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Abstract. On-road vehicle emissions are a major contributor to significant atmospheric pollution in populous metropolitan 

areas. We developed an hourly-based, link-level emissions inventory of vehicular pollutants using two land-use machine 

learning methods based on the datasets of road traffic monitoring in the Beijing-Tianjin-Hebei (BTH) region. The results 

indicate that a land-use random forest (LURF) model is more capable of predicting traffic profiles than other machine learning 20 

models on most occasions for this study. The inventories under three different traffic scenarios depict a significant temporal 

and spatial variability in vehicle emissions. NOX, fine particulate matter (PM2.5) and black carbon (BC) emissions from heavy-

duty trucks (HDTs) in general have higher emission intensity on the highways connecting to regional ports. The model finds 

a general reduction in Light-Duty Passenger Vehicles when traffic restrictions were implemented, but a much more spatially 

heterogeneous impact on HDTs, with some road links experiencing up to 40% increases in HDT traffic volume. This study 25 

demonstrates the power of machine learning approaches to generate data-driven and high-resolution emission inventories, 

which provides a platform to realize the near real-time process of establishing high-resolution vehicle emission inventories for 

policy makers to engage in sophisticated traffic management. 
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1. Introduction 30 

The rapid social and economic growth in China has driven the development of road transportation systems and mobility 

services over the past few decades. This macrotrend also aligns with the faster pace of urban expansion and agglomeration, 

creating higher travel activities that are not only caused by urban commuting but also are caused by intercity connections. 

Consequently, on-road transportation systems have resulted in substantial challenges regarding traffic congestion, carbon 

emissions, air pollution, and land-use issues (Uherek et al. 2010; Waddell 2002; Chapman 2007). To address traffic-related air 35 

pollution issues, previous studies have developed link-level emission inventories for metropolitan areas or their urban cores. 

Notably, more studies have recognized the considerable environmental impact from nonlocally registered vehicles, especially 

the nonlocal heavy-duty diesel trucks (HDDTs) serving for regional freight purposes. For example, nonlocal HDDTs are 

estimated to contribute nearly 30% to 40% of the total on-road emissions of nitrogen oxides (NOX) and fine particulate matter 

(PM2.5), which are even greater than the contributions of the 5 million local passenger cars (Wang et al. 2011; Yang et al. 40 

2019). Undoubtedly, for transportation hubs, such as Beijing, we see a clear need to support policymaking that road emission 

inventories should be enlarged to the multiprovince level to improve the management of transportation emissions. 

The technological evolution in intelligent transportation systems has facilitated emission inventories for megacities. For 

example, Gately et al. applied global positioning system (GPS)-informed speed data from mobile phones and vehicles (Gately 

et al. 2017) to map the emission fluxes from vehicles in the Greater Boston region. In addition to such trajectory data (Sun, 45 

Zhang, and Shen 2018), open-accessed traffic congestion indexes could also be derived from navigation companies or 

municipal government agencies to dynamically estimate road speeds. For traffic volume and fleet mix, radio-frequency 

identification (RFID) and traffic cameras are capable of reporting detailed vehicle counts by using license plate numbers 

(Zhang et al. 2018). These real-world traffic datasets are useful for elucidating temporal and spatial variations in traffic 

emissions. However, we are still confronted with a few challenges to construct multiprovince, link-level emission inventories 50 

by utilizing these developed methods that are applicable to smaller research domains. First, the annual averaged daily traffic 

(AADT) data, for example, which could be assessed from the U.S. Highway Administration, typically uses the traffic profiles 

of a select portion of a roadway system (i.e., “sample panel”) to represent the “full extent” of the system. Second, simple 

assumptions and empirical adjustments of vehicle kilometers traveled (VKT) are often used to downscale state-level or 

national-level AADT profiles to traffic patterns of specific counties (Gately, Hutyra, and Sue Wing 2015). Both of these factors 55 

could result in estimates of the spatial variations in traffic volumes that may not represent real-world patterns. Furthermore, 

the AADT datasets are updated per year according to the annual submission from all states. Therefore, the AADT datasets 

could support the average analysis of seasonal or day-of-week variations(McDonald et al. 2014) but are limited to reflecting 

emissions in a quasi-dynamic fashion (e.g., hourly). 

Traffic demand modelling is a useful complement to measurements and simple empirical downscaling, which has been utilized 60 

to assist the development of emission inventories(Gately et al. 2017; Zhang et al. 2018). However, transportation simulation 

methods are often time-consuming, machine learning method then represents yet another complementary way of estimating 
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traffic flows in a particular context, a way that is faster than full traffic demand modelling and more able to adapt to local 

conditions than simpler empirical approaches.  

The research domain of this study, the Beijing-Tianjin-Hebei (BTH) region (see Fig. S1), geographically covers three 65 

provincial-level administrative regions with a total land area of 217,000 km2. As the national political center, the BTH region 

has also developed the busiest freight system in northern China but has suffered from the worst air quality since the 2000s. We 

utilized hourly traffic profiles including volume, speed and fleet mix obtained from the governmental intercity highway 

monitoring network to pioneer land-use machine learning methods for developing link-level emission inventories. The 

methodology can potentially be used either to map traffic characteristics on a larger scale (at the national level) or to deal with 70 

real-time urban traffic data streams that need to overcome the challenges of computational accuracy and efficiency. 

2. Methodology and Data 

2.1 Research domain and emission calculation 

The government traffic monitoring datasets mainly cover main intercity highways, such as expressways, national highways 

and provincial highways. Notably, we did not include urban sections or minor roads in the research domain because the traffic 75 

profiles of these roads were administered by local governmental agencies. The network of intercity main roads in the BTH 

region has a total length of 50,660 km, including 18,824 km of expressways, 8,989 km of national highways, and 22,847 km 

of provincial highways (See the definition of road types in Table S1). The entire region has held 22.38 million registered 

vehicles (motorcycles excluded) by 2017, with an average annual growth rate of 7% since 2013. In addition, freight trucks for 

mass transportation of coal and steel from other provinces pass through the BTH region in very large numbers because this 80 

region accounts for approximately one quarter of the total steel production in China. 

The emissions of primary vehicular pollutants (carbon monoxide, CO; total hydrocarbon (THC); nitrogen oxide, NOX, PM2.5, 

and black carbon, BC) were calculated with a high-resolution method in a temporal and spatial framework. A link-level 

emission inventory modeling framework, called EMBEV-Link, was used to complete the emission calculation (Yang et al. 

2019). For each road link, hourly emissions are the product of the traffic volume, link length and speed-dependent emission 85 

factors (see Eq. 1). 

𝐸ℎ,𝑗.𝑙 = ∑ EF𝑐,𝑗(𝑣)𝑡 × TV𝑐,ℎ,𝑙 × 𝐿𝑙                                                             (1) 

where Eh,j,l is the total emission of pollutant j on-road link l at hour h, units in g h-1; EFc,j(v) is the average emission factor of 

pollutant j for vehicle category c at speed v, units in g km-1; TVc,h,j is the traffic volume of vehicle category c on-road link l at 

hour h, units in veh h-1; and Ll is the length of road link l, units in km. According to the resolution of traffic mix data, six 90 

vehicle categories were defined, namely, light-duty passenger vehicles (LDPVs), medium-duty passenger vehicles (MDPVs), 

heavy-duty passenger vehicles (HDPVs), light-duty trucks (LDTs), and heavy-duty trucks (HDTs) (see Table S2). Different 

from the city-scale emission inventories, we did not separate the traffic volumes of transit buses and taxis from the HDVPs 

and LDPVs, respectively. Additionally, motorcycles were not included because we could barely observe the presence of 
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motorcycles on these intercity highways. For each vehicle category, speed-dependent emission factors were developed based 95 

on the EMBEV model. The EMBEV model embodied the detailed fleet configurations based on vehicle registration data, 

which was developed based on thousands of in-lab dynamometer tests and hundreds of on-road tests (Zhang et al. 2014). Since 

2015, this model has become the architype of the official National Emission Inventory Guidebook in China (Wu et al. 2016; 

Wu et al. 2017). Based on the EMBEV model, this study updated the BTH emission database, taking full account of the 

differentiated vehicle emission characteristic of Beijing, Tianjin and Hebei. The main influencing factors include: 100 

implementation timetable of vehicle emission standards, fuel quality, intensity of in-use vehicle supervision, proportion of 

high-emission vehicles, etc. Fig. S2 shows the fleet-average emission factors of CO, NOX and BC for LDPVs and HDTs 

estimated by the updated EMBEV model in Beijing, Tianjin and Hebei. Since the traffic monitoring stations cannot obtain the 

emission standard information of the vehicle, the proportions of emission standard as well as vehicle age/mileage (used to 

estimate mileage deterioration of emissions) were assumed to be consistent with the default fleet composition data in the 105 

EMBEV model. We also made adjustment based on the restriction policy, such as the HDTs older before China III are not 

allowed to drive within the fifth rings in Beijing. Fig. S3 presents speed-dependent emission factors modified by different 

regions representing the traffic configurations (e.g., fuel type, emission standard and vehicle size) and operating conditions 

(e.g., fuel quality) estimated for the calendar year of 2017. Evaporative THC emissions were not included in the current 

EMBEV-Link model because we were limited to spatially specifying the evaporative off-network emissions. 110 

2.2 Traffic scenarios under various transportation management schemes 

Three traffic scenarios were generated as inputs to the EMBEV-Link model to observe the impact of major transportation 

management schemes. Scenario Weekday (S1) represents the average traffic patterns during weekdays (Monday to Friday) 

with regular driving patterns. Scenario Weekend (S2) represents the average traffic patterns during weekends (Saturday and 

Sunday), possibly with more leisure travel. Furthermore, Scenario Restriction (S3) represents the traffic patterns under special 115 

restrictions. The Chinese governments have launched comprehensive actions to alleviate air pollution during seriously polluted 

episodes. For the on-road sector, transportation restrictions are implemented during polluted days when the PM2.5 

concentrations or air quality index (AQI) were forecasted to be higher than certain thresholds. As one of the most polluted 

regions in China, the BTH region has implemented a package of traffic control measures, especially during the winter, with 

the worst meteorological conditions for pollution dispersion. In this study, Scenario Restriction (S3) estimated the real-world 120 

traffic patterns during a special week of November 4th to 8th, 2017, facing serious haze pollution. More extensive bans than 

usual were adopted during that week, so that coal-related freight trucks and high-emitting vehicles (e.g., gasoline cars in 

compliance with pre-China 2 standards) were restricted from many roads in the BTH region, the traffic composition (especially 

for the configurations of emission standard) would be adjusted accordingly in this scenario. Different from the averaged diurnal 

patterns in S1 and S2, hourly emissions were continuously estimated throughout the period with traffic restrictions. 125 
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2.3 Generating dynamic traffic profiles based on land-use machine learning models 

2.3.1 Data collection 

The input data for modeling development of this study is mainly including traffic data and the land-use data. An overview of 

the data used to train the land-use machine learning models is summarized in Table S3 and detailed below. 

Traffic data. The Ministry of Transport has established nationwide networking to monitor intercity traffic conditions(Yang et 130 

al. 2019; Zhang et al. 2018). Twenty-four-hour diurnal traffic profiles, including the volume, speed and fleet mix, were 

obtained from 848 intercity highway sites in the BTH region (see Fig. S1). The hourly traffic profiles of a whole week (20 th to 

27th) were collected in January, April, July and November in 2017 to represent the average scenarios (S1 and S2). For S3, we 

further collected the hourly profiles from a special week including traffic restrictions (November 5th and 6th). Fig. S4 shows 

the distribution of the annual average daily traffic profiles used to train the models to see the capability for predicting the 135 

spatial distribution of these traffic profiles. Notably, the monitoring data of the traffic volumes could not separate the LDPVs 

and MDPVs from the light-medium-duty passenger vehicles (LMDPVs) on the whole. Therefore, we assembled the two 

categories when predicting the traffic volumes and separated the predicted traffic volumes according to the estimated total 

vehicle activity (i.e., registered population × annual VKT). 

Land-use data. As land-use machine learning models have rarely been used to develop traffic emission inventories, we 140 

selected candidate spatial predictors based on previous research on the air pollution concentration predictors (Hoek et al. 2008; 

Lee et al. 2017). Many of these predictors, such as the population density, road density and distance from transportation 

facilities (e.g., airports and transit stations), are expected to affect traffic activities as well. The potential predictor variables 

were divided into two groups: a) variables representing a point value and b) variables representing the cumulative values of an 

area (buffer variables). The buffered variables were represented as a density value (standardized by the buffer area). In total, 145 

139 spatial predictor variables (see Table S3) regarding the land-use data were calculated considering the data availability. 

Gong et al. transferred the global training sample set developed in 2015 at a 30-m resolution to map a 10-m resolution global 

land cover in 2017 (Gong et al., 2019), which was assigned into each buffer to calculate the land-use variables. Next, we 

utilized the points of interest (POIs) mined from the Amap API to calculate the POI density in every buffer and the distance 

variables (Gaode Map, 2017). The population density in the buffer was extracted from WorldPop, which estimates the numbers 150 

of people per pixel (ppp) and people per hectare (pph) and adjusts the national totals to match the UN population division with 

a spatial resolution of 100 m (WorldPop, 2015). The China Digital Road-network Map (CDRM) data developed by NavInfo 

were used in this study. The road information included the location (latitude and longitude), administration, number of lanes 

and designed speed limit of the monitoring sites. We categorized the intercity traffic monitoring sites by road type (e.g., 

expressways, national-level highways and provincial-level highways) and thus calculated the road density in each buffer. 155 
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2.3.2 Development and validation of the Machine Learning models 

In order to find the most capable model for this study, five machine learning models commonly used in the environment or 

transport field were selected based on a comprehensive literature review and developed to estimate the spatial distributions of 

link-level traffic volumes, speeds and mixes for the research domain. They are land-use random forests (LURF), grading 

boosting decision trees (GBDT), support vector regression (SVR), Gaussian process regression (GPR) and linear regression 160 

(LR). LURF are often implemented in prediction analyses (e.g., spatial distribution of pollutant concentrations) because of 

their increased accuracy and resistance to multicollinearity and complex interaction problems compared to linear regression 

(Hastie 2009; Brokamp et al. 2018). GPR is a flexible nonparametric Bayesian model that has been successfully applied to 

predict traffic characteristics (e.g., traffic congestion(Liu, Yue, and Krishnan 2013) and traffic volumes (Xie et al. 2010)) with 

state-of-the-art results. GBDT models are also well adopted for traffic prediction in various study, due to the ability to 165 

continuously reduce error during the execution of each iteration (Xia and Chen 2017; Yang et al. 2017; Yang, Zheng, and Sun 

2019; Li and Bai 2016). SVR method showed great competence over other traditional algorithms while dealing with non-linear, 

high-dimensional and small sample problems (Li and Xu 2021). LR is a fundamental and popular algorithm in the field of 

traffic flow prediction, which can establish a statistical relationship between dependent variables and independent variables. 

(Alam, Farid, and Rossetti 2019; Boukerche and Wang 2020). The detailed advantages and disadvantaged of each model are 170 

summarized in Table S4. 

In this study, in the process of model development, we used the annual daily average traffic profiles (i.e., traffic volume by 

category and speed) as the observed responses of the models, and the land-use datasets (detailed in Section 2.3.1) were used 

for the input of the models. We conducted an overall 10-fold cross-validation to evaluate the model performance. The entire 

dataset, including the hourly traffic datasets and the land-use datasets, was randomly split into 10 groups, with each group 175 

containing ~10% of the data. In each cross-validation, nine groups of data were employed as training sets to fit the models and 

make predictions on the remaining group. This process was repeated 10 times until every group was predicted. The Pearson R 

(r), root mean squared prediction error (RMSE) and mean absolute prediction error (MAPE) between the model predictions 

and observations were calculated to evaluate the model performance. 

The validation results indicated that the LURF model is the most capable of estimating the traffic characteristics (see Section 180 

3.1), which was used to further develop the hourly specific LURF models. The relative importance of the predictors from the 

trained LURF model shows their prediction ability. For each predictor, we permuted the values of this predictor across every 

observation in the dataset and measured the increase in the mean standard error (MSE) per permutation. Repeating this process 

for each predictor, a metric stores the increase in the MSE due to the permutation of out-of-bag observations across each input 

predictor averaged over all trees in the forest and divided by the standard deviation taken over the trees. The larger this value 185 

is, the more important the predictor should be. The metric stores the strength of the relationships between the predictors and 

projections to indicate the relative importance between various predictors.  
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3. Results and Discussion 

3.1 The results of the traffic prediction 

Table 1 illustrates the Pearson R used to evaluate the model performance for predicting the daily averaged traffic parameters 190 

based on the constructed machine learning models, the overall performance of prediction (Pearson R, RMSE and MAPE) were 

summarized in Table S5. The performances were assessed using a 10-fold cross-validation. First, the LURF models 

consistently derive higher correlation coefficients between the predicted and observed traffic profiles than almost all the other 

models. The Pearson’s r values range from 0.62 (LDTs) to 0.79 (LMDPVs) for the LURF models, which are higher than the 

corresponding correlation coefficients for the other four models. The R values of GBDT for LMDPV are slightly better than 195 

LURF (0.81 vs. 0.79). Furthermore, the RMSE values of the category-resolved traffic volumes by using the LURF models are 

significantly lower than those for the other models. The RMSE values of GBDT and SVR on HDT traffic simulations are also 

relatively low. For the value of MAPE, the performance of LURF, GBDT and SVR are comparable and better than GPR and 

LR. In general, LURF has the best performance in the simulation of all traffic profiles, while the performance of GBDT and 

SVR on individual indicators (such as traffic flow of LMDPV and HDT) is also acceptable. Therefore, the LURF model is 200 

more capable of predicting traffic profiles than other models on most occasions for this study and will be used in following 

simulations.  

We further developed an hourly specific LURF model to predict the hourly averaged traffic profiles under different scenarios. 

We ranked the variable importance in the training process utilizing the method above to construct a variable importance 

measure and then averaged the hourly ranks for each variable to the final importance index listed in Table S6. Table S6 205 

illustrates the top 10 important variables for all land-use predictors in our LURF models under S1. In general, in addition to 

the road location (province, city and county), the important input variables for predicting traffic volumes are primarily related 

to road information, such as the road type, road density, number of lanes and designed speed. Especially for the HDTs and 

speed simulations, the top 10 important variables are almost all related to road information. The effects of land cover and POI 

information for estimating traffic characteristics are relatively less important than the role of road information. For passenger 210 

fleets (LMDPVs and HDPVs) and light-duty trucks (LDTs and MDTs), some important inputs related to the land-use datasets 

(e.g., population, POI information) are indicated by the analysis. Notably, these important land-use variables often represent 

large buffers (e.g., 2000 m to 5000 m). This effect is because intercity monitoring sites are typically located far away from 

urban areas, where POI information is more densely available. 

 215 

3.2 Traffic activity characteristics of road networks under various scenarios 

Different from urban weekday-weekend patterns (Yang et al. 2019), a higher traffic activity is estimated during weekends (S2; 

931 million veh km) than on weekdays (S1; 841 million km). This data implies that more leisure trips during weekends could 

be captured by intercity highway monitoring data (see Fig. S5). The lower traffic activity during weekdays is mainly observed 
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in Hebei Province (63%); among all vehicle categories, the LDPVs account for ~70% of the total reduced VKT, followed by 220 

HDTs (16%) and LDTs (10%). 

We annualized the allocation of the total traffic activity by vehicle category in the BTH region by aggregating the daily patterns 

under S1 and S2 (see Fig. S6). Among all the fleets, the LDPVs account for the largest proportion of the total annual traffic 

activity (64%), followed by the HDTs (18%) and LDTs (9%). For the HDTs, the fractions of the total traffic activity decrease 

from Hebei (20%) to Tianjin (18%) and thus to Beijing (11%), probably because of two major reasons. First, the passenger 225 

traffic activity by LDPVs is denser in Beijing than in Hebei. Second, many HDTs are strictly limited within the Sixth Ring 

Road in Beijing, which could also shrink the freight activity outside the restriction area (Yang et al. 2019). Table S7 illustrates 

the allocations of traffic activity by the vehicle category and road type. For freight transportation, more than 50% of the HDT 

traffic activity is estimated to occur on expressways. In Tianjin and Hebei, HDTs travel more frequently on expressways than 

LDTs to improve efficiency. 230 

In terms of temporal variations, the rush hour phenomenon, shown as an increase in the traffic activity, occurred from 8:00 to 

10:00 GMT+8 and from 15:00 to 17:00 GMT+8 on weekdays (S1). Compared to the rush hour effect within urban areas in 

Beijing (e.g., peaked at the hour of 7:00 GMT+8)(Yang et al. 2019), the morning rush hours occur later, while evening rush 

hours are earlier for these intercity highways. Similar trends are observed during weekends (S2), with a higher traffic activity 

reflecting more casual intercity trips (see Fig. S5). In contrast, the diurnal fluctuations of the average speeds depict quite close 235 

characteristics between weekdays and weekends (see Fig. S7) because the level of congestion for intercity highways (even 

during rush hours) is not comparable to urban areas. It should be noted that the speed in Beijing are obviously lower than that 

in Tianjin and Hebei, mainly due to the congestion occurred in Beijing resulting from its larger travel demands. 

The traffic activity of Scenario S3 with special policy interventions was clearly reduced in the BTH region. The daily traffic 

activity of S3 was decreased by 23% compared with that of normal weekdays. However, traffic reductions are heterogeneous 240 

among the various vehicle categories and different regions. As Fig. 1 shows, the LDPVs show uniform reductions of 

approximately 25% on all the intercity highways in the BTH region; only 4% of roads are identified with increased LDPV 

volumes. For HDTs, reduced traffic could also be observed in Beijing and the expressways and national highways in Tianjin, 

but there is a certain number of provincial highways in Tianjin (~20%) and expressways (~30%), national highways (~15%) 

and provincial highways (~20%) in Hebei with increased flow. Four subregions are indicated in Fig. 1 with significantly 245 

increased HDT volumes (more than 50%). Subregions 1-3 represent the roads heading to several large ports (the ports of 

Qingdao, Tianjin, and Qinhuangdao for subregions 1-3, respectively), and subregion 4 represents the areas near the boundary 

of the BTH region. These differences in traffic volume between the LDPVs and HDTs indicate that for passenger travel, the 

restrictions could uniformly reduce the travel demand across the region. In contrast, decreases in HDT traffic volumes are 

expected in areas with the stricter enforcement of traffic restrictions (i.e., Beijing and highway and national roads in Tianjin). 250 

The traffic restrictions were more effective in Beijing, resulting in a 29% decrease among all vehicle fleets, especially for the 

HDTs (a 52% decrease) and MDTs (a 42% decrease). In Hebei, such traffic restrictions could result in a detour of the HDTs, 

as the operators and drivers of the HDTs conduct their business even on restrictive days. The decrease in the total traffic 
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activity in Hebei was primarily due to the LMDPVs, and the traffic activities of MDTs and HDTs were only 5% and 14% 

lower than those on normal weekdays (S1). 255 

3.3 Temporal and spatial characteristics of traffic emissions 

The total daily emissions for the intercity highways in the BTH region are estimated to be 1443 tons for CO, 152.3 tons for 

THC, 1158 tons for NOX, 37.30 tons for PM2.5 and 18.73 tons for BC, during weekdays (S1, See Fig. 2; see provincial-level 

total emissions and emission intensity in Fig. S8. During weekends (S2), the total daily emissions are estimated to increase by 

approximately 10% for all pollutants due to increased traffic activity. Comprehensive traffic restrictions under S3 triggered 260 

decreased vehicle emissions, e.g., 33% to 38% for CO and THC, 23% for NOX, and 15% to 17% for PM2.5 and BC in the entire 

domain relative to S1. For LDPVs traveling on the highways, the greater reductions in CO and THC result from the lower 

traffic volumes due to traffic restrictions, especially in Tianjin and Hebei. In these areas, the controls for vehicles are behind 

those in Beijing, and therefore, the restrictions on pre-China 2 gasoline cars could result in a larger reduction. Diesel trucks 

contribute significantly to the emission reductions of NOX, PM2.5 and BC, and their lower reduction percentages compared to 265 

CO and THC are related to smaller decreases in the HDT traffic volume in Tianjin and Hebei.  

The major temporal difference in the diurnal patterns between S1 and S2 lies in the higher emissions during the rush hours of 

weekends. We thus refer to the weekday scenario (S1) to elucidate the temporal and spatial emission patterns (see Figs. 2 and 

3). The emission peaks of CO and THC during morning (9:00 to 10:00 GMT+8) and evening (16:00 to 17:00 GMT+8) rush 

hours, which are apparently associated with diurnal fluctuations in the passenger travel demand, are shown in Fig. S5. As Figs. 270 

4a and 4b visualize, the CO emission intensity close to urban areas is significantly higher than that in outlying areas during 

both peak and off-peak periods. The highest hourly emissions of CO and THC, which are more associated with passenger 

traffic activity, were estimated during the morning rush hour (10:00 GMT+8); these emissions were higher than their 24-h 

averages by approximately 40%-50%. The emission allocations show high resemblance between CO and THC; specifically, 

the LDPVs dominate the contributions, and the proportions in Beijing and Tianjin are higher than those in Hebei. This increase 275 

is because these two metropolitan areas have a higher density of residential population (indicated by pop_5000m), business 

units (indicated by POI_office_5000m), and urban lands (indicated by urbanland_5000m) than in Hebei; these variables have 

been identified as the most important variables for traffic activity predictions of LDPVs by using LURF modeling (see Table 

S6). 

Diesel fleets are responsible for much greater shares of on-road NOX, PM2.5 and BC emissions than CO and THC emissions. 280 

Consequently, distinctive traffic behaviors of these diesel fleets will result in disparate temporal and spatial emission patterns 

from those for CO and THC. First, we have observed that the total emissions of NOX, PM2.5 and BC during the night (0:00 to 

4:00 GMT+8, Fig. 2) are closer to the emissions during the daytime, but the nighttime-daytime differences in the emission 

patterns are less than those of CO and THC. This finding is because a considerable part of long-haul freight trucks in China 

are operated by two drivers, who could shift duty and travel during nighttime. Second, the NOX, PM2.5 and BC emission 285 

contributions by HDTs in Tianjin and Hebei are higher than those in Beijing by approximately 10%. Additionally, the higher 
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percentages of the total NOX, PM2.5 and BC emissions by HDPVs (tourist and intercity coaches) in Beijing are higher than 

those in Tianjin and Hebei. The comparison results indicated higher passenger travel demand in Beijing due to its attraction of 

tourists and lower freight transportation activity due to truck restrictions. 

The emission maps discern Tianjin Port, the largest port in northern China with an annual freight handling amount of 466 290 

million tons in 2018, as a significant hotspot. A large amount of HDTs flood into Tianjin Port (i.e., Subregion 2 in Fig. 1), 

leading to significantly higher emissions on adjacent highways throughout the day (Figs. 3C and 3D). The daily variation in 

the NOX emission intensity in the port area is more obvious than that in Tianjin and the BTH region, with a peak period from 

7:00 to 18:00 GMT+8. The hourly average NOX emission intensity of Tianjin Port is 1.87±0.42 kg km-1 h-1, which is 47% and 

123% higher than the average levels of Tianjin and the BTH region, respectively (see Fig. S9). 295 

3.4 Discussion 

An efficient protocol of dynamically modeling hourly based, link-level emissions. This study provides a universal 

analytical method for a high-resolution vehicle inventory at a regional scale, especially for regions including many cities 

suffering from the difficulty of addressing traffic data at a high spatial resolution. Fig. 4 shows the hourly variations in the 

traffic activities of LDPVs and HDTs and total vehicle emissions by region during a special week when traffic restrictions 300 

were implemented (November 5th to 6th, 2017). During November 2nd to 5th, the traffic activity resembles that during a normal 

week (e.g., April 20th to 27th, 2017; see Fig. S10). When the traffic restrictions were being implemented during November 5th 

and 6th, we observed an ~20% reduction in the VKT of LDPVs and HDTs, an ~30% reduction in CO emissions and an ~20% 

reduction in NOX emissions, which resembled S1 and S3 because of traffic restrictions. Therefore, the high efficiency of the 

calculation based on the LURF model provides a platform to realize the near real-time process of establishing high-resolution 305 

vehicle emission inventories, and can dynamically support the further evaluation of environmental benefits from traffic policies 

and management measures. However, the spatiotemporal dependencies are not as clearly modeled in machine learning as they 

are in general linear model frameworks, and future work could derive methods for optimizing the predictors used in machine 

learning models to improve the accuracy of the prediction. 

Comparison of the best machine learning method against the standard empirical bottom-up approach. Addressing the 310 

spatial characteristics of traffic profiles based on limited datasets is a significant challenge for establishing high-resolution 

emission inventories of on-road vehicles. To overcome this barrier, the allocation of the VKT based on-road information was 

the most typical way to establish simplified bottom-up inventories in previous studies. Zheng et al. allocated the VKT of each 

county based on the same weighing factors considering the vehicle category and road type. Gately et al. used the same 

allocation of the total VKT considering the differences in weighing factors according to the road type but regardless of 315 

distinguishing the vehicle category. This section compared the differences between the above empirical methods and machine 

learning method obtained in this study, M1 denotes the best machine learning method (i.e., LURF) in this study and M2 denotes 

the allocation method based on the standard empirical bottom-up approach. The VKT of M2 was allocated based on the 

combination of the methods from Zheng and Gately (according to Eq. 2). 



11 

 

VKT𝑙,𝑣𝑐
𝑀2 = VKT𝑣𝑐

𝑀1 ×
TV𝑙,𝑣𝑐∙𝑅𝐿𝑙,𝑣𝑐

∑ TV𝑙,𝑣𝑐∙𝑅𝐿𝑙,𝑣𝑐𝑙
                                                                       (2) 320 

where VKTvc
M1 is the total VKT of vehicle category vc of the BTH region calculated in M1; VKTl, vc

M2 is the allocation VKT 

on-road link l of vehicle category vc in M2; TVl,vc is the preallocated traffic volume based on its road type and location on-

road (Yang et al. 2019) link l of vehicle category vc; and RLl,vc is the length of road link l. CO and NOX are discussed, as they 

represent the gasoline and diesel featured emissions, respectively. 

As Fig. 5 illustrates, compared with M1, M2 tends to underestimate the CO emissions on the provincial highways close to 325 

urban areas (80% of the provincial highway links are underestimated) and overestimates the expressways and national 

highways in remote rural areas, especially in Beijing and Hebei (77% and 62% of the expressways are overestimated in Beijing 

and Hebei, respectively). This miscalculation is because, for remote rural areas without monitoring traffic data, we tend to 

preallocate volumes according to the road rank, which means expressways and national highways will be allocated more traffic 

volumes than provincial roads. For NOX, we observe a similar misestimation in the emission distribution of CO; that is, 330 

approximately 70% of provincial highway links are underestimated, and ~70% and 60% of expressways and national highways 

are overestimated. The long-tailed distributions of the relative difference of CO and NOX are illustrated in Fig. S11. Overall, 

the differences between the two methods are not extreme because 79% and 82% of road links’ relative differences for CO and 

NOX are within ±50%. The analysis indicates that we may use the simplified M2 with the absence of land-use data while 

needing to pay attention to the uncertainty in the project-level emission calculations (e.g., port-related areas).  335 

Temporal and spatial patterns of air pollutant emissions from on-road vehicles are of substantial interest because of the 

associated potential public health impact. The population exposure to vehicular pollutants are greatest in areas with high 

vehicle usage and population density (Marshall et al. 2005). Air quality simulation models with fine-grained input from high-

resolution vehicle emission inventories will be valuable for evaluating the potential health benefits from vehicle emission 

control measures (Ke et al. 2017). However, we are limited to estimates of detailed link-level emissions for urban areas in 340 

Tianjin and Hebei due to the data availability (e.g., traffic volume of urban local roads). Currently, as noted in the introduction, 

there are already link-level emission inventories in large cities with traffic datasets from the ITS, but a strengthening of the 

portability of the analytical method is still needed. This study points a promising way to smart management of traffic emissions 

in various regions and cities by combining advanced data-driven techniques and multi-source ITS datasets, which will provide 

policymakers with a better understanding of how air quality impacts regional and local transportation activities. 345 

4. Conclusion 

This paper developed an hourly-based, link-level emissions inventory of vehicular pollutants using land-use machine learning 

methods based on the datasets of road traffic monitoring in the BTH region of China under three traffic scenarios. The 

methodology can potentially be used either to map traffic characteristics on a larger scale or to deal with real-time urban traffic 

data streams that need to overcome the challenges of computational accuracy and efficiency. The major findings can be 350 

summarized as follows: 
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 (1) The land-use random forest (LURF) model is more capable of predicting traffic profiles than other models on 

most occasions in this research. 

 (2) The important input variables for predicting traffic volumes are primarily related to road information, such as the 

road type, road density, number of lanes and designed speed. 355 

 (3) A higher traffic activity is estimated during weekends than on weekdays, and the traffic activity of Scenario S3 

with special policy interventions was deceased by 23% compared with that of normal weekdays. 

 (4) The model finds a general reduction in Light-Duty Passenger Vehicles when traffic restrictions were implemented, 

but a much more spatially heterogeneous impact on Heavy-Duty Trucks (HDTs). 

 360 
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Figure 1. Estimated traffic volume reductions of the LDPVs and HDTs under traffic restrictions (S3) compared to 

normal weekdays (S1). 455 
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Figure 2. Estimated hourly emissions by vehicle category under S1. 



17 

 

 

Figure 3. Link-based emission intensity of CO (panels A and B) and NOX (panels C and D) during a midnight hour 460 

(0:00 GMT+8) and a rush hour (10:00 GMT+8). 
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Figure 4. Hourly VKT of LDPV and HDT (A and B) and vehicle emissions of CO and BC (C and D) by region from 

November 2nd to November 9th, 2017. 465 

 



19 

 

 

Figure 5. Comparison of the LURF method against the standard empirical bottom-up approach.  

Note: M1 denotes the emission inventory based on the best machine learning method (LURF) in this study. M2 denotes the emission inventory 

based on standard empirical bottom-up approach.   470 
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Table 1. Cross-validated mean Pearson R of the traffic prediction by selected machine learning models. 

Traffic profiles LURF GBDT SVR GPR LR 

LMDPV 0.79 0.81 0.65 0.62 0.48 

HDPV 0.61 0.54 0.51 0.46 0.3 

LDT 0.62 0.55 0.44 0.49 0.17 

MDT 0.64 0.6 0.48 0.47 0.26 

HDT 0.65 0.58 0.56 0.58 0.5 

Speed 0.75 0.74 0.7 0.71 0.55 

 


