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Abstract. 14 

Atmospheric non-methane hydrocarbons (NMHCs) play an important role in the formation of 15 

secondary organic aerosols and ozone. After a multidecade global decline in atmospheric mole 16 

fractions of ethane and propane – the most abundant atmospheric NMHCs – previous work has 17 

shown a reversal of this trend with increasing atmospheric abundances from 2009 to 2015 in the 18 

Northern Hemisphere. These concentration increases were attributed to the unprecedented growth 19 

in oil and natural gas (O&NG) production in North America. Here, we supplement this trend 20 

analysis building on the long-term (2008-2010; 2012-2020) high-resolution (~ 3-hour) record of 21 

ambient air C2-C7 NMHCs from in-situ measurements at the Greenland Environmental 22 

Observatory at Summit station (GEOSummit, 72.58°N, 38.48°W, 3210 m above sea level). We 23 

confirm previous findings that the ethane mole fraction significantly increased by +69.0 [+47.4, 24 

+73.2; 95 % confidence interval] ppt per year from January 2010 to December 2014. Subsequent 25 

measurements, however, reveal a significant decrease by -58.4 [-64.1, -48.9] ppt per year from 26 

January 2015 to December 2018. A similar reversal is found for propane. The upturn observed 27 

after 2019 suggests, however, that the pause in the growth of atmospheric ethane and propane 28 

might only have been temporary. Discrete samples collected at other northern-hemisphere baseline 29 

sites under the umbrella of the NOAA cooperative global air sampling network show a similar 30 
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decrease in 2015-2018 and suggest a hemispheric pattern. Here, we further discuss the potential 31 

contribution of biomass burning and O&NG emissions, the main sources of ethane and propane, 32 

and we conclude that O&NG activities likely played a role in these recent changes. This study 33 

highlights the crucial need for better constrained emission inventories. 34 

 35 

1. Introduction 36 

Non-methane hydrocarbons (NMHCs) are emitted to the atmosphere by a variety of biogenic and 37 

anthropogenic sources. Their atmospheric oxidation contributes to the production of surface ozone 38 

and aerosols, with impacts on air quality and climate forcing (Houweling et al., 1998). The 39 

abundance of the most abundant atmospheric NMHCs (ethane, propane, i-butane, n-butane, i-40 

pentane, n-pentane) increased steadily after 1950 until reduced emissions from oil and natural gas 41 

(O&NG) production and emission regulations from diverse sources (e.g., automobiles and 42 

industrial processes) began to be implemented in the 1970s (Helmig et al., 2014). Emission 43 

reductions led to a gradual decline (3-12 % per year) of NMHCs at urban and semi-rural sites in 44 

the last five decades (e.g., von Schneidemesser et al., 2010; Warneke et al., 2012). Accounting for 45 

an approximate atmospheric lifetime (at OH = 6.5 × 105 molecules/cm3) ranging from 4.5 days 46 

for pentanes to 2 months for ethane, these emission reductions are also reflected in observations 47 

of background air composition, as seen in Northern Hemisphere firn air records (Aydin et al., 2011; 48 

Worton et al., 2012; Helmig et al., 2014): light alkanes increased steadily post 1950, peaking ~50 49 

% above 1950 levels around 1970-1985, and then steadily declined until 2010 to levels that were 50 

close to 1950 levels. After some 40 years of steadily declining atmospheric ethane and propane 51 

mixing ratios, Helmig et al. (2016) reported a reversal in this behavior: the analysis of weekly 52 

discrete air samples has shown that between mid-2009 and mid-2014, ethane abundance at surface 53 

sites in the Northern Hemisphere increased at a rate of 2.9-4.7 % per year. These observations and 54 

conclusions were further substantiated by solar Fourier transform infrared (FTIR) ethane column 55 

retrievals showing similar increases in the mid to upper tropospheric ethane column (Franco et al., 56 

2015, 2016; Hausmann et al., 2016). The largest increase rates for ethane and propane mixing 57 

ratios were found at sites located in the Eastern United States (U.S.) and in the Northern Atlantic 58 

Region, indicating larger emissions from the central to eastern parts of the U.S., with the likely 59 

sources being increased emissions from shale O&NG extraction operations.  60 
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Interestingly, there is a strong latitudinal gradient of absolute NMHC dry air mole fractions – with 61 

highest abundances in the Arctic where atmospheric removal rates are low during the polar winter 62 

(Helmig et al., 2016, 2009; Rudolph, 1995). Despite the sensitivity of the Arctic to pollution 63 

transport from lower latitudes, climate change, and already recognized and further anticipated 64 

feedbacks on the global climate, long-term in-situ atmospheric composition observations within 65 

the Arctic are sparse. A large part of our current knowledge of polar atmospheric chemistry stems 66 

from research aircraft missions and campaign-type observations (e.g., Hartery et al., 2018; Jacob 67 

et al., 2010; Law et al., 2014). However, long-term continuous measurements or regularly repeated 68 

observations with consistent methodology and instrumentation are indispensable for establishing 69 

a baseline record of environmental conditions at clean remote sites and for observing their changes 70 

over time. Such data also serve as a legacy for future research that will rely on comparison with 71 

archived observations of environmental conditions.  72 

In that context, the National Oceanic and Atmospheric Administration (NOAA) Global 73 

Monitoring Laboratory (GML) initiated a cooperative air-sampling network at Niwot Ridge, 74 

Colorado, in 1967 (hereafter referred to as the NOAA/GML Carbon Cycle Greenhouse Gases 75 

(CCGG) network (https://www.esrl.noaa.gov/gmd/ccgg/)). This network is nowadays an 76 

international effort and discrete air samples are collected approximately weekly from a globally 77 

distributed network of sites, including four Arctic sites: Utqiagvik (formerly known as Barrow, 78 

Alaska, USA), Alert (Nunavut, Canada), Summit (Greenland), and Ny-Ålesund (Svalbard, 79 

Norway). These samples are analyzed for CO2, CH4, CO, H2, N2O, and SF6 at GML (e.g., Geller 80 

et al., 1997; Komhyr et al., 1985; Steele, 1991), and at the University of Colorado Institute for 81 

Arctic and Alpine Research (INSTAAR) for stable isotopes of CO2 and CH4 (Miller et al., 2002; 82 

Trolier et al., 1996). These samples are also analyzed for a variety of volatile organic compounds 83 

(VOCs) including C2-C7 NMHCs at INSTAAR since 2004 (Pollmann et al., 2008; Schultz et al., 84 

2015). Since 2014, measurements of ethane and propane were added to discrete air samples 85 

collected under the umbrella of the NOAA/GML Halocarbons and other Atmospheric Trace 86 

Species (HATS) network since 2004 (https://www.esrl.noaa.gov/gmd/hats/flask/flasks.html).  87 

The discrete, typically weekly, air sampling by cooperative global networks have been at the 88 

forefront of studies to identify and quantify long-term trends in the background air abundances of 89 

important trace gases (e.g., Masarie and Tans, 1995; Montzka et al., 2018; Nisbet et al., 2014, 90 

2019). In parallel, higher temporal-resolution in-situ measurements allow the investigation of 91 

https://www.esrl.noaa.gov/gmd/ccgg/
https://www.esrl.noaa.gov/gmd/hats/flask/flasks.html
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source regions and of shorter-term trends at specific sites. Here, we report in-situ 2 to 4-hourly 92 

ambient air C2-C7 NMHCs dry air mole fractions from measurements at the Greenland 93 

Environmental Observatory at Summit station (GEOSummit) by gas chromatography (GC) and 94 

flame ionization detection (FID). Despite the advent of new methods based on optical 95 

measurement (e.g., FTIR spectroscopy) and mass spectrometry (e.g., Photon-Transfer Mass 96 

Spectrometry), GC-FID remains the dominant method in routine VOC observations due to its 97 

stable long-term response characteristics and relatively low maintenance cost (Schultz et al., 2015). 98 

NMHCs were first monitored with high temporal frequency at GEOSummit from 2008 to 2010 99 

with support from the NASA Research Opportunities in Space and Earth Sciences (ROSES) 100 

program (Kramer et al., 2015). NMHC monitoring resumed in 2012 as part of the National Science 101 

Foundation (NSF) Arctic Observing Network program and has been continuous and uninterrupted 102 

until March 2020, providing one of the few high-temporal resolution long-term records of NMHCs 103 

in the Arctic. In this paper, we investigate and discuss seasonal variations, rates of change, and 104 

potential sources of NMHCs in the high Arctic. We also analyze multiyear trace gas data from 105 

other background sites under the umbrella of the NOAA/GML CCGG and HATS sampling 106 

networks to support our findings. 107 

 108 

2. Materials and Methods 109 

GEOSummit (72.58°N, 38.48°W, 3210 m above sea level) is a research facility located on the 110 

Greenland ice sheet funded by the U.S. NSF and operated in collaboration with the Government 111 

of Greenland (see Fig. 1). The station hosts a diverse array of Geoscience and Astrophysics 112 

research projects (https://www.geosummit.org/instruments) and is the only high altitude remote 113 

atmospheric observatory in the Arctic. Ambient outside air is monitored at the Temporary 114 

Atmospheric Watch Observatory (TAWO) located ~ 1 km south of the research camp.  115 

2.1 In-situ NMHC measurements 116 

C2-C7 NMHCs (ethane, propane, iso-butane, n-butane, acetylene, iso-pentane, n-pentane, n-117 

hexane, benzene, toluene) were analyzed from July 2008 to July 2010 and from May 2012 to 118 

March 2020 by GC-FID using a fully automated and remotely controlled custom-built system. 119 

Ambient air was continuously sampled from a 10 m high inlet on the meteorological tower adjacent 120 

to the TAWO building through a heated (~30°C) sampling line. The sampling frequency increased 121 

from 6 ambient NMHC runs to 12 daily runs in 2018. The GC-FID system, tailored towards the 122 

https://www.geosummit.org/instruments
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remote, unattended and long-term operation, is a further development of the instrument described 123 

in detail by Tanner et al. (2006) and Kramer et al. (2015). The instrument relies on a cryogen-free 124 

sample enrichment and injection system. Air was pulled from the tower inlet, and aliquots of the 125 

sample stream were first passed through a water trap (u-shaped stainless-steel treated SilcosteelTM 126 

tube cooled using thermoelectric coolers) to dry the sample to a dew point of -20°C, and NMHCs 127 

were then concentrated on a Peltier-cooled (-35°C) multi-stage adsorbent trap. Analysis was 128 

accomplished by thermal desorption and injection onto an Al2O3 PLOT column for cryogen-free 129 

separation on an SRI Model 8610 GC-FID. Our monitoring effort followed the World 130 

Meteorological Organization (WMO) Global Atmospheric Watch (GAW) quality control 131 

guidelines: blanks and calibration standards were injected every other day from the manifold and 132 

processed in the exact same way as ambient samples. The limit of detection was ~2 ppt (pmol/mol 133 

by volume) for all compounds and no significant blank contamination was ever noticed. 134 

Quantification was based on monthly FID response factors (Scanlon and Willis, 1985) calculated 135 

from the repeated analysis of two independently prepared and cross-referenced standards in use at 136 

any given time. Tables S1 and S2 summarize these response factors along with the associated 137 

relative standard deviation (< 5 % on average for all compounds) for 2008-2010 and 2012-2020, 138 

respectively. The in-situ GC-FID system provided a stable response from 2008 to 2020, with 139 

monthly response factors varying by ≤ 5 % for ethane, propane, and butanes, and by ≤ 20 % for 140 

other compounds over this period. The monitoring program was audited by the World Calibration 141 

Center for Volatile Organic Compounds at the site in July 2017 (https://www.imk-ifu.kit.edu/wcc-142 

voc/). All reported VOCs results were found to be within the Global Atmospheric Watch program 143 

quality objectives (WMO, 2007).  144 

2.2 Discrete measurements 145 

We use here NMHC data from Alert, Utqiagvik, Mace Head (Ireland), Park Falls (Wisconsin, 146 

USA), and Cape Kumukahi (Hawaii, USA; see Fig. 1) collected as part of the NOAA/GML CCGG 147 

(October 2004 to August 2016) and HATS (August 2014 to March 2020) sampling and 148 

measurement programs. Note that we combine here measurements from the two networks. 149 

2.2.1 CCGG discrete sampling and analysis 150 

As described by Steele et al. (1987) and Dlugokencky et al. (1994), air samples are collected 151 

~weekly in pairs in 2.5 L borosilicate flasks with two glass-piston stopcocks sealed with Teflon 152 

O-rings. Flasks are flushed in series for 5 to 10 minutes then pressurized to ~1.2 atm with a portable 153 

https://www.imk-ifu.kit.edu/wcc-voc/
https://www.imk-ifu.kit.edu/wcc-voc/
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sampling system. Samples collected from October 2004 to August 2016 were analyzed at 154 

INSTAAR in Boulder, Colorado, by GC-FID. The analysis, on a HP-5890 series II gas 155 

chromatograph, first involved drying of approximately 600 cubic centimeter (cc) of sample gas by 156 

running the sample gas through a 6.4 mm (outer diameter) stainless steel tube cooled to -25°C. 157 

The analytes were then preconcentrated at -35°C on an adsorbent bed (Carboxen 1000/1016). 158 

Samples were thermally desorbed at 310°C onto a short capillary guard column before separation 159 

on an Al2O3 PLOT capillary column (0.53 mm × 60 m). Weekly instrument calibrations were 160 

performed using primary calibration standards acquired from the NOAA Global Monitoring 161 

Laboratory, the U.K. National Physics Laboratory, and the U.S. National Institute of Technology. 162 

These standards scales have been maintained since 2006 by regular inter-comparison of standards 163 

from these sources and propagation of the scale with newly acquired standards. Deviations in the 164 

response factors from these different standards were smaller than 5 %, with results for ethane and 165 

propane typically being equal or having less than 2-3 % deviation. Instrument FID response is 166 

linear within the range of observed ambient concentrations. The INSTAAR NMHC laboratory was 167 

audited by the WMO GAW World Calibration Center for VOCs (WCC-VOC, https://www.imk-168 

ifu.kit.edu/wcc-voc/) in 2008 and in 2016, and both times all measurement results passed the 169 

WMO data quality criteria (WMO, 2007). 170 

2.2.2 HATS discrete sampling and analysis  171 

At GEOSummit, paired borosilicate glass flasks are also pressurized to ~1 atmosphere 172 

overpressure with ambient air as part of the HATS sampling program. At other NH sites, 173 

electropolished stainless-steel flasks are used. All flasks are analyzed by GC with mass 174 

spectrometry analysis with a preconcentration system similar to Miller et al. (2008) to strip water 175 

vapor and CO2 from the airstream prior to injection of condensates (VOCs, halocarbons, solvents, 176 

and other gases) onto a 0.32 mm (inner diameter) GasPro capillary column. Results are tied to a 177 

suite of standards prepared in-house with gravimetric techniques. 178 

2.3 Ancillary data 179 

Continuous monitoring of carbon monoxide (CO) has been ongoing at GEOSummit since May 180 

2019 with a cavity ring-down spectroscopy (CRDS) analyzer (Picarro G-2401). A switching 181 

manifold allows regular sampling of ambient air and calibration gases. Three NOAA GML 182 

standards were integrated into the automated calibration. Low (69.6 ppb) and high (174.6 ppb) 183 

calibration points were performed for ~3 minutes every two days, while an intermediate (117.4 184 

https://www.imk-ifu.kit.edu/wcc-voc/
https://www.imk-ifu.kit.edu/wcc-voc/
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ppb) calibration was carried out in between. Using the last minute of each calibration, the low and 185 

high calibration points were used to determine the linear relationship between the certified 186 

calibration values and the analyzer’s reported calibration values. The calibration offset (slope and 187 

intercept) was calculated and used to correct the third intermediate calibration point. The mean 188 

absolute difference between the corrected and certified intermediate calibration paired values was 189 

1.6 ppb, i.e., 1.4 %. The minute-averaged CRDS CO ambient air data were corrected using the 190 

calibration offset. The CRDS has a manufacturer-specified precision at 5 seconds, 5 minutes, and 191 

60 minutes of 15, 1.5, and 1 ppb for CO (G2401 Gas Concentration Analyzer | Picarro, 2020). 192 

We also use ethane, propane, tetrachloroethylene (C2Cl4), and hydrogen cyanide (HCN) data 193 

collected in the free troposphere during the global-scale airborne Atmospheric Tomography 194 

mission (ATom; https://espo.nasa.gov/atom/content/ATom) onboard the NASA DC-8 aircraft 195 

(Wofsy et al., 2018). Canisters collected with the University of California Irvine Whole Air 196 

Sampler (WAS) were analyzed for more than 50 trace gases, including ethane, propane, and 197 

tetrachloroethylene by GC-FID and GC-mass spectrometric detection (Barletta et al., 2020). 198 

Hydrogen cyanide was measured in situ with the California Institute of Technology Chemical 199 

Ionization Mass Spectrometer (CIT-CIMS; Allen et al., 2019). For the purpose of our analysis, we 200 

removed data collected over continents, in the marine boundary layer (altitude < 0.4 km), or 201 

corresponding to stratospheric air (ozone to water vapor ratio > 1 ppb per ppm). 202 

2.4 Curve fitting method and trend analysis 203 

We used the curve fitting method developed by Thoning et al. (1989) and described in detail at 204 

https://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html. Briefly, the data were fitted with a 205 

function consisting of a polynomial and series of harmonics to represent the average long-term 206 

trend and seasonal cycle. Residuals from the function were calculated, transformed into frequency 207 

domain with a fast Fourier transform algorithm, then filtered with two low pass filters. One 208 

eliminates harmonics less than ~1 month. When converted back to time domain and added to the 209 

function, it gives a smoothed curve. The other filter eliminates periods less than ~1 year; when 210 

transformed back to time domain and added to the polynomial, it gives the deseasonalized trend 211 

(hereafter referred to as the trend). The Sen’s slope estimate of the trend was calculated using 212 

function TheilSen in R package openair (Carslaw and Ropkins, 2012). Note that the p-values and 213 

all uncertainties are calculated through bootstrap simulations 214 

(https://davidcarslaw.github.io/openair/reference/TheilSen.html).  215 

https://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html
https://davidcarslaw.github.io/openair/reference/TheilSen.html


 8 

2.5 Source apportionment analysis 216 

In order to identify potential source regions, we performed a Potential Source Contribution 217 

Function (PSCF) analysis using the trajLevel function in R package openair (Carslaw and Ropkins, 218 

2012). Based on air-mass back-trajectories (see below) and NMHC residuals (see Section 2.4), the 219 

PSCF calculates the probability that a source is located at latitude 𝑖 and longitude 𝑗. PSCF solves: 220 

𝑃𝑆𝐶𝐹 =
𝑚𝑖𝑗

𝑛𝑖𝑗
⁄   Eq.1 221 

where 𝑛𝑖𝑗 is the number of times that the trajectories passed through the cell (𝑖, 𝑗) and 𝑚𝑖𝑗 the 222 

number of trajectories passing through that cell in which the NMHC residual was greater than a 223 

given threshold (90th percentile of the measured results distribution). Note that cells with very few 224 

trajectories passing through them have a weighting factor applied to reduce their effect. 225 

For each NMHC in-situ measurement, HYSPLIT (HYbrid Single Particle Lagrangian Integrated 226 

Trajectory; Draxler and Rolph, 2013) 5-day air-mass back trajectories used in the PSCF analysis 227 

were generated using the Python package pysplit (Warner, 2018) and processor pysplitprocessor 228 

available at: https://github.com/brendano257/pysplit and 229 

https://github.com/brendano257/pysplitprocessor, respectively. The HYSPLIT Lagrangian 230 

particle dispersion model was run from April 2012 to June 2019 using the National Center for 231 

Environmental Prediction Global Data Assimilation System (NCEP GDAS) 0.5° × 0.5° 232 

meteorological inputs available at: ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas0p5. We did not 233 

generate back-trajectories for observations after June 2019 due to the unavailability of the GDAS 234 

0.5° × 0.5° archive. 235 

 236 

3. Results and Discussion 237 

3.1 Seasonal variation 238 

The seasonal variation of C2-C7 NMHCs at GEOSummit is displayed in Fig. 2. Summer refers to 239 

June-August, fall to September-November, winter to December-February, and spring to March-240 

May. NMHCs exhibit a strong and consistent seasonal pattern year after year, with maximum mole 241 

fractions during winter and early spring, and a rapid decline towards summer. Anthropogenic 242 

sources of NMHCs do not vary much seasonally (Pozzer et al., 2010). Therefore, the observed 243 

seasonal cycle is primarily driven by the seasonally changing sink strength by the photochemically 244 

formed OH radical (Goldstein et al., 1995) – the dominant oxidizing agent in the global 245 

troposphere (Levy, 1971; Logan et al., 1981; Thompson, 1992). During the summer period, mole 246 

https://github.com/brendano257/pysplit
https://github.com/brendano257/pysplitprocessor
ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas0p5
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fractions of the heavier NMHCs were below or close to the GEOSummit in-situ system detection 247 

limit (Fig. 2b). As already noted by Goldstein et al. (1995) and Kramer et al. (2015) based on a 248 

limited dataset, the phase of each NMHC is shifted due to the rate of reaction with OH. Ethane, 249 

the lightest and longest lived of the NMHCs shown in Fig. 2, peaks in February/March with a 250 

median of 2110 ppt, and declines to a minimum of 734 ppt in July. Heavier and shorter-lived 251 

NMHCs have lower mole fractions, peak earlier in the year (January/February), and reach a 252 

minimum earlier in summer (June) due to their faster rate of reaction with OH (Chameides and 253 

Cicerone, 1978).  254 

Because changes in NMHC sources and sinks can affect the seasonal cycle amplitude, we 255 

investigated whether there is a trend in the NMHC’s amplitude at GEOSummit. We focus here on 256 

ethane and propane, the most abundant hydrocarbons in the remote atmosphere after methane. 257 

Figure 3 shows the amplitude of the ethane and propane seasonal cycles, determined as the relative 258 

difference between the maximum and minimum values from the smooth curve for each annual 259 

cycle (Dlugokencky et al., 1997). The peak-to-minimum relative amplitude ranged from 64 to 71 260 

% for ethane and from 92 to 96 % for propane, and there is no indication of a significant overall 261 

trend in amplitude. This range of amplitudes is in good agreement with the literature: the typical 262 

seasonal amplitudes for ethane are on the order of 50 % at mid-latitude sites and can increase up 263 

to 80 % at remote sites (Franco et al., 2016; Helmig et al., 2016). Changes in mole fractions are 264 

further investigated and discussed in the following section. 265 

3.2 Reversal of ethane and propane rates of change at GEOSummit in 2015 266 

Ethane is released from seepage of fossil carbon deposits, volcanoes, fires, and from human 267 

activities – with O&NG extraction, processing, distribution, and industrial use being the primary 268 

sources (Pozzer et al., 2010). Based on the inventory developed for the Hemispheric Transport of 269 

Air Pollutants, Phase II (HTAP2, Janssens-Maenhout et al., 2015), biogenic emissions from 270 

MEGAN2.1 (Guenther et al., 2012), and fire emissions from FINNv1.5 (Wiedinmyer et al., 2011), 271 

Helmig et al. (2016) estimated that ~4 %, 18 %, and 78 % of global ethane emissions are due to 272 

biogenic, biomass burning, and anthropogenic sources, respectively. Global ethane emission rates 273 

decreased by 21 % from 1984 to 2010 likely due to decreased venting and flaring of natural gas in 274 

oil producing fields (Simpson et al., 2012). As a consequence, atmospheric ethane background air 275 

mixing ratios significantly declined during 1984-2010, by an average of -12.4 ± 1.3 ppt per year 276 

in the Northern Hemisphere (Aydin et al., 2011; Worton et al., 2012; Helmig et al., 2014). 277 
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However, the analysis by Helmig et al. (2016) of ten years (2004-2014) of NMHC data from air 278 

samples collected at NOAA GML remote global sampling sites (including GEOSummit) showed 279 

a reversal of the global ethane trend from mid-2009 to mid-2014 (ethane growth rates > 50 ppt per 280 

year at 32 sites). This trend reversal was attributed to increased U.S. O&NG production (Helmig 281 

et al., 2016). Figure 4a shows the July 2008-March 2020 ethane trend at GEOSummit, as inferred 282 

from our in-situ measurements (dotted line). Note that the same time-series but also showing 283 

individual data points can be found in Fig. S1. Ethane mixing ratios at GEOSummit significantly 284 

(p-value < 0.001) increased by +69.0 [+47.4, +73.2; 95 % confidence interval] ppt per year from 285 

January 2010 to December 2014. A reversal is, however, evident after 2015: ethane mixing ratios 286 

significantly (p-value < 0.001) decreased by -58.4 [-64.1, -48.9] ppt per year from January 2015 287 

to December 2018. Data collected after 2019, however, suggest that the pause in the growth of 288 

atmospheric ethane might only be temporary. We focus hereafter on the 2015-2018 reversal period. 289 

Similar to ethane, a reversal is evident late 2014 for propane (see Fig. 4b; dotted line): mixing 290 

ratios significantly (p-value < 0.001) increased by +47.9 [+32.3, +52.3] ppt per year from January 291 

2010 to June 2014, but significantly (p-value < 0.001) decreased at a rate of -70.5 [-76.1, -65.8] 292 

ppt per year from July 2014 to July 2016. Propane mixing ratios remained fairly stable (+10.2 293 

[+6.6, +14.6] ppt per year; p-value < 0.001) from July 2016 to December 2019. It should be noted 294 

that the pause in the growth of atmospheric ethane and propane at GEOSummit in 2015-2018 is 295 

confirmed by independent discrete sampling under the umbrella of the NOAA/GML CCGG and 296 

HATS networks (see Fig. 4; solid lines). Figure S2 shows the good agreement (R2 = 0.97 for 297 

ethane, R2 = 0.99 for propane) between in-situ GC-FID measurements and discrete samples.  298 

The temporary pause in the growth of ethane and propane at GEOSummit could either suggest  299 

changes in: i) the OH sink strength, ii) atmospheric transport from source regions and/or iii) 300 

natural/anthropogenic emissions.  301 

The tropospheric abundance of OH is driven by a complex series of chemical reactions involving 302 

tropospheric ozone, methane, carbon monoxide, NMHCs, and nitrogen oxides, and by the levels 303 

of solar radiation and humidity (Logan et al., 1981; Thompson, 1992). Building on the comparison 304 

of modeled and observed methane and methyl chloroform lifetimes, Naik et al. (2013) showed that 305 

OH concentrations changed little from 1850 to 2000. The authors suggested that the increases in 306 

factors that enhance OH (humidity, tropospheric ozone, nitrogen oxide emissions, and UV 307 

radiation) was compensated by increases in OH sinks (methane abundance, carbon monoxide and 308 
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NMHC emissions). More recently, Naus et al. (2020) used a 3D-model inversion of methyl 309 

chloroform to constrain the atmospheric oxidative capacity – largely determined by variations in 310 

OH – for the period 1998-2018. The authors showed that the interannual variations were typically 311 

small (<3 % per year) and found no evidence of a significant long-term trend in OH over the study 312 

period. Changes in NMHC mole fractions at GEOSummit are well outside what could be explained 313 

by a 3% change in OH tropospheric concentrations. There is, however, likely a difference between 314 

global and regional OH variations (Brenninkmeijer et al., 1992; Spivakovsky et al., 2000; 315 

Lelieveld et al., 2004). In the absence of data on the Arctic and mid-latitudes OH abundance, we 316 

concede that OH may play a role on the observed pause but do not discuss that hypothesis further. 317 

The latter two hypotheses are investigated and verified or rejected in the following sections. 318 

3.3 Changes in transport from source regions 319 

The synoptic-scale tropospheric circulation in the Arctic is driven by three major semi-permanent 320 

pressure systems: i) the Aleutian Low, low-pressure center located south of the Bering Sea area, 321 

ii) the Icelandic Low, low-pressure system located southeast of Greenland near Iceland, and iii) 322 

the Siberian High, high-pressure center located over eastern Siberia (Barrie et al., 1992). During 323 

positive phases of the North Atlantic Oscillation (NAO), the Icelandic Low is strengthened and 324 

transport into the Arctic enhanced, resulting in higher Arctic pollution levels (Duncan and Bey, 325 

2004; Eckhardt et al., 2003). Negative phases of the NAO are associated with decreased transport 326 

from Europe and Siberia and increased transport from North America. In addition, mid-latitude 327 

atmospheric blocking events – quasi-stationary features characterized by a high-pressure cell 328 

centered around 60°N and lasting up to ~15 days (Rex, 1950) – are known to enhance transport of 329 

polluted air to the Arctic (Iversen and Joranger, 1985). Here, we test the hypothesis of a pause in 330 

the growth of atmospheric ethane and propane at GEOSummit driven by the interannual variability 331 

of pollution transport from source regions. We investigated the potential influence of the NAO 332 

using monthly mean values from the NOAA Climate Prediction Center. We found a somewhat 333 

weak but significant positive correlation between the NAO and monthly-averaged mixing ratios 334 

over the 2008-2019 period (R2 = 0.4, p-value < 0.01 for both ethane and propane), in line with 335 

enhanced transport of pollution to the Arctic during positive phases of the NAO.  336 

Figure 5 shows the origin of air masses influencing GEOSummit (annual gridded back trajectory 337 

frequencies) and Figure 6a summarizes the relative contribution of each geographical sector for 338 

each year. Contrary to other Arctic sites (Hirdman et al., 2010), GEOSummit is mostly influenced 339 
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by transport from North America and Europe, whereas Siberia has relatively little influence (0-2 340 

%). These results are in agreement with the isobaric 10-day back-trajectory study by Kahl et al.  341 

(1997) and the 20-day backward FLEXPART simulations by Hirdman et al. (2010). European air 342 

masses represented 3-6 % of the total, with a 10 % high in 2018. The relative contribution of North 343 

Atlantic air masses (“ocean”) ranged from 1 to 9 %, with a 14 % high from January to August 344 

2019. The frequency of North American air masses exhibited the most variability, ranging from 2 345 

to 20 %. Years with enhanced transport from North America (e.g., 2012, 2019) coincided with a 346 

negative NAO index, known to drive increased transport from North America. Assuming that the 347 

ethane and propane trends are driven by emissions in North America (Helmig et al., 2016) and that 348 

these emissions are constant, one would expect higher ethane and propane mixing ratios in years 349 

when the relative influence of North American air masses peaked. There is, however, an 350 

anticorrelation: a 2-3 % relative contribution of North American air masses in 2014 and 2015 when 351 

ethane/propane mixing ratios reached a maximum, and 19 % in 2018 when mixing ratios reached 352 

a minimum. This leaves two possibilities: either North American emissions dropped over the 353 

studied time period (see Section 3.4), or ethane/propane trends observed at GEOSummit are not 354 

driven by emissions in North America (see below).  355 

The relative contribution of local/regional air masses (i.e., around Greenland, see Fig. 5) increased 356 

from 79 % in 2012 to 91-93 % in 2014-2015 before gradually dropping to 61 % in 2018. The 357 

apparent correlation between the relative contribution of local/regional air masses and the 358 

ethane/propane trend raises the question of whether these are connected. In order to identify 359 

potential sources in this sector, we performed a PSCF analysis to investigate source-receptor 360 

relationships (e.g., Pekney et al., 2006; Perrone et al., 2018; Yu et al., 2015; Zhou et al., 2018; 361 

Zong et al., 2018). The PSCF calculates the probability that a source is located at latitude i and 362 

longitude j (Pekney et al., 2006). Figure S3 shows the results of the PSCF analysis for ethane and 363 

propane residuals and shows no consistent pattern associated with elevated concentrations. In both 364 

winter and summer, the probability of an ethane or propane source from this analysis is low (<2 365 

% on average).  366 

The history of petroleum exploration activities on the Greenland continental shelf dates back to 367 

the 1970s (Arctic Oil &amp; Gas Development: The Case of Greenland, 2020). More recently, the 368 

Greenland’s government announced the opening of three new offshore areas for exploration in 369 

November 2020 (Greenland Opens Offshore Areas for Drilling, 2020). Despite exploration drilling 370 
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activities, there has never been any O&NG exploitation of Greenland resources (Arctic Oil &amp; 371 

Gas Development: The Case of Greenland, 2020). Building on the above, the possibility of a 372 

significant local/regional source can be ruled out, and so can the hypothesis that the pause in the 373 

growth of ethane and propane is driven by local/regional emissions. The last remaining hypothesis 374 

is that this pause is due to a change in emissions from any of the other source sectors, or a 375 

combination of them, or total NH emissions and associated change in baseline NH atmospheric 376 

levels. This hypothesis is tested in the following Section using observations at other baseline sites. 377 

3.4 Evidence for a hemispheric pattern 378 

Table 1 summarizes the rate of change and 95 % confidence interval for 2010-2014 and 2015-379 

2018 at Alert (ALT, Nunavut, Canada), Utqiagvik/Barrow (BRW, Alaska, USA), Cape Kumukahi 380 

(KUM, Hawaii, USA), Park Falls (LEF, Wisconsin, USA), and Mace Head (MHD, Ireland – see 381 

Fig. 1) where discrete samples were collected for the NOAA/GML CCGG and HATS cooperative 382 

networks. The ethane and propane time-series at the various sites are shown in Figures S4 and S5, 383 

respectively. A clear reversal in interannual changes for ethane and propane mixing ratios is 384 

observed in 2015 at ALT, BRW, KUM, and LEF. These results support the observed changes at 385 

GEOSummit and indicate a hemispheric pattern, likely due to a change in Northern Hemisphere 386 

emissions, with a turning point around late 2014. Biomass burning and anthropogenic activities 387 

being the main emitters of NMHCs, we hereafter focus the discussion on these two sources. 388 

3.4.1 Biomass burning 389 

Occasional biomass burning plumes were observed at GEOSummit. For example, Fig. 7 shows 390 

the simultaneous increase in CO, ethane, propane, and benzene mixing ratios for a short number 391 

of days in July and August 2019. According to the Whole Atmosphere Community Climate Model 392 

(WACCM; Gettelman et al., 2019) CO forecast simulations, available at 393 

https://www.acom.ucar.edu/waccm/forecast/, these enhancements can be attributed to intense 394 

Siberian wildfires occurring at that time (Bondur et al., 2020). In good agreement with the 395 

WACCM simulations, emission ratios (amount of compound emitted divided by that of a reference 396 

compound) derived from these two plumes for ethane and propane (5.4-5.9 × 10−3 and 1.5-1.6 397 

× 10−3 ppb per ppb of CO, respectively; see Fig. S6) are within the range of values reported for 398 

boreal forest and peat fires (Andreae, 2019).  399 

Despite the observation of occasional plumes at GEOSummit, the question remains whether 400 

biomass burning could drive the observed hemispheric pause in the growth of atmospheric ethane 401 

https://www.acom.ucar.edu/waccm/forecast/
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and propane. For ethane, the sensitivity to biomass burning emissions from boreal fires is almost 402 

entirely balanced by the larger magnitude of emissions from non-boreal fires (Nicewonger et al., 403 

2020). Propane being shorter-lived, the fire component over Greenland should be dominated by 404 

emissions from boreal fires. We thus investigate the interannual variability of biomass burning 405 

emissions from both all open burning north of 45°N (boreal fires) and north of the equator (all NH 406 

fires). Figure 6b gives annual biomass burning emissions according to the Fire INventory from 407 

NCAR (FINNv2.2) emission estimates driven by MODIS fire detections (Wiedinmyer et al., in 408 

prep). Emissions north of 45°N peaked in 2012, known for being an exceptional wildfire season 409 

in North America (e.g., Lassman et al., 2017; Val Martin et al., 2013). NH ethane and propane 410 

emissions slightly decreased in 2017 and 2018 but remained fairly stable over the 2008-2016 time 411 

period. We did not find any significant correlation between annual biomass burning emissions and 412 

annually-averaged mixing ratios (true using either 2009-2018 or 2015-2018 data, and true using 413 

either all open burning north of 45°N or north of the equator). The seasonal analysis of the 414 

correlation between ambient air mixing ratios and biomass burning emissions yielded similar 415 

results. This suggests that the observed pause in the growth of atmospheric ethane and propane is 416 

likely not driven by biomass burning emissions.  417 

This conclusion is further supported by measurements during the aircraft mission ATom over the 418 

Pacific and Atlantic Oceans. Using ethane and propane data collected in the Northern Hemisphere 419 

(>20°N) remote free troposphere during the four ATom seasonal deployments (July-August 2016, 420 

January-February 2017, September-October 2018, and April-May 2018), we found a significant 421 

positive correlation of ethane and propane with tetrachloroethylene (R2 = 0.6, p-value < 0.001) and 422 

a poor correlation with hydrogen cyanide (R2 < 0.1, p-value < 0.001; see Fig. S7), used as tracers 423 

of anthropogenic and biomass burning emissions, respectively (Bourgeois et al., in review). These 424 

results from the remote free troposphere confirm that atmospheric ethane and propane ambient air 425 

levels are mostly driven by anthropogenic activities rather than by biomass burning emissions, in 426 

line with results from other studies (e.g., Xiao et al., 2008).  427 

3.4.2 O&NG activities 428 

Discrete samples collected at northern-hemisphere baseline sites show that the strongest change 429 

was observed at LEF, located downwind from the Bakken oil field in North Dakota (Gvakharia et 430 

al., 2017), with an increase of ethane mixing ratios of +167.7 [+157.5, +186.0] ppt per year in 431 

2010-2014 and a decrease of -247.8 [-312.2, -158.2] ppt per year in 2015-2018 (see Table 1). This 432 
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result, along with previous findings by Helmig et al. (2016) and Franco et al. (2015), supports the 433 

hypothesis that U.S. O&NG emissions could play a major role in driving atmospheric ethane and 434 

propane concentrations in the NH. Here we further discuss this potential contribution to the 435 

observed hemispheric pause in the growth of atmospheric ethane and propane in 2015-2018. 436 

The U.S. has experienced dramatic increases in O&NG production since 2005, underpinned by 437 

technological developments such as horizontal drilling and hydraulic fracturing (Caporin and 438 

Fontini, 2017; Feng et al., 2019). This shale revolution has transformed the U.S. into the world’s 439 

top O&NG producer (Gong, 2020). Coincident with the shale gas boom, the U.S. production of 440 

natural gas liquids (ethane, propane, butane, iso-butane, and pentane) has significantly increased 441 

in the past decade from 0.6-0.7 billion barrels in the 2000s to 1.1 billion barrels in 2014, and close 442 

to 1.8 billion barrels in 2019 (U.S. Field Production of Natural Gas Liquids, 2021). The main 443 

source of ethane and propane has been identified to be leakage during the production, processing, 444 

and transportation of natural gas (Tzompa‐Sosa et al., 2019; Pétron et al., 2012; Roest and Schade, 445 

2017). 446 

Propane is extracted from natural gas stream and used as a heating fuel. As shown in Figure 8, the 447 

U.S. propane field production temporarily plateaued from June 2014 to December 2016 (U.S. Field 448 

Production of Propane, 2021) due to a slowdown in natural gas production in response to low 449 

natural gas prices. As we consider recent changes in emissions, however, changes in emissions per 450 

unit of production must also be considered. A recent study in the Northeastern Colorado Denver-451 

Julesburg Basin showed little change in atmospheric hydrocarbons, including propane, in 2008-452 

2016 despite a 7-fold increase in oil production and nearly tripling of natural gas production, 453 

suggesting a significant decrease in leak and/or venting rate per unit of production (Oltmans et al., 454 

2021). While we cannot reliably estimate how propane emissions might have changed during this 455 

recent period, these two influences, combined together, could explain the observed temporary 456 

pause in the growth of atmospheric propane. 457 

Estimating the total production, and ultimately emissions, of ethane is even more complex as it 458 

depends on the ethane-to-natural gas price differential. Ethane has long been considered an 459 

unwanted byproduct of O&NG drilling, much of it burned away in the natural gas stream or flared 460 

off at well sites. Today, ethane is a key feedstock for petrochemical manufacturing and the U.S. is 461 

currently the top producer and exporter of ethane (Sicotte, 2020). Depending on the price of ethane 462 

relative to natural gas, ethane can be left in the natural gas stream and sold along with natural gas 463 
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– a process known as ethane rejection, or separated at natural gas processing plants along with 464 

other natural gas liquids (such as propane). Assuming the same leak rates for ethane as for methane, 465 

85 % of ethane emissions are due to natural gas extraction and processing, while processed natural 466 

gas transportation and use only represent 15 % of the natural gas supply chain ethane loss rate 467 

(Alvarez et al., 2018). The slowdown in natural gas production from June 2014 to December 2016 468 

(see above) may thus have contributed to the atmospheric ethane plateauing. However, these 469 

estimates do not take into account emissions of ethane from its own supply chain (e.g., separation, 470 

storage, liquefaction for export, ethane cracker to produce ethylene and plastic resins) – for which 471 

leak rates remain unknown. A number of top-down studies, focusing on specific regions or time-472 

periods (e.g., 2010-2014), have shown that current inventories underestimate ethane emissions 473 

(e.g., Tzompa‐Sosa et al., 2017; Pétron et al., 2014). The modeling study led by Dalsøren et al. 474 

(2018) focusing on year 2011 showed that fossil fuel emissions of ethane are likely biased-low by 475 

a factor of 2-3. In this highly dynamic context, where ethane production and volume rejected 476 

continuously vary and where leak rates change over time (Schwietzke et al., 2014), there is a need 477 

for further hemispheric- or global-scale top-down studies focusing on the interannual variability 478 

of ethane emissions.  479 

 480 

4. Summary and Conclusion 481 

Ethane and propane are the most abundant atmospheric NMHCs and they exert a strong influence 482 

on tropospheric ozone, a major air pollutant and greenhouse gas. Increasing levels have been 483 

reported in the literature from 2009 to 2014, with evidence pointing at U.S. O&NG activities as 484 

the most likely cause (Kort et al., 2016; Helmig et al., 2016; Franco et al., 2016; Hausmann et al., 485 

2016). The long-term high-resolution records of ambient air C2-C7 NMHCs at GEOSummit 486 

presented here confirm that atmospheric ethane and propane levels increased in the remote arctic 487 

troposphere from 2009 to 2015, but also reveal a pause in their growth in 2015-2018. Using 488 

independent discrete samples collected at other NH baseline sites, we show that this pause is 489 

observed throughout the northern hemisphere – suggesting a change in total NH emissions and in 490 

baseline NH atmospheric levels. We further investigated and discussed the contribution of the two 491 

main NMHC emitters: biomass burning and O&NG production. We did not find any correlation 492 

between atmospheric ethane and propane mixing ratios and the FINNv2.2 biomass burning 493 

emission estimates. Additionally, data collected in the NH remote free troposphere during the 494 
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ATom aircraft campaign support that atmospheric ethane and propane ambient air levels are 495 

mostly driven by anthropogenic activities rather than by biomass burning emissions. The fact that 496 

the strongest rate of change reversal was observed at a site located downwind from the Bakken oil 497 

field in North Dakota tends to suggest that U.S. O&NG activities yet again played a major role 498 

here. The slowdown in U.S. natural gas production from June 2014 to December 2016 combined 499 

with a decrease in leak rate per unit of production could have contributed to the observed temporary 500 

pause. This conclusion is, however, tentative given the large uncertainties associated with emission 501 

estimates, especially with ethane emissions from its supply chain. We hope this work can be used 502 

as a starting point to understand what led to the pause in the growth of atmospheric ethane and 503 

propane in 2015-2018 and, more generally, to what extent ON&G activities could be responsible 504 

for variations in NH baseline ethane and propane levels.   505 
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Table 1: Rates of change and 95 % confidence interval (in brackets) inferred from discrete flask 

sampling (in ppt per year). ALT, BRW, MHD, LEF, and KUM refer to Alert, Utqiagvik/Barrow, 

Mace Head, Park Falls, and Cape Kumukahi. The localization of the sites can be found in Figure 

1. The symbols shown next to each rate of change relate to how statistically significant the estimate 

is: p < 0.001 = ***, p < 0.01 = **, and p < 0.05 = *.  

 
Site 2010-2014 2015-2018 

Ethane 

ALT +52.8 [+32.7, +73.0] *** -56.9 [-79.9, -36.6] *** 

BRW +40.5 [+25.9, +59.1] *** -50.6 [-69.4, -27.6] *** 

KUM +18.4 [+7.9, +29.5] *** -43.1 [-62.1, -28.1] *** 

LEF +167.7 [+157.5, +186.0] *** -247.8 [-312.2, -158.2] *** 

MHD +51.8 [+44.4, +63.2] *** -18.6 [-102.6, +45.4] 

Propane 

ALT +24.8 [+16.5, +37.7] *** -55.6 [-65.1, -45.9] *** 

BRW +14.5 [+9.1, +20.2] *** -35.1 [-45.3, -25.6] *** 

KUM +3.1 [+0.2, +5.9] * -13.2 [-15.9, -10.7] *** 

LEF +89.8 [+68.5, +123.5] *** -110.0 [-173.6, -75.6] *** 

MHD +21.3 [+16.9, +27.1] *** -24.2 [-56.2, -7.2] ** 
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Figure 1: Location of the Greenland Environmental Observatory at Summit station (red dot, SUM) 

where long-term in-situ monitoring was carried out, and of Alert (ALT), Utqiagvik (formerly 

known as Barrow (BRW)), Mace Head (MHD), Park Falls (LEF), and Cape Kumukahi (KUM) 

where discrete samples were collected by both the NOAA/ESRL/GML CCGG and HATS flask 

sampling programs. The map is centered over the North Pole. 
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Figure 2: Monthly variation of a) ethane and propane, and b) C4-C7 non-methane hydrocarbons 

measured in ambient air at GEOSummit as inferred from 2008-2010 and 2012-2020 in-situ 

measurements. In the monthly boxplots, the lower and upper end of the box correspond to the 25th 

and 75th percentiles while the whiskers extend from the 5th to the 95th percentiles. 
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Figure 3: Trend in peak-to-peak seasonal amplitude of a) ethane and b) propane at GEOSummit, 

calculated as the relative difference between the maximum and minimum values from the smooth 

curve for each annual cycle. The solid red line shows the trend estimate and the dashed red lines 

show the 95 % confidence interval for the trend based on resampling methods. The overall trend 

is shown at the top along with the 95 % confidence interval in the slope. 
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Figure 4: a) Ethane, and b) propane trends at GEOSummit from July 2008 to March 2020. Trends 

inferred from in-situ and discrete flask sampling are shown by the dotted and solid lines, 

respectively.  
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Figure 5: Origin air masses influencing GEOSummit (black dot). Gridded back trajectory 

frequencies using an orthogonal map projection (centered over the North Pole) with hexagonal 

binning. The tiles represent the number of incidences and the numbers the relative influence of the 

various sectors.  
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2015 2016 2017

2018 2019 (Jan-Aug)
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 2 
Figure 6: a) Annual relative contribution of different geographical sectors to air masses 3 

influencing GEOSummit according to the HYSPLIT back-trajectories analysis. b) Annual biomass 4 

burning emissions (in mole/year) from all open burning north of 45°N and north of the equator 5 

(Northern Hemisphere, NH) according to the Fire INventory from NCAR (FINNv2.2) emission 6 

estimates (MODIS only). 7 
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 10 
Figure 7: Time-series of a) carbon monoxide (CO), b) propane, c) ethane, and d) benzene mixing 11 

ratios in ambient air at GEOSummit in July-August 2019. The two vertical red lines show the 12 

simultaneous enhancement of mixing ratios in two biomass burning plumes.  13 
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 37 
Figure 8: U.S. field production of propane in thousand barrels per month. Data courtesy of the 38 

U.S. Energy Information Administration. The production plateaued from June 2014 to December 39 

2016. 40 

41 
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