Supplementary material

Ammonium nitrate promotes sulfate formation through uptake kinetic regime

Yongchun Liu1,5*, Zeming Feng1, Feixue Zheng1, Xiaolei Bao2,7*, Pengfei Liu3, Yanli Ge3, Yan Zhao3, Tao Jiang4, Yunwen Liao6, Yusheng Zhang1, Xiaolong Fan1, Chao Yan6, Biwu Chu3,6, Yonghong Wang6, Wei Du6, Jing Cai6, Federico Bianch6, Tuukka Petäjä6,8, Yujing Mu3, Hong He3 and Markku Kulmala1,6

1. Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
2. Hebei Provincial Academy of Environmental Sciences, Shijiazhuang, 050037, China
3. State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
4. Hebei Provincial Meteorological Technical Equipment Center, Shijiazhuang, 050021, China
5. College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, China
6. Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, FI-00014, Finland
7. Hebei Chemical & Pharmaceutical College, Shijiazhuang, 050026, China
8. Joint International Research Laboratory of Atmospheric and Earth System Sciences (JirLATEST), University of Helsinki and Nanjing University, Nanjing 210023, China
Fig. S1. The locations of the observation stations. The maps are originated from © Google Maps.

Fig. S2. Mass concentration of PM$_{2.5}$ colored according to (A) sulfate concentration, (B) sulfate fraction in soluble PM, (C) SOR, (D) RH and (E) AWC in Beijing.
Fig. S3. The diurnal curve of RH and SOR.

Fig. S4. The dependency of SOR on RH in Shijiazhuang (A) in the night, (B) in the day, (C) in winter and (D) in summer.
Fig. S5. Relative importance of oxidation paths of S(IV) in aqueous phase.

Fig. S6. Relationship between the AWC and RH in Shijiazhuang.
Fig. S7. (A) Correlation of the ionic charge between inorganic anions (NO$_3^-$, SO$_4^{2-}$, Cl$^-$) and cations (Ca$^{2+}$, Mg$^{2+}$, K$^+$, Na$^+$, NH$_4^+$) and relative contribution of cations to the positive charge in soluble PM$_{2.5}$.

Fig. S8. Correlation of (A)-(C) the AWC/PM$_{2.5}$ and (D)-(F) the SOR with the mass fraction NH$_4$NO$_3$, (NH$_4$)$_2$SO$_4$ and NH$_4$Cl. The lines are probability weighted values.
Fig. S9. Sensitivity of AWC to nitrate and sulfate concentration in PM$_{2.5}$

Fig. S10. Dependence of the sulfate fraction in soluble PM and the SOR on gaseous pollutant concentration in Beijing.