Supplementary material

Ammonium nitrate promotes sulfate formation through uptake

kinetic regime

- 5 Yongchun Liu^{1,5*}, Zeming Feng¹, Feixue Zheng¹, Xiaolei Bao^{2,7*}, Pengfei Liu³, Yanli Ge³, Yan Zhao³, Tao Jiang⁴, Yunwen Liao⁵, Yusheng Zhang¹, Xiaolong Fan¹, Chao Yan⁶, Biwu Chu^{3,6}, Yonghong Wang⁶, Wei Du⁶, Jing Cai⁶, Federico Bianch⁶, Tuukka Petäjä^{6,8}, Yujing Mu³, Hong He³ and Markku Kulmala^{1,6}
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
 Hebei Provincial Academy of Environmental Sciences, Shijiazhuang, 050037, China
 State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
 Hebei Provincial Meteorological Technical Equipment Center, Shijiazhuang, 050021, China
 College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, China
 Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University

of Helsinki, P.O. Box 64, FI-00014, Finland

 7. Hebei Chemical & Pharmaceutical College, Shijiazhuang, 050026, China
8. Joint International Research Laboratory of Atmospheric and Earth System Sciences (JirLATEST), University of Helsinki and Nanjing University, Nanjing 210023, China

Fig. S1. The locations of the observation stations. The maps are originated from © Google Maps.

Fig. S2. Mass concentration of $PM_{2.5}$ colored according to (A) sulfate concentration,

(B) sulfate fraction in soluble PM, (C) SOR, (D) RH and (E) AWC in Beijing.

Fig. S3. The diurnal curve of RH and SOR.

5 Fig. S4. The dependency of SOR on RH in Shijiazhuang (A) in the night, (B) in the

day, (C) in winter and (D) in summer.

Fig. S5. Relative importance of oxidation paths of S(IV) in aqueous phase.

Fig. S6. Relationship between the AWC and RH in Shijiazhuang.

Fig. S7. (A) Correlation of the ionic charge between inorganic anions (NO₃⁻, SO₄²⁻, Cl⁻) and cations (Ca²⁺, Mg²⁺, K⁺, Na⁺, NH₄⁺) and relative contribution of cations to the positive charge in soluble PM_{2.5}.

5

Fig. S8. Correlation of (A)-(C) the AWC/PM_{2.5} and (D)-(F) the SOR with the mass fraction NH₄NO₃, (NH₄)₂SO₄ and NH₄Cl. The lines are probability weighted values.

Fig. S9. Sensitivity of AWC to nitrate and sulfate concentration in PM_{2.5}

Fig. S10. Dependence of the sulfate fraction in soluble PM and the SOR on gaseous pollutant concentration in Beijing.