Dear Reviewer,

We appreciate your careful consideration of our manuscript. We have carefully responded to all of your point-by-point comments and issues and have revised the manuscript accordingly. These revisions are described in detail below.

5

10

Reviewer 1#

The dominant formation pathway of sulfate aerosols under haze conditions is still under debate. Liu et al. investigated the formation mechanism of particulate sulfate based on a statistical analysis of long-term observations in Shijiazhuang and Beijing supported with flow tube experiments. They found that the uptake of SO₂ is the rate-determining step of sulfate formation. Ammonium nitrate plays an important role in sulfate formation by impacting the aerosol liquid water content and the phase state of particles. Overall, the paper is well written and the findings have important implications for understanding the sulfate chemistry under haze conditions and improving the air quality

in urban environments. However, I have some concerns regarding methods and data analysis that must be addressed before the paper can be considered for publication.
 Response: Thank you for your positive comments.

General comments:

Uptake kinetics of SO₂: the authors stated that the RDS of sulfate formation should be the uptake of SO₂ because the dependence of sulfate formation rate on RH is opposite to the dependences of SOR and γ_{SO2} on RH. Did the uptake of SO₂ refer to the mass transfer of SO₂ to aerosol particles? If yes, the rates of mass transfer of SO₂ and aqueous oxidation of S(IV) can be calculated using a resistance model (Cheng et al. 2016).
According to Cheng et al. (2016), the mass transfer of SO₂ is not the rate-determining

step.

Response: Thank you for your good comments and suggestion. Yes, the uptake of SO_2 refers to the mass transfer of SO_2 to aerosol particles. Fig. R1 shows the probability weighted production rate of sulfate through mass transfer (uptake) and aqueous phase

30 oxidation of SO₂ in Shijiazhuang. The mass transfer of SO₂ to aerosol particles is the

RDS, in particular, when RH is lower than 70%. We added the production rate of sulfate through mass transfer in Fig. 4 in the revised manuscript.

Fig. R1. Dependence of the probability weighted production rate of sulfate throughmass transfer and aqueous oxidation of S(IV) in Shijiazhuang.

Using a resistance model, Cheng et al (2016) proposed out that the mass transfer of SO₂ is not the RDS. It should be noted that a large mass accommodation coefficient of SO₂ ($\alpha = 0.11$) was used in their calculations (Cheng et al., 2016). According to the relationship between the mass accommodation coefficient (α) and the uptake coefficient (γ) of SO₂ (Kulmala and Wagner, 2001), the α_{SO2} on particles is on the same order of the γ_{SO2} (Fig. R2). This means that the mass accommodation of SO₂ on particles should be much lower than the value used by Cheng et al (2016) according to the measured uptake coefficient of SO₂ in this work. Therefore, the mass transfer rate

45 coefficient (k_{MT}) is much lower than their value. We added a paragraph "We further calculated the production rate of sulfate through uptake of SO₂ (mass transfer to aerosol particles) according to,

$$\frac{d[SO_4^{2^-}]}{dt} = 3600 \cdot \frac{96}{64} \cdot \frac{\gamma_{SO_2A_S} \omega c_{SO_2}}{4}$$
(8)

40

where, A_s is the surface area concentration of PM_{2.5}, ω is the mean molecular velocity 50 of SO₂ and c_{SO2} is the mass concentration of SO₂. As shown in Fig. 4C, the probability weighted production rate of sulfate through uptake of SO₂ (the grey line) is lower than that through aqueous oxidation of S(IV), in particular, when RH is lower than 70%. It should be noted the mass transfer of SO₂ was not thought as the RDS using a large mass accommodation coefficient of SO₂ ($\alpha = 0.11$) (Cheng et al., 2016). According to the relationship between the mass accommodation coefficient (α) and the uptake coefficient (γ) of SO₂ (Kulmala and Wagner, 2001), the α_{SO2} on particles is on the same order of the γ_{SO2} . This means that mass transfer rate might be greatly overestimated by Cheng et al. (2016)" in lines 432-444 in the revised manuscript.

Fig. R2. The relationship between the mass accommodation coefficient (α) and the uptake coefficient (γ) of SO₂ for 20 nm and 150 nm particles at 1 atm and 298 K.

Flow tube experiments: (1) The wall loss of SO_2 on the inner surface of the outside tube and the outside surface of the sample holder was subtracted. However, the wall loss of

SO₂ in the presence of NH₃ and/or NO₂ would be larger even in the absence of seed aerosols (Ge et al., 2019), which may lead to an overestimation of γ_{SO2} in the presence of NH₃ and/or NO₂. Did the authors measure the γ_{SO2} in the presence of NH₃ and/or NO₂ without the presence of seed aerosols?

Response: Thank you. We agree with you that the wall loss of SO₂ in the presence of

NH₃ and/or NO₂ would be larger in the absence of seed aerosols. The γ_{SO2} was 2×10^{-7} in the presence of NH₃ and NO₂ and in the absence of seed particles. This value is significantly lower than that in the presence of particles (~1×10⁻⁵). On the other hand,

55

the c_0 and c of SO₂ are required when we calculating the uptake coefficient. Figure R3A shows the configuration of the flow tube reactor for measuring the c_0 , and Figure R3B

- shows that for measuring the *c*. Because all the inner surface of the sample tube is covered by particles, the contribution of the wall loss of SO₂ to the drop of the *c* is limited (less than 3%). We added a short paragraph "It should be noted that the wall loss of SO₂ in the presence of NH₃ and/or NO₂ would be larger in the absence of seed aerosols. Additional control experiments in the presence of NO₂ and NH₃ demonstrate that the contribution of wall loss of SO₂ should be less than 3 % to the measured γ" in
 - lines 211-214 in the revised manuscript.

Fig. R3. The configuration of the flow tube for measuring the c_0 and c of SO₂.

85

(2) Can 100 ppb of NO₂ oxidize 190 ppb of SO₂ at a detectable rate in around 1 min?

The comparable γ_{SO2} in the absence and presence of NO₂ may not demonstrate that NO₂ is not an important oxidant of SO₂ if the enhanced uptake of SO₂ in the presence of NO₂ is too low under the experimental conditions of the paper.

- 90 **Response**: Thank you so much for your good comment. The γ_{SO2} at 80% RH was $1.7\pm0.3\times10^{-6}$ on the mixture of dust and NH4NO3 in the absence of NH3 and NO2 (Fig. R4 and Fig. 3). It increased to $3.7\pm0.2\times10^{-6}$ in the presence of NO2 at the same RH. This means that NO2 can promote SO2 uptake at high RH in the absence of NH3. Thus, the short reaction time should not be a problem. However, in the presence of NH3, the
- 95 γ_{SO2} showed no difference between with and without NO₂. This means that the promotion effect of NO₂ on SO₂ uptake might be too low to be detected in the presence of NH₃. Because NH₃ is abundant in North China, we think the promotion effect of NO₂ alone to SO₂ uptake should be limited in the atmosphere. In the revised manuscript, we added a paragraph "It should be pointed out that the γ_{SO2} at 80% RH was $1.7\pm0.3\times10^{-6}$
- on the mixture of dust and NH₄NO₃ in the absence of NH₃ and NO₂ (Fig. 3). It increased to 3.7±0.2×10⁻⁶ in the presence of NO₂. This is consistent with the promotion effect of NO₂ for converting SO₂ to sulfate in the absence of NH₃ as observed in both a smog chamber (Wang et al., 2016) and a bubbling reactor (Chen et al., 2019d). However, the enhanced uptake of SO₂ induced by NO₂ might be too low to be measured in the presence of NH₃. Therefore, the weak promotion effect by NO₂ alone cannot explain the negative correlation between the SOR and the concentration of NO₂ in Fig. 6F" in

lines 607-615 in the revised manuscript.

Fig. R4. Relationship between SOR and $\gamma_{SO2,BET}$ on dust internally mixed with NH₄NO₃ (2:1) and RH in (A) Shijiazhuang and (B) Beijing, and the correlation of (C) SOR in Shijiazhuang and (D) $\gamma_{SO2,BET}$ with AWC/PM_{2.5}. The initial concentrations of SO₂, NO₂ and/or NH₃ in the flow tube reactor were 190 ± 2.5, 100 ± 2.5 and/or 50 ± 2.5 ppb, respectively. The grey lines are the fitting curves for the most probable SOR and the white lines are the fitting curves for the $\gamma_{SO2,BET}$.

115

Specific comments:

Lines 191-192: Did the control experiments run in the presence of NH₃ and NO₂?

Response: Thank you. Yes, it has been done. We added a short paragraph "It should be noted that the wall loss of SO₂ in the presence of NH₃ and/or NO₂ would be larger in
the absence of seed aerosols. Additional control experiments in the presence of NO₂ and NH₃ demonstrate that the contribution of wall loss of SO₂ should be less than 3 % to the measured γ" in lines 211-214 in the revised manuscript.

Lines 368-372: The oxidation of SO₂ by O₂ on the aqueous microdroplets has been
found to occur under acidic conditions (pH <3). What is the aerosol pH of the mixture of ammonium nitrate and dust?

Response: Thank you so much for your comment. We cannot calculate or measure the pH of the mixture of NH₄NO₃ and dust. The pH of deliquesced NH₄NO₃ is around 4.2

calculated using the ISORROPIA II model. This value is close to the literature value

(pH<3.5) (Hung et al., 2018). We revised the paragraph "Another study also observed a quick formation of sulfate on the surface of aqueous microdroplets under acidic conditions (pH < 3.5) without the addition of other oxidants, which was explained by the direct interfacial electron transfer from SO₂ to O₂ on the aqueous microdroplets (Hung et al., 2018). The pH of deliquesced NH₄NO₃ is 4.2 calculated using the ISORROPIA II model" in lines 398-403 in the revised manuscript.

Fig 5C: The AWC was attributed to individual components using E-AIM model. Are the concentrations of the total AWC consistent with the ISORROPIA model? At RH of 60%-80%, only ammonium nitrate aerosols contributed to the AWC. Does this indicate
that ammonium sulfate aerosols are effloresced and phase-separated with ammonium nitrate aerosols? Please explain why ammonium sulfate aerosols and ammonium nitrate

Response: Thank you for your good comments. The AWC attributed to the individual salt cannot be separated from that of PM_{2.5} using the ISORROPIA model. Thus, it was

aerosols are not in the same liquid phase.

- estimated using the reconstructed mass concentration of the salts and the growth factors.
 In Fig. R5 (Fig. 5C in the revised manuscript), we compared the total AWC of PM_{2.5} calculated using the ISORROPIA model with the sum of the AWC attributed to the individual salt using the E-AIM model. Overall, the latter one underestimates around 13% of the AWC. This should be related to the difference in the mixing state between
 these two calculation methods. NH₄NO₃ dominates the AWC at RH of range 60-80%.
- However, we don't think this means (NH₄)₂SO₄ aerosols are effloresced and phase-separated with NH₄NO₃. As shown in Fig. R5, NH₄NO₃ explained ~70% of the AWC of PM_{2.5}. Thus, we think it is reasonable to draw a conclusion that NH₄NO₃ is the dominant contributor to AWC in the RH range of 60-80%. In the revised manuscript, we added a new paragraph "As shown in Fig. 5C, the sum of the AWC of individual
- salts overall underestimated around 13 % of that calculated using the ISORROPIA II model (the gray line) because the mixing state was not considered in the former method. However, we can still draw a conclusion that NH₄NO₃ and (NH₄)₂SO₄ are the major

contributors to the AWC" in lines 511-515 in the revised manuscript.

160

Fig. R5. Variations of (A) concentrations and (B) fractions of molecular composition of water-soluble ions, and (C) and (D) the corresponding contributions to AWC with RH in Shijiazhuang.

- 165 Lines 545-551: The authors should rule out the possibility that the enhanced uptake of SO₂ induced by NO₂ in the reaction time scale of the flow tube experiments is too low to be measured. Previous smog chamber experiments with longer reaction times have demonstrated that NO₂ can promote sulfate formation (Wang et al., 2016; Chen et al., 2019).
- 170 **Response**: Thank you for your suggestion. We added a paragraph as "It should be pointed out that the γ_{SO2} at 80% RH was $1.7\pm0.3\times10^{-6}$ on the mixture of dust and NH₄NO₃ in the absence of NH₃ and NO₂ (Fig. 3). It increased to $3.7\pm0.2\times10^{-6}$ in the presence of NO₂. This is consistent with the promotion effect of NO₂ for converting SO₂ to sulfate in the absence of NH₃ as observed in both a smog chamber (Wang et al.,
- 175 2016) and a bubbling reactor (Chen et al., 2019d). However, the enhanced uptake of SO_2 induced by NO_2 might be too low to be measured in the presence of NH_3 . Therefore, the weak promotion effect by NO_2 alone cannot explain the negative correlation between the SOR and the concentration of NO_2 in Fig. 6F" in lines 607-615 in the revised manuscript.

Technical comments:

Line 28: Write out "SOR".

Response: Thank you. It has been defined as "sulfur oxidation ratio" in line 28 in the revised manuscript.

185

190

Fig 5: Variations of (A) concentrations...

Response: Thank you. We revised the caption as "Variations of (A) the mass concentrations and (B) the mass fractions of molecular composition in $PM_{2.5}$, (C) the estimated AWC attributed to different composition and (D) the corresponding AWC fraction as a function of RH in Shijiazhuang" in the revised manuscript.

References:

Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Poschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during

haze events in China, Sci. Adv., 2, https://doi.org/10.1126/sciadv.1601530, 2016.
 Hung, H.-M., Hsu, M.-N., and Hoffmann, M. R.: Quantification of SO₂ oxidation on interfacial surfaces of acidic micro-droplets: Implication for ambient sulfate formation, Environ. Sci. Technol., 52, https://doi.org/9079-9086, 10.1021/acs.est.8b01391, 2018.

Kulmala, M., and Wagner, P. E.: Mass accommodation and uptake coefficients — a quantitative comparison, J. Aerosol Sci., 32, 833-841, https://doi.org/10.1016/S0021-8502(00)00116-6, 2001.

180