous detection of SO2 9 

(typically SO2 VCDs larger than 2 DU), the agreement between DOAS and COBRA is excellent 10 

(see e.g., Fig. S2). In Fig. 2, a closer look at the COBRA SO2 map still reveals some negative 11 

values for specific locations. For instance, the Garabogazköl Basin near the Caspian Sea is 12 

particularly visible. It is characterized by a salt flat with a high albedo. This surface effect is 13 

apparently poorly represented in the radiance covariance, and leads to the negative values observed 14 

in the data.  15 

Retrieval results using the new COBRA are also evaluated in Fig. 2 against a scientific TROPOMI 16 

SO2 product generated using the PCA approach. The settings of the experimental TROPOMI PCA 17 

SO2 algorithm, including the spectral range and number of iterations, are identical to the 18 

operational OMI algorithm with the following exceptions: 1) TROPOMI pixels from each row are 19 

grouped into sectors of 20-degree latitude bands, instead of three sectors as in the OMI algorithm; 20 

2) a third degree polynomial is removed from each Sun-normalized radiance spectrum before PCA 21 

analysis; 3) at maximum 20 PCs are used in the fitting instead of 30 in the current OMI algorithm 22 

(Li et al., 2020a); and 4) no attempts were made to reduce TROPOMI retrieval noise over the SAA 23 

affected areas. For this exercise, the PCA scheme uses as input the same SO2 absorption cross-24 

section data (Bogumil et al., 2003) as for the DOAS and COBRA retrievals, and the same selection 25 

of pixels. Figure 2 also compares the TROPOMI SO2 columns (from DOAS, COBRA and PCA) 26 

to the operational OMPS SO2 PCA retrievals NMSO2_PCA_L2 V2 (Zhang et al., 2017; Li et al., 27 

2020c). Although OMPS has a coarser resolution (50 x 50 km²) than TROPOMI, it provides 28 

nonetheless a useful reference data because it operates on the Suomi National Polar-orbiting 29 

Partnership (SNPP) satellite which flies in loose formation with S-5P (i.e. 3-5 minutes difference 30 

of overpass time). To allow a meaningful comparison, the OMPS pixels were selected similarly as 31 
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TROPOMI, i.e. with cloud radiance fraction lower than 30% and OMPS across-track positions 3-1 

34. Note finally that to avoid discrepancies due to different a-priori profiles in the TROPOMI and 2 

OMPS retrievals, a fixed AMF of 0.4 was used for all four data sets. As can be seen from Fig.2, 3 

an overall excellent agreement is found between COBRA and PCA retrievals, the observed SO2 4 

spatial distributions being essentially the same.  However, the OMPS SO2 data set has different 5 

patterns over China (possibly due to sampling differences), and also appears noisier than the 6 

TROPOMI results (as expected from the smaller number of pixels). When comparing the 7 

TROPOMI COBRA and PCA maps, very consistent results are found. Yet, the quality of COBRA 8 

seems slightly better than the PCA retrievals. In particular, COBRA is much less sensitive to the 9 

South Atlantic Anomaly than PCA data, which exhibit many outliers in the corresponding region. 10 

At mid-latitudes, there is also a slight positive bias (of about +0.1 DU on average) and higher noise 11 

in the PCA results compared to COBRA.  12 
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 1 
Figure 2. Comparison of seasonal mean SO2 columns for September to November 2019 retrieved 2 

from TROPOMI DOAS, COBRA, PCA and OMPS PCA algorithms (from top to bottom). 3 

Consistent pixel selection criteria, gridding and retrieval settings are applied (see text). For all four 4 

data sets, a fixed AMF of 0.4 is applied. 5 
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We have estimated the data scatter for the three TROPOMI data sets, based on measurements from 1 

the same orbit over the Pacific as Fig. 1. Results are shown in Figure 3, as a function of latitude. 2 

We find that COBRA has a SCD noise level 20-25% lower than the PCA retrievals, and twice 3 

better than DOAS (as in Fig. 1). Translating the numbers of Figure 3 in terms of vertical columns 4 

for a typical pollution scenario, we estimate the retrieval precision for individual pixels typically 5 

to be 0.5 - 1 DU for COBRA.   6 

 7 
 8 

Figure 3. Standard deviation of the SO2 slant columns as retrieved from DOAS (black), PCA (blue) 9 

and COBRA (red) for one TROPOMI orbit (10394 on 15 October 2019, same as Fig. 1) for rows 10 

26-424, as a function of latitude (for 5° bins). 11 

To further evaluate the overall quality of the COBRA retrievals, the SO2 VCDs can also be 12 

compared to model data. Here, we have used the output of the Copernicus Atmosphere Monitoring 13 

Service (CAMS; https://atmosphere.copernicus.eu/) regional model, for September to November 14 

2019. The CAMS regional air quality production is based on an ensemble of 9 European air quality 15 

models that are run at a resolution of 0.1° and produce 4-day, daily forecasts of the main 16 

atmospheric pollutants, including SO2.  The forecasts and analyses from all 9 models are combined 17 
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in calculating the median value of the individual outputs, which is designated as the ENSEMBLE 1 

output and is the field used in this study. The CAMS regional ensemble data was obtained from 2 

the Copernicus Atmosphere Data Store (ADS, https://atmosphere.copernicus.eu/data). More 3 

information about the CAMS regional system can be found on the ECMWF website 4 

(https://confluence.ecmwf.int/display/CKB/CAMS+Regional:+European+air+quality+analysis+a5 

nd+forecast+data+documentation). The CAMS regional system used the CAMS-REG-6 

AP_v2_2_1 emissions (reference year: 2015) between June 2019 and February 2020, and the 7 

updated CAMS-REG-AP_v3_1 emissions dataset (reference year: 2016) since February 2020.  8 

In Figure 4, seasonal regional maps of S-5P SO2 VCDs over Eastern Europe from the DOAS and 9 

COBRA schemes are compared to the output of the CAMS regional model, for September to 10 

November 2019. From the maps, it is clear that the COBRA results are in much better agreement 11 

with the CAMS analysis than the DOAS data. Owing to the quasi-absence of bias and the low 12 

noise level, the COBRA data allows better isolation of the emission sources. The agreement 13 

between COBRA and CAMS is however not perfect and there are several explanations for this. 14 

Most of the SO2 emissions in this region are from coal-fired power plants and the emission 15 

inventory used by CAMS is likely reflecting neither the actual activity nor the emission mitigation 16 

solution (e.g. SO2 scrubbers) at each power plant. Noteworthy is also the absence of SO2 emissions 17 

from Mt. Etna in CAMS. Secondly, the AMFs used here are calculated with SO2 profiles from 18 

TM5, a different model with a coarser resolution (1° x 1°) than CAMS regional. Therefore the 19 

COBRA and CAMS SO2 columns cannot be strictly compared.  Nevertheless, the comparison in 20 

Fig. 4 is encouraging. In the future, the COBRA SO2 retrievals together with the corresponding 21 

column averaging kernels (Eskes and Boersma, 2003) could be ingested in the CAMS assimilation 22 

system to better constrain the model SO2 output and emission estimates. 23 

https://atmosphere.copernicus.eu/data
https://confluence.ecmwf.int/display/CKB/CAMS+Regional:+European+air+quality+analysis+and+forecast+data+documentation
https://confluence.ecmwf.int/display/CKB/CAMS+Regional:+European+air+quality+analysis+and+forecast+data+documentation
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1 

Figure 4. Seasonal mean SO2 columns for September to November 2019 from (left-center) 2 

TROPOMI DOAS and COBRA retrievals, and (right) simulated by the CAMS regional model. 3 

The CAMS data are displayed at the 0.1° x 0.1° native resolution. 4 

3.2 Comparison to ground-based MAX-DOAS observations  5 

 6 

The Multi-Axis DOAS (MAX-DOAS) measurement technique is an established method to retrieve 7 

tropospheric trace gas columns and vertical profiles from a sequence of spectral observations 8 

performed at various elevation angles above the horizon (Hönninger and Platt, 2002; Tirpitz et al., 9 

2021). MAX-DOAS measurements leverage the fact that low elevation measurements have 10 

enhanced sensitivity to atmospheric pollutants in the boundary layer and that the combination of 11 

the different elevations carries information on the vertical distribution of the trace gas of interest 12 

as well as aerosols. The simplest estimation of the tropospheric VCD from MAX-DOAS 13 

measurements is obtained by scaling the differential SCD at a given elevation angle (often 15° or 14 

30°) with an AMF assuming a geometrical light path through the trace gas layer. Recently, more 15 

sophisticated approaches have been developed to retrieve the concentration profile in the 16 

troposphere using multiple elevation measurements.  17 

Here we compare our TROPOMI SO2 VCD data to MAX-DOAS observations at two sites, both 18 

characterized by relatively low SO2 columns: Xianghe and Mohali (Table 1). In general, the 19 
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different MAX-DOAS instruments and SO2 retrievals share common characteristics, practices and 1 

approaches, and the reader is referred to the publications listed in Table 1 for more detailed 2 

information.  3 

For the comparison, we have used a common set of selection criteria for the satellite data. For each 4 

day, we selected the TROPOMI pixels within a 25 km radius circle around the station of interest, 5 

a strict radiometric cloud fraction threshold of 20%, SZA lower than 60° and AMF larger than 0.2. 6 

If the number of retained pixels is larger than 10 then the mean SO2 VCD is calculated and 7 

compared to the averaged SO2 column for the MAX-DOAS measurements within ±1 hour of the 8 

S-5P overpass time.  9 

Regarding the ground-based retrievals, the SO2 VCDs are estimated, for Mohali, using the 15° 10 

elevation SO2 SCDs and geometrical AMFs. Conversely, the retrieved data for Xianghe consist of 11 

SO2 profiles. These are integrated along the vertical to provide the VCDs. Moreover, to make the 12 

comparison between MAX-DOAS and TROPOMI more consistent, we have rescaled the 13 

TROPOMI VCDs using the satellite averaging kernels (Eskes and Boersma, 2003) and the MAX-14 

DOAS SO2 profiles at Xianghe.  15 

 16 

Table 1. Summary of SO2 VCDs comparison 17 

 18 

Station Reference MAX-DOAS 

VCD 

calculation 

Period Mean SO2 VCD (DU) 

 for SZA<50° (50°<SZA<60°) 

MAX-

DOAS 

S-5P 

COBRA 

S-5P 

DOAS 

Xianghe, China 

39.77°N 117°E  

Wang et 

al. (2014) 

Integrated 

profile 

01.2020-

10.2020 

0.2 (0.28) 0.21 (0.34) 0.34 (0.77) 

Mohali, India 

30.67°N 76.74°E  

Kumar et 

al. (2020) 

15° elevation 

(geometrical) 

05.2019-

10.2020 

0.21 (0.18) 0.18 (0.26) 

 

0.16 (0.50) 
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The comparison results between COBRA and MAX-DOAS measurements are shown in Figure 5a 20 

and 5b, for Xianghe and Mohali, respectively. Overall, the agreement between COBRA and MAX-21 

DOAS data is very good, keeping in mind that the levels of SO2 columns are quite low. The slopes 22 

of the regression lines are close to unity. In Table 1, the mean SO2 columns from MAX-DOAS, 23 

TROPOMI COBRA and DOAS retrievals are given at each station and for different SZAs. A 24 

striking feature of the comparison is that the COBRA results show similar good agreements over 25 
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a wide range of SZA. It further supports the idea that COBRA yields unbiased results over varying 1 

observation conditions. This is in contrast to the DOAS product which is clearly biased high for 2 

high SZA. For completeness, the comparison results between TROPOMI DOAS and MAX-DOAS 3 

measurements are shown in Fig. S3, for both Xianghe and Mohali stations. The agreement is 4 

clearly not as good as for the COBRA vs MAX-DOAS comparison, both in terms of the correlation 5 

coefficients and slopes of the regression lines. 6 

 7 
Figure 5. (left) Comparison of monthly mean SO2 columns from MAX-DOAS and TROPOMI 8 

COBRA for (a) Xianghe, and (b) Mohali. The grey and pale red dots correspond to the individual 9 

days. (right) Scatter plots of monthly mean SO2 columns of TROPOMI COBRA vs MAX-DOAS 10 

observations. Error bars are the standard errors on the monthly average SO2 columns. The 11 

correlation coefficient and slope of the regression line are given as an inset for each plot. 12 

 13 

 14 

 15 

 16 

 17 

 18 
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4. GLOBAL RESULTS 1 

 2 

In this section, we present long-term global results from COBRA, based on two and a half years 3 

(April 2018 – December 2020) of cloud-free TROPOMI data (radiometric cloud fraction less than 4 

30%). Using an oversampling technique, a global average SO2 column map at 0.015° x 0.015° 5 

resolution was obtained and smoothed by a 2-dimensional 10-points box car function. Figure 6 6 

shows the resulting SO2 distribution for specific regions, over East China, India, the Middle East, 7 

South America, South Africa, US and Europe (the global map is also available in the form of a 8 

Google Earth /geotiff file, as supplementary material). Figure 6 also shows the locations of the 9 

SO2 sources based on the latest OMI 2005-2019 catalogue (Fioletov et al., 2016), with a total of 10 

588 sites, including power plants, smelters, oil and gas industry sources, and volcanoes. As can be 11 

seen, many of the sources of the catalogue are easily identified as SO2 hotspots on the map. 12 

Conversely, there is also a significant number of sources in the inventory with no detectable SO2 13 

in the TROPOMI data, but one should keep in mind that the catalogue gathers emission sources 14 

since the beginning of the OMI data record in 2005 and several of these sources have ceased 15 

operations or decreased drastically their emissions since then (e.g. due to the operation of SO2 16 

scrubbers in coal power plants). To help identifying those sources, Figure 6 shows with a different 17 

marker the sources detected by OMI for 2018-2019 (i.e. the sources with emissions above the 18 

detection limit, as in Fioletov et al. (2016) and McLinden et al. (2016); see also Section 5.2). This 19 

is also helpful to highlight the differences in sensitivity, as many sources are detected by 20 

TROPOMI but not by OMI. 21 

Generally speaking, the SO2 maps of Figure 6 are very detailed. Biases over clean regions are 22 

remarkably low, and emissions-related patterns with SO2 VCDs less than 0.25 DU are clearly 23 

visible in many places. By scrutinizing the SO2 distributions, one can identify numerous sources 24 

from the current catalogue but also several potentially new source regions. However, some care 25 

must be taken in attributing new sources and relate this to the improved sensitivity of TROPOMI 26 

COBRA. First, the catalogue is arguably not resolving well the individual sources for dense 27 

regions (e.g., in East China and India) and, as a matter of fact, typically reports a total emission 28 

estimate of a point-like source for what is in reality a cluster of sources. While the algorithm to 29 

handle such clusters of sources exists (Fioletov et al., 2017), it has not been implemented in the 30 

catalogue yet. Second, the SO2 catalogue is being populated on a best-effort basis, and a number 31 

of emission sources might be missing, in particular for emerging countries where industrial 32 
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infrastructures are built quickly. Third, SO2 outflow from the strong sources - or clusters of sources 1 

- can lead to variations in the map and thus fictitious emission sources. Finally, retrieval artefacts, 2 

measurement noise or sampling related issues can also lead to false sources identification. Note 3 

that a comprehensive identification and classification of new sources from the COBRA SO2 data 4 

is not the scope of the present study. Here, we aim at discussing plausible new SO2 sources (i.e. 5 

not in the OMI catalogue). In Section 5.2, we will further demonstrate the excellent performance 6 

of COBRA to detect very weak emissions, for a limited number of sources.   7 

The new identified sources are characterized by low SO2 column levels in the range 0.05 - 0.2 DU. 8 

For instance, in Fig. 6a we observe hotspots of SO2 from power plants (mostly coal but also likely 9 

gas) in North- and South-Korea, northern Vietnam (near Haiphong), several Chinese provinces 10 

(e.g., Hubei, Guangxi, Guangdong) and along the coast of China. In Fig. 6b, several weak emission 11 

sources can be isolated in India (e.g., over the western coast and the Indo-Gangetic plain), Pakistan, 12 

Bangladesh and Sri Lanka (near the city of Colombo). In the Middle East (Fig. 6c), most of the 13 

SO2 emissions are from oil and gas related industries, like power plants, gas flaring and refineries. 14 

Examples of weak SO2 emissions can be found in Saudi Arabia, Oman, Egypt, Syria (near the city 15 

of Damascus) and Iran. In South America (Fig. 6d), new emission sources are popping up, notably, 16 

in Brazil (near Rio de Janeiro, São Paulo and Porto Alegre), and on both sides of the Andes (in 17 

Chile and Argentina). In South Africa (Fig. 6e), in addition to the strong emissions from the coal 18 

power plants of the Highveld, a clear SO2 signal is detected over Cape town. Interestingly, the 19 

measured SO2 distribution nicely matches the orography setting. In the US (Fig. 6f), the most 20 

striking emission region is the state of California, with enhanced SO2 over the Central Valley and 21 

the city of Los Angeles. Over the central and eastern parts of the US, the emissions from power 22 

plants have declined dramatically over the last 15 years (Krotkov et al., 2016). However, the data 23 

still show enhanced SO2 over some of them. In Europe (Fig. 6g), most of the observed enhanced 24 

SO2 correspond to sources already in the catalogue. Still, a number of small spots are found e.g., 25 

in eastern Europe (Romania, Serbia, Kosovo, Hungary), Germany (near Leipzig), Turkey and 26 

Tunisia (Gulf of Gabes). Interestingly, enhanced SO2 is also observed over the Gibraltar strait and 27 

Red sea which might result from shipping emissions.  28 

Overall, the SO2 maps of Fig. 6 nicely illustrate the great ability of TROPOMI to detect weak SO2 29 

point emissions sources when analyzed using a sensitive approach as COBRA. Using Google Earth 30 

imagery and information on industrial facilities location, we were able to confirm that many 31 
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features in the SO2 map are real sources. For this, we have also compared our SO2 data to 1 

tropospheric NO2 column maps from TROPOMI. An example of comparison is shown in Fig. S4 2 

for a region over Central Asia. There, the SO2 emissions sources in the catalogue are mostly from 3 

coal power plants and smelters, in the Xinjiang province (China) and east Kazakhstan. As can be 4 

seen in Fig. S4, several other SO2 emission hotspots are detected (notably in the Xinjiang province) 5 

which clearly coincide with locations with enhanced tropospheric NO2.  6 

Nevertheless, several patterns in the SO2 map (Fig. 6) are hard to relate to point source emissions. 7 

In particular, the SO2 signal observed over Cape town (Fig. 6e) and Los Angeles (Fig. 6f) could be 8 

due to area sources rather than point emissions. Over South America (Fig. 6d) and eastern US (Fig. 9 

6f), the apparent SO2 background is intriguing. It is unclear whether this could be due to real SO2 10 

emissions or not. We also identify several artefacts in the data. Unsurprisingly, biases in the data 11 

occur for specific conditions which are under-sampled or not optimally represented by the 12 

covariance matrix. These are most often surface-related effects (due to peculiar albedo or elevated 13 

terrain). One illustration of this problem is given in Fig. 6c, over the Nile Valley. Although some 14 

real SO2 emissions are found in the area, with SO2 VCDs larger than ~0.1 DU, there are also 15 

unexpected enhancements in the SO2 column that follow the Nile River. These are probably due 16 

to the very dark surfaces there. Similarly, elevated values are also found further South in Sudan 17 

and Ethiopia, over vegetated scenes. However, the resulting SO2 VCD biases are overall very 18 

small, typically less than 0.04 DU (~ 1 x 1015 molecules/cm²), and can be suppressed by a local 19 

bias correction or more sophisticated approaches.  20 

As mentioned above, the attribution of new sources based on SO2 maps is not straightforward. 21 

Efficient space-based techniques do exist, to isolate sources and estimate their emissions (Fioletov 22 

et al., 2015; McLinden et al., 2016; Clarisse et al., 2019). However, applying such methods 23 

systematically to the TROPOMI COBRA SO2 data goes beyond the scope of this paper. Instead, 24 

in the next section, we will estimate the SO2 emissions for the known largest sources, and 25 

demonstrate the potential of COBRA for the retrieval of weak emissions, for a limited number of 26 

new sites. 27 
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Figure 6.  Averaged SO2 column (in DU) for April 2018 to December 2020 over (a) East China, (b) 1 

India, (c) the Middle East, (d) South America, (e) South Africa, (f) US and (g) Europe. The black 2 

circles mark the locations of SO2 sources detected by OMI (in bold for the 2018-2019 period, see 3 

text). Due to the massive eruption of Raikoke on 21 June 2019, all data in the northern hemisphere, 4 

for the 3 months period after the eruption, are filtered out.  5 
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 1 
Figure 6. Continued. 2 
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 1 
 2 

Figure 6. Continued. The gray lines are the topography isolines (in meter). Note that to further 3 

reduce the data scatter, the SO2 map was smoothed by a 2-dimensional 20-points box car function 4 

(instead of 10-points function for the other sub-figures). 5 
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Figure 6. Continued. 3 
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5. EMISSIONS ESTIMATES 1 

 2 

Satellite observations are being increasingly used to estimate SO2 emissions. In particular, new 3 

methods have been very successful in deriving reliable emission rates, and even detecting missing 4 

sources, by combining satellite SO2 columns and wind information, without the need of 5 

atmospheric chemistry transport models (e.g., Beirle et al., 2014; Fioletov et al., 2016, 2017, 2020; 6 

McLinden et al., 2016; Carn et al., 2017). These techniques have been used to derive global SO2 7 

emissions inventory from OMI observations (Liu et al., 2018). Recently, Fioletov et al. (2020) 8 

presented an analysis using the TROPOMI operational SO2 product and found overall consistent 9 

results with the OMI emissions estimates. The TROPOMI-based emissions uncertainties were 10 

found a factor of 1.5 - 2 lower than the ones from OMI. In this section, we repeat the same analysis 11 

using the COBRA SO2 retrievals and investigate the added value of COBRA for the estimation of 12 

SO2 emissions. The details of the inversion technique can be found in Fioletov et al. (2015) and 13 

references above.  14 

In brief, the method considers a potential point source and apply a wind rotation of the satellite 15 

measured SO2 VCDs around this location. This first step enables to align all plume dispersion 16 

patterns along a fixed direction and leads to an improved SO2 detection limit. By contrasting the 17 

upwind and downwind averaged SO2 columns, the wind rotation procedure allows to confirm 18 

whether the test location is a real emission source and also to correct for a possible bias in the data. 19 

Note that for this first step, the retrieved SO2 VCDs are rescaled using site-specific AMFs so that 20 

realistic SO2 emission profile shapes (based on the elevation of the site and climatological 21 

boundary-layer height) are used for all analyzed sources.  22 

The second part of the retrieval method deals with the emission estimate itself. The averaged 23 

downwind SO2 field is modelled by an exponential modified Gaussian function which accounts 24 

for the SO2 total mass, e-folding time and plume width. From the fitted parameters, the average 25 

SO2 emission rate can be derived directly. Here the baseline inversion is however not to fit all three 26 

parameters but rather to prescribe the e-folding time and plume width, and therefore the only 27 

parameter derived from the fit is the SO2 total mass which is directly proportional to the SO2 28 

emission rate.  29 

 30 

 31 

 32 
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 1 

5.1 SO2 emissions for large sources 2 

The method was applied to the SO2 data from COBRA for 274 large emissions sources, including 3 

power plants, volcanoes, oil and gas sources and smelters, distributed worldwide. In Fig. 7a, the 4 

results are compared to the analysis of Fioletov et al. (2020) using the TROPOMI DOAS product, 5 

for the period from April 2018 to March 2019. 6 

 7 

 8 
Figure 7. (a) Estimated SO2 emissions from TROPOMI, based on the COBRA and DOAS 9 

algorithms analyzed for power plants, volcanoes, oil and gas industries, smelters sources. (b) 10 

Ratios of the estimated emissions and the corresponding uncertainties. The size of the marker is 11 

proportional to the average of COBRA and DOAS (a) ratios between emission value to its 12 

corresponding uncertainty, (b) estimated SO2 emissions. 13 

 14 

In general, the emission estimates from COBRA and DOAS are fairly consistent for all four source 15 

types. For two-thirds of all sources, the differences between DOAS and COBRA emission 16 

estimates are within ±3 times the standard deviations of the DOAS-based emissions. However, it 17 

was found that the local bias in the satellite data (as derived from the upwind SO2 columns) are 18 

much higher with DOAS (~0.25 DU) than with COBRA (~ 0.05 DU), and that the large differences 19 

between DOAS and COBRA emission estimates for some sources, are related to problems with 20 

the DOAS algorithm. Also, as result of the large improvement in the noise level, the estimated 21 
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emissions uncertainties are significantly improved with COBRA compared to DOAS, by 20-50% 1 

on average (see Fig. 7b).  2 

It should be emphasized though that the improvement of emission uncertainties depends on the 3 

emission level. The sources considered here are relatively large sources that have been previously 4 

detected by OMI. The TROPOMI COBRA SO2 data set presented in this study combines the 5 

advantages of high spatial resolution, low noise level and almost no bias. It has therefore the 6 

potential to detect weaker sources (as shown in Sect. 4).  7 

5.2. Detection of weak emissions 8 

It is enlightening to estimate the lowest level of SO2 emission detectable by COBRA.  Clearly, it 9 

is expected to be dependent on the observation conditions and generally speaking the best detection 10 

limit is obtained for sites with low noise on the SO2 SCDs and the highest measurement sensitivity 11 

(i.e. high AMFs). These sites are found at low latitudes and in particular at high elevations or for 12 

high albedos. To estimate the emission detection limit, we define the statistical significance of an 13 

emission signal as three times its standard error. Based on the global sources presented above 14 

(section 5.1), we performed statistics using this metric. To avoid biases by the strongest sources, 15 

we only considered the sources with estimated emissions less than 50 kt y-1. The resulting detection 16 

limit values are found in the range between 4 and 11 kt y-1 depending on the AMF, with a mean 17 

value of 8 kt y-1.  It is important to realize that this limit of detection is remarkably low, at least 18 

twice better than using TROPOMI DOAS data. It is also a factor of 4 smaller than the detection 19 

limit of 30-40 kt y-1 offered by OMI for the first years of operation (Fioletov et al., 2016; McLinden 20 

et al., 2016). This suggests that the TROPOMI COBRA implementation is excellent in exploiting 21 

the gain in spatial resolution of TROPOMI compared to OMI (~16 times smaller pixel sizes). This 22 

finding is supported by the fact that the noise levels for individual pixels for TROPOMI COBRA 23 

and OMI PCA VCDs are similar (not shown; see also section 3 of Fioletov et al., 2020).  24 

In the following, we demonstrate the potential of the TROPOMI COBRA SO2 data set to detect 25 

and quantify weak emissions. For this, we use a slightly adapted version of the inversion technique 26 

of section 5.1, and illustrate the method on a selection of new emission sources.  27 

The region of interest is the Dhofar governorate in southern Oman. There, the exploitation of oil 28 

and gas fields is growing fast, with a number of rapidly evolving projects of exploration and 29 
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production. In Figure 8 (left column), the yearly averaged TROPOMI SO2 maps over South Oman 1 

are shown for 2018-2020. One can clearly identify and isolate 3 main emission locations, namely 2 

the Rabab Harwell integrated plant (18.03°N, 54.64°E), the Birba Gathering station (18.32°N, 3 

55.10°E) and the Tayseer gas field (18.71°N, 55.34°E). We note that these emission sources are 4 

not listed in any emission inventory and the actual locations of the sources are approximated from 5 

available visible imagery (e.g. Google Earth). A noticeable feature in Figure 8 is the very low 6 

observed SO2 column level, in particular over Birba Gathering and Tayseer with SO2 VCDs of 0.03 7 

– 0.1 DU, reflecting again the great sensitivity of COBRA. To estimate the SO2 emissions from 8 

the TROPOMI data, the source method used in section 5.1 has been refined and tuned for this 9 

particular case study. A multi-source SO2 emission retrieval was applied as in Fioletov et al. (2017) 10 

with one modification: a regression term proportional to the elevation was added to the fit to adjust 11 

for a small altitude-related bias in retrieved SO2 (the values were slightly lower over the mountains 12 

near the Arabian Sea coast). This multi-source method is motivated by the fact that the sources are 13 

close to each other (~ 50-100 km distance) and the emissions cannot be fitted separately. Here, the 14 

approach basically allows for overlaps of the modelled SO2 spatial distributions: the emissions 15 

from the individual sources are then adjusted so that the total SO2 modelled field fits best the 16 

observed SO2 VCD distribution. In Figure 8, the results of the fit are shown (center column), as 17 

well as the residuals of the fit (right column). The estimated annual SO2 emissions for the 3 sources 18 

are given in the inset of Figure 8. Note that for this particular case, the emission detection limit (as 19 

defined above) is typically of about 6 kt yr-1
. For the Rabab Harwell site, the algorithm retrieves 20 

rather high and stable emissions over the years, with an average value of about 40 kt yr-1, which is 21 

well above the estimated detection limit. Interestingly, the Rabab Harwell site has large residuals 22 

of ~0.1 DU for all years. This suggests that the point source representation used here is likely not 23 

sufficient to explain the observations and it is possible that there are many small contributing 24 

sources in the area. For the Birba Gathering site, the estimated emissions are much smaller and lie 25 

in the range of 7-13 kt yr-1. Yet, there is a good confidence that these emissions are real, given that 26 

the estimates are a factor of 1-2 larger than the limit of detection. However, it is clear that the 27 

uncertainty of the emission estimates are quite large. For the Tayseer site, an SO2 signal could be 28 

detected only recently. In 2019, the estimated emissions are of 2 kt yr-1, i.e. below the detection 29 

limit, and in 2020, the SO2 emissions strongly increased to about 20 kt yr-1, probably as a result of 30 

a change in operation at the production facility. Finally, note that no significant residuals could be 31 
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found neither for Tayseer nor Birba Gathering site, and this suggests a point source behavior, at 1 

both sites. 2 

 3 

Figure 8. (Left) Yearly mean TROPOMI SO2 columns retrieved from COBRA over South Oman 4 

for 2018 (April to December), 2019, 2020 (from top to bottom), after bias correction for the effect 5 

of elevation (see text). Three distinct SO2 spots are discernable from the maps and are the results 6 

of emissions from oil and gas fields, referred as Rabab Harwell, Birba Gathering and Tayseer, 7 

(center) results of the fitting of TROPOMI SO2 data. The estimated annual SO2 emissions (given 8 
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in the inset for the three sources) are used to reconstruct the SO2 column field, (right) residuals of 1 

the fit or the difference between TROPOMI and fitting results.  2 

In summary, the analysis over South Oman of Figure 8 nicely illustrates the strength of a highly 3 

sensitive scheme such as COBRA when applied to a high spatial resolution instrument as 4 

TROPOMI. The fact that such low SO2 emissions can be tracked and quantified with that level of 5 

detail is remarkable. Although not shown, the emission inversion scheme was successfully applied 6 

not only to the South Oman sources but also to other test sites, as they were found in the global 7 

SO2 map (Figure 6). The wind-rotation technique when applied to TROPOMI COBRA SO2 data 8 

is arguably a promising tool to monitor weak SO2 emissions and track the activity from rapidly 9 

emerging production facilities worldwide. However, applying the inversion scheme at the global 10 

scale is a significant effort, as it also requires some level of manual intervention and testing. For 11 

instance, the information on source type, location, etc. is typically lacking, and the supporting 12 

visible imagery - useful for identifying industrial facilities - is often outdated.  13 

6. CONCLUSIONS 14 

 15 

A new spectral fitting method for the retrieval of sulfur dioxide columns in the UV was presented 16 

and demonstrated for TROPOMI. Based on a dynamical total measurement error covariance, the 17 

method, called COBRA, allows reducing considerably the noise level (by a factor of 2) and biases 18 

present in the current TROPOMI DOAS SO2 operational product. COBRA provides greater 19 

sensitivity to low SO2 columns, and this conclusion is supported by MAX-DOAS observations. 20 

Preliminary comparison of COBRA to PCA retrievals suggests similar and even better algorithm 21 

performance. The SO2 vertical column precision for individual pixel is in the range 0.5 - 1 DU. 22 

The main limitation of the method relates to the set of spectra chosen to build the covariance 23 

matrix, to what extend it is uncontaminated by SO2 and its distribution representative of the 24 

observations in the absence of SO2. In particular, very bright or very dark scenes may be poorly 25 

represented by the covariance matrix. These conditions (i.e. intensity outliers) can lead to retrieval 26 

artefacts. However, the systematic VCD uncertainty (contribution from the COBRA spectral fit 27 

only) is very small, typically less than 0.04 DU.  28 

The benefit of COBRA is clearly demonstrated in this work using long-term oversampled 29 

averages. Owing to the excellent quality of the data (in terms of precision and accuracy), the high 30 
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spatial resolution of TROPOMI can be better exploited. Zoomed SO2 maps reveal new emission 1 

sources worldwide, with low SO2 columns of 0.05 - 0.2 DU, or even lower.  2 

By using the COBRA SO2 data over large emission sources, we have recalculated the SO2 3 

emissions obtained by Fioletov et al. (2020) that were based on the TROPOMI operational SO2 4 

product. While the derived emission rates agree generally well, we found that the uncertainties on 5 

the emissions are significantly lower (up to 50%) using COBRA than with the operational product. 6 

This opens the possibility to retrieve SO2 emissions for weakly emitting sources, and we present a 7 

number of examples that demonstrate the potential of the COBRA data in this direction. 8 

With an estimated annual emission detection limit of about 8 kt yr-1, the TROPOMI COBRA SO2 9 

data provides unique access to weak anthropogenic and volcanic point sources, and can help 10 

completing current SO2 emission inventories.  It can also be used to track more accurately weak or 11 

rapid changes in SO2 levels, e.g., due to COVID-19 lockdown measures (Levelt et al., 2021) as 12 

well as estimate seasonal and even monthly emissions. Finally, COBRA data would be particularly 13 

relevant for the CAMS assimilation system as well. 14 

COBRA is a good candidate for an implementation in the TROPOMI operational processor, with 15 

limited computational resources and without the need for a separate background correction processor. 16 

COBRA is also adaptable to other satellite instruments, including from geostationary platforms. 17 

In particular, the European Sentinel-4 mission would likely benefit from a COBRA approach for 18 

the retrieval of SO2 columns, as the atmosphere will be sounded under unfavorable large 19 

observation angles.  20 

Future work could also be dedicated to the application of COBRA to historical sensors, in order to 21 

produce a consistent long-term SO2 data record, but also to the retrieval of other molecules. 22 

 23 

 24 

 25 

 26 

 27 
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