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Abstract. On-road vehicle emissions are a major contributor to significant atmospheric pollution in populous metropolitan 

areas. We developed an hourly-based, link-level emissions inventory of vehicular pollutants using two land-use machine 

learning methods based on the datasets of road traffic monitoring in the Beijing-Tianjin-Hebei (BTH) region. The results 

indicate that a land-use random forest (LURF) model is more capable of predicting traffic profiles than a Gaussian process 20 

regression (GPR) model.other machine learning models on most occasions for this study. The inventories under three different 

traffic scenarios depict a significant temporal and spatial variability in vehicle emissions. One notable finding is that NOX, fine 

particulate matter (PM2.5) and black carbon (BC) emissions from heavy-duty trucks (HDTs) in general have higher emission 

intensity on the highways connecting to regional ports. EvenOne notable finding is even when traffic restrictions were 

implemented, a detour of the HDTs in Hebei was observed resulting in relatively lower emission reductions in Hebei than 25 

Beijing. This study demonstrates the power of machine learning approaches to generate data-driven and high-resolution 

emission inventories, which provides a platform to realize the near real-time process of establishing high-resolution vehicle 

emission inventories for policy makers to engage in sophisticated traffic management. 
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1. Introduction 30 

The rapid social and economic growth in China has driven the development of road transportation systems and mobility 

services over the past few decades. This macrotrend also aligns with the faster pace of urban expansion and agglomeration, 

creating higher travel activities that are not only caused by urban commuting but also are caused by intercity connections. 

Consequently, on-road transportation systems have resulted in substantial challenges regarding traffic congestion, carbon 

emissions, air pollution, and land-use issues (Uherek et al. 2010; Waddell 2002; Chapman 2007). To address traffic-related air 35 

pollution issues, previous studies have developed link-level emission inventories for metropolitan areas or their urban cores. 

Notably, more studies have recognized the considerable environmental impact from nonlocally registered vehicles, especially 

the nonlocal heavy-duty diesel trucks (HDDTs) serving for regional freight purposes. For example, nonlocal HDDTs are 

estimated to contribute nearly 30% to 40% of the total on-road emissions of nitrogen oxides (NOX) and fine particulate matter 

(PM2.5), which are even greater than the contributions of the 5 million local passenger cars (Wang et al. 2011; Yang et al. 40 

2019). Undoubtedly, for transportation hubs, such as Beijing, we see a clear need to support policymaking that road emission 

inventories should be enlarged to the multiprovince level to improve the management of transportation emissions. 

The technological evolution in intelligent transportation systems has facilitated emission inventories for megacities. For 

example, Gately et al. applied global positioning system (GPS)-informed speed data from mobile phones and vehicles (Gately 

et al. 2017) to map the emission fluxes from vehicles in the Greater Boston region. In addition to such trajectory data (Sun, 45 

Zhang, and Shen 2018), open-accessed traffic congestion indexes could also be derived from navigation companies or 

municipal government agencies to dynamically estimate road speeds. For traffic volume and fleet mix, radio-frequency 

identification (RFID) and traffic cameras are capable of reporting detailed vehicle counts by using license plate numbers 

(Zhang et al. 2018). These real-world traffic datasets are useful for elucidating temporal and spatial variations in traffic 

emissions. However, we are still confronted with a few challenges to construct multiprovince, link-level emission inventories 50 

by utilizing these developed methods that are applicable to smaller research domains. First, the annual averaged daily traffic 

(AADT) data, for example, which could be assessed from the U.S. Highway Administration, typically uses the traffic profiles 

of a select portion of a roadway system (i.e., “sample panel”) to represent the “full extent” of the system. Second, simple 

assumptions and empirical adjustments of vehicle kilometers traveled (VKT) are often used to downscale state-level or 

national-level AADT profiles to traffic patterns of specific counties (Gately, Hutyra, and Sue Wing 2015). Both of these factors 55 

could result in estimates of the spatial variations in traffic volumes that may not represent real-world patterns. Furthermore, 

the AADT datasets are updated per year according to the annual submission from all states. Therefore, the AADT datasets 

could support the average analysis of seasonal or day-of-week variations(C. et al. 2014) but are limited to reflecting emissions 

in a quasi-dynamic fashion (e.g., hourly). 

To avoid uncertainty due to simple empirical assumptions, transportation demand modeling has been utilized to assist the 60 

development of emission inventories(Gately et al. 2017; Zhang et al. 2018). However, transportation simulation methods are 

often time-consuming, which has motivated us to explore more efficient data-driven methods to map traffic profiles in an 
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entire traffic network. That is, machine learning methods can be utilized to analyze the spatial distribution of traffic 

characteristics relating to some physical land-use features. Compared with traditional parametric methods (e.g., linear land-

use regression), machine learning methods are more attractive tools for performing supervised learning tasks on complex 65 

datasets by avoiding a prior rigid assumption regarding the nature form of the model. For example, Random forests (RF) 

(James et al. 2013; Liaw and Wiener 2001) are often implemented in prediction analyses (e.g., spatial distribution of pollutant 

concentrations) because of their increased accuracy and resistance to multicollinearity and complex interaction problems 

compared to linear regression (Hastie 2009; Brokamp et al. 2018). Gaussian processes (GPs) (Williams and Rasmussen 2005) 

are another machine learning method that could offer flexibility in finding a suitable parametric form for a complex dataset 70 

without prior experience. Gaussian process regression (GPR) is a flexible nonparametric Bayesian model that has been 

successfully applied to predict traffic characteristics (e.g., traffic congestion(Liu, Yue, and Krishnan 2013) and traffic volumes 

(Xie et al. 2010)) with state-of-the-art results. 

The research domain of this study, the Beijing-Tianjin-Hebei (BTH) region (see Fig. S1), geographically covers three 

provincial-level administrative regions with a total land area of 217 thousand km2. As the national political center, the BTH 75 

region has also developed the busiest freight system in northern China but has suffered from the worst air quality since the 

2000s. We utilized hourly traffic profiles including volume, speed and fleet mix obtained from the governmental intercity 

highway monitoring network to pioneer land-use machine learning methods for developing link-level emission inventories. 

The methodology can potentially be used either to map traffic characteristics on a larger scale (at the national level) or to deal 

with real-time urban traffic data streams that need to overcome the challenges of computational accuracy and efficiency. 80 

2. Methodology and Data 

2.1 Research domain and emission calculation 

The government traffic monitoring datasets mainly cover main intercity highways, such as expressways, national highways 

and provincial highways. Notably, we did not include urban sections or minor roads in the research domain because the traffic 

profiles of these roads were administered by local governmental agencies. The network of intercity main roads in the BTH 85 

region has a total length of 50,660 km, including 18,824 km of expressways, 8,989 km of national highways, and 22,847 km 

of provincial highways (See the definition of road types in Table S1). The entire region has held 22.38 million registered 

vehicles (motorcycles excluded) by 2017, with an average annual growth rate of 7% since 2013. In addition, freight trucks for 

mass transportation of coal and steel from other provinces flood into the BTH region because this region accounts for 

approximately one quarter of the total steel production in China. 90 

The emissions of primary vehicular pollutants (carbon monoxide, CO; total hydrocarbon (THC); nitrogen oxide, NOX, PM2.5, 

and black carbon, BC) were calculated with a high-resolution method in a temporal and spatial framework. A link-level 

emission inventory modeling framework, called EMBEV-Link, was used to complete the emission calculation (Yang et al. 
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2019). For each road link, hourly emissions are the product of the traffic volume, link length and speed-dependent emission 

factors (see Eq. 1). 95 

,.ܧ ൌ ∑ EF,ሺݒሻ௧ ൈ TV,, ൈ                                 (1)ܮ

where Eh,j,l is the total emission of pollutant j on-road link l at hour h, units in g h-1; EFc,j(v) is the average emission factor of 

pollutant j for vehicle category c at speed v, units in g km-1; TVc,h,j is the traffic volume of vehicle category c on-road link l at 

hour h, units in veh h-1; and Ll is the length of road link l, units in km. According to the resolution of traffic mix data, six 

vehicle categories were defined, namely, light-duty passenger vehicles (LDPVs), medium-duty passenger vehicles (MDPVs), 100 

heavy-duty passenger vehicles (HDPVs), light-duty trucks (LDTs), and heavy-duty trucks (HDTs) (see Table S2). Different 

from the city-scale emission inventories, we did not separate the traffic volumes of transit buses and taxis from the HDVPs 

and LDPVs, respectively. Additionally, motorcycles were not included because we could barely observe the presence of 

motorcycles on these intercity highways. For each vehicle category, speed-dependent emission factors were developed based 

on the EMBEV model. The EMBEV model embodied the detailed fleet configurations based on vehicle registration data, 105 

which was developed based on thousands of in-lab dynamometer tests and hundreds of on-road tests (Zhang et al. 2014). Since 

2015, this model has become the architype of the official National Emission Inventory Guidebook in China (Wu et al. 2016; 

Wu et al. 2017). Based on the EMBEV model, this study updated the BTH emission database, taking full account of the 

differentiated vehicle emission characteristic of Beijing, Tianjin and Hebei. The main influencing factors include: 

implementation timetable of vehicle emission standards, fuel quality, intensity of in-use vehicle supervision, proportion of 110 

high-emission vehicles, etc. Fig. S2 shows the fleet-average emission factors of CO, NOX and BC for LDPVs and HDTs 

estimated by the updated EMBEV model in Beijing, Tianjin and Hebei. Since the traffic monitoring stations cannot obtain the 

emission standard information of the vehicle, the proportions of emission standard as well as vehicle age/mileage (used to 

estimate mileage deterioration of emissions) were assumed to be consistent with the default fleet composition data in the 

EMBEV model. We also made adjustment based on the restriction policy, such as the HDTs older before China III are not 115 

allowed to drive within the fifth rings in Beijing. Fig. S3 presents speed-dependent emission factors of CO, NOX and BC for 

the LDPV and HDT categories modified by different regions representing the fleet traffic configurations (e.g., fuel type, 

emission standard and vehicle size) and operating conditions (e.g., fuel quality) estimated for the calendar year of 2017. 

Evaporative THC emissions were not included in the current EMBEV-Link model because we were limited to spatially 

specifying the evaporative off-network emissions. 120 

2.2 Traffic scenarios under various transportation management schemes 

Three traffic scenarios were generated as inputs to the EMBEV-Link model to observe the impact of major transportation 

management schemes. Scenario Weekday (S1) represents the average traffic patterns during weekdays (Monday to Friday) 

with regular driving patterns. Scenario Weekend (S2) represents the average traffic patterns during weekends (Saturday and 

Sunday), possibly with more leisure travel. Furthermore, Scenario Restriction (S3) represents the traffic patterns under special 125 
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restrictions. The Chinese governments have launched comprehensive actions to alleviate air pollution during seriously polluted 

episodes. For the on-road sector, transportation restrictions are implemented during polluted days when the PM2.5 

concentrations or air quality index (AQI) were forecasted to be higher than certain thresholds. As one of the most polluted 

regions in China, the BTH region has implemented a package of traffic control measures, especially during the winter, with 

the worst meteorological conditions for pollution dispersion. In this study, Scenario Restriction (S3) estimated the real-world 130 

traffic patterns during a special week of November 4th to 8th, 2017, facing serious haze pollution. More extensive bans than 

usual were adopted during that week, so that coal-related freight trucks and high-emitting vehicles (e.g., gasoline cars in 

compliance with pre-China 2 standards) were restricted from many roads in the BTH region, the traffic composition (especially 

for the configurations of emission standard) would be adjusted accordingly in this scenario. Different from the averaged diurnal 

patterns in S1 and S2, hourly emissions were continuously estimated throughout the period with traffic restrictions. 135 

2.3 Generating dynamic traffic profiles based on land-use machine learning models 

2.3.1 Data collection 

Two land-use machine learning models, namely, The input data for modeling development of this study is mainly including 

traffic data and the land-use random forest (LURF) and Gaussian process regression (GPR) models, were developed to estimate 

the spatial distributions of link-level traffic volumes, speeds and mixes for the research domain.data. An overview of the data 140 

used to train the LURF and GPRland-use machine learning models is summarized in Table S3 and detailed below. 

Traffic data. The Ministry of Transport has established nationwide networking to monitor intercity traffic conditions(Yang et 

al. 2019; Zhang et al. 2018). Twenty-four-hour diurnal traffic profiles, including the volume, speed and fleet mix, were 

obtained from 848 intercity highway sites in the BTH region (see Fig. S1). The hourly traffic profiles of a whole week (20th to 

27th) were collected in January, April, July and November in 2017 to represent the average scenarios (S1 and S2). For S3, we 145 

further collected the hourly profiles from a special week including traffic restrictions (November 5th and 6th). Fig. S3S4 shows 

the distribution of the annual average daily traffic profiles used to train the models to see the capability for predicting the 

spatial distribution of these traffic profiles. Notably, the monitoring data of the traffic volumes could not separate the LDPVs 

and MDPVs from the light-medium-duty passenger vehicles (LMDPVs) on the whole. Therefore, we assembled the two 

categories when predicting the traffic volumes and separated the predicted traffic volumes according to the estimated total 150 

vehicle activity (i.e., registered population × annual VKT). 

Land-use data. As land-use machine learning models have rarely been used to develop traffic emission inventories, we 

selected candidate spatial predictors based on previous research on the air pollution concentration predictors (Hoek et al. 2008; 

Lee et al. 2017). Many of these predictors, such as the population density, road density and distance from transportation 

facilities (e.g., airports and transit stations), are expected to affect traffic activities as well. The potential predictor variables 155 

were divided into two groups: a) variables representing a point value and b) variables representing the cumulative values of an 

area (buffer variables). The buffered variables were represented as a density value (standardized by the buffer area). In total, 



6 
 

139 spatial predictor variables (see Table S3) regarding the land-use data were calculated considering the data availability. 

Gong et al. transferred the global training sample set developed in 2015 at a 30-m resolution to map a 10-m resolution global 

land cover in 2017 (Gong et al. 2019), which was assigned into each buffer to calculate the land-use variables. Next, we utilized 160 

the points of interest (POIs) mined from the Amap API to calculate the POI density in every buffer and the distance variables 

(Map 2017). The population density in the buffer was extracted from WorldPop, which estimates the numbers of people per 

pixel (ppp) and people per hectare (pph) and adjusts the national totals to match the UN population division with a spatial 

resolution of 100 m(WorldPop (www.worldpop.org - School of Geography and Environmental Science 2015). The China 

Digital Road-network Map (CDRM) data developed by NavInfo were used in this study. The road information included the 165 

location (latitude and longitude), administration, number of lanes and designed speed limit of the monitoring sites. We 

categorized the intercity traffic monitoring sites by road type (e.g., expressways, national-level highways and provincial-level 

highways) and thus calculated the road density in each buffer. 

2.3.2 Development and validation of the LURF and GPR models 

RF is an ensemble learning method that builds on specifically obtaining the bootstrapped aggregation of several regression 170 

trees to predict an outcome. The RF method uses a bootstrap sample for each tree and randomly selects a subset of predictors 

for testing at each split point in each tree to capture complex interactions and maintain a low bias. The land-use and road 

information datasets aligned to the prediction road links were used to train the RF regression models consisting of 300 trees 

and a minimum node size of 5.  

The GP is a stochastic process assuming that any finite combination of samples has a multivariate normal distribution. The GP 175 

is parameterized by a mean function and a covariance function: 

݂ሺXሻ ൌ ,ሺXሻߤሺܲܩ ,ሺXܭ Xሻሻ 

where f(X) denotes the outcome, which is estimated with separate GP models; X is the input of the GP models; and K is the 

kernel function, which is expressed in terms of a kernel that is appropriate for the modeling task. The kernel is associated with 

a set of hyperparameters that can be learned directly from the data instead of using cross-validation. The fully Bayesian 180 

nonparametric formulation of GPs makes them particularly well suited for modeling uncertainty and noise in observations. In 

this paper, we apply the squared exponential kernel and exact GPR to estimate the parameters of the GPR model with the 

training data. 

In order to find the most capable model for this study, five machine learning models commonly used in the environment or 

transport field were selected based on a comprehensive literature review and developed to estimate the spatial distributions of 185 

link-level traffic volumes, speeds and mixes for the research domain. They are land-use random forests (LURF), grading 

boosting decision trees (GBDT), support vector regression (SVR), Gaussian process regression (GPR) and linear regression 

(LR). LURF are often implemented in prediction analyses (e.g., spatial distribution of pollutant concentrations) because of 

their increased accuracy and resistance to multicollinearity and complex interaction problems compared to linear regression 

(Hastie 2009; Brokamp et al. 2018). GPR is a flexible nonparametric Bayesian model that has been successfully applied to 190 
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predict traffic characteristics (e.g., traffic congestion(Liu, Yue, and Krishnan 2013) and traffic volumes (Xie et al. 2010)) with 

state-of-the-art results. GBDT models are also well adopted for traffic prediction in various study, due to the ability to 

continuously reduce error during the execution of each iteration (Xia and Chen 2017; Yang et al. 2017; Yang, Zheng, and Sun 

2019; Li and Bai 2016). SVR method showed great competence over other traditional algorithms while dealing with non-linear, 

high-dimensional and small sample problems (Li and Xu 2021). LR is a fundamental and popular algorithm in the field of 195 

traffic flow prediction, which can establish a statistical relationship between dependent variables and independent variables. 

(Alam, Farid, and Rossetti 2019; Boukerche and Wang 2020). The detailed advantages and disadvantaged of each model are 

summarized in Table S4. 

In this study, in the process of model development, we used the annual daily average traffic profiles (i.e., traffic volume by 

category and speed) as the observed responses of the LURF and GPR models, and the land-use datasets (detailed in Section 200 

2.3.1) were used for the input of the models. We conducted an overall 10-fold cross-validation to evaluate the model 

performance. The entire dataset, including the hourly traffic datasets and the land-use datasets, was randomly split into 10 

groups, with each group containing ~10% of the data. In each cross-validation, nine groups of data were employed as training 

sets to fit the models and make predictions on the remaining group. This process was repeated 10 times until every group was 

predicted. The Pearson R (r), root mean squared prediction error (RMSE) and mean absolute prediction error (MAPE) between 205 

the model predictions and observations were calculated to evaluate the model performance. 

The validation results indicated that the LURF model is more capable of estimating the traffic characteristics (see Section 3.1), 

which was used to further develop the hourly specific LURF models. The relative importance of the predictors from the trained 

LURF model shows their prediction ability. For each predictor, we permuted the values of this predictor across every 

observation in the dataset and measured the increase in the mean standard error (MSE) per permutation. Repeating this process 210 

for each predictor, a metric stores the increase in the MSE due to the permutation of out-of-bag observations across each input 

predictor averaged over all trees in the forest and divided by the standard deviation taken over the trees. The larger this value 

is, the more important the predictor should be. The metric stores the strength of the relationships between the predictors and 

projections to indicate the relative importance between various predictors.  

 215 

3. Results and Discussion 

3.1 The results of the traffic prediction 

Table 1 summarizesillustrates the statistical metricsPearson R used to evaluate the model performance for predicting the daily 

averaged traffic parameters based on the constructed LURF and GPRmachine learning models., the overall performance of 

prediction (Pearson R, RMSE and MAPE) were summarized in Table S5 . The performances of the LURF and GPR models 220 

were assessed using a 10-fold cross-validation. First, the LURF models consistently derive higher correlation coefficients 

between the predicted and observed traffic profiles than almost all the GPRother models. The Pearson’s r values range from 
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0.62 (LDTs) to 0.79 (LMDPVs) for the LURF models, which are 6% to 36% higher than the corresponding correlation 

coefficients for the GPR models. Next, the LURF models derive comparable or lower MAPE values for all traffic profiles than 

the GPR models. The largest reduction in the mean MAPE values is found for the MDTs (4.22 for LURF vs. 6.67 for GPR). 225 

For the other traffic profiles, the results also show lower mean MAPE values for the LMDPVs, LDTs, and HDTs by 12% to 

18% when using the LURF model than when using the GPR model. For the HDPVs and speed, the MAPE values are 

comparable between the LURF and GPR models. In addition, the MAPE distributions depict wider variations when using the 

GPR models than when using the LURF models.higher than the corresponding correlation coefficients for the other four 

models. The R values of GBDT for LMDPV are slightly better than LURF (0.81 vs. 0.79). Furthermore, the RMSE values of 230 

the category-resolved traffic volumes by using the LURF models are significantly lower than those for the GPR models by 

approximately 95% or even larger percentages. Only one exception is that the RMSE for the speed prediction increased from 

0.36 km h-1 to 5.68 km h-1 when using the LURF model compared with the GPR model. We further evaluated the model 

performance for predicting the hourly averaged traffic profiles under different scenarios. Taking S1 as an example (see Table 

S4), the validation results show that the LURF model performs better than the GPR model in terms of Pearson’s R and MAPE, 235 

which are similar to the results for predicting daily traffic profiles. However, the GPR model is better than the LURF model 

at reducing the RMSE when predicting the HDPVs, LDTs, HDTs and speed, mainly because of the greater diurnal variations 

in these variablesother models. The RMSE values of GBDT and SVR on HDT traffic simulations are also relatively low. For 

the value of MAPE, the performance of LURF, GBDT and SVR are comparable and better than GPR and LR. In general, 

LURF has shown ideal performance in the simulation of all traffic profiles, while the performance of GBDT and SVR on 240 

individual indicators (such as traffic flow of LMDPV and HDT) is also acceptable. Therefore, the LURF model is more capable 

of predicting traffic profiles than other models on most occasions for this study and will be used in following simulations.  

For the hourly specific LURF models, weWe further developed an hourly specific LURF model to predict the hourly averaged 

traffic profiles under different scenarios. We ranked the variable importance in the training process utilizing the method above 

to construct a variable importance measure and then averaged the hourly ranks for each variable to the final importance index 245 

listed in Table S5S6. Table S5S6 illustrates the top 10 important variables for all land-use predictors in our LURF models 

under S1. In general, in addition to the road location (province, city and county), the important input variables for predicting 

traffic volumes are primarily related to road information, such as the road type, road density, number of lanes and designed 

speed. Especially for the HDTs and speed simulations, the top 10 important variables are almost all related to road information. 

The effects of land cover and POI information for estimating traffic characteristics are relatively less important than the role 250 

of road information. For passenger fleets (LMDPVs and HDPVs) and light-duty trucks (LDTs and MDTs), some important 

inputs related to the land-use datasets (e.g., population, POI information) are indicated by the analysis. Notably, these important 

land-use variables often represent large buffers (e.g., 2000 m to 5000 m). This effect is because intercity monitoring sites are 

typically located far away from urban areas, where POI information is more densely available. 

 255 
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3.2 Traffic activity characteristics of road networks under various scenarios 

Different from urban weekday-weekend patterns (Yang et al. 2019), a higher traffic activity is estimated during weekends (S2; 

931 million veh km) than on weekdays (S1; 841 million km). This data implies that more leisure trips during weekends could 

be captured by intercity highway monitoring data (see Fig. S45). The lower traffic activity during weekdays is mainly observed 

in Hebei Province (63%); among all vehicle categories, the LDPVs account for ~70% of the total reduced VKT, followed by 260 

HDTs (16%) and LDTs (10%). 

We annualized the allocation of the total traffic activity by vehicle category in the BTH region by aggregating the daily patterns 

under S1 and S2 (see Fig. S56). Among all the fleets, the LDPVs account for the largest proportion of the total annual traffic 

activity (64%), followed by the HDTs (18%) and LDTs (9%). For the HDTs, the fractions of the total traffic activity decrease 

from Hebei (20%) to Tianjin (18%) and thus to Beijing (11%), probably because of two major reasons. First, the passenger 265 

traffic activity by LDPVs is denser in Beijing than in Hebei. Second, many HDTs are strictly limited within the Sixth Ring 

Road in Beijing, which could also shrink the freight activity outside the restriction area (Yang et al. 2019). Table S67 illustrates 

the allocations of traffic activity by the vehicle category and road type. For freight transportation, more than 50% of the HDT 

traffic activity is estimated to occur on expressways. In Tianjin and Hebei, HDTs travel more frequently on expressways than 

LDTs to improve efficiency. 270 

In terms of temporal variations, the rush hour phenomenon, shown as an increase in the traffic activity, occurred from 8:00 to 

10:00 GMT+8 and from 15:00 to 17:00 GMT+8 on weekdays (S1). Compared to the rush hour effect within urban areas in 

Beijing (e.g., peaked at the hour of 7:00 GMT+8)(Yang et al. 2019), the morning rush hours occur later, while evening rush 

hours are earlier for these intercity highways. Similar trends are observed during weekends (S2), with a higher traffic activity 

reflecting more casual intercity trips (see Fig. S45). In contrast, the diurnal fluctuations of the average speeds depict quite close 275 

characteristics between weekdays and weekends (see Fig. S76) because the level of congestion for intercity highways (even 

during rush hours) is not comparable to urban areas. It should be noted that the speed in Beijing are obviously lower than that 

in Tianjin and Hebei, mainly due to the congestion occurred in Beijing resulting from its larger travel demands. 

The traffic activity of Scenario S3 with special policy interventions was clearly reduced in the BTH region. The daily traffic 

activity of S3 was deceased by 23% compared with that of normal weekdays. However, traffic reductions are heterogeneous 280 

among the various vehicle categories and different regions. As Fig. 1 shows, the LDPVs show uniform reductions of 

approximately 25% on all the intercity highways in the BTH region; only 4% of roads are identified with increased LDPV 

volumes. For HDTs, reduced traffic could also be observed in Beijing and the expressways and national highways in Tianjin, 

but there is a certain number of provincial highways in Tianjin (~20%) and expressways (~30%), national highways (~15%) 

and provincial highways (~20%) in Hebei with increased flow. Four subregions are indicated in Fig. 1 with significantly 285 

increased HDT volumes (more than 50%). Subregions 1-3 represent the roads heading to several large ports (the ports of 

Qingdao, Tianjin, and Qinhuangdao for subregions 1-3, respectively), and subregion 4 represents the areas near the boundary 

of the BTH region. These differences in traffic volume between the LDPVs and HDTs indicate that for passenger travel, the 
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restrictions could uniformly reduce the travel demand across the region. In contrast, decreases in HDT traffic volumes are 

expected in areas with the stricter enforcement of traffic restrictions (i.e., Beijing and highway and national roads in Tianjin). 290 

The traffic restrictions were more effective in Beijing, resulting in a 29% decrease among all vehicle fleets, especially for the 

HDTs (a 52% decrease) and MDTs (a 42% decrease). In Hebei, such traffic restrictions could result in a detour of the HDTs, 

as the operators and drivers of the HDTs could conduct their business even on restrictive days. The decrease in the total traffic 

activity in Hebei was primarily due to the LMDPVs, and the traffic activities of MDTs and HDTs were only 5% and 14% 

lower than those on normal weekdays (S1). 295 

3.3 Temporal and spatial characteristics of traffic emissions 

The total daily emissions for the intercity highways in the BTH region are estimated to be 1443 tons for CO, 152.3 tons for 

THC, 1158 tons for NOX, 37.30 tons for PM2.5 and 18.73 tons for BC, during weekdays (S1, See Fig. 2; see provincial-level 

total emissions and emission intensity in Fig. S7)8. During weekends (S2), the total daily emissions are estimated to increase 

by approximately 10% for all pollutants due to increased traffic activity. Comprehensive traffic restrictions under S3 triggered 300 

decreased vehicle emissions, e.g., 33% to 38% for CO and THC, 23% for NOX, and 15% to 17% for PM2.5 and BC in the entire 

domain relative to S1. For LDPVs traveling on the highways, the greater reductions in CO and THC result from the lower 

traffic volumes due to traffic restrictions, especially in Tianjin and Hebei. In these areas, the controls for vehicles are behind 

those in Beijing, and therefore, the restrictions on pre-China 2 gasoline cars could result in a larger reduction. Diesel trucks 

contribute significantly to the emission reductions of NOX, PM2.5 and BC, and their lower reduction percentages compared to 305 

CO and THC are related to smaller decreases in the HDT traffic volume in Tianjin and Hebei.  

The major temporal difference in the diurnal patterns between S1 and S2 lies in the higher emissions during the rush hours of 

weekends. We thus refer to the weekday scenario (S1) to elucidate the temporal and spatial emission patterns (see Figs. 2 and 

3). The emission peaks of CO and THC during morning (9:00 to 10:00 GMT+8) and evening (16:00 to 17:00 GMT+8) rush 

hours, which are apparently associated with diurnal fluctuations in the passenger travel demand, are shown in Fig. S65. As 310 

Figs. 4a and 4b visualize, the CO emission intensity close to urban areas is significantly higher than that in outlying areas 

during both peak and off-peak periods. The highest hourly emissions of CO and THC, which are more associated with 

passenger traffic activity, were estimated during the morning rush hour (10:00 GMT+8); these emissions were higher than 

their 24-h averages by approximately 40%-50%. The emission allocations show high resemblance between CO and THC; 

specifically, the LDPVs dominate the contributions, and the proportions in Beijing and Tianjin are higher than those in Hebei. 315 

This increase is because these two metropolitan areas have a higher density of residential population (indicated by pop_5000m), 

business units (indicated by POI_office_5000m), and urban lands (indicated by urbanland_5000m) than in Hebei; these 

variables have been identified as the most important variables for traffic activity predictions of LDPVs by using LURF 

modeling (see Table S56). 

Diesel fleets are responsible for much greater shares of on-road NOX, PM2.5 and BC emissions than CO and THC emissions. 320 

Consequently, distinctive traffic behaviors of these diesel fleets will result in disparate temporal and spatial emission patterns 
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from those for CO and THC. First, we have observed that the total emissions of NOX, PM2.5 and BC during the night (0:00 to 

4:00 GMT+8, Fig. 2) are closer to the emissions during the daytime, but the nighttime-daytime differences in the emission 

patterns are less than those of CO and THC. This finding is because a considerable part of long-haul freight trucks in China 

are operated by two drivers, who could shift duty and travel during nighttime. Second, the NOX, PM2.5 and BC emission 325 

contributions by HDTs in Tianjin and Hebei are higher than those in Beijing by approximately 10%. Additionally, the higher 

percentages of the total NOX, PM2.5 and BC emissions by HDPVs (tourist and intercity coaches) in Beijing are higher than 

those in Tianjin and Hebei. The comparison results indicated higher passenger travel demand in Beijing due to its attraction of 

tourists and lower freight transportation activity due to truck restrictions. 

The emission maps discern Tianjin Port, the largest port in northern China with an annual freight handling amount of 466 330 

million tons in 2018, as a significant hotspot. A large amount of HDTs flood into Tianjin Port (i.e., Subregion 2 in Fig. 1), 

leading to significantly higher emissions on adjacent highways throughout the day (Figs. 3C and 3D). The daily variation in 

the NOX emission intensity in the port area is more obvious than that in Tianjin and the BTH region, with a peak period from 

7:00 to 18:00 GMT+8. The hourly average NOX emission intensity of Tianjin Port is 1.87±0.42 kg km-1 h-1, which is 47% and 

123% higher than the average levels of Tianjin and the BTH region, respectively (see Fig. S98). 335 

3.4 Discussion 

An efficient protocol of dynamically modeling hourly based, link-level emissions. This study provides a universal 

analytical method for a high-resolution vehicle inventory at a regional scale, especially for regions including many cities 

suffering from the difficulty of addressing traffic data at a high spatial resolution. Fig. 4 shows the hourly variations in the 

traffic activities of LDPVs and HDTs and total vehicle emissions by region during a special week when traffic restrictions 340 

were implemented (November 5th to 6th, 2017). During November 2nd to 5th, the traffic activity resembles that during a normal 

week (e.g., April 20th to 27th, 2017; see Fig. S910). When the traffic restrictions were being implemented during November 5th 

and 6th, we observed an ~20% reduction in the VKT of LDPVs and HDTs, an ~30% reduction in CO emissions and an ~20% 

reduction in NOX emissions, which resembled S1 and S3 because of traffic restrictions. Therefore, the high efficiency of the 

calculation based on the LURF model provides a platform to realize the near real-time process of establishing high-resolution 345 

vehicle emission inventories, and can dynamically support the further evaluation of environmental benefits from traffic policies 

and management measures. 

Insights on the spatial allocation of traffic emissions for intercity highways. Addressing the spatial characteristics of traffic 

profiles based on limited datasets is a significant challenge for establishing high-resolution emission inventories of on-road 

vehicles. To overcome this barrier, the allocation of the VKT based on-road information is the most typical way to establish 350 

simplified bottom-up inventories. Zheng et al. allocated the VKT of each county based on the same weighing factors 

considering the vehicle category and road type. Gately et al. used the same allocation of the total VKT considering the 

differences in weighing factors according to the but regardless of distinguishing the vehicle category. We combined the two 

different methods to allocate the VKT according to Eq. 2 
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VKT,௩
ெଶ ൌ VKT௩ெଵ ൈ

,ೡ∙ோ,ೡ
∑ ,ೡ∙ோ,ೡ

                             (2) 355 

where VKTvc
M1 is the total VKT of vehicle category vc of the BTH region calculated in M1, which indicates this study using 

link-level traffic data based on the machine learning method; VKTl, vc
M2 is the allocation VKT on-road link l of vehicle category 

vc in M2, which denotes the allocation method; TVl,vc is the preallocated traffic volume based on its road type and location on-

road (Yang et al. 2019) link l of vehicle category vc; and RLl,vc is the length of road link l. CO and NOX are discussed, as they 

represent the gasoline and diesel featured emissions, respectively. 360 

As Fig. 5 illustrates, compared with M1, M2 tends to underestimate the CO emissions on the provincial highways close to 

urban areas (80% of the provincial highway links are underestimated) and overestimates the expressways and national 

highways in remote rural areas, especially in Beijing and Hebei (77% and 62% of the expressways are overestimated in Beijing 

and Hebei, respectively). This miscalculation is because, for remote rural areas without monitoring traffic data, we tend to 

preallocate volumes according to the road rank, which means expressways and national highways will be allocated more traffic 365 

volumes than provincial roads. For NOX, we observe a similar misestimation in the emission distribution of CO; that is, 

approximately 70% of provincial highway links are underestimated, and ~70% and 60% of expressways and national highways 

are overestimated. The long-tailed distributions of the relative difference of CO and NOX are illustrated in Fig. S1011. Overall, 

the differences between the two methods are not extreme because 79% and 82% of road links’ relative differences for CO and 

NOX are within ±50%. The analysis indicates that we may use the simplified M2 with the absence of land-use data while 370 

needing to pay attention to the uncertainty in the project-level emission calculations (e.g., port-related areas).  

In summary, compared GPR models, LURF models show good cross-validated accuracy and can be useful for the high-

resolution prediction of traffic profiles to establish high-resolution vehicle emission inventories. Other machine learning 

methods exist for predicting the outcome based on land-use information (e.g., neural network approach and supporting vector 

machine), and additional research in this field is needed to compare and optimize these machine learning methods. On the 375 

other hand, the spatiotemporal dependencies are not as clearly modeled in machine learning as they are in general linear model 

frameworks, and future work could derive methods for optimizing the predictors used in machine learning models to improve 

the accuracy of the prediction. 

Temporal and spatial patterns of air pollutant emissions from on-road vehicles are of substantial interest because of the 

associated potential public health impact. The intake fractions of vehicular pollutants are greatest in areas with high vehicle 380 

usage and population density (Marshall et al. 2005). Air quality simulation models with fine-grained input from high-resolution 

vehicle emission inventories will be valuable for evaluating the potential health benefits from vehicle emission control 

measures (Ke et al. 2017). However, we are limited to estimates of detailed link-level emissions for urban areas in Tianjin and 

Hebei due to the data availability (e.g., traffic volume of urban local roads). Currently, as noted in the introduction, there are 

already link-level emission inventories in large cities with traffic datasets from the ITS, but a strengthening of the portability 385 

of the analytical method is still needed. This study points a promising way to smart management of traffic emissions in various 
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regions and cities by combining advanced data-driven techniques and multi-source ITS datasets, which will provide 

policymakers with a better understanding of how air quality impacts regional and local transportation activities. 

4. Conclusion 

This paper developed an hourly-based, link-level emissions inventory of vehicular pollutants using land-use machine learning 390 

methods based on the datasets of road traffic monitoring in the BTH region of China under three traffic scenarios. The 

methodology can potentially be used either to map traffic characteristics on a larger scale or to deal with real-time urban traffic 

data streams that need to overcome the challenges of computational accuracy and efficiency. The major findings can be 

summarized as follows: 

 (1) The land-use random forest (LURF) model is more capable of predicting traffic profiles than the Gaussian process 395 

regression (GPR) modelother models on most occasions in this research. 

 (2) The important input variables for predicting traffic volumes are primarily related to road information, such as the 

road type, road density, number of lanes and designed speed. 

 (3) A higher traffic activity is estimated during weekends than on weekdays, and the traffic activity of Scenario S3 

with special policy interventions was deceased by 23% compared with that of normal weekdays. 400 

 (4) NOX, PM2.5 and BC emissions from HDTs have higher emission intensity on the highways connecting to regional 

ports. ATraffic restrictions could result in a detour of the HDTs in Hebei was observed resulting, which resulted in relatively 

lower emission reductions in Hebei than Beijing even when traffic restrictions were implemented. 
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Figure 1. Estimated traffic volume reductions of the LDPVs and HDTs under traffic restrictions (S3) compared to 

normal weekdays (S1). 
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Figure 2. Estimated hourly emissions by vehicle category under S1. 
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Figure 3. Link-based emission intensity of CO (panels A and B) and NOX (panels C and D) during a midnight hour 

(0:00 GMT+8) and a rush hour (10:00 GMT+8). 515 
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Figure 4. Hourly VKT of LDPV and HDT (A and B) and vehicle emissions of CO and BC (C and D) by region from 

November 2nd to November 9th, 2017. 
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Figure 5. Comparison of the link-level emission intensity of CO and NOX developed by different methods. M1 denotes 

the emission inventory based on the traffic profiles estimated by LURF models. M2 denotes the emission inventory 525 

preallocated based on road type and length, and the total emissions of M2 according to that of M1.  
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Table 1. Cross-validated mean Pearson R (r), mean absolute predictive error (MAPE), and root mean squared error 530 

(RMSE) of the LURF and GPR models. 

Traffic profiles Pearson’s R MAPE RMSE 

 LURF GPR LURF GPR LURF GPR 

LMDPV 0.79 0.62 1.37 1.57 5360 219458 

HDPV 0.61 0.46 2.92 3.10 226 276419

LDT 0.62 0.49 1.26 1.41 1205 30745 

MDT 0.64 0.47 4.23 6.67 380 16504 

HDT 0.65 0.58 2.08 2.45 2706 49899 

Speed 0.75 0.71 0.16 0.17 5.68 0.36

Note: The units of RMSE for the traffic volumes and speed are veh d-1 and km h-1, respectively. 

Table 1. Cross-validated mean Pearson R of the traffic prediction by selected machine learning models. 

Traffic profiles LURF GBDT SVR GPR LR 

LMDPV 0.79 0.81 0.65 0.62 0.48 

HDPV 0.61 0.54 0.51 0.46 0.3 

LDT 0.62 0.55 0.44 0.49 0.17 

MDT 0.64 0.6 0.48 0.47 0.26 

HDT 0.65 0.58 0.56 0.58 0.5 

Speed 0.75 0.74 0.7 0.71 0.55 
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